1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "trace.h" 40 #include "x86.h" 41 #include "cpuid.h" 42 #include "hyperv.h" 43 44 #ifndef CONFIG_X86_64 45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 46 #else 47 #define mod_64(x, y) ((x) % (y)) 48 #endif 49 50 #define PRId64 "d" 51 #define PRIx64 "llx" 52 #define PRIu64 "u" 53 #define PRIo64 "o" 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define MAX_APIC_VECTOR 256 60 #define APIC_VECTORS_PER_REG 32 61 62 #define APIC_BROADCAST 0xFF 63 #define X2APIC_BROADCAST 0xFFFFFFFFul 64 65 static bool lapic_timer_advance_dynamic __read_mostly; 66 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 67 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 68 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 69 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 70 /* step-by-step approximation to mitigate fluctuation */ 71 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 72 73 static inline int apic_test_vector(int vec, void *bitmap) 74 { 75 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 76 } 77 78 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 79 { 80 struct kvm_lapic *apic = vcpu->arch.apic; 81 82 return apic_test_vector(vector, apic->regs + APIC_ISR) || 83 apic_test_vector(vector, apic->regs + APIC_IRR); 84 } 85 86 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 87 { 88 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 89 } 90 91 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 92 { 93 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 94 } 95 96 struct static_key_deferred apic_hw_disabled __read_mostly; 97 struct static_key_deferred apic_sw_disabled __read_mostly; 98 99 static inline int apic_enabled(struct kvm_lapic *apic) 100 { 101 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 102 } 103 104 #define LVT_MASK \ 105 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 106 107 #define LINT_MASK \ 108 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 109 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 110 111 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 112 { 113 return apic->vcpu->vcpu_id; 114 } 115 116 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 117 { 118 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 119 } 120 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt); 121 122 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 123 { 124 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 125 } 126 127 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 128 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 129 switch (map->mode) { 130 case KVM_APIC_MODE_X2APIC: { 131 u32 offset = (dest_id >> 16) * 16; 132 u32 max_apic_id = map->max_apic_id; 133 134 if (offset <= max_apic_id) { 135 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 136 137 offset = array_index_nospec(offset, map->max_apic_id + 1); 138 *cluster = &map->phys_map[offset]; 139 *mask = dest_id & (0xffff >> (16 - cluster_size)); 140 } else { 141 *mask = 0; 142 } 143 144 return true; 145 } 146 case KVM_APIC_MODE_XAPIC_FLAT: 147 *cluster = map->xapic_flat_map; 148 *mask = dest_id & 0xff; 149 return true; 150 case KVM_APIC_MODE_XAPIC_CLUSTER: 151 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 152 *mask = dest_id & 0xf; 153 return true; 154 default: 155 /* Not optimized. */ 156 return false; 157 } 158 } 159 160 static void kvm_apic_map_free(struct rcu_head *rcu) 161 { 162 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 163 164 kvfree(map); 165 } 166 167 static void recalculate_apic_map(struct kvm *kvm) 168 { 169 struct kvm_apic_map *new, *old = NULL; 170 struct kvm_vcpu *vcpu; 171 int i; 172 u32 max_id = 255; /* enough space for any xAPIC ID */ 173 174 mutex_lock(&kvm->arch.apic_map_lock); 175 176 kvm_for_each_vcpu(i, vcpu, kvm) 177 if (kvm_apic_present(vcpu)) 178 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 179 180 new = kvzalloc(sizeof(struct kvm_apic_map) + 181 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 182 GFP_KERNEL_ACCOUNT); 183 184 if (!new) 185 goto out; 186 187 new->max_apic_id = max_id; 188 189 kvm_for_each_vcpu(i, vcpu, kvm) { 190 struct kvm_lapic *apic = vcpu->arch.apic; 191 struct kvm_lapic **cluster; 192 u16 mask; 193 u32 ldr; 194 u8 xapic_id; 195 u32 x2apic_id; 196 197 if (!kvm_apic_present(vcpu)) 198 continue; 199 200 xapic_id = kvm_xapic_id(apic); 201 x2apic_id = kvm_x2apic_id(apic); 202 203 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 204 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 205 x2apic_id <= new->max_apic_id) 206 new->phys_map[x2apic_id] = apic; 207 /* 208 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 209 * prevent them from masking VCPUs with APIC ID <= 0xff. 210 */ 211 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 212 new->phys_map[xapic_id] = apic; 213 214 if (!kvm_apic_sw_enabled(apic)) 215 continue; 216 217 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 218 219 if (apic_x2apic_mode(apic)) { 220 new->mode |= KVM_APIC_MODE_X2APIC; 221 } else if (ldr) { 222 ldr = GET_APIC_LOGICAL_ID(ldr); 223 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 224 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 225 else 226 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 227 } 228 229 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 230 continue; 231 232 if (mask) 233 cluster[ffs(mask) - 1] = apic; 234 } 235 out: 236 old = rcu_dereference_protected(kvm->arch.apic_map, 237 lockdep_is_held(&kvm->arch.apic_map_lock)); 238 rcu_assign_pointer(kvm->arch.apic_map, new); 239 mutex_unlock(&kvm->arch.apic_map_lock); 240 241 if (old) 242 call_rcu(&old->rcu, kvm_apic_map_free); 243 244 kvm_make_scan_ioapic_request(kvm); 245 } 246 247 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 248 { 249 bool enabled = val & APIC_SPIV_APIC_ENABLED; 250 251 kvm_lapic_set_reg(apic, APIC_SPIV, val); 252 253 if (enabled != apic->sw_enabled) { 254 apic->sw_enabled = enabled; 255 if (enabled) 256 static_key_slow_dec_deferred(&apic_sw_disabled); 257 else 258 static_key_slow_inc(&apic_sw_disabled.key); 259 260 recalculate_apic_map(apic->vcpu->kvm); 261 } 262 } 263 264 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 265 { 266 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 267 recalculate_apic_map(apic->vcpu->kvm); 268 } 269 270 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 271 { 272 kvm_lapic_set_reg(apic, APIC_LDR, id); 273 recalculate_apic_map(apic->vcpu->kvm); 274 } 275 276 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 277 { 278 return ((id >> 4) << 16) | (1 << (id & 0xf)); 279 } 280 281 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 282 { 283 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 284 285 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 286 287 kvm_lapic_set_reg(apic, APIC_ID, id); 288 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 289 recalculate_apic_map(apic->vcpu->kvm); 290 } 291 292 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 293 { 294 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 295 } 296 297 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type) 298 { 299 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK; 300 } 301 302 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 303 { 304 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 305 } 306 307 static inline int apic_lvtt_period(struct kvm_lapic *apic) 308 { 309 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 310 } 311 312 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 313 { 314 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 315 } 316 317 static inline int apic_lvt_nmi_mode(u32 lvt_val) 318 { 319 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 320 } 321 322 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 323 { 324 struct kvm_lapic *apic = vcpu->arch.apic; 325 struct kvm_cpuid_entry2 *feat; 326 u32 v = APIC_VERSION; 327 328 if (!lapic_in_kernel(vcpu)) 329 return; 330 331 /* 332 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 333 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 334 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 335 * version first and level-triggered interrupts never get EOIed in 336 * IOAPIC. 337 */ 338 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); 339 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) && 340 !ioapic_in_kernel(vcpu->kvm)) 341 v |= APIC_LVR_DIRECTED_EOI; 342 kvm_lapic_set_reg(apic, APIC_LVR, v); 343 } 344 345 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 346 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 347 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 348 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 349 LINT_MASK, LINT_MASK, /* LVT0-1 */ 350 LVT_MASK /* LVTERR */ 351 }; 352 353 static int find_highest_vector(void *bitmap) 354 { 355 int vec; 356 u32 *reg; 357 358 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 359 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 360 reg = bitmap + REG_POS(vec); 361 if (*reg) 362 return __fls(*reg) + vec; 363 } 364 365 return -1; 366 } 367 368 static u8 count_vectors(void *bitmap) 369 { 370 int vec; 371 u32 *reg; 372 u8 count = 0; 373 374 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 375 reg = bitmap + REG_POS(vec); 376 count += hweight32(*reg); 377 } 378 379 return count; 380 } 381 382 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 383 { 384 u32 i, vec; 385 u32 pir_val, irr_val, prev_irr_val; 386 int max_updated_irr; 387 388 max_updated_irr = -1; 389 *max_irr = -1; 390 391 for (i = vec = 0; i <= 7; i++, vec += 32) { 392 pir_val = READ_ONCE(pir[i]); 393 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 394 if (pir_val) { 395 prev_irr_val = irr_val; 396 irr_val |= xchg(&pir[i], 0); 397 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 398 if (prev_irr_val != irr_val) { 399 max_updated_irr = 400 __fls(irr_val ^ prev_irr_val) + vec; 401 } 402 } 403 if (irr_val) 404 *max_irr = __fls(irr_val) + vec; 405 } 406 407 return ((max_updated_irr != -1) && 408 (max_updated_irr == *max_irr)); 409 } 410 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 411 412 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 413 { 414 struct kvm_lapic *apic = vcpu->arch.apic; 415 416 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 417 } 418 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 419 420 static inline int apic_search_irr(struct kvm_lapic *apic) 421 { 422 return find_highest_vector(apic->regs + APIC_IRR); 423 } 424 425 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 426 { 427 int result; 428 429 /* 430 * Note that irr_pending is just a hint. It will be always 431 * true with virtual interrupt delivery enabled. 432 */ 433 if (!apic->irr_pending) 434 return -1; 435 436 result = apic_search_irr(apic); 437 ASSERT(result == -1 || result >= 16); 438 439 return result; 440 } 441 442 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 443 { 444 struct kvm_vcpu *vcpu; 445 446 vcpu = apic->vcpu; 447 448 if (unlikely(vcpu->arch.apicv_active)) { 449 /* need to update RVI */ 450 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 451 kvm_x86_ops->hwapic_irr_update(vcpu, 452 apic_find_highest_irr(apic)); 453 } else { 454 apic->irr_pending = false; 455 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 456 if (apic_search_irr(apic) != -1) 457 apic->irr_pending = true; 458 } 459 } 460 461 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 462 { 463 struct kvm_vcpu *vcpu; 464 465 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 466 return; 467 468 vcpu = apic->vcpu; 469 470 /* 471 * With APIC virtualization enabled, all caching is disabled 472 * because the processor can modify ISR under the hood. Instead 473 * just set SVI. 474 */ 475 if (unlikely(vcpu->arch.apicv_active)) 476 kvm_x86_ops->hwapic_isr_update(vcpu, vec); 477 else { 478 ++apic->isr_count; 479 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 480 /* 481 * ISR (in service register) bit is set when injecting an interrupt. 482 * The highest vector is injected. Thus the latest bit set matches 483 * the highest bit in ISR. 484 */ 485 apic->highest_isr_cache = vec; 486 } 487 } 488 489 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 490 { 491 int result; 492 493 /* 494 * Note that isr_count is always 1, and highest_isr_cache 495 * is always -1, with APIC virtualization enabled. 496 */ 497 if (!apic->isr_count) 498 return -1; 499 if (likely(apic->highest_isr_cache != -1)) 500 return apic->highest_isr_cache; 501 502 result = find_highest_vector(apic->regs + APIC_ISR); 503 ASSERT(result == -1 || result >= 16); 504 505 return result; 506 } 507 508 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 509 { 510 struct kvm_vcpu *vcpu; 511 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 512 return; 513 514 vcpu = apic->vcpu; 515 516 /* 517 * We do get here for APIC virtualization enabled if the guest 518 * uses the Hyper-V APIC enlightenment. In this case we may need 519 * to trigger a new interrupt delivery by writing the SVI field; 520 * on the other hand isr_count and highest_isr_cache are unused 521 * and must be left alone. 522 */ 523 if (unlikely(vcpu->arch.apicv_active)) 524 kvm_x86_ops->hwapic_isr_update(vcpu, 525 apic_find_highest_isr(apic)); 526 else { 527 --apic->isr_count; 528 BUG_ON(apic->isr_count < 0); 529 apic->highest_isr_cache = -1; 530 } 531 } 532 533 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 534 { 535 /* This may race with setting of irr in __apic_accept_irq() and 536 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 537 * will cause vmexit immediately and the value will be recalculated 538 * on the next vmentry. 539 */ 540 return apic_find_highest_irr(vcpu->arch.apic); 541 } 542 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 543 544 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 545 int vector, int level, int trig_mode, 546 struct dest_map *dest_map); 547 548 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 549 struct dest_map *dest_map) 550 { 551 struct kvm_lapic *apic = vcpu->arch.apic; 552 553 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 554 irq->level, irq->trig_mode, dest_map); 555 } 556 557 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 558 struct kvm_lapic_irq *irq, u32 min) 559 { 560 int i, count = 0; 561 struct kvm_vcpu *vcpu; 562 563 if (min > map->max_apic_id) 564 return 0; 565 566 for_each_set_bit(i, ipi_bitmap, 567 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 568 if (map->phys_map[min + i]) { 569 vcpu = map->phys_map[min + i]->vcpu; 570 count += kvm_apic_set_irq(vcpu, irq, NULL); 571 } 572 } 573 574 return count; 575 } 576 577 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 578 unsigned long ipi_bitmap_high, u32 min, 579 unsigned long icr, int op_64_bit) 580 { 581 struct kvm_apic_map *map; 582 struct kvm_lapic_irq irq = {0}; 583 int cluster_size = op_64_bit ? 64 : 32; 584 int count; 585 586 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 587 return -KVM_EINVAL; 588 589 irq.vector = icr & APIC_VECTOR_MASK; 590 irq.delivery_mode = icr & APIC_MODE_MASK; 591 irq.level = (icr & APIC_INT_ASSERT) != 0; 592 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 593 594 rcu_read_lock(); 595 map = rcu_dereference(kvm->arch.apic_map); 596 597 count = -EOPNOTSUPP; 598 if (likely(map)) { 599 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 600 min += cluster_size; 601 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 602 } 603 604 rcu_read_unlock(); 605 return count; 606 } 607 608 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 609 { 610 611 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 612 sizeof(val)); 613 } 614 615 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 616 { 617 618 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 619 sizeof(*val)); 620 } 621 622 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 623 { 624 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 625 } 626 627 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 628 { 629 u8 val; 630 if (pv_eoi_get_user(vcpu, &val) < 0) 631 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 632 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 633 return val & 0x1; 634 } 635 636 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 637 { 638 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 639 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 640 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 641 return; 642 } 643 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 644 } 645 646 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 647 { 648 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 649 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 650 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 651 return; 652 } 653 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 654 } 655 656 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 657 { 658 int highest_irr; 659 if (apic->vcpu->arch.apicv_active) 660 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu); 661 else 662 highest_irr = apic_find_highest_irr(apic); 663 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 664 return -1; 665 return highest_irr; 666 } 667 668 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 669 { 670 u32 tpr, isrv, ppr, old_ppr; 671 int isr; 672 673 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 674 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 675 isr = apic_find_highest_isr(apic); 676 isrv = (isr != -1) ? isr : 0; 677 678 if ((tpr & 0xf0) >= (isrv & 0xf0)) 679 ppr = tpr & 0xff; 680 else 681 ppr = isrv & 0xf0; 682 683 *new_ppr = ppr; 684 if (old_ppr != ppr) 685 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 686 687 return ppr < old_ppr; 688 } 689 690 static void apic_update_ppr(struct kvm_lapic *apic) 691 { 692 u32 ppr; 693 694 if (__apic_update_ppr(apic, &ppr) && 695 apic_has_interrupt_for_ppr(apic, ppr) != -1) 696 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 697 } 698 699 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 700 { 701 apic_update_ppr(vcpu->arch.apic); 702 } 703 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 704 705 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 706 { 707 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 708 apic_update_ppr(apic); 709 } 710 711 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 712 { 713 return mda == (apic_x2apic_mode(apic) ? 714 X2APIC_BROADCAST : APIC_BROADCAST); 715 } 716 717 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 718 { 719 if (kvm_apic_broadcast(apic, mda)) 720 return true; 721 722 if (apic_x2apic_mode(apic)) 723 return mda == kvm_x2apic_id(apic); 724 725 /* 726 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 727 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 728 * this allows unique addressing of VCPUs with APIC ID over 0xff. 729 * The 0xff condition is needed because writeable xAPIC ID. 730 */ 731 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 732 return true; 733 734 return mda == kvm_xapic_id(apic); 735 } 736 737 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 738 { 739 u32 logical_id; 740 741 if (kvm_apic_broadcast(apic, mda)) 742 return true; 743 744 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 745 746 if (apic_x2apic_mode(apic)) 747 return ((logical_id >> 16) == (mda >> 16)) 748 && (logical_id & mda & 0xffff) != 0; 749 750 logical_id = GET_APIC_LOGICAL_ID(logical_id); 751 752 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 753 case APIC_DFR_FLAT: 754 return (logical_id & mda) != 0; 755 case APIC_DFR_CLUSTER: 756 return ((logical_id >> 4) == (mda >> 4)) 757 && (logical_id & mda & 0xf) != 0; 758 default: 759 return false; 760 } 761 } 762 763 /* The KVM local APIC implementation has two quirks: 764 * 765 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 766 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 767 * KVM doesn't do that aliasing. 768 * 769 * - in-kernel IOAPIC messages have to be delivered directly to 770 * x2APIC, because the kernel does not support interrupt remapping. 771 * In order to support broadcast without interrupt remapping, x2APIC 772 * rewrites the destination of non-IPI messages from APIC_BROADCAST 773 * to X2APIC_BROADCAST. 774 * 775 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 776 * important when userspace wants to use x2APIC-format MSIs, because 777 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 778 */ 779 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 780 struct kvm_lapic *source, struct kvm_lapic *target) 781 { 782 bool ipi = source != NULL; 783 784 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 785 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 786 return X2APIC_BROADCAST; 787 788 return dest_id; 789 } 790 791 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 792 int shorthand, unsigned int dest, int dest_mode) 793 { 794 struct kvm_lapic *target = vcpu->arch.apic; 795 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 796 797 ASSERT(target); 798 switch (shorthand) { 799 case APIC_DEST_NOSHORT: 800 if (dest_mode == APIC_DEST_PHYSICAL) 801 return kvm_apic_match_physical_addr(target, mda); 802 else 803 return kvm_apic_match_logical_addr(target, mda); 804 case APIC_DEST_SELF: 805 return target == source; 806 case APIC_DEST_ALLINC: 807 return true; 808 case APIC_DEST_ALLBUT: 809 return target != source; 810 default: 811 return false; 812 } 813 } 814 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 815 816 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 817 const unsigned long *bitmap, u32 bitmap_size) 818 { 819 u32 mod; 820 int i, idx = -1; 821 822 mod = vector % dest_vcpus; 823 824 for (i = 0; i <= mod; i++) { 825 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 826 BUG_ON(idx == bitmap_size); 827 } 828 829 return idx; 830 } 831 832 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 833 { 834 if (!kvm->arch.disabled_lapic_found) { 835 kvm->arch.disabled_lapic_found = true; 836 printk(KERN_INFO 837 "Disabled LAPIC found during irq injection\n"); 838 } 839 } 840 841 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 842 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 843 { 844 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 845 if ((irq->dest_id == APIC_BROADCAST && 846 map->mode != KVM_APIC_MODE_X2APIC)) 847 return true; 848 if (irq->dest_id == X2APIC_BROADCAST) 849 return true; 850 } else { 851 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 852 if (irq->dest_id == (x2apic_ipi ? 853 X2APIC_BROADCAST : APIC_BROADCAST)) 854 return true; 855 } 856 857 return false; 858 } 859 860 /* Return true if the interrupt can be handled by using *bitmap as index mask 861 * for valid destinations in *dst array. 862 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 863 * Note: we may have zero kvm_lapic destinations when we return true, which 864 * means that the interrupt should be dropped. In this case, *bitmap would be 865 * zero and *dst undefined. 866 */ 867 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 868 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 869 struct kvm_apic_map *map, struct kvm_lapic ***dst, 870 unsigned long *bitmap) 871 { 872 int i, lowest; 873 874 if (irq->shorthand == APIC_DEST_SELF && src) { 875 *dst = src; 876 *bitmap = 1; 877 return true; 878 } else if (irq->shorthand) 879 return false; 880 881 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 882 return false; 883 884 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 885 if (irq->dest_id > map->max_apic_id) { 886 *bitmap = 0; 887 } else { 888 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 889 *dst = &map->phys_map[dest_id]; 890 *bitmap = 1; 891 } 892 return true; 893 } 894 895 *bitmap = 0; 896 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 897 (u16 *)bitmap)) 898 return false; 899 900 if (!kvm_lowest_prio_delivery(irq)) 901 return true; 902 903 if (!kvm_vector_hashing_enabled()) { 904 lowest = -1; 905 for_each_set_bit(i, bitmap, 16) { 906 if (!(*dst)[i]) 907 continue; 908 if (lowest < 0) 909 lowest = i; 910 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 911 (*dst)[lowest]->vcpu) < 0) 912 lowest = i; 913 } 914 } else { 915 if (!*bitmap) 916 return true; 917 918 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 919 bitmap, 16); 920 921 if (!(*dst)[lowest]) { 922 kvm_apic_disabled_lapic_found(kvm); 923 *bitmap = 0; 924 return true; 925 } 926 } 927 928 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 929 930 return true; 931 } 932 933 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 934 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 935 { 936 struct kvm_apic_map *map; 937 unsigned long bitmap; 938 struct kvm_lapic **dst = NULL; 939 int i; 940 bool ret; 941 942 *r = -1; 943 944 if (irq->shorthand == APIC_DEST_SELF) { 945 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 946 return true; 947 } 948 949 rcu_read_lock(); 950 map = rcu_dereference(kvm->arch.apic_map); 951 952 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 953 if (ret) { 954 *r = 0; 955 for_each_set_bit(i, &bitmap, 16) { 956 if (!dst[i]) 957 continue; 958 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 959 } 960 } 961 962 rcu_read_unlock(); 963 return ret; 964 } 965 966 /* 967 * This routine tries to handle interrupts in posted mode, here is how 968 * it deals with different cases: 969 * - For single-destination interrupts, handle it in posted mode 970 * - Else if vector hashing is enabled and it is a lowest-priority 971 * interrupt, handle it in posted mode and use the following mechanism 972 * to find the destination vCPU. 973 * 1. For lowest-priority interrupts, store all the possible 974 * destination vCPUs in an array. 975 * 2. Use "guest vector % max number of destination vCPUs" to find 976 * the right destination vCPU in the array for the lowest-priority 977 * interrupt. 978 * - Otherwise, use remapped mode to inject the interrupt. 979 */ 980 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 981 struct kvm_vcpu **dest_vcpu) 982 { 983 struct kvm_apic_map *map; 984 unsigned long bitmap; 985 struct kvm_lapic **dst = NULL; 986 bool ret = false; 987 988 if (irq->shorthand) 989 return false; 990 991 rcu_read_lock(); 992 map = rcu_dereference(kvm->arch.apic_map); 993 994 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 995 hweight16(bitmap) == 1) { 996 unsigned long i = find_first_bit(&bitmap, 16); 997 998 if (dst[i]) { 999 *dest_vcpu = dst[i]->vcpu; 1000 ret = true; 1001 } 1002 } 1003 1004 rcu_read_unlock(); 1005 return ret; 1006 } 1007 1008 /* 1009 * Add a pending IRQ into lapic. 1010 * Return 1 if successfully added and 0 if discarded. 1011 */ 1012 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1013 int vector, int level, int trig_mode, 1014 struct dest_map *dest_map) 1015 { 1016 int result = 0; 1017 struct kvm_vcpu *vcpu = apic->vcpu; 1018 1019 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1020 trig_mode, vector); 1021 switch (delivery_mode) { 1022 case APIC_DM_LOWEST: 1023 vcpu->arch.apic_arb_prio++; 1024 /* fall through */ 1025 case APIC_DM_FIXED: 1026 if (unlikely(trig_mode && !level)) 1027 break; 1028 1029 /* FIXME add logic for vcpu on reset */ 1030 if (unlikely(!apic_enabled(apic))) 1031 break; 1032 1033 result = 1; 1034 1035 if (dest_map) { 1036 __set_bit(vcpu->vcpu_id, dest_map->map); 1037 dest_map->vectors[vcpu->vcpu_id] = vector; 1038 } 1039 1040 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1041 if (trig_mode) 1042 kvm_lapic_set_vector(vector, 1043 apic->regs + APIC_TMR); 1044 else 1045 kvm_lapic_clear_vector(vector, 1046 apic->regs + APIC_TMR); 1047 } 1048 1049 if (vcpu->arch.apicv_active) 1050 kvm_x86_ops->deliver_posted_interrupt(vcpu, vector); 1051 else { 1052 kvm_lapic_set_irr(vector, apic); 1053 1054 kvm_make_request(KVM_REQ_EVENT, vcpu); 1055 kvm_vcpu_kick(vcpu); 1056 } 1057 break; 1058 1059 case APIC_DM_REMRD: 1060 result = 1; 1061 vcpu->arch.pv.pv_unhalted = 1; 1062 kvm_make_request(KVM_REQ_EVENT, vcpu); 1063 kvm_vcpu_kick(vcpu); 1064 break; 1065 1066 case APIC_DM_SMI: 1067 result = 1; 1068 kvm_make_request(KVM_REQ_SMI, vcpu); 1069 kvm_vcpu_kick(vcpu); 1070 break; 1071 1072 case APIC_DM_NMI: 1073 result = 1; 1074 kvm_inject_nmi(vcpu); 1075 kvm_vcpu_kick(vcpu); 1076 break; 1077 1078 case APIC_DM_INIT: 1079 if (!trig_mode || level) { 1080 result = 1; 1081 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1082 apic->pending_events = (1UL << KVM_APIC_INIT); 1083 /* make sure pending_events is visible before sending 1084 * the request */ 1085 smp_wmb(); 1086 kvm_make_request(KVM_REQ_EVENT, vcpu); 1087 kvm_vcpu_kick(vcpu); 1088 } 1089 break; 1090 1091 case APIC_DM_STARTUP: 1092 result = 1; 1093 apic->sipi_vector = vector; 1094 /* make sure sipi_vector is visible for the receiver */ 1095 smp_wmb(); 1096 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1097 kvm_make_request(KVM_REQ_EVENT, vcpu); 1098 kvm_vcpu_kick(vcpu); 1099 break; 1100 1101 case APIC_DM_EXTINT: 1102 /* 1103 * Should only be called by kvm_apic_local_deliver() with LVT0, 1104 * before NMI watchdog was enabled. Already handled by 1105 * kvm_apic_accept_pic_intr(). 1106 */ 1107 break; 1108 1109 default: 1110 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1111 delivery_mode); 1112 break; 1113 } 1114 return result; 1115 } 1116 1117 /* 1118 * This routine identifies the destination vcpus mask meant to receive the 1119 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1120 * out the destination vcpus array and set the bitmap or it traverses to 1121 * each available vcpu to identify the same. 1122 */ 1123 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1124 unsigned long *vcpu_bitmap) 1125 { 1126 struct kvm_lapic **dest_vcpu = NULL; 1127 struct kvm_lapic *src = NULL; 1128 struct kvm_apic_map *map; 1129 struct kvm_vcpu *vcpu; 1130 unsigned long bitmap; 1131 int i, vcpu_idx; 1132 bool ret; 1133 1134 rcu_read_lock(); 1135 map = rcu_dereference(kvm->arch.apic_map); 1136 1137 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1138 &bitmap); 1139 if (ret) { 1140 for_each_set_bit(i, &bitmap, 16) { 1141 if (!dest_vcpu[i]) 1142 continue; 1143 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1144 __set_bit(vcpu_idx, vcpu_bitmap); 1145 } 1146 } else { 1147 kvm_for_each_vcpu(i, vcpu, kvm) { 1148 if (!kvm_apic_present(vcpu)) 1149 continue; 1150 if (!kvm_apic_match_dest(vcpu, NULL, 1151 irq->shorthand, 1152 irq->dest_id, 1153 irq->dest_mode)) 1154 continue; 1155 __set_bit(i, vcpu_bitmap); 1156 } 1157 } 1158 rcu_read_unlock(); 1159 } 1160 1161 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1162 { 1163 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1164 } 1165 1166 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1167 { 1168 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1169 } 1170 1171 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1172 { 1173 int trigger_mode; 1174 1175 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1176 if (!kvm_ioapic_handles_vector(apic, vector)) 1177 return; 1178 1179 /* Request a KVM exit to inform the userspace IOAPIC. */ 1180 if (irqchip_split(apic->vcpu->kvm)) { 1181 apic->vcpu->arch.pending_ioapic_eoi = vector; 1182 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1183 return; 1184 } 1185 1186 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1187 trigger_mode = IOAPIC_LEVEL_TRIG; 1188 else 1189 trigger_mode = IOAPIC_EDGE_TRIG; 1190 1191 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1192 } 1193 1194 static int apic_set_eoi(struct kvm_lapic *apic) 1195 { 1196 int vector = apic_find_highest_isr(apic); 1197 1198 trace_kvm_eoi(apic, vector); 1199 1200 /* 1201 * Not every write EOI will has corresponding ISR, 1202 * one example is when Kernel check timer on setup_IO_APIC 1203 */ 1204 if (vector == -1) 1205 return vector; 1206 1207 apic_clear_isr(vector, apic); 1208 apic_update_ppr(apic); 1209 1210 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap)) 1211 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1212 1213 kvm_ioapic_send_eoi(apic, vector); 1214 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1215 return vector; 1216 } 1217 1218 /* 1219 * this interface assumes a trap-like exit, which has already finished 1220 * desired side effect including vISR and vPPR update. 1221 */ 1222 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1223 { 1224 struct kvm_lapic *apic = vcpu->arch.apic; 1225 1226 trace_kvm_eoi(apic, vector); 1227 1228 kvm_ioapic_send_eoi(apic, vector); 1229 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1230 } 1231 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1232 1233 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1234 { 1235 struct kvm_lapic_irq irq; 1236 1237 irq.vector = icr_low & APIC_VECTOR_MASK; 1238 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1239 irq.dest_mode = icr_low & APIC_DEST_MASK; 1240 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1241 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1242 irq.shorthand = icr_low & APIC_SHORT_MASK; 1243 irq.msi_redir_hint = false; 1244 if (apic_x2apic_mode(apic)) 1245 irq.dest_id = icr_high; 1246 else 1247 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1248 1249 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1250 1251 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1252 } 1253 1254 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1255 { 1256 ktime_t remaining, now; 1257 s64 ns; 1258 u32 tmcct; 1259 1260 ASSERT(apic != NULL); 1261 1262 /* if initial count is 0, current count should also be 0 */ 1263 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1264 apic->lapic_timer.period == 0) 1265 return 0; 1266 1267 now = ktime_get(); 1268 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1269 if (ktime_to_ns(remaining) < 0) 1270 remaining = 0; 1271 1272 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1273 tmcct = div64_u64(ns, 1274 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1275 1276 return tmcct; 1277 } 1278 1279 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1280 { 1281 struct kvm_vcpu *vcpu = apic->vcpu; 1282 struct kvm_run *run = vcpu->run; 1283 1284 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1285 run->tpr_access.rip = kvm_rip_read(vcpu); 1286 run->tpr_access.is_write = write; 1287 } 1288 1289 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1290 { 1291 if (apic->vcpu->arch.tpr_access_reporting) 1292 __report_tpr_access(apic, write); 1293 } 1294 1295 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1296 { 1297 u32 val = 0; 1298 1299 if (offset >= LAPIC_MMIO_LENGTH) 1300 return 0; 1301 1302 switch (offset) { 1303 case APIC_ARBPRI: 1304 break; 1305 1306 case APIC_TMCCT: /* Timer CCR */ 1307 if (apic_lvtt_tscdeadline(apic)) 1308 return 0; 1309 1310 val = apic_get_tmcct(apic); 1311 break; 1312 case APIC_PROCPRI: 1313 apic_update_ppr(apic); 1314 val = kvm_lapic_get_reg(apic, offset); 1315 break; 1316 case APIC_TASKPRI: 1317 report_tpr_access(apic, false); 1318 /* fall thru */ 1319 default: 1320 val = kvm_lapic_get_reg(apic, offset); 1321 break; 1322 } 1323 1324 return val; 1325 } 1326 1327 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1328 { 1329 return container_of(dev, struct kvm_lapic, dev); 1330 } 1331 1332 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1333 #define APIC_REGS_MASK(first, count) \ 1334 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1335 1336 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1337 void *data) 1338 { 1339 unsigned char alignment = offset & 0xf; 1340 u32 result; 1341 /* this bitmask has a bit cleared for each reserved register */ 1342 u64 valid_reg_mask = 1343 APIC_REG_MASK(APIC_ID) | 1344 APIC_REG_MASK(APIC_LVR) | 1345 APIC_REG_MASK(APIC_TASKPRI) | 1346 APIC_REG_MASK(APIC_PROCPRI) | 1347 APIC_REG_MASK(APIC_LDR) | 1348 APIC_REG_MASK(APIC_DFR) | 1349 APIC_REG_MASK(APIC_SPIV) | 1350 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1351 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1352 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1353 APIC_REG_MASK(APIC_ESR) | 1354 APIC_REG_MASK(APIC_ICR) | 1355 APIC_REG_MASK(APIC_ICR2) | 1356 APIC_REG_MASK(APIC_LVTT) | 1357 APIC_REG_MASK(APIC_LVTTHMR) | 1358 APIC_REG_MASK(APIC_LVTPC) | 1359 APIC_REG_MASK(APIC_LVT0) | 1360 APIC_REG_MASK(APIC_LVT1) | 1361 APIC_REG_MASK(APIC_LVTERR) | 1362 APIC_REG_MASK(APIC_TMICT) | 1363 APIC_REG_MASK(APIC_TMCCT) | 1364 APIC_REG_MASK(APIC_TDCR); 1365 1366 /* ARBPRI is not valid on x2APIC */ 1367 if (!apic_x2apic_mode(apic)) 1368 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1369 1370 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1371 return 1; 1372 1373 result = __apic_read(apic, offset & ~0xf); 1374 1375 trace_kvm_apic_read(offset, result); 1376 1377 switch (len) { 1378 case 1: 1379 case 2: 1380 case 4: 1381 memcpy(data, (char *)&result + alignment, len); 1382 break; 1383 default: 1384 printk(KERN_ERR "Local APIC read with len = %x, " 1385 "should be 1,2, or 4 instead\n", len); 1386 break; 1387 } 1388 return 0; 1389 } 1390 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1391 1392 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1393 { 1394 return addr >= apic->base_address && 1395 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1396 } 1397 1398 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1399 gpa_t address, int len, void *data) 1400 { 1401 struct kvm_lapic *apic = to_lapic(this); 1402 u32 offset = address - apic->base_address; 1403 1404 if (!apic_mmio_in_range(apic, address)) 1405 return -EOPNOTSUPP; 1406 1407 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1408 if (!kvm_check_has_quirk(vcpu->kvm, 1409 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1410 return -EOPNOTSUPP; 1411 1412 memset(data, 0xff, len); 1413 return 0; 1414 } 1415 1416 kvm_lapic_reg_read(apic, offset, len, data); 1417 1418 return 0; 1419 } 1420 1421 static void update_divide_count(struct kvm_lapic *apic) 1422 { 1423 u32 tmp1, tmp2, tdcr; 1424 1425 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1426 tmp1 = tdcr & 0xf; 1427 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1428 apic->divide_count = 0x1 << (tmp2 & 0x7); 1429 } 1430 1431 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1432 { 1433 /* 1434 * Do not allow the guest to program periodic timers with small 1435 * interval, since the hrtimers are not throttled by the host 1436 * scheduler. 1437 */ 1438 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1439 s64 min_period = min_timer_period_us * 1000LL; 1440 1441 if (apic->lapic_timer.period < min_period) { 1442 pr_info_ratelimited( 1443 "kvm: vcpu %i: requested %lld ns " 1444 "lapic timer period limited to %lld ns\n", 1445 apic->vcpu->vcpu_id, 1446 apic->lapic_timer.period, min_period); 1447 apic->lapic_timer.period = min_period; 1448 } 1449 } 1450 } 1451 1452 static void apic_update_lvtt(struct kvm_lapic *apic) 1453 { 1454 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1455 apic->lapic_timer.timer_mode_mask; 1456 1457 if (apic->lapic_timer.timer_mode != timer_mode) { 1458 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1459 APIC_LVT_TIMER_TSCDEADLINE)) { 1460 hrtimer_cancel(&apic->lapic_timer.timer); 1461 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1462 apic->lapic_timer.period = 0; 1463 apic->lapic_timer.tscdeadline = 0; 1464 } 1465 apic->lapic_timer.timer_mode = timer_mode; 1466 limit_periodic_timer_frequency(apic); 1467 } 1468 } 1469 1470 /* 1471 * On APICv, this test will cause a busy wait 1472 * during a higher-priority task. 1473 */ 1474 1475 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1476 { 1477 struct kvm_lapic *apic = vcpu->arch.apic; 1478 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1479 1480 if (kvm_apic_hw_enabled(apic)) { 1481 int vec = reg & APIC_VECTOR_MASK; 1482 void *bitmap = apic->regs + APIC_ISR; 1483 1484 if (vcpu->arch.apicv_active) 1485 bitmap = apic->regs + APIC_IRR; 1486 1487 if (apic_test_vector(vec, bitmap)) 1488 return true; 1489 } 1490 return false; 1491 } 1492 1493 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1494 { 1495 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1496 1497 /* 1498 * If the guest TSC is running at a different ratio than the host, then 1499 * convert the delay to nanoseconds to achieve an accurate delay. Note 1500 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1501 * always for VMX enabled hardware. 1502 */ 1503 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1504 __delay(min(guest_cycles, 1505 nsec_to_cycles(vcpu, timer_advance_ns))); 1506 } else { 1507 u64 delay_ns = guest_cycles * 1000000ULL; 1508 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1509 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1510 } 1511 } 1512 1513 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1514 s64 advance_expire_delta) 1515 { 1516 struct kvm_lapic *apic = vcpu->arch.apic; 1517 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1518 u64 ns; 1519 1520 /* Do not adjust for tiny fluctuations or large random spikes. */ 1521 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1522 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1523 return; 1524 1525 /* too early */ 1526 if (advance_expire_delta < 0) { 1527 ns = -advance_expire_delta * 1000000ULL; 1528 do_div(ns, vcpu->arch.virtual_tsc_khz); 1529 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1530 } else { 1531 /* too late */ 1532 ns = advance_expire_delta * 1000000ULL; 1533 do_div(ns, vcpu->arch.virtual_tsc_khz); 1534 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1535 } 1536 1537 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1538 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1539 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1540 } 1541 1542 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1543 { 1544 struct kvm_lapic *apic = vcpu->arch.apic; 1545 u64 guest_tsc, tsc_deadline; 1546 1547 if (apic->lapic_timer.expired_tscdeadline == 0) 1548 return; 1549 1550 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1551 apic->lapic_timer.expired_tscdeadline = 0; 1552 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1553 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1554 1555 if (guest_tsc < tsc_deadline) 1556 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1557 1558 if (lapic_timer_advance_dynamic) 1559 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1560 } 1561 1562 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1563 { 1564 if (lapic_timer_int_injected(vcpu)) 1565 __kvm_wait_lapic_expire(vcpu); 1566 } 1567 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1568 1569 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1570 { 1571 struct kvm_timer *ktimer = &apic->lapic_timer; 1572 1573 kvm_apic_local_deliver(apic, APIC_LVTT); 1574 if (apic_lvtt_tscdeadline(apic)) { 1575 ktimer->tscdeadline = 0; 1576 } else if (apic_lvtt_oneshot(apic)) { 1577 ktimer->tscdeadline = 0; 1578 ktimer->target_expiration = 0; 1579 } 1580 } 1581 1582 static void apic_timer_expired(struct kvm_lapic *apic) 1583 { 1584 struct kvm_vcpu *vcpu = apic->vcpu; 1585 struct kvm_timer *ktimer = &apic->lapic_timer; 1586 1587 if (atomic_read(&apic->lapic_timer.pending)) 1588 return; 1589 1590 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1591 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1592 1593 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1594 if (apic->lapic_timer.timer_advance_ns) 1595 __kvm_wait_lapic_expire(vcpu); 1596 kvm_apic_inject_pending_timer_irqs(apic); 1597 return; 1598 } 1599 1600 atomic_inc(&apic->lapic_timer.pending); 1601 kvm_set_pending_timer(vcpu); 1602 } 1603 1604 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1605 { 1606 struct kvm_timer *ktimer = &apic->lapic_timer; 1607 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1608 u64 ns = 0; 1609 ktime_t expire; 1610 struct kvm_vcpu *vcpu = apic->vcpu; 1611 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1612 unsigned long flags; 1613 ktime_t now; 1614 1615 if (unlikely(!tscdeadline || !this_tsc_khz)) 1616 return; 1617 1618 local_irq_save(flags); 1619 1620 now = ktime_get(); 1621 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1622 1623 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1624 do_div(ns, this_tsc_khz); 1625 1626 if (likely(tscdeadline > guest_tsc) && 1627 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1628 expire = ktime_add_ns(now, ns); 1629 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1630 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1631 } else 1632 apic_timer_expired(apic); 1633 1634 local_irq_restore(flags); 1635 } 1636 1637 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1638 { 1639 ktime_t now, remaining; 1640 u64 ns_remaining_old, ns_remaining_new; 1641 1642 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1643 * APIC_BUS_CYCLE_NS * apic->divide_count; 1644 limit_periodic_timer_frequency(apic); 1645 1646 now = ktime_get(); 1647 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1648 if (ktime_to_ns(remaining) < 0) 1649 remaining = 0; 1650 1651 ns_remaining_old = ktime_to_ns(remaining); 1652 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1653 apic->divide_count, old_divisor); 1654 1655 apic->lapic_timer.tscdeadline += 1656 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1657 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1658 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1659 } 1660 1661 static bool set_target_expiration(struct kvm_lapic *apic) 1662 { 1663 ktime_t now; 1664 u64 tscl = rdtsc(); 1665 1666 now = ktime_get(); 1667 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1668 * APIC_BUS_CYCLE_NS * apic->divide_count; 1669 1670 if (!apic->lapic_timer.period) { 1671 apic->lapic_timer.tscdeadline = 0; 1672 return false; 1673 } 1674 1675 limit_periodic_timer_frequency(apic); 1676 1677 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1678 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period); 1679 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period); 1680 1681 return true; 1682 } 1683 1684 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1685 { 1686 ktime_t now = ktime_get(); 1687 u64 tscl = rdtsc(); 1688 ktime_t delta; 1689 1690 /* 1691 * Synchronize both deadlines to the same time source or 1692 * differences in the periods (caused by differences in the 1693 * underlying clocks or numerical approximation errors) will 1694 * cause the two to drift apart over time as the errors 1695 * accumulate. 1696 */ 1697 apic->lapic_timer.target_expiration = 1698 ktime_add_ns(apic->lapic_timer.target_expiration, 1699 apic->lapic_timer.period); 1700 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1701 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1702 nsec_to_cycles(apic->vcpu, delta); 1703 } 1704 1705 static void start_sw_period(struct kvm_lapic *apic) 1706 { 1707 if (!apic->lapic_timer.period) 1708 return; 1709 1710 if (ktime_after(ktime_get(), 1711 apic->lapic_timer.target_expiration)) { 1712 apic_timer_expired(apic); 1713 1714 if (apic_lvtt_oneshot(apic)) 1715 return; 1716 1717 advance_periodic_target_expiration(apic); 1718 } 1719 1720 hrtimer_start(&apic->lapic_timer.timer, 1721 apic->lapic_timer.target_expiration, 1722 HRTIMER_MODE_ABS); 1723 } 1724 1725 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1726 { 1727 if (!lapic_in_kernel(vcpu)) 1728 return false; 1729 1730 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1731 } 1732 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1733 1734 static void cancel_hv_timer(struct kvm_lapic *apic) 1735 { 1736 WARN_ON(preemptible()); 1737 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1738 kvm_x86_ops->cancel_hv_timer(apic->vcpu); 1739 apic->lapic_timer.hv_timer_in_use = false; 1740 } 1741 1742 static bool start_hv_timer(struct kvm_lapic *apic) 1743 { 1744 struct kvm_timer *ktimer = &apic->lapic_timer; 1745 struct kvm_vcpu *vcpu = apic->vcpu; 1746 bool expired; 1747 1748 WARN_ON(preemptible()); 1749 if (!kvm_x86_ops->set_hv_timer) 1750 return false; 1751 1752 if (!ktimer->tscdeadline) 1753 return false; 1754 1755 if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired)) 1756 return false; 1757 1758 ktimer->hv_timer_in_use = true; 1759 hrtimer_cancel(&ktimer->timer); 1760 1761 /* 1762 * To simplify handling the periodic timer, leave the hv timer running 1763 * even if the deadline timer has expired, i.e. rely on the resulting 1764 * VM-Exit to recompute the periodic timer's target expiration. 1765 */ 1766 if (!apic_lvtt_period(apic)) { 1767 /* 1768 * Cancel the hv timer if the sw timer fired while the hv timer 1769 * was being programmed, or if the hv timer itself expired. 1770 */ 1771 if (atomic_read(&ktimer->pending)) { 1772 cancel_hv_timer(apic); 1773 } else if (expired) { 1774 apic_timer_expired(apic); 1775 cancel_hv_timer(apic); 1776 } 1777 } 1778 1779 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1780 1781 return true; 1782 } 1783 1784 static void start_sw_timer(struct kvm_lapic *apic) 1785 { 1786 struct kvm_timer *ktimer = &apic->lapic_timer; 1787 1788 WARN_ON(preemptible()); 1789 if (apic->lapic_timer.hv_timer_in_use) 1790 cancel_hv_timer(apic); 1791 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1792 return; 1793 1794 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1795 start_sw_period(apic); 1796 else if (apic_lvtt_tscdeadline(apic)) 1797 start_sw_tscdeadline(apic); 1798 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1799 } 1800 1801 static void restart_apic_timer(struct kvm_lapic *apic) 1802 { 1803 preempt_disable(); 1804 1805 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1806 goto out; 1807 1808 if (!start_hv_timer(apic)) 1809 start_sw_timer(apic); 1810 out: 1811 preempt_enable(); 1812 } 1813 1814 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1815 { 1816 struct kvm_lapic *apic = vcpu->arch.apic; 1817 1818 preempt_disable(); 1819 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1820 if (!apic->lapic_timer.hv_timer_in_use) 1821 goto out; 1822 WARN_ON(swait_active(&vcpu->wq)); 1823 cancel_hv_timer(apic); 1824 apic_timer_expired(apic); 1825 1826 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1827 advance_periodic_target_expiration(apic); 1828 restart_apic_timer(apic); 1829 } 1830 out: 1831 preempt_enable(); 1832 } 1833 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1834 1835 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1836 { 1837 restart_apic_timer(vcpu->arch.apic); 1838 } 1839 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1840 1841 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1842 { 1843 struct kvm_lapic *apic = vcpu->arch.apic; 1844 1845 preempt_disable(); 1846 /* Possibly the TSC deadline timer is not enabled yet */ 1847 if (apic->lapic_timer.hv_timer_in_use) 1848 start_sw_timer(apic); 1849 preempt_enable(); 1850 } 1851 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1852 1853 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1854 { 1855 struct kvm_lapic *apic = vcpu->arch.apic; 1856 1857 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1858 restart_apic_timer(apic); 1859 } 1860 1861 static void start_apic_timer(struct kvm_lapic *apic) 1862 { 1863 atomic_set(&apic->lapic_timer.pending, 0); 1864 1865 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1866 && !set_target_expiration(apic)) 1867 return; 1868 1869 restart_apic_timer(apic); 1870 } 1871 1872 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1873 { 1874 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1875 1876 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1877 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1878 if (lvt0_in_nmi_mode) { 1879 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1880 } else 1881 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1882 } 1883 } 1884 1885 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1886 { 1887 int ret = 0; 1888 1889 trace_kvm_apic_write(reg, val); 1890 1891 switch (reg) { 1892 case APIC_ID: /* Local APIC ID */ 1893 if (!apic_x2apic_mode(apic)) 1894 kvm_apic_set_xapic_id(apic, val >> 24); 1895 else 1896 ret = 1; 1897 break; 1898 1899 case APIC_TASKPRI: 1900 report_tpr_access(apic, true); 1901 apic_set_tpr(apic, val & 0xff); 1902 break; 1903 1904 case APIC_EOI: 1905 apic_set_eoi(apic); 1906 break; 1907 1908 case APIC_LDR: 1909 if (!apic_x2apic_mode(apic)) 1910 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 1911 else 1912 ret = 1; 1913 break; 1914 1915 case APIC_DFR: 1916 if (!apic_x2apic_mode(apic)) { 1917 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); 1918 recalculate_apic_map(apic->vcpu->kvm); 1919 } else 1920 ret = 1; 1921 break; 1922 1923 case APIC_SPIV: { 1924 u32 mask = 0x3ff; 1925 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 1926 mask |= APIC_SPIV_DIRECTED_EOI; 1927 apic_set_spiv(apic, val & mask); 1928 if (!(val & APIC_SPIV_APIC_ENABLED)) { 1929 int i; 1930 u32 lvt_val; 1931 1932 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 1933 lvt_val = kvm_lapic_get_reg(apic, 1934 APIC_LVTT + 0x10 * i); 1935 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 1936 lvt_val | APIC_LVT_MASKED); 1937 } 1938 apic_update_lvtt(apic); 1939 atomic_set(&apic->lapic_timer.pending, 0); 1940 1941 } 1942 break; 1943 } 1944 case APIC_ICR: 1945 /* No delay here, so we always clear the pending bit */ 1946 val &= ~(1 << 12); 1947 apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 1948 kvm_lapic_set_reg(apic, APIC_ICR, val); 1949 break; 1950 1951 case APIC_ICR2: 1952 if (!apic_x2apic_mode(apic)) 1953 val &= 0xff000000; 1954 kvm_lapic_set_reg(apic, APIC_ICR2, val); 1955 break; 1956 1957 case APIC_LVT0: 1958 apic_manage_nmi_watchdog(apic, val); 1959 /* fall through */ 1960 case APIC_LVTTHMR: 1961 case APIC_LVTPC: 1962 case APIC_LVT1: 1963 case APIC_LVTERR: { 1964 /* TODO: Check vector */ 1965 size_t size; 1966 u32 index; 1967 1968 if (!kvm_apic_sw_enabled(apic)) 1969 val |= APIC_LVT_MASKED; 1970 size = ARRAY_SIZE(apic_lvt_mask); 1971 index = array_index_nospec( 1972 (reg - APIC_LVTT) >> 4, size); 1973 val &= apic_lvt_mask[index]; 1974 kvm_lapic_set_reg(apic, reg, val); 1975 break; 1976 } 1977 1978 case APIC_LVTT: 1979 if (!kvm_apic_sw_enabled(apic)) 1980 val |= APIC_LVT_MASKED; 1981 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 1982 kvm_lapic_set_reg(apic, APIC_LVTT, val); 1983 apic_update_lvtt(apic); 1984 break; 1985 1986 case APIC_TMICT: 1987 if (apic_lvtt_tscdeadline(apic)) 1988 break; 1989 1990 hrtimer_cancel(&apic->lapic_timer.timer); 1991 kvm_lapic_set_reg(apic, APIC_TMICT, val); 1992 start_apic_timer(apic); 1993 break; 1994 1995 case APIC_TDCR: { 1996 uint32_t old_divisor = apic->divide_count; 1997 1998 kvm_lapic_set_reg(apic, APIC_TDCR, val); 1999 update_divide_count(apic); 2000 if (apic->divide_count != old_divisor && 2001 apic->lapic_timer.period) { 2002 hrtimer_cancel(&apic->lapic_timer.timer); 2003 update_target_expiration(apic, old_divisor); 2004 restart_apic_timer(apic); 2005 } 2006 break; 2007 } 2008 case APIC_ESR: 2009 if (apic_x2apic_mode(apic) && val != 0) 2010 ret = 1; 2011 break; 2012 2013 case APIC_SELF_IPI: 2014 if (apic_x2apic_mode(apic)) { 2015 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); 2016 } else 2017 ret = 1; 2018 break; 2019 default: 2020 ret = 1; 2021 break; 2022 } 2023 2024 return ret; 2025 } 2026 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2027 2028 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2029 gpa_t address, int len, const void *data) 2030 { 2031 struct kvm_lapic *apic = to_lapic(this); 2032 unsigned int offset = address - apic->base_address; 2033 u32 val; 2034 2035 if (!apic_mmio_in_range(apic, address)) 2036 return -EOPNOTSUPP; 2037 2038 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2039 if (!kvm_check_has_quirk(vcpu->kvm, 2040 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2041 return -EOPNOTSUPP; 2042 2043 return 0; 2044 } 2045 2046 /* 2047 * APIC register must be aligned on 128-bits boundary. 2048 * 32/64/128 bits registers must be accessed thru 32 bits. 2049 * Refer SDM 8.4.1 2050 */ 2051 if (len != 4 || (offset & 0xf)) 2052 return 0; 2053 2054 val = *(u32*)data; 2055 2056 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2057 2058 return 0; 2059 } 2060 2061 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2062 { 2063 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2064 } 2065 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2066 2067 /* emulate APIC access in a trap manner */ 2068 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2069 { 2070 u32 val = 0; 2071 2072 /* hw has done the conditional check and inst decode */ 2073 offset &= 0xff0; 2074 2075 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2076 2077 /* TODO: optimize to just emulate side effect w/o one more write */ 2078 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2079 } 2080 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2081 2082 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2083 { 2084 struct kvm_lapic *apic = vcpu->arch.apic; 2085 2086 if (!vcpu->arch.apic) 2087 return; 2088 2089 hrtimer_cancel(&apic->lapic_timer.timer); 2090 2091 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2092 static_key_slow_dec_deferred(&apic_hw_disabled); 2093 2094 if (!apic->sw_enabled) 2095 static_key_slow_dec_deferred(&apic_sw_disabled); 2096 2097 if (apic->regs) 2098 free_page((unsigned long)apic->regs); 2099 2100 kfree(apic); 2101 } 2102 2103 /* 2104 *---------------------------------------------------------------------- 2105 * LAPIC interface 2106 *---------------------------------------------------------------------- 2107 */ 2108 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2109 { 2110 struct kvm_lapic *apic = vcpu->arch.apic; 2111 2112 if (!lapic_in_kernel(vcpu) || 2113 !apic_lvtt_tscdeadline(apic)) 2114 return 0; 2115 2116 return apic->lapic_timer.tscdeadline; 2117 } 2118 2119 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2120 { 2121 struct kvm_lapic *apic = vcpu->arch.apic; 2122 2123 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) || 2124 apic_lvtt_period(apic)) 2125 return; 2126 2127 hrtimer_cancel(&apic->lapic_timer.timer); 2128 apic->lapic_timer.tscdeadline = data; 2129 start_apic_timer(apic); 2130 } 2131 2132 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2133 { 2134 struct kvm_lapic *apic = vcpu->arch.apic; 2135 2136 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2137 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2138 } 2139 2140 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2141 { 2142 u64 tpr; 2143 2144 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2145 2146 return (tpr & 0xf0) >> 4; 2147 } 2148 2149 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2150 { 2151 u64 old_value = vcpu->arch.apic_base; 2152 struct kvm_lapic *apic = vcpu->arch.apic; 2153 2154 if (!apic) 2155 value |= MSR_IA32_APICBASE_BSP; 2156 2157 vcpu->arch.apic_base = value; 2158 2159 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2160 kvm_update_cpuid(vcpu); 2161 2162 if (!apic) 2163 return; 2164 2165 /* update jump label if enable bit changes */ 2166 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2167 if (value & MSR_IA32_APICBASE_ENABLE) { 2168 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2169 static_key_slow_dec_deferred(&apic_hw_disabled); 2170 } else { 2171 static_key_slow_inc(&apic_hw_disabled.key); 2172 recalculate_apic_map(vcpu->kvm); 2173 } 2174 } 2175 2176 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2177 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2178 2179 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2180 kvm_x86_ops->set_virtual_apic_mode(vcpu); 2181 2182 apic->base_address = apic->vcpu->arch.apic_base & 2183 MSR_IA32_APICBASE_BASE; 2184 2185 if ((value & MSR_IA32_APICBASE_ENABLE) && 2186 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2187 pr_warn_once("APIC base relocation is unsupported by KVM"); 2188 } 2189 2190 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2191 { 2192 struct kvm_lapic *apic = vcpu->arch.apic; 2193 2194 if (vcpu->arch.apicv_active) { 2195 /* irr_pending is always true when apicv is activated. */ 2196 apic->irr_pending = true; 2197 apic->isr_count = 1; 2198 } else { 2199 apic->irr_pending = (apic_search_irr(apic) != -1); 2200 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2201 } 2202 } 2203 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2204 2205 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2206 { 2207 struct kvm_lapic *apic = vcpu->arch.apic; 2208 int i; 2209 2210 if (!apic) 2211 return; 2212 2213 /* Stop the timer in case it's a reset to an active apic */ 2214 hrtimer_cancel(&apic->lapic_timer.timer); 2215 2216 if (!init_event) { 2217 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2218 MSR_IA32_APICBASE_ENABLE); 2219 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2220 } 2221 kvm_apic_set_version(apic->vcpu); 2222 2223 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2224 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2225 apic_update_lvtt(apic); 2226 if (kvm_vcpu_is_reset_bsp(vcpu) && 2227 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2228 kvm_lapic_set_reg(apic, APIC_LVT0, 2229 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2230 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2231 2232 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU); 2233 apic_set_spiv(apic, 0xff); 2234 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2235 if (!apic_x2apic_mode(apic)) 2236 kvm_apic_set_ldr(apic, 0); 2237 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2238 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2239 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2240 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2241 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2242 for (i = 0; i < 8; i++) { 2243 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2244 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2245 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2246 } 2247 kvm_apic_update_apicv(vcpu); 2248 apic->highest_isr_cache = -1; 2249 update_divide_count(apic); 2250 atomic_set(&apic->lapic_timer.pending, 0); 2251 if (kvm_vcpu_is_bsp(vcpu)) 2252 kvm_lapic_set_base(vcpu, 2253 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2254 vcpu->arch.pv_eoi.msr_val = 0; 2255 apic_update_ppr(apic); 2256 if (vcpu->arch.apicv_active) { 2257 kvm_x86_ops->apicv_post_state_restore(vcpu); 2258 kvm_x86_ops->hwapic_irr_update(vcpu, -1); 2259 kvm_x86_ops->hwapic_isr_update(vcpu, -1); 2260 } 2261 2262 vcpu->arch.apic_arb_prio = 0; 2263 vcpu->arch.apic_attention = 0; 2264 } 2265 2266 /* 2267 *---------------------------------------------------------------------- 2268 * timer interface 2269 *---------------------------------------------------------------------- 2270 */ 2271 2272 static bool lapic_is_periodic(struct kvm_lapic *apic) 2273 { 2274 return apic_lvtt_period(apic); 2275 } 2276 2277 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2278 { 2279 struct kvm_lapic *apic = vcpu->arch.apic; 2280 2281 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2282 return atomic_read(&apic->lapic_timer.pending); 2283 2284 return 0; 2285 } 2286 2287 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2288 { 2289 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2290 int vector, mode, trig_mode; 2291 2292 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2293 vector = reg & APIC_VECTOR_MASK; 2294 mode = reg & APIC_MODE_MASK; 2295 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2296 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2297 NULL); 2298 } 2299 return 0; 2300 } 2301 2302 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2303 { 2304 struct kvm_lapic *apic = vcpu->arch.apic; 2305 2306 if (apic) 2307 kvm_apic_local_deliver(apic, APIC_LVT0); 2308 } 2309 2310 static const struct kvm_io_device_ops apic_mmio_ops = { 2311 .read = apic_mmio_read, 2312 .write = apic_mmio_write, 2313 }; 2314 2315 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2316 { 2317 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2318 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2319 2320 apic_timer_expired(apic); 2321 2322 if (lapic_is_periodic(apic)) { 2323 advance_periodic_target_expiration(apic); 2324 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2325 return HRTIMER_RESTART; 2326 } else 2327 return HRTIMER_NORESTART; 2328 } 2329 2330 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2331 { 2332 struct kvm_lapic *apic; 2333 2334 ASSERT(vcpu != NULL); 2335 2336 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2337 if (!apic) 2338 goto nomem; 2339 2340 vcpu->arch.apic = apic; 2341 2342 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2343 if (!apic->regs) { 2344 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2345 vcpu->vcpu_id); 2346 goto nomem_free_apic; 2347 } 2348 apic->vcpu = vcpu; 2349 2350 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2351 HRTIMER_MODE_ABS_HARD); 2352 apic->lapic_timer.timer.function = apic_timer_fn; 2353 if (timer_advance_ns == -1) { 2354 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2355 lapic_timer_advance_dynamic = true; 2356 } else { 2357 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2358 lapic_timer_advance_dynamic = false; 2359 } 2360 2361 /* 2362 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2363 * thinking that APIC state has changed. 2364 */ 2365 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2366 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2367 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2368 2369 return 0; 2370 nomem_free_apic: 2371 kfree(apic); 2372 vcpu->arch.apic = NULL; 2373 nomem: 2374 return -ENOMEM; 2375 } 2376 2377 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2378 { 2379 struct kvm_lapic *apic = vcpu->arch.apic; 2380 u32 ppr; 2381 2382 if (!kvm_apic_hw_enabled(apic)) 2383 return -1; 2384 2385 __apic_update_ppr(apic, &ppr); 2386 return apic_has_interrupt_for_ppr(apic, ppr); 2387 } 2388 2389 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2390 { 2391 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2392 2393 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2394 return 1; 2395 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2396 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2397 return 1; 2398 return 0; 2399 } 2400 2401 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2402 { 2403 struct kvm_lapic *apic = vcpu->arch.apic; 2404 2405 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2406 kvm_apic_inject_pending_timer_irqs(apic); 2407 atomic_set(&apic->lapic_timer.pending, 0); 2408 } 2409 } 2410 2411 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2412 { 2413 int vector = kvm_apic_has_interrupt(vcpu); 2414 struct kvm_lapic *apic = vcpu->arch.apic; 2415 u32 ppr; 2416 2417 if (vector == -1) 2418 return -1; 2419 2420 /* 2421 * We get here even with APIC virtualization enabled, if doing 2422 * nested virtualization and L1 runs with the "acknowledge interrupt 2423 * on exit" mode. Then we cannot inject the interrupt via RVI, 2424 * because the process would deliver it through the IDT. 2425 */ 2426 2427 apic_clear_irr(vector, apic); 2428 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { 2429 /* 2430 * For auto-EOI interrupts, there might be another pending 2431 * interrupt above PPR, so check whether to raise another 2432 * KVM_REQ_EVENT. 2433 */ 2434 apic_update_ppr(apic); 2435 } else { 2436 /* 2437 * For normal interrupts, PPR has been raised and there cannot 2438 * be a higher-priority pending interrupt---except if there was 2439 * a concurrent interrupt injection, but that would have 2440 * triggered KVM_REQ_EVENT already. 2441 */ 2442 apic_set_isr(vector, apic); 2443 __apic_update_ppr(apic, &ppr); 2444 } 2445 2446 return vector; 2447 } 2448 2449 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2450 struct kvm_lapic_state *s, bool set) 2451 { 2452 if (apic_x2apic_mode(vcpu->arch.apic)) { 2453 u32 *id = (u32 *)(s->regs + APIC_ID); 2454 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2455 2456 if (vcpu->kvm->arch.x2apic_format) { 2457 if (*id != vcpu->vcpu_id) 2458 return -EINVAL; 2459 } else { 2460 if (set) 2461 *id >>= 24; 2462 else 2463 *id <<= 24; 2464 } 2465 2466 /* In x2APIC mode, the LDR is fixed and based on the id */ 2467 if (set) 2468 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2469 } 2470 2471 return 0; 2472 } 2473 2474 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2475 { 2476 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2477 return kvm_apic_state_fixup(vcpu, s, false); 2478 } 2479 2480 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2481 { 2482 struct kvm_lapic *apic = vcpu->arch.apic; 2483 int r; 2484 2485 2486 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2487 /* set SPIV separately to get count of SW disabled APICs right */ 2488 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2489 2490 r = kvm_apic_state_fixup(vcpu, s, true); 2491 if (r) 2492 return r; 2493 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2494 2495 recalculate_apic_map(vcpu->kvm); 2496 kvm_apic_set_version(vcpu); 2497 2498 apic_update_ppr(apic); 2499 hrtimer_cancel(&apic->lapic_timer.timer); 2500 apic_update_lvtt(apic); 2501 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2502 update_divide_count(apic); 2503 start_apic_timer(apic); 2504 kvm_apic_update_apicv(vcpu); 2505 apic->highest_isr_cache = -1; 2506 if (vcpu->arch.apicv_active) { 2507 kvm_x86_ops->apicv_post_state_restore(vcpu); 2508 kvm_x86_ops->hwapic_irr_update(vcpu, 2509 apic_find_highest_irr(apic)); 2510 kvm_x86_ops->hwapic_isr_update(vcpu, 2511 apic_find_highest_isr(apic)); 2512 } 2513 kvm_make_request(KVM_REQ_EVENT, vcpu); 2514 if (ioapic_in_kernel(vcpu->kvm)) 2515 kvm_rtc_eoi_tracking_restore_one(vcpu); 2516 2517 vcpu->arch.apic_arb_prio = 0; 2518 2519 return 0; 2520 } 2521 2522 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2523 { 2524 struct hrtimer *timer; 2525 2526 if (!lapic_in_kernel(vcpu) || 2527 kvm_can_post_timer_interrupt(vcpu)) 2528 return; 2529 2530 timer = &vcpu->arch.apic->lapic_timer.timer; 2531 if (hrtimer_cancel(timer)) 2532 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2533 } 2534 2535 /* 2536 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2537 * 2538 * Detect whether guest triggered PV EOI since the 2539 * last entry. If yes, set EOI on guests's behalf. 2540 * Clear PV EOI in guest memory in any case. 2541 */ 2542 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2543 struct kvm_lapic *apic) 2544 { 2545 bool pending; 2546 int vector; 2547 /* 2548 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2549 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2550 * 2551 * KVM_APIC_PV_EOI_PENDING is unset: 2552 * -> host disabled PV EOI. 2553 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2554 * -> host enabled PV EOI, guest did not execute EOI yet. 2555 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2556 * -> host enabled PV EOI, guest executed EOI. 2557 */ 2558 BUG_ON(!pv_eoi_enabled(vcpu)); 2559 pending = pv_eoi_get_pending(vcpu); 2560 /* 2561 * Clear pending bit in any case: it will be set again on vmentry. 2562 * While this might not be ideal from performance point of view, 2563 * this makes sure pv eoi is only enabled when we know it's safe. 2564 */ 2565 pv_eoi_clr_pending(vcpu); 2566 if (pending) 2567 return; 2568 vector = apic_set_eoi(apic); 2569 trace_kvm_pv_eoi(apic, vector); 2570 } 2571 2572 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2573 { 2574 u32 data; 2575 2576 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2577 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2578 2579 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2580 return; 2581 2582 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2583 sizeof(u32))) 2584 return; 2585 2586 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2587 } 2588 2589 /* 2590 * apic_sync_pv_eoi_to_guest - called before vmentry 2591 * 2592 * Detect whether it's safe to enable PV EOI and 2593 * if yes do so. 2594 */ 2595 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2596 struct kvm_lapic *apic) 2597 { 2598 if (!pv_eoi_enabled(vcpu) || 2599 /* IRR set or many bits in ISR: could be nested. */ 2600 apic->irr_pending || 2601 /* Cache not set: could be safe but we don't bother. */ 2602 apic->highest_isr_cache == -1 || 2603 /* Need EOI to update ioapic. */ 2604 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2605 /* 2606 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2607 * so we need not do anything here. 2608 */ 2609 return; 2610 } 2611 2612 pv_eoi_set_pending(apic->vcpu); 2613 } 2614 2615 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2616 { 2617 u32 data, tpr; 2618 int max_irr, max_isr; 2619 struct kvm_lapic *apic = vcpu->arch.apic; 2620 2621 apic_sync_pv_eoi_to_guest(vcpu, apic); 2622 2623 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2624 return; 2625 2626 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2627 max_irr = apic_find_highest_irr(apic); 2628 if (max_irr < 0) 2629 max_irr = 0; 2630 max_isr = apic_find_highest_isr(apic); 2631 if (max_isr < 0) 2632 max_isr = 0; 2633 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2634 2635 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2636 sizeof(u32)); 2637 } 2638 2639 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2640 { 2641 if (vapic_addr) { 2642 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2643 &vcpu->arch.apic->vapic_cache, 2644 vapic_addr, sizeof(u32))) 2645 return -EINVAL; 2646 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2647 } else { 2648 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2649 } 2650 2651 vcpu->arch.apic->vapic_addr = vapic_addr; 2652 return 0; 2653 } 2654 2655 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2656 { 2657 struct kvm_lapic *apic = vcpu->arch.apic; 2658 u32 reg = (msr - APIC_BASE_MSR) << 4; 2659 2660 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2661 return 1; 2662 2663 if (reg == APIC_ICR2) 2664 return 1; 2665 2666 /* if this is ICR write vector before command */ 2667 if (reg == APIC_ICR) 2668 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2669 return kvm_lapic_reg_write(apic, reg, (u32)data); 2670 } 2671 2672 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2673 { 2674 struct kvm_lapic *apic = vcpu->arch.apic; 2675 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2676 2677 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2678 return 1; 2679 2680 if (reg == APIC_DFR || reg == APIC_ICR2) 2681 return 1; 2682 2683 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2684 return 1; 2685 if (reg == APIC_ICR) 2686 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2687 2688 *data = (((u64)high) << 32) | low; 2689 2690 return 0; 2691 } 2692 2693 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2694 { 2695 struct kvm_lapic *apic = vcpu->arch.apic; 2696 2697 if (!lapic_in_kernel(vcpu)) 2698 return 1; 2699 2700 /* if this is ICR write vector before command */ 2701 if (reg == APIC_ICR) 2702 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2703 return kvm_lapic_reg_write(apic, reg, (u32)data); 2704 } 2705 2706 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2707 { 2708 struct kvm_lapic *apic = vcpu->arch.apic; 2709 u32 low, high = 0; 2710 2711 if (!lapic_in_kernel(vcpu)) 2712 return 1; 2713 2714 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2715 return 1; 2716 if (reg == APIC_ICR) 2717 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2718 2719 *data = (((u64)high) << 32) | low; 2720 2721 return 0; 2722 } 2723 2724 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2725 { 2726 u64 addr = data & ~KVM_MSR_ENABLED; 2727 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2728 unsigned long new_len; 2729 2730 if (!IS_ALIGNED(addr, 4)) 2731 return 1; 2732 2733 vcpu->arch.pv_eoi.msr_val = data; 2734 if (!pv_eoi_enabled(vcpu)) 2735 return 0; 2736 2737 if (addr == ghc->gpa && len <= ghc->len) 2738 new_len = ghc->len; 2739 else 2740 new_len = len; 2741 2742 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2743 } 2744 2745 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2746 { 2747 struct kvm_lapic *apic = vcpu->arch.apic; 2748 u8 sipi_vector; 2749 unsigned long pe; 2750 2751 if (!lapic_in_kernel(vcpu) || !apic->pending_events) 2752 return; 2753 2754 /* 2755 * INITs are latched while CPU is in specific states 2756 * (SMM, VMX non-root mode, SVM with GIF=0). 2757 * Because a CPU cannot be in these states immediately 2758 * after it has processed an INIT signal (and thus in 2759 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2760 * and leave the INIT pending. 2761 */ 2762 if (kvm_vcpu_latch_init(vcpu)) { 2763 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2764 if (test_bit(KVM_APIC_SIPI, &apic->pending_events)) 2765 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2766 return; 2767 } 2768 2769 pe = xchg(&apic->pending_events, 0); 2770 if (test_bit(KVM_APIC_INIT, &pe)) { 2771 kvm_vcpu_reset(vcpu, true); 2772 if (kvm_vcpu_is_bsp(apic->vcpu)) 2773 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2774 else 2775 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2776 } 2777 if (test_bit(KVM_APIC_SIPI, &pe) && 2778 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2779 /* evaluate pending_events before reading the vector */ 2780 smp_rmb(); 2781 sipi_vector = apic->sipi_vector; 2782 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2783 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2784 } 2785 } 2786 2787 void kvm_lapic_init(void) 2788 { 2789 /* do not patch jump label more than once per second */ 2790 jump_label_rate_limit(&apic_hw_disabled, HZ); 2791 jump_label_rate_limit(&apic_sw_disabled, HZ); 2792 } 2793 2794 void kvm_lapic_exit(void) 2795 { 2796 static_key_deferred_flush(&apic_hw_disabled); 2797 static_key_deferred_flush(&apic_sw_disabled); 2798 } 2799