xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "ioapic.h"
40 #include "trace.h"
41 #include "x86.h"
42 #include "cpuid.h"
43 #include "hyperv.h"
44 
45 #ifndef CONFIG_X86_64
46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
47 #else
48 #define mod_64(x, y) ((x) % (y))
49 #endif
50 
51 #define PRId64 "d"
52 #define PRIx64 "llx"
53 #define PRIu64 "u"
54 #define PRIo64 "o"
55 
56 /* 14 is the version for Xeon and Pentium 8.4.8*/
57 #define APIC_VERSION			(0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
58 #define LAPIC_MMIO_LENGTH		(1 << 12)
59 /* followed define is not in apicdef.h */
60 #define MAX_APIC_VECTOR			256
61 #define APIC_VECTORS_PER_REG		32
62 
63 static bool lapic_timer_advance_dynamic __read_mostly;
64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
66 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
67 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
68 /* step-by-step approximation to mitigate fluctuation */
69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
70 
71 static inline int apic_test_vector(int vec, void *bitmap)
72 {
73 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
74 }
75 
76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
77 {
78 	struct kvm_lapic *apic = vcpu->arch.apic;
79 
80 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
81 		apic_test_vector(vector, apic->regs + APIC_IRR);
82 }
83 
84 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
85 {
86 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
87 }
88 
89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
90 {
91 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
92 }
93 
94 struct static_key_deferred apic_hw_disabled __read_mostly;
95 struct static_key_deferred apic_sw_disabled __read_mostly;
96 
97 static inline int apic_enabled(struct kvm_lapic *apic)
98 {
99 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
100 }
101 
102 #define LVT_MASK	\
103 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
104 
105 #define LINT_MASK	\
106 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
107 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
108 
109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
110 {
111 	return apic->vcpu->vcpu_id;
112 }
113 
114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
115 {
116 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
117 }
118 
119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
120 {
121 	return kvm_x86_ops.set_hv_timer
122 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
123 		    kvm_can_post_timer_interrupt(vcpu));
124 }
125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer);
126 
127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
128 {
129 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
130 }
131 
132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
133 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
134 	switch (map->mode) {
135 	case KVM_APIC_MODE_X2APIC: {
136 		u32 offset = (dest_id >> 16) * 16;
137 		u32 max_apic_id = map->max_apic_id;
138 
139 		if (offset <= max_apic_id) {
140 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
141 
142 			offset = array_index_nospec(offset, map->max_apic_id + 1);
143 			*cluster = &map->phys_map[offset];
144 			*mask = dest_id & (0xffff >> (16 - cluster_size));
145 		} else {
146 			*mask = 0;
147 		}
148 
149 		return true;
150 		}
151 	case KVM_APIC_MODE_XAPIC_FLAT:
152 		*cluster = map->xapic_flat_map;
153 		*mask = dest_id & 0xff;
154 		return true;
155 	case KVM_APIC_MODE_XAPIC_CLUSTER:
156 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
157 		*mask = dest_id & 0xf;
158 		return true;
159 	default:
160 		/* Not optimized. */
161 		return false;
162 	}
163 }
164 
165 static void kvm_apic_map_free(struct rcu_head *rcu)
166 {
167 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
168 
169 	kvfree(map);
170 }
171 
172 /*
173  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
174  *
175  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
176  * apic_map_lock_held.
177  */
178 enum {
179 	CLEAN,
180 	UPDATE_IN_PROGRESS,
181 	DIRTY
182 };
183 
184 void kvm_recalculate_apic_map(struct kvm *kvm)
185 {
186 	struct kvm_apic_map *new, *old = NULL;
187 	struct kvm_vcpu *vcpu;
188 	int i;
189 	u32 max_id = 255; /* enough space for any xAPIC ID */
190 
191 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
192 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
193 		return;
194 
195 	mutex_lock(&kvm->arch.apic_map_lock);
196 	/*
197 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
198 	 * (if clean) or the APIC registers (if dirty).
199 	 */
200 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
201 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
202 		/* Someone else has updated the map. */
203 		mutex_unlock(&kvm->arch.apic_map_lock);
204 		return;
205 	}
206 
207 	kvm_for_each_vcpu(i, vcpu, kvm)
208 		if (kvm_apic_present(vcpu))
209 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
210 
211 	new = kvzalloc(sizeof(struct kvm_apic_map) +
212 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
213 			   GFP_KERNEL_ACCOUNT);
214 
215 	if (!new)
216 		goto out;
217 
218 	new->max_apic_id = max_id;
219 
220 	kvm_for_each_vcpu(i, vcpu, kvm) {
221 		struct kvm_lapic *apic = vcpu->arch.apic;
222 		struct kvm_lapic **cluster;
223 		u16 mask;
224 		u32 ldr;
225 		u8 xapic_id;
226 		u32 x2apic_id;
227 
228 		if (!kvm_apic_present(vcpu))
229 			continue;
230 
231 		xapic_id = kvm_xapic_id(apic);
232 		x2apic_id = kvm_x2apic_id(apic);
233 
234 		/* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
235 		if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
236 				x2apic_id <= new->max_apic_id)
237 			new->phys_map[x2apic_id] = apic;
238 		/*
239 		 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
240 		 * prevent them from masking VCPUs with APIC ID <= 0xff.
241 		 */
242 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
243 			new->phys_map[xapic_id] = apic;
244 
245 		if (!kvm_apic_sw_enabled(apic))
246 			continue;
247 
248 		ldr = kvm_lapic_get_reg(apic, APIC_LDR);
249 
250 		if (apic_x2apic_mode(apic)) {
251 			new->mode |= KVM_APIC_MODE_X2APIC;
252 		} else if (ldr) {
253 			ldr = GET_APIC_LOGICAL_ID(ldr);
254 			if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
255 				new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
256 			else
257 				new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
258 		}
259 
260 		if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
261 			continue;
262 
263 		if (mask)
264 			cluster[ffs(mask) - 1] = apic;
265 	}
266 out:
267 	old = rcu_dereference_protected(kvm->arch.apic_map,
268 			lockdep_is_held(&kvm->arch.apic_map_lock));
269 	rcu_assign_pointer(kvm->arch.apic_map, new);
270 	/*
271 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
272 	 * If another update has come in, leave it DIRTY.
273 	 */
274 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
275 			       UPDATE_IN_PROGRESS, CLEAN);
276 	mutex_unlock(&kvm->arch.apic_map_lock);
277 
278 	if (old)
279 		call_rcu(&old->rcu, kvm_apic_map_free);
280 
281 	kvm_make_scan_ioapic_request(kvm);
282 }
283 
284 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
285 {
286 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
287 
288 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
289 
290 	if (enabled != apic->sw_enabled) {
291 		apic->sw_enabled = enabled;
292 		if (enabled)
293 			static_key_slow_dec_deferred(&apic_sw_disabled);
294 		else
295 			static_key_slow_inc(&apic_sw_disabled.key);
296 
297 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
298 	}
299 }
300 
301 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
302 {
303 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
304 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
305 }
306 
307 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
308 {
309 	kvm_lapic_set_reg(apic, APIC_LDR, id);
310 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
311 }
312 
313 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
314 {
315 	kvm_lapic_set_reg(apic, APIC_DFR, val);
316 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
317 }
318 
319 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
320 {
321 	return ((id >> 4) << 16) | (1 << (id & 0xf));
322 }
323 
324 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
325 {
326 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
327 
328 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
329 
330 	kvm_lapic_set_reg(apic, APIC_ID, id);
331 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
332 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
333 }
334 
335 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
336 {
337 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
338 }
339 
340 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
341 {
342 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
343 }
344 
345 static inline int apic_lvtt_period(struct kvm_lapic *apic)
346 {
347 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
348 }
349 
350 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
351 {
352 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
353 }
354 
355 static inline int apic_lvt_nmi_mode(u32 lvt_val)
356 {
357 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
358 }
359 
360 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
361 {
362 	struct kvm_lapic *apic = vcpu->arch.apic;
363 	u32 v = APIC_VERSION;
364 
365 	if (!lapic_in_kernel(vcpu))
366 		return;
367 
368 	/*
369 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
370 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
371 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
372 	 * version first and level-triggered interrupts never get EOIed in
373 	 * IOAPIC.
374 	 */
375 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
376 	    !ioapic_in_kernel(vcpu->kvm))
377 		v |= APIC_LVR_DIRECTED_EOI;
378 	kvm_lapic_set_reg(apic, APIC_LVR, v);
379 }
380 
381 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
382 	LVT_MASK ,      /* part LVTT mask, timer mode mask added at runtime */
383 	LVT_MASK | APIC_MODE_MASK,	/* LVTTHMR */
384 	LVT_MASK | APIC_MODE_MASK,	/* LVTPC */
385 	LINT_MASK, LINT_MASK,	/* LVT0-1 */
386 	LVT_MASK		/* LVTERR */
387 };
388 
389 static int find_highest_vector(void *bitmap)
390 {
391 	int vec;
392 	u32 *reg;
393 
394 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
395 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
396 		reg = bitmap + REG_POS(vec);
397 		if (*reg)
398 			return __fls(*reg) + vec;
399 	}
400 
401 	return -1;
402 }
403 
404 static u8 count_vectors(void *bitmap)
405 {
406 	int vec;
407 	u32 *reg;
408 	u8 count = 0;
409 
410 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
411 		reg = bitmap + REG_POS(vec);
412 		count += hweight32(*reg);
413 	}
414 
415 	return count;
416 }
417 
418 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
419 {
420 	u32 i, vec;
421 	u32 pir_val, irr_val, prev_irr_val;
422 	int max_updated_irr;
423 
424 	max_updated_irr = -1;
425 	*max_irr = -1;
426 
427 	for (i = vec = 0; i <= 7; i++, vec += 32) {
428 		pir_val = READ_ONCE(pir[i]);
429 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
430 		if (pir_val) {
431 			prev_irr_val = irr_val;
432 			irr_val |= xchg(&pir[i], 0);
433 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
434 			if (prev_irr_val != irr_val) {
435 				max_updated_irr =
436 					__fls(irr_val ^ prev_irr_val) + vec;
437 			}
438 		}
439 		if (irr_val)
440 			*max_irr = __fls(irr_val) + vec;
441 	}
442 
443 	return ((max_updated_irr != -1) &&
444 		(max_updated_irr == *max_irr));
445 }
446 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
447 
448 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
449 {
450 	struct kvm_lapic *apic = vcpu->arch.apic;
451 
452 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
453 }
454 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
455 
456 static inline int apic_search_irr(struct kvm_lapic *apic)
457 {
458 	return find_highest_vector(apic->regs + APIC_IRR);
459 }
460 
461 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
462 {
463 	int result;
464 
465 	/*
466 	 * Note that irr_pending is just a hint. It will be always
467 	 * true with virtual interrupt delivery enabled.
468 	 */
469 	if (!apic->irr_pending)
470 		return -1;
471 
472 	result = apic_search_irr(apic);
473 	ASSERT(result == -1 || result >= 16);
474 
475 	return result;
476 }
477 
478 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
479 {
480 	struct kvm_vcpu *vcpu;
481 
482 	vcpu = apic->vcpu;
483 
484 	if (unlikely(vcpu->arch.apicv_active)) {
485 		/* need to update RVI */
486 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
487 		kvm_x86_ops.hwapic_irr_update(vcpu,
488 				apic_find_highest_irr(apic));
489 	} else {
490 		apic->irr_pending = false;
491 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
492 		if (apic_search_irr(apic) != -1)
493 			apic->irr_pending = true;
494 	}
495 }
496 
497 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
498 {
499 	apic_clear_irr(vec, vcpu->arch.apic);
500 }
501 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
502 
503 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
504 {
505 	struct kvm_vcpu *vcpu;
506 
507 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
508 		return;
509 
510 	vcpu = apic->vcpu;
511 
512 	/*
513 	 * With APIC virtualization enabled, all caching is disabled
514 	 * because the processor can modify ISR under the hood.  Instead
515 	 * just set SVI.
516 	 */
517 	if (unlikely(vcpu->arch.apicv_active))
518 		kvm_x86_ops.hwapic_isr_update(vcpu, vec);
519 	else {
520 		++apic->isr_count;
521 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
522 		/*
523 		 * ISR (in service register) bit is set when injecting an interrupt.
524 		 * The highest vector is injected. Thus the latest bit set matches
525 		 * the highest bit in ISR.
526 		 */
527 		apic->highest_isr_cache = vec;
528 	}
529 }
530 
531 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
532 {
533 	int result;
534 
535 	/*
536 	 * Note that isr_count is always 1, and highest_isr_cache
537 	 * is always -1, with APIC virtualization enabled.
538 	 */
539 	if (!apic->isr_count)
540 		return -1;
541 	if (likely(apic->highest_isr_cache != -1))
542 		return apic->highest_isr_cache;
543 
544 	result = find_highest_vector(apic->regs + APIC_ISR);
545 	ASSERT(result == -1 || result >= 16);
546 
547 	return result;
548 }
549 
550 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
551 {
552 	struct kvm_vcpu *vcpu;
553 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
554 		return;
555 
556 	vcpu = apic->vcpu;
557 
558 	/*
559 	 * We do get here for APIC virtualization enabled if the guest
560 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
561 	 * to trigger a new interrupt delivery by writing the SVI field;
562 	 * on the other hand isr_count and highest_isr_cache are unused
563 	 * and must be left alone.
564 	 */
565 	if (unlikely(vcpu->arch.apicv_active))
566 		kvm_x86_ops.hwapic_isr_update(vcpu,
567 					       apic_find_highest_isr(apic));
568 	else {
569 		--apic->isr_count;
570 		BUG_ON(apic->isr_count < 0);
571 		apic->highest_isr_cache = -1;
572 	}
573 }
574 
575 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
576 {
577 	/* This may race with setting of irr in __apic_accept_irq() and
578 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
579 	 * will cause vmexit immediately and the value will be recalculated
580 	 * on the next vmentry.
581 	 */
582 	return apic_find_highest_irr(vcpu->arch.apic);
583 }
584 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
585 
586 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
587 			     int vector, int level, int trig_mode,
588 			     struct dest_map *dest_map);
589 
590 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
591 		     struct dest_map *dest_map)
592 {
593 	struct kvm_lapic *apic = vcpu->arch.apic;
594 
595 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
596 			irq->level, irq->trig_mode, dest_map);
597 }
598 
599 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
600 			 struct kvm_lapic_irq *irq, u32 min)
601 {
602 	int i, count = 0;
603 	struct kvm_vcpu *vcpu;
604 
605 	if (min > map->max_apic_id)
606 		return 0;
607 
608 	for_each_set_bit(i, ipi_bitmap,
609 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
610 		if (map->phys_map[min + i]) {
611 			vcpu = map->phys_map[min + i]->vcpu;
612 			count += kvm_apic_set_irq(vcpu, irq, NULL);
613 		}
614 	}
615 
616 	return count;
617 }
618 
619 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
620 		    unsigned long ipi_bitmap_high, u32 min,
621 		    unsigned long icr, int op_64_bit)
622 {
623 	struct kvm_apic_map *map;
624 	struct kvm_lapic_irq irq = {0};
625 	int cluster_size = op_64_bit ? 64 : 32;
626 	int count;
627 
628 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
629 		return -KVM_EINVAL;
630 
631 	irq.vector = icr & APIC_VECTOR_MASK;
632 	irq.delivery_mode = icr & APIC_MODE_MASK;
633 	irq.level = (icr & APIC_INT_ASSERT) != 0;
634 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
635 
636 	rcu_read_lock();
637 	map = rcu_dereference(kvm->arch.apic_map);
638 
639 	count = -EOPNOTSUPP;
640 	if (likely(map)) {
641 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
642 		min += cluster_size;
643 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
644 	}
645 
646 	rcu_read_unlock();
647 	return count;
648 }
649 
650 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
651 {
652 
653 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
654 				      sizeof(val));
655 }
656 
657 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
658 {
659 
660 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
661 				      sizeof(*val));
662 }
663 
664 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
665 {
666 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
667 }
668 
669 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
670 {
671 	u8 val;
672 	if (pv_eoi_get_user(vcpu, &val) < 0) {
673 		printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n",
674 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
675 		return false;
676 	}
677 	return val & 0x1;
678 }
679 
680 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
681 {
682 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
683 		printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n",
684 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
685 		return;
686 	}
687 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
688 }
689 
690 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
691 {
692 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
693 		printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n",
694 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
695 		return;
696 	}
697 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
698 }
699 
700 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
701 {
702 	int highest_irr;
703 	if (apic->vcpu->arch.apicv_active)
704 		highest_irr = kvm_x86_ops.sync_pir_to_irr(apic->vcpu);
705 	else
706 		highest_irr = apic_find_highest_irr(apic);
707 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
708 		return -1;
709 	return highest_irr;
710 }
711 
712 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
713 {
714 	u32 tpr, isrv, ppr, old_ppr;
715 	int isr;
716 
717 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
718 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
719 	isr = apic_find_highest_isr(apic);
720 	isrv = (isr != -1) ? isr : 0;
721 
722 	if ((tpr & 0xf0) >= (isrv & 0xf0))
723 		ppr = tpr & 0xff;
724 	else
725 		ppr = isrv & 0xf0;
726 
727 	*new_ppr = ppr;
728 	if (old_ppr != ppr)
729 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
730 
731 	return ppr < old_ppr;
732 }
733 
734 static void apic_update_ppr(struct kvm_lapic *apic)
735 {
736 	u32 ppr;
737 
738 	if (__apic_update_ppr(apic, &ppr) &&
739 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
740 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
741 }
742 
743 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
744 {
745 	apic_update_ppr(vcpu->arch.apic);
746 }
747 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
748 
749 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
750 {
751 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
752 	apic_update_ppr(apic);
753 }
754 
755 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
756 {
757 	return mda == (apic_x2apic_mode(apic) ?
758 			X2APIC_BROADCAST : APIC_BROADCAST);
759 }
760 
761 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
762 {
763 	if (kvm_apic_broadcast(apic, mda))
764 		return true;
765 
766 	if (apic_x2apic_mode(apic))
767 		return mda == kvm_x2apic_id(apic);
768 
769 	/*
770 	 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
771 	 * it were in x2APIC mode.  Hotplugged VCPUs start in xAPIC mode and
772 	 * this allows unique addressing of VCPUs with APIC ID over 0xff.
773 	 * The 0xff condition is needed because writeable xAPIC ID.
774 	 */
775 	if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
776 		return true;
777 
778 	return mda == kvm_xapic_id(apic);
779 }
780 
781 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
782 {
783 	u32 logical_id;
784 
785 	if (kvm_apic_broadcast(apic, mda))
786 		return true;
787 
788 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
789 
790 	if (apic_x2apic_mode(apic))
791 		return ((logical_id >> 16) == (mda >> 16))
792 		       && (logical_id & mda & 0xffff) != 0;
793 
794 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
795 
796 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
797 	case APIC_DFR_FLAT:
798 		return (logical_id & mda) != 0;
799 	case APIC_DFR_CLUSTER:
800 		return ((logical_id >> 4) == (mda >> 4))
801 		       && (logical_id & mda & 0xf) != 0;
802 	default:
803 		return false;
804 	}
805 }
806 
807 /* The KVM local APIC implementation has two quirks:
808  *
809  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
810  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
811  *    KVM doesn't do that aliasing.
812  *
813  *  - in-kernel IOAPIC messages have to be delivered directly to
814  *    x2APIC, because the kernel does not support interrupt remapping.
815  *    In order to support broadcast without interrupt remapping, x2APIC
816  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
817  *    to X2APIC_BROADCAST.
818  *
819  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
820  * important when userspace wants to use x2APIC-format MSIs, because
821  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
822  */
823 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
824 		struct kvm_lapic *source, struct kvm_lapic *target)
825 {
826 	bool ipi = source != NULL;
827 
828 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
829 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
830 		return X2APIC_BROADCAST;
831 
832 	return dest_id;
833 }
834 
835 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
836 			   int shorthand, unsigned int dest, int dest_mode)
837 {
838 	struct kvm_lapic *target = vcpu->arch.apic;
839 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
840 
841 	ASSERT(target);
842 	switch (shorthand) {
843 	case APIC_DEST_NOSHORT:
844 		if (dest_mode == APIC_DEST_PHYSICAL)
845 			return kvm_apic_match_physical_addr(target, mda);
846 		else
847 			return kvm_apic_match_logical_addr(target, mda);
848 	case APIC_DEST_SELF:
849 		return target == source;
850 	case APIC_DEST_ALLINC:
851 		return true;
852 	case APIC_DEST_ALLBUT:
853 		return target != source;
854 	default:
855 		return false;
856 	}
857 }
858 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
859 
860 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
861 		       const unsigned long *bitmap, u32 bitmap_size)
862 {
863 	u32 mod;
864 	int i, idx = -1;
865 
866 	mod = vector % dest_vcpus;
867 
868 	for (i = 0; i <= mod; i++) {
869 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
870 		BUG_ON(idx == bitmap_size);
871 	}
872 
873 	return idx;
874 }
875 
876 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
877 {
878 	if (!kvm->arch.disabled_lapic_found) {
879 		kvm->arch.disabled_lapic_found = true;
880 		printk(KERN_INFO
881 		       "Disabled LAPIC found during irq injection\n");
882 	}
883 }
884 
885 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
886 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
887 {
888 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
889 		if ((irq->dest_id == APIC_BROADCAST &&
890 				map->mode != KVM_APIC_MODE_X2APIC))
891 			return true;
892 		if (irq->dest_id == X2APIC_BROADCAST)
893 			return true;
894 	} else {
895 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
896 		if (irq->dest_id == (x2apic_ipi ?
897 		                     X2APIC_BROADCAST : APIC_BROADCAST))
898 			return true;
899 	}
900 
901 	return false;
902 }
903 
904 /* Return true if the interrupt can be handled by using *bitmap as index mask
905  * for valid destinations in *dst array.
906  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
907  * Note: we may have zero kvm_lapic destinations when we return true, which
908  * means that the interrupt should be dropped.  In this case, *bitmap would be
909  * zero and *dst undefined.
910  */
911 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
912 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
913 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
914 		unsigned long *bitmap)
915 {
916 	int i, lowest;
917 
918 	if (irq->shorthand == APIC_DEST_SELF && src) {
919 		*dst = src;
920 		*bitmap = 1;
921 		return true;
922 	} else if (irq->shorthand)
923 		return false;
924 
925 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
926 		return false;
927 
928 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
929 		if (irq->dest_id > map->max_apic_id) {
930 			*bitmap = 0;
931 		} else {
932 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
933 			*dst = &map->phys_map[dest_id];
934 			*bitmap = 1;
935 		}
936 		return true;
937 	}
938 
939 	*bitmap = 0;
940 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
941 				(u16 *)bitmap))
942 		return false;
943 
944 	if (!kvm_lowest_prio_delivery(irq))
945 		return true;
946 
947 	if (!kvm_vector_hashing_enabled()) {
948 		lowest = -1;
949 		for_each_set_bit(i, bitmap, 16) {
950 			if (!(*dst)[i])
951 				continue;
952 			if (lowest < 0)
953 				lowest = i;
954 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
955 						(*dst)[lowest]->vcpu) < 0)
956 				lowest = i;
957 		}
958 	} else {
959 		if (!*bitmap)
960 			return true;
961 
962 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
963 				bitmap, 16);
964 
965 		if (!(*dst)[lowest]) {
966 			kvm_apic_disabled_lapic_found(kvm);
967 			*bitmap = 0;
968 			return true;
969 		}
970 	}
971 
972 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
973 
974 	return true;
975 }
976 
977 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
978 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
979 {
980 	struct kvm_apic_map *map;
981 	unsigned long bitmap;
982 	struct kvm_lapic **dst = NULL;
983 	int i;
984 	bool ret;
985 
986 	*r = -1;
987 
988 	if (irq->shorthand == APIC_DEST_SELF) {
989 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
990 		return true;
991 	}
992 
993 	rcu_read_lock();
994 	map = rcu_dereference(kvm->arch.apic_map);
995 
996 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
997 	if (ret) {
998 		*r = 0;
999 		for_each_set_bit(i, &bitmap, 16) {
1000 			if (!dst[i])
1001 				continue;
1002 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1003 		}
1004 	}
1005 
1006 	rcu_read_unlock();
1007 	return ret;
1008 }
1009 
1010 /*
1011  * This routine tries to handle interrupts in posted mode, here is how
1012  * it deals with different cases:
1013  * - For single-destination interrupts, handle it in posted mode
1014  * - Else if vector hashing is enabled and it is a lowest-priority
1015  *   interrupt, handle it in posted mode and use the following mechanism
1016  *   to find the destination vCPU.
1017  *	1. For lowest-priority interrupts, store all the possible
1018  *	   destination vCPUs in an array.
1019  *	2. Use "guest vector % max number of destination vCPUs" to find
1020  *	   the right destination vCPU in the array for the lowest-priority
1021  *	   interrupt.
1022  * - Otherwise, use remapped mode to inject the interrupt.
1023  */
1024 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1025 			struct kvm_vcpu **dest_vcpu)
1026 {
1027 	struct kvm_apic_map *map;
1028 	unsigned long bitmap;
1029 	struct kvm_lapic **dst = NULL;
1030 	bool ret = false;
1031 
1032 	if (irq->shorthand)
1033 		return false;
1034 
1035 	rcu_read_lock();
1036 	map = rcu_dereference(kvm->arch.apic_map);
1037 
1038 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1039 			hweight16(bitmap) == 1) {
1040 		unsigned long i = find_first_bit(&bitmap, 16);
1041 
1042 		if (dst[i]) {
1043 			*dest_vcpu = dst[i]->vcpu;
1044 			ret = true;
1045 		}
1046 	}
1047 
1048 	rcu_read_unlock();
1049 	return ret;
1050 }
1051 
1052 /*
1053  * Add a pending IRQ into lapic.
1054  * Return 1 if successfully added and 0 if discarded.
1055  */
1056 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1057 			     int vector, int level, int trig_mode,
1058 			     struct dest_map *dest_map)
1059 {
1060 	int result = 0;
1061 	struct kvm_vcpu *vcpu = apic->vcpu;
1062 
1063 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1064 				  trig_mode, vector);
1065 	switch (delivery_mode) {
1066 	case APIC_DM_LOWEST:
1067 		vcpu->arch.apic_arb_prio++;
1068 		fallthrough;
1069 	case APIC_DM_FIXED:
1070 		if (unlikely(trig_mode && !level))
1071 			break;
1072 
1073 		/* FIXME add logic for vcpu on reset */
1074 		if (unlikely(!apic_enabled(apic)))
1075 			break;
1076 
1077 		result = 1;
1078 
1079 		if (dest_map) {
1080 			__set_bit(vcpu->vcpu_id, dest_map->map);
1081 			dest_map->vectors[vcpu->vcpu_id] = vector;
1082 		}
1083 
1084 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1085 			if (trig_mode)
1086 				kvm_lapic_set_vector(vector,
1087 						     apic->regs + APIC_TMR);
1088 			else
1089 				kvm_lapic_clear_vector(vector,
1090 						       apic->regs + APIC_TMR);
1091 		}
1092 
1093 		if (kvm_x86_ops.deliver_posted_interrupt(vcpu, vector)) {
1094 			kvm_lapic_set_irr(vector, apic);
1095 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1096 			kvm_vcpu_kick(vcpu);
1097 		}
1098 		break;
1099 
1100 	case APIC_DM_REMRD:
1101 		result = 1;
1102 		vcpu->arch.pv.pv_unhalted = 1;
1103 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1104 		kvm_vcpu_kick(vcpu);
1105 		break;
1106 
1107 	case APIC_DM_SMI:
1108 		result = 1;
1109 		kvm_make_request(KVM_REQ_SMI, vcpu);
1110 		kvm_vcpu_kick(vcpu);
1111 		break;
1112 
1113 	case APIC_DM_NMI:
1114 		result = 1;
1115 		kvm_inject_nmi(vcpu);
1116 		kvm_vcpu_kick(vcpu);
1117 		break;
1118 
1119 	case APIC_DM_INIT:
1120 		if (!trig_mode || level) {
1121 			result = 1;
1122 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1123 			apic->pending_events = (1UL << KVM_APIC_INIT);
1124 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1125 			kvm_vcpu_kick(vcpu);
1126 		}
1127 		break;
1128 
1129 	case APIC_DM_STARTUP:
1130 		result = 1;
1131 		apic->sipi_vector = vector;
1132 		/* make sure sipi_vector is visible for the receiver */
1133 		smp_wmb();
1134 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1135 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1136 		kvm_vcpu_kick(vcpu);
1137 		break;
1138 
1139 	case APIC_DM_EXTINT:
1140 		/*
1141 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1142 		 * before NMI watchdog was enabled. Already handled by
1143 		 * kvm_apic_accept_pic_intr().
1144 		 */
1145 		break;
1146 
1147 	default:
1148 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1149 		       delivery_mode);
1150 		break;
1151 	}
1152 	return result;
1153 }
1154 
1155 /*
1156  * This routine identifies the destination vcpus mask meant to receive the
1157  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1158  * out the destination vcpus array and set the bitmap or it traverses to
1159  * each available vcpu to identify the same.
1160  */
1161 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1162 			      unsigned long *vcpu_bitmap)
1163 {
1164 	struct kvm_lapic **dest_vcpu = NULL;
1165 	struct kvm_lapic *src = NULL;
1166 	struct kvm_apic_map *map;
1167 	struct kvm_vcpu *vcpu;
1168 	unsigned long bitmap;
1169 	int i, vcpu_idx;
1170 	bool ret;
1171 
1172 	rcu_read_lock();
1173 	map = rcu_dereference(kvm->arch.apic_map);
1174 
1175 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1176 					  &bitmap);
1177 	if (ret) {
1178 		for_each_set_bit(i, &bitmap, 16) {
1179 			if (!dest_vcpu[i])
1180 				continue;
1181 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1182 			__set_bit(vcpu_idx, vcpu_bitmap);
1183 		}
1184 	} else {
1185 		kvm_for_each_vcpu(i, vcpu, kvm) {
1186 			if (!kvm_apic_present(vcpu))
1187 				continue;
1188 			if (!kvm_apic_match_dest(vcpu, NULL,
1189 						 irq->shorthand,
1190 						 irq->dest_id,
1191 						 irq->dest_mode))
1192 				continue;
1193 			__set_bit(i, vcpu_bitmap);
1194 		}
1195 	}
1196 	rcu_read_unlock();
1197 }
1198 
1199 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1200 {
1201 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1202 }
1203 
1204 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1205 {
1206 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1207 }
1208 
1209 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1210 {
1211 	int trigger_mode;
1212 
1213 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1214 	if (!kvm_ioapic_handles_vector(apic, vector))
1215 		return;
1216 
1217 	/* Request a KVM exit to inform the userspace IOAPIC. */
1218 	if (irqchip_split(apic->vcpu->kvm)) {
1219 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1220 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1221 		return;
1222 	}
1223 
1224 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1225 		trigger_mode = IOAPIC_LEVEL_TRIG;
1226 	else
1227 		trigger_mode = IOAPIC_EDGE_TRIG;
1228 
1229 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1230 }
1231 
1232 static int apic_set_eoi(struct kvm_lapic *apic)
1233 {
1234 	int vector = apic_find_highest_isr(apic);
1235 
1236 	trace_kvm_eoi(apic, vector);
1237 
1238 	/*
1239 	 * Not every write EOI will has corresponding ISR,
1240 	 * one example is when Kernel check timer on setup_IO_APIC
1241 	 */
1242 	if (vector == -1)
1243 		return vector;
1244 
1245 	apic_clear_isr(vector, apic);
1246 	apic_update_ppr(apic);
1247 
1248 	if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap))
1249 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1250 
1251 	kvm_ioapic_send_eoi(apic, vector);
1252 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1253 	return vector;
1254 }
1255 
1256 /*
1257  * this interface assumes a trap-like exit, which has already finished
1258  * desired side effect including vISR and vPPR update.
1259  */
1260 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1261 {
1262 	struct kvm_lapic *apic = vcpu->arch.apic;
1263 
1264 	trace_kvm_eoi(apic, vector);
1265 
1266 	kvm_ioapic_send_eoi(apic, vector);
1267 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1270 
1271 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1272 {
1273 	struct kvm_lapic_irq irq;
1274 
1275 	irq.vector = icr_low & APIC_VECTOR_MASK;
1276 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1277 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1278 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1279 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1280 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1281 	irq.msi_redir_hint = false;
1282 	if (apic_x2apic_mode(apic))
1283 		irq.dest_id = icr_high;
1284 	else
1285 		irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1286 
1287 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1288 
1289 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1290 }
1291 
1292 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1293 {
1294 	ktime_t remaining, now;
1295 	s64 ns;
1296 	u32 tmcct;
1297 
1298 	ASSERT(apic != NULL);
1299 
1300 	/* if initial count is 0, current count should also be 0 */
1301 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1302 		apic->lapic_timer.period == 0)
1303 		return 0;
1304 
1305 	now = ktime_get();
1306 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1307 	if (ktime_to_ns(remaining) < 0)
1308 		remaining = 0;
1309 
1310 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1311 	tmcct = div64_u64(ns,
1312 			 (APIC_BUS_CYCLE_NS * apic->divide_count));
1313 
1314 	return tmcct;
1315 }
1316 
1317 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1318 {
1319 	struct kvm_vcpu *vcpu = apic->vcpu;
1320 	struct kvm_run *run = vcpu->run;
1321 
1322 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1323 	run->tpr_access.rip = kvm_rip_read(vcpu);
1324 	run->tpr_access.is_write = write;
1325 }
1326 
1327 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1328 {
1329 	if (apic->vcpu->arch.tpr_access_reporting)
1330 		__report_tpr_access(apic, write);
1331 }
1332 
1333 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1334 {
1335 	u32 val = 0;
1336 
1337 	if (offset >= LAPIC_MMIO_LENGTH)
1338 		return 0;
1339 
1340 	switch (offset) {
1341 	case APIC_ARBPRI:
1342 		break;
1343 
1344 	case APIC_TMCCT:	/* Timer CCR */
1345 		if (apic_lvtt_tscdeadline(apic))
1346 			return 0;
1347 
1348 		val = apic_get_tmcct(apic);
1349 		break;
1350 	case APIC_PROCPRI:
1351 		apic_update_ppr(apic);
1352 		val = kvm_lapic_get_reg(apic, offset);
1353 		break;
1354 	case APIC_TASKPRI:
1355 		report_tpr_access(apic, false);
1356 		fallthrough;
1357 	default:
1358 		val = kvm_lapic_get_reg(apic, offset);
1359 		break;
1360 	}
1361 
1362 	return val;
1363 }
1364 
1365 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1366 {
1367 	return container_of(dev, struct kvm_lapic, dev);
1368 }
1369 
1370 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1371 #define APIC_REGS_MASK(first, count) \
1372 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1373 
1374 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1375 		void *data)
1376 {
1377 	unsigned char alignment = offset & 0xf;
1378 	u32 result;
1379 	/* this bitmask has a bit cleared for each reserved register */
1380 	u64 valid_reg_mask =
1381 		APIC_REG_MASK(APIC_ID) |
1382 		APIC_REG_MASK(APIC_LVR) |
1383 		APIC_REG_MASK(APIC_TASKPRI) |
1384 		APIC_REG_MASK(APIC_PROCPRI) |
1385 		APIC_REG_MASK(APIC_LDR) |
1386 		APIC_REG_MASK(APIC_DFR) |
1387 		APIC_REG_MASK(APIC_SPIV) |
1388 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1389 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1390 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1391 		APIC_REG_MASK(APIC_ESR) |
1392 		APIC_REG_MASK(APIC_ICR) |
1393 		APIC_REG_MASK(APIC_ICR2) |
1394 		APIC_REG_MASK(APIC_LVTT) |
1395 		APIC_REG_MASK(APIC_LVTTHMR) |
1396 		APIC_REG_MASK(APIC_LVTPC) |
1397 		APIC_REG_MASK(APIC_LVT0) |
1398 		APIC_REG_MASK(APIC_LVT1) |
1399 		APIC_REG_MASK(APIC_LVTERR) |
1400 		APIC_REG_MASK(APIC_TMICT) |
1401 		APIC_REG_MASK(APIC_TMCCT) |
1402 		APIC_REG_MASK(APIC_TDCR);
1403 
1404 	/* ARBPRI is not valid on x2APIC */
1405 	if (!apic_x2apic_mode(apic))
1406 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1407 
1408 	if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1409 		return 1;
1410 
1411 	result = __apic_read(apic, offset & ~0xf);
1412 
1413 	trace_kvm_apic_read(offset, result);
1414 
1415 	switch (len) {
1416 	case 1:
1417 	case 2:
1418 	case 4:
1419 		memcpy(data, (char *)&result + alignment, len);
1420 		break;
1421 	default:
1422 		printk(KERN_ERR "Local APIC read with len = %x, "
1423 		       "should be 1,2, or 4 instead\n", len);
1424 		break;
1425 	}
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1429 
1430 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1431 {
1432 	return addr >= apic->base_address &&
1433 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1434 }
1435 
1436 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1437 			   gpa_t address, int len, void *data)
1438 {
1439 	struct kvm_lapic *apic = to_lapic(this);
1440 	u32 offset = address - apic->base_address;
1441 
1442 	if (!apic_mmio_in_range(apic, address))
1443 		return -EOPNOTSUPP;
1444 
1445 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1446 		if (!kvm_check_has_quirk(vcpu->kvm,
1447 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1448 			return -EOPNOTSUPP;
1449 
1450 		memset(data, 0xff, len);
1451 		return 0;
1452 	}
1453 
1454 	kvm_lapic_reg_read(apic, offset, len, data);
1455 
1456 	return 0;
1457 }
1458 
1459 static void update_divide_count(struct kvm_lapic *apic)
1460 {
1461 	u32 tmp1, tmp2, tdcr;
1462 
1463 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1464 	tmp1 = tdcr & 0xf;
1465 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1466 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1467 }
1468 
1469 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1470 {
1471 	/*
1472 	 * Do not allow the guest to program periodic timers with small
1473 	 * interval, since the hrtimers are not throttled by the host
1474 	 * scheduler.
1475 	 */
1476 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1477 		s64 min_period = min_timer_period_us * 1000LL;
1478 
1479 		if (apic->lapic_timer.period < min_period) {
1480 			pr_info_ratelimited(
1481 			    "kvm: vcpu %i: requested %lld ns "
1482 			    "lapic timer period limited to %lld ns\n",
1483 			    apic->vcpu->vcpu_id,
1484 			    apic->lapic_timer.period, min_period);
1485 			apic->lapic_timer.period = min_period;
1486 		}
1487 	}
1488 }
1489 
1490 static void cancel_hv_timer(struct kvm_lapic *apic);
1491 
1492 static void apic_update_lvtt(struct kvm_lapic *apic)
1493 {
1494 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1495 			apic->lapic_timer.timer_mode_mask;
1496 
1497 	if (apic->lapic_timer.timer_mode != timer_mode) {
1498 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1499 				APIC_LVT_TIMER_TSCDEADLINE)) {
1500 			hrtimer_cancel(&apic->lapic_timer.timer);
1501 			preempt_disable();
1502 			if (apic->lapic_timer.hv_timer_in_use)
1503 				cancel_hv_timer(apic);
1504 			preempt_enable();
1505 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1506 			apic->lapic_timer.period = 0;
1507 			apic->lapic_timer.tscdeadline = 0;
1508 		}
1509 		apic->lapic_timer.timer_mode = timer_mode;
1510 		limit_periodic_timer_frequency(apic);
1511 	}
1512 }
1513 
1514 /*
1515  * On APICv, this test will cause a busy wait
1516  * during a higher-priority task.
1517  */
1518 
1519 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1520 {
1521 	struct kvm_lapic *apic = vcpu->arch.apic;
1522 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1523 
1524 	if (kvm_apic_hw_enabled(apic)) {
1525 		int vec = reg & APIC_VECTOR_MASK;
1526 		void *bitmap = apic->regs + APIC_ISR;
1527 
1528 		if (vcpu->arch.apicv_active)
1529 			bitmap = apic->regs + APIC_IRR;
1530 
1531 		if (apic_test_vector(vec, bitmap))
1532 			return true;
1533 	}
1534 	return false;
1535 }
1536 
1537 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1538 {
1539 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1540 
1541 	/*
1542 	 * If the guest TSC is running at a different ratio than the host, then
1543 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1544 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1545 	 * always for VMX enabled hardware.
1546 	 */
1547 	if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1548 		__delay(min(guest_cycles,
1549 			nsec_to_cycles(vcpu, timer_advance_ns)));
1550 	} else {
1551 		u64 delay_ns = guest_cycles * 1000000ULL;
1552 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1553 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1554 	}
1555 }
1556 
1557 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1558 					      s64 advance_expire_delta)
1559 {
1560 	struct kvm_lapic *apic = vcpu->arch.apic;
1561 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1562 	u64 ns;
1563 
1564 	/* Do not adjust for tiny fluctuations or large random spikes. */
1565 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1566 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1567 		return;
1568 
1569 	/* too early */
1570 	if (advance_expire_delta < 0) {
1571 		ns = -advance_expire_delta * 1000000ULL;
1572 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1573 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1574 	} else {
1575 	/* too late */
1576 		ns = advance_expire_delta * 1000000ULL;
1577 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1578 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1579 	}
1580 
1581 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1582 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1583 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1584 }
1585 
1586 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1587 {
1588 	struct kvm_lapic *apic = vcpu->arch.apic;
1589 	u64 guest_tsc, tsc_deadline;
1590 
1591 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1592 	apic->lapic_timer.expired_tscdeadline = 0;
1593 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1594 	apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1595 
1596 	if (guest_tsc < tsc_deadline)
1597 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1598 
1599 	if (lapic_timer_advance_dynamic)
1600 		adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1601 }
1602 
1603 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1604 {
1605 	if (lapic_in_kernel(vcpu) &&
1606 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1607 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1608 	    lapic_timer_int_injected(vcpu))
1609 		__kvm_wait_lapic_expire(vcpu);
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1612 
1613 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1614 {
1615 	struct kvm_timer *ktimer = &apic->lapic_timer;
1616 
1617 	kvm_apic_local_deliver(apic, APIC_LVTT);
1618 	if (apic_lvtt_tscdeadline(apic)) {
1619 		ktimer->tscdeadline = 0;
1620 	} else if (apic_lvtt_oneshot(apic)) {
1621 		ktimer->tscdeadline = 0;
1622 		ktimer->target_expiration = 0;
1623 	}
1624 }
1625 
1626 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1627 {
1628 	struct kvm_vcpu *vcpu = apic->vcpu;
1629 	struct kvm_timer *ktimer = &apic->lapic_timer;
1630 
1631 	if (atomic_read(&apic->lapic_timer.pending))
1632 		return;
1633 
1634 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1635 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1636 
1637 	if (!from_timer_fn && vcpu->arch.apicv_active) {
1638 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1639 		kvm_apic_inject_pending_timer_irqs(apic);
1640 		return;
1641 	}
1642 
1643 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1644 		kvm_wait_lapic_expire(vcpu);
1645 		kvm_apic_inject_pending_timer_irqs(apic);
1646 		return;
1647 	}
1648 
1649 	atomic_inc(&apic->lapic_timer.pending);
1650 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1651 	if (from_timer_fn)
1652 		kvm_vcpu_kick(vcpu);
1653 }
1654 
1655 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1656 {
1657 	struct kvm_timer *ktimer = &apic->lapic_timer;
1658 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1659 	u64 ns = 0;
1660 	ktime_t expire;
1661 	struct kvm_vcpu *vcpu = apic->vcpu;
1662 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1663 	unsigned long flags;
1664 	ktime_t now;
1665 
1666 	if (unlikely(!tscdeadline || !this_tsc_khz))
1667 		return;
1668 
1669 	local_irq_save(flags);
1670 
1671 	now = ktime_get();
1672 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1673 
1674 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1675 	do_div(ns, this_tsc_khz);
1676 
1677 	if (likely(tscdeadline > guest_tsc) &&
1678 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1679 		expire = ktime_add_ns(now, ns);
1680 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1681 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1682 	} else
1683 		apic_timer_expired(apic, false);
1684 
1685 	local_irq_restore(flags);
1686 }
1687 
1688 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1689 {
1690 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1691 }
1692 
1693 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1694 {
1695 	ktime_t now, remaining;
1696 	u64 ns_remaining_old, ns_remaining_new;
1697 
1698 	apic->lapic_timer.period =
1699 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1700 	limit_periodic_timer_frequency(apic);
1701 
1702 	now = ktime_get();
1703 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1704 	if (ktime_to_ns(remaining) < 0)
1705 		remaining = 0;
1706 
1707 	ns_remaining_old = ktime_to_ns(remaining);
1708 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1709 	                                   apic->divide_count, old_divisor);
1710 
1711 	apic->lapic_timer.tscdeadline +=
1712 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1713 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1714 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1715 }
1716 
1717 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1718 {
1719 	ktime_t now;
1720 	u64 tscl = rdtsc();
1721 	s64 deadline;
1722 
1723 	now = ktime_get();
1724 	apic->lapic_timer.period =
1725 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1726 
1727 	if (!apic->lapic_timer.period) {
1728 		apic->lapic_timer.tscdeadline = 0;
1729 		return false;
1730 	}
1731 
1732 	limit_periodic_timer_frequency(apic);
1733 	deadline = apic->lapic_timer.period;
1734 
1735 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1736 		if (unlikely(count_reg != APIC_TMICT)) {
1737 			deadline = tmict_to_ns(apic,
1738 				     kvm_lapic_get_reg(apic, count_reg));
1739 			if (unlikely(deadline <= 0))
1740 				deadline = apic->lapic_timer.period;
1741 			else if (unlikely(deadline > apic->lapic_timer.period)) {
1742 				pr_info_ratelimited(
1743 				    "kvm: vcpu %i: requested lapic timer restore with "
1744 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
1745 				    "Using initial count to start timer.\n",
1746 				    apic->vcpu->vcpu_id,
1747 				    count_reg,
1748 				    kvm_lapic_get_reg(apic, count_reg),
1749 				    deadline, apic->lapic_timer.period);
1750 				kvm_lapic_set_reg(apic, count_reg, 0);
1751 				deadline = apic->lapic_timer.period;
1752 			}
1753 		}
1754 	}
1755 
1756 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1757 		nsec_to_cycles(apic->vcpu, deadline);
1758 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
1759 
1760 	return true;
1761 }
1762 
1763 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1764 {
1765 	ktime_t now = ktime_get();
1766 	u64 tscl = rdtsc();
1767 	ktime_t delta;
1768 
1769 	/*
1770 	 * Synchronize both deadlines to the same time source or
1771 	 * differences in the periods (caused by differences in the
1772 	 * underlying clocks or numerical approximation errors) will
1773 	 * cause the two to drift apart over time as the errors
1774 	 * accumulate.
1775 	 */
1776 	apic->lapic_timer.target_expiration =
1777 		ktime_add_ns(apic->lapic_timer.target_expiration,
1778 				apic->lapic_timer.period);
1779 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1780 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1781 		nsec_to_cycles(apic->vcpu, delta);
1782 }
1783 
1784 static void start_sw_period(struct kvm_lapic *apic)
1785 {
1786 	if (!apic->lapic_timer.period)
1787 		return;
1788 
1789 	if (ktime_after(ktime_get(),
1790 			apic->lapic_timer.target_expiration)) {
1791 		apic_timer_expired(apic, false);
1792 
1793 		if (apic_lvtt_oneshot(apic))
1794 			return;
1795 
1796 		advance_periodic_target_expiration(apic);
1797 	}
1798 
1799 	hrtimer_start(&apic->lapic_timer.timer,
1800 		apic->lapic_timer.target_expiration,
1801 		HRTIMER_MODE_ABS_HARD);
1802 }
1803 
1804 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1805 {
1806 	if (!lapic_in_kernel(vcpu))
1807 		return false;
1808 
1809 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1812 
1813 static void cancel_hv_timer(struct kvm_lapic *apic)
1814 {
1815 	WARN_ON(preemptible());
1816 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1817 	kvm_x86_ops.cancel_hv_timer(apic->vcpu);
1818 	apic->lapic_timer.hv_timer_in_use = false;
1819 }
1820 
1821 static bool start_hv_timer(struct kvm_lapic *apic)
1822 {
1823 	struct kvm_timer *ktimer = &apic->lapic_timer;
1824 	struct kvm_vcpu *vcpu = apic->vcpu;
1825 	bool expired;
1826 
1827 	WARN_ON(preemptible());
1828 	if (!kvm_can_use_hv_timer(vcpu))
1829 		return false;
1830 
1831 	if (!ktimer->tscdeadline)
1832 		return false;
1833 
1834 	if (kvm_x86_ops.set_hv_timer(vcpu, ktimer->tscdeadline, &expired))
1835 		return false;
1836 
1837 	ktimer->hv_timer_in_use = true;
1838 	hrtimer_cancel(&ktimer->timer);
1839 
1840 	/*
1841 	 * To simplify handling the periodic timer, leave the hv timer running
1842 	 * even if the deadline timer has expired, i.e. rely on the resulting
1843 	 * VM-Exit to recompute the periodic timer's target expiration.
1844 	 */
1845 	if (!apic_lvtt_period(apic)) {
1846 		/*
1847 		 * Cancel the hv timer if the sw timer fired while the hv timer
1848 		 * was being programmed, or if the hv timer itself expired.
1849 		 */
1850 		if (atomic_read(&ktimer->pending)) {
1851 			cancel_hv_timer(apic);
1852 		} else if (expired) {
1853 			apic_timer_expired(apic, false);
1854 			cancel_hv_timer(apic);
1855 		}
1856 	}
1857 
1858 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1859 
1860 	return true;
1861 }
1862 
1863 static void start_sw_timer(struct kvm_lapic *apic)
1864 {
1865 	struct kvm_timer *ktimer = &apic->lapic_timer;
1866 
1867 	WARN_ON(preemptible());
1868 	if (apic->lapic_timer.hv_timer_in_use)
1869 		cancel_hv_timer(apic);
1870 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1871 		return;
1872 
1873 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1874 		start_sw_period(apic);
1875 	else if (apic_lvtt_tscdeadline(apic))
1876 		start_sw_tscdeadline(apic);
1877 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1878 }
1879 
1880 static void restart_apic_timer(struct kvm_lapic *apic)
1881 {
1882 	preempt_disable();
1883 
1884 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1885 		goto out;
1886 
1887 	if (!start_hv_timer(apic))
1888 		start_sw_timer(apic);
1889 out:
1890 	preempt_enable();
1891 }
1892 
1893 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1894 {
1895 	struct kvm_lapic *apic = vcpu->arch.apic;
1896 
1897 	preempt_disable();
1898 	/* If the preempt notifier has already run, it also called apic_timer_expired */
1899 	if (!apic->lapic_timer.hv_timer_in_use)
1900 		goto out;
1901 	WARN_ON(rcuwait_active(&vcpu->wait));
1902 	cancel_hv_timer(apic);
1903 	apic_timer_expired(apic, false);
1904 
1905 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1906 		advance_periodic_target_expiration(apic);
1907 		restart_apic_timer(apic);
1908 	}
1909 out:
1910 	preempt_enable();
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1913 
1914 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1915 {
1916 	restart_apic_timer(vcpu->arch.apic);
1917 }
1918 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1919 
1920 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1921 {
1922 	struct kvm_lapic *apic = vcpu->arch.apic;
1923 
1924 	preempt_disable();
1925 	/* Possibly the TSC deadline timer is not enabled yet */
1926 	if (apic->lapic_timer.hv_timer_in_use)
1927 		start_sw_timer(apic);
1928 	preempt_enable();
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1931 
1932 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1933 {
1934 	struct kvm_lapic *apic = vcpu->arch.apic;
1935 
1936 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1937 	restart_apic_timer(apic);
1938 }
1939 
1940 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
1941 {
1942 	atomic_set(&apic->lapic_timer.pending, 0);
1943 
1944 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1945 	    && !set_target_expiration(apic, count_reg))
1946 		return;
1947 
1948 	restart_apic_timer(apic);
1949 }
1950 
1951 static void start_apic_timer(struct kvm_lapic *apic)
1952 {
1953 	__start_apic_timer(apic, APIC_TMICT);
1954 }
1955 
1956 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1957 {
1958 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1959 
1960 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1961 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1962 		if (lvt0_in_nmi_mode) {
1963 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1964 		} else
1965 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1966 	}
1967 }
1968 
1969 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1970 {
1971 	int ret = 0;
1972 
1973 	trace_kvm_apic_write(reg, val);
1974 
1975 	switch (reg) {
1976 	case APIC_ID:		/* Local APIC ID */
1977 		if (!apic_x2apic_mode(apic))
1978 			kvm_apic_set_xapic_id(apic, val >> 24);
1979 		else
1980 			ret = 1;
1981 		break;
1982 
1983 	case APIC_TASKPRI:
1984 		report_tpr_access(apic, true);
1985 		apic_set_tpr(apic, val & 0xff);
1986 		break;
1987 
1988 	case APIC_EOI:
1989 		apic_set_eoi(apic);
1990 		break;
1991 
1992 	case APIC_LDR:
1993 		if (!apic_x2apic_mode(apic))
1994 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
1995 		else
1996 			ret = 1;
1997 		break;
1998 
1999 	case APIC_DFR:
2000 		if (!apic_x2apic_mode(apic))
2001 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2002 		else
2003 			ret = 1;
2004 		break;
2005 
2006 	case APIC_SPIV: {
2007 		u32 mask = 0x3ff;
2008 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2009 			mask |= APIC_SPIV_DIRECTED_EOI;
2010 		apic_set_spiv(apic, val & mask);
2011 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2012 			int i;
2013 			u32 lvt_val;
2014 
2015 			for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
2016 				lvt_val = kvm_lapic_get_reg(apic,
2017 						       APIC_LVTT + 0x10 * i);
2018 				kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
2019 					     lvt_val | APIC_LVT_MASKED);
2020 			}
2021 			apic_update_lvtt(apic);
2022 			atomic_set(&apic->lapic_timer.pending, 0);
2023 
2024 		}
2025 		break;
2026 	}
2027 	case APIC_ICR:
2028 		/* No delay here, so we always clear the pending bit */
2029 		val &= ~(1 << 12);
2030 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2031 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2032 		break;
2033 
2034 	case APIC_ICR2:
2035 		if (!apic_x2apic_mode(apic))
2036 			val &= 0xff000000;
2037 		kvm_lapic_set_reg(apic, APIC_ICR2, val);
2038 		break;
2039 
2040 	case APIC_LVT0:
2041 		apic_manage_nmi_watchdog(apic, val);
2042 		fallthrough;
2043 	case APIC_LVTTHMR:
2044 	case APIC_LVTPC:
2045 	case APIC_LVT1:
2046 	case APIC_LVTERR: {
2047 		/* TODO: Check vector */
2048 		size_t size;
2049 		u32 index;
2050 
2051 		if (!kvm_apic_sw_enabled(apic))
2052 			val |= APIC_LVT_MASKED;
2053 		size = ARRAY_SIZE(apic_lvt_mask);
2054 		index = array_index_nospec(
2055 				(reg - APIC_LVTT) >> 4, size);
2056 		val &= apic_lvt_mask[index];
2057 		kvm_lapic_set_reg(apic, reg, val);
2058 		break;
2059 	}
2060 
2061 	case APIC_LVTT:
2062 		if (!kvm_apic_sw_enabled(apic))
2063 			val |= APIC_LVT_MASKED;
2064 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2065 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2066 		apic_update_lvtt(apic);
2067 		break;
2068 
2069 	case APIC_TMICT:
2070 		if (apic_lvtt_tscdeadline(apic))
2071 			break;
2072 
2073 		hrtimer_cancel(&apic->lapic_timer.timer);
2074 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2075 		start_apic_timer(apic);
2076 		break;
2077 
2078 	case APIC_TDCR: {
2079 		uint32_t old_divisor = apic->divide_count;
2080 
2081 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2082 		update_divide_count(apic);
2083 		if (apic->divide_count != old_divisor &&
2084 				apic->lapic_timer.period) {
2085 			hrtimer_cancel(&apic->lapic_timer.timer);
2086 			update_target_expiration(apic, old_divisor);
2087 			restart_apic_timer(apic);
2088 		}
2089 		break;
2090 	}
2091 	case APIC_ESR:
2092 		if (apic_x2apic_mode(apic) && val != 0)
2093 			ret = 1;
2094 		break;
2095 
2096 	case APIC_SELF_IPI:
2097 		if (apic_x2apic_mode(apic)) {
2098 			kvm_lapic_reg_write(apic, APIC_ICR,
2099 					    APIC_DEST_SELF | (val & APIC_VECTOR_MASK));
2100 		} else
2101 			ret = 1;
2102 		break;
2103 	default:
2104 		ret = 1;
2105 		break;
2106 	}
2107 
2108 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2109 
2110 	return ret;
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
2113 
2114 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2115 			    gpa_t address, int len, const void *data)
2116 {
2117 	struct kvm_lapic *apic = to_lapic(this);
2118 	unsigned int offset = address - apic->base_address;
2119 	u32 val;
2120 
2121 	if (!apic_mmio_in_range(apic, address))
2122 		return -EOPNOTSUPP;
2123 
2124 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2125 		if (!kvm_check_has_quirk(vcpu->kvm,
2126 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2127 			return -EOPNOTSUPP;
2128 
2129 		return 0;
2130 	}
2131 
2132 	/*
2133 	 * APIC register must be aligned on 128-bits boundary.
2134 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2135 	 * Refer SDM 8.4.1
2136 	 */
2137 	if (len != 4 || (offset & 0xf))
2138 		return 0;
2139 
2140 	val = *(u32*)data;
2141 
2142 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2143 
2144 	return 0;
2145 }
2146 
2147 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2148 {
2149 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2150 }
2151 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2152 
2153 /* emulate APIC access in a trap manner */
2154 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2155 {
2156 	u32 val = 0;
2157 
2158 	/* hw has done the conditional check and inst decode */
2159 	offset &= 0xff0;
2160 
2161 	kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2162 
2163 	/* TODO: optimize to just emulate side effect w/o one more write */
2164 	kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2165 }
2166 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2167 
2168 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2169 {
2170 	struct kvm_lapic *apic = vcpu->arch.apic;
2171 
2172 	if (!vcpu->arch.apic)
2173 		return;
2174 
2175 	hrtimer_cancel(&apic->lapic_timer.timer);
2176 
2177 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2178 		static_key_slow_dec_deferred(&apic_hw_disabled);
2179 
2180 	if (!apic->sw_enabled)
2181 		static_key_slow_dec_deferred(&apic_sw_disabled);
2182 
2183 	if (apic->regs)
2184 		free_page((unsigned long)apic->regs);
2185 
2186 	kfree(apic);
2187 }
2188 
2189 /*
2190  *----------------------------------------------------------------------
2191  * LAPIC interface
2192  *----------------------------------------------------------------------
2193  */
2194 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2195 {
2196 	struct kvm_lapic *apic = vcpu->arch.apic;
2197 
2198 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2199 		return 0;
2200 
2201 	return apic->lapic_timer.tscdeadline;
2202 }
2203 
2204 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2205 {
2206 	struct kvm_lapic *apic = vcpu->arch.apic;
2207 
2208 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2209 		return;
2210 
2211 	hrtimer_cancel(&apic->lapic_timer.timer);
2212 	apic->lapic_timer.tscdeadline = data;
2213 	start_apic_timer(apic);
2214 }
2215 
2216 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2217 {
2218 	struct kvm_lapic *apic = vcpu->arch.apic;
2219 
2220 	apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2221 		     | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2222 }
2223 
2224 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2225 {
2226 	u64 tpr;
2227 
2228 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2229 
2230 	return (tpr & 0xf0) >> 4;
2231 }
2232 
2233 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2234 {
2235 	u64 old_value = vcpu->arch.apic_base;
2236 	struct kvm_lapic *apic = vcpu->arch.apic;
2237 
2238 	if (!apic)
2239 		value |= MSR_IA32_APICBASE_BSP;
2240 
2241 	vcpu->arch.apic_base = value;
2242 
2243 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2244 		kvm_update_cpuid_runtime(vcpu);
2245 
2246 	if (!apic)
2247 		return;
2248 
2249 	/* update jump label if enable bit changes */
2250 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2251 		if (value & MSR_IA32_APICBASE_ENABLE) {
2252 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2253 			static_key_slow_dec_deferred(&apic_hw_disabled);
2254 		} else {
2255 			static_key_slow_inc(&apic_hw_disabled.key);
2256 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2257 		}
2258 	}
2259 
2260 	if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2261 		kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2262 
2263 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2264 		kvm_x86_ops.set_virtual_apic_mode(vcpu);
2265 
2266 	apic->base_address = apic->vcpu->arch.apic_base &
2267 			     MSR_IA32_APICBASE_BASE;
2268 
2269 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2270 	     apic->base_address != APIC_DEFAULT_PHYS_BASE)
2271 		pr_warn_once("APIC base relocation is unsupported by KVM");
2272 }
2273 
2274 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2275 {
2276 	struct kvm_lapic *apic = vcpu->arch.apic;
2277 
2278 	if (vcpu->arch.apicv_active) {
2279 		/* irr_pending is always true when apicv is activated. */
2280 		apic->irr_pending = true;
2281 		apic->isr_count = 1;
2282 	} else {
2283 		apic->irr_pending = (apic_search_irr(apic) != -1);
2284 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2285 	}
2286 }
2287 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv);
2288 
2289 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2290 {
2291 	struct kvm_lapic *apic = vcpu->arch.apic;
2292 	int i;
2293 
2294 	if (!apic)
2295 		return;
2296 
2297 	/* Stop the timer in case it's a reset to an active apic */
2298 	hrtimer_cancel(&apic->lapic_timer.timer);
2299 
2300 	if (!init_event) {
2301 		kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
2302 		                         MSR_IA32_APICBASE_ENABLE);
2303 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2304 	}
2305 	kvm_apic_set_version(apic->vcpu);
2306 
2307 	for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2308 		kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2309 	apic_update_lvtt(apic);
2310 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2311 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2312 		kvm_lapic_set_reg(apic, APIC_LVT0,
2313 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2314 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2315 
2316 	kvm_apic_set_dfr(apic, 0xffffffffU);
2317 	apic_set_spiv(apic, 0xff);
2318 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2319 	if (!apic_x2apic_mode(apic))
2320 		kvm_apic_set_ldr(apic, 0);
2321 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2322 	kvm_lapic_set_reg(apic, APIC_ICR, 0);
2323 	kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2324 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2325 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2326 	for (i = 0; i < 8; i++) {
2327 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2328 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2329 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2330 	}
2331 	kvm_apic_update_apicv(vcpu);
2332 	apic->highest_isr_cache = -1;
2333 	update_divide_count(apic);
2334 	atomic_set(&apic->lapic_timer.pending, 0);
2335 	if (kvm_vcpu_is_bsp(vcpu))
2336 		kvm_lapic_set_base(vcpu,
2337 				vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
2338 	vcpu->arch.pv_eoi.msr_val = 0;
2339 	apic_update_ppr(apic);
2340 	if (vcpu->arch.apicv_active) {
2341 		kvm_x86_ops.apicv_post_state_restore(vcpu);
2342 		kvm_x86_ops.hwapic_irr_update(vcpu, -1);
2343 		kvm_x86_ops.hwapic_isr_update(vcpu, -1);
2344 	}
2345 
2346 	vcpu->arch.apic_arb_prio = 0;
2347 	vcpu->arch.apic_attention = 0;
2348 
2349 	kvm_recalculate_apic_map(vcpu->kvm);
2350 }
2351 
2352 /*
2353  *----------------------------------------------------------------------
2354  * timer interface
2355  *----------------------------------------------------------------------
2356  */
2357 
2358 static bool lapic_is_periodic(struct kvm_lapic *apic)
2359 {
2360 	return apic_lvtt_period(apic);
2361 }
2362 
2363 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2364 {
2365 	struct kvm_lapic *apic = vcpu->arch.apic;
2366 
2367 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2368 		return atomic_read(&apic->lapic_timer.pending);
2369 
2370 	return 0;
2371 }
2372 
2373 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2374 {
2375 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2376 	int vector, mode, trig_mode;
2377 
2378 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2379 		vector = reg & APIC_VECTOR_MASK;
2380 		mode = reg & APIC_MODE_MASK;
2381 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2382 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2383 					NULL);
2384 	}
2385 	return 0;
2386 }
2387 
2388 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2389 {
2390 	struct kvm_lapic *apic = vcpu->arch.apic;
2391 
2392 	if (apic)
2393 		kvm_apic_local_deliver(apic, APIC_LVT0);
2394 }
2395 
2396 static const struct kvm_io_device_ops apic_mmio_ops = {
2397 	.read     = apic_mmio_read,
2398 	.write    = apic_mmio_write,
2399 };
2400 
2401 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2402 {
2403 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2404 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2405 
2406 	apic_timer_expired(apic, true);
2407 
2408 	if (lapic_is_periodic(apic)) {
2409 		advance_periodic_target_expiration(apic);
2410 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2411 		return HRTIMER_RESTART;
2412 	} else
2413 		return HRTIMER_NORESTART;
2414 }
2415 
2416 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2417 {
2418 	struct kvm_lapic *apic;
2419 
2420 	ASSERT(vcpu != NULL);
2421 
2422 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2423 	if (!apic)
2424 		goto nomem;
2425 
2426 	vcpu->arch.apic = apic;
2427 
2428 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2429 	if (!apic->regs) {
2430 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2431 		       vcpu->vcpu_id);
2432 		goto nomem_free_apic;
2433 	}
2434 	apic->vcpu = vcpu;
2435 
2436 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2437 		     HRTIMER_MODE_ABS_HARD);
2438 	apic->lapic_timer.timer.function = apic_timer_fn;
2439 	if (timer_advance_ns == -1) {
2440 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2441 		lapic_timer_advance_dynamic = true;
2442 	} else {
2443 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2444 		lapic_timer_advance_dynamic = false;
2445 	}
2446 
2447 	/*
2448 	 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2449 	 * thinking that APIC state has changed.
2450 	 */
2451 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2452 	static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2453 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2454 
2455 	return 0;
2456 nomem_free_apic:
2457 	kfree(apic);
2458 	vcpu->arch.apic = NULL;
2459 nomem:
2460 	return -ENOMEM;
2461 }
2462 
2463 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2464 {
2465 	struct kvm_lapic *apic = vcpu->arch.apic;
2466 	u32 ppr;
2467 
2468 	if (!kvm_apic_present(vcpu))
2469 		return -1;
2470 
2471 	__apic_update_ppr(apic, &ppr);
2472 	return apic_has_interrupt_for_ppr(apic, ppr);
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2475 
2476 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2477 {
2478 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2479 
2480 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2481 		return 1;
2482 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2483 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2484 		return 1;
2485 	return 0;
2486 }
2487 
2488 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2489 {
2490 	struct kvm_lapic *apic = vcpu->arch.apic;
2491 
2492 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2493 		kvm_apic_inject_pending_timer_irqs(apic);
2494 		atomic_set(&apic->lapic_timer.pending, 0);
2495 	}
2496 }
2497 
2498 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2499 {
2500 	int vector = kvm_apic_has_interrupt(vcpu);
2501 	struct kvm_lapic *apic = vcpu->arch.apic;
2502 	u32 ppr;
2503 
2504 	if (vector == -1)
2505 		return -1;
2506 
2507 	/*
2508 	 * We get here even with APIC virtualization enabled, if doing
2509 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2510 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2511 	 * because the process would deliver it through the IDT.
2512 	 */
2513 
2514 	apic_clear_irr(vector, apic);
2515 	if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
2516 		/*
2517 		 * For auto-EOI interrupts, there might be another pending
2518 		 * interrupt above PPR, so check whether to raise another
2519 		 * KVM_REQ_EVENT.
2520 		 */
2521 		apic_update_ppr(apic);
2522 	} else {
2523 		/*
2524 		 * For normal interrupts, PPR has been raised and there cannot
2525 		 * be a higher-priority pending interrupt---except if there was
2526 		 * a concurrent interrupt injection, but that would have
2527 		 * triggered KVM_REQ_EVENT already.
2528 		 */
2529 		apic_set_isr(vector, apic);
2530 		__apic_update_ppr(apic, &ppr);
2531 	}
2532 
2533 	return vector;
2534 }
2535 
2536 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2537 		struct kvm_lapic_state *s, bool set)
2538 {
2539 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2540 		u32 *id = (u32 *)(s->regs + APIC_ID);
2541 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2542 
2543 		if (vcpu->kvm->arch.x2apic_format) {
2544 			if (*id != vcpu->vcpu_id)
2545 				return -EINVAL;
2546 		} else {
2547 			if (set)
2548 				*id >>= 24;
2549 			else
2550 				*id <<= 24;
2551 		}
2552 
2553 		/* In x2APIC mode, the LDR is fixed and based on the id */
2554 		if (set)
2555 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2556 	}
2557 
2558 	return 0;
2559 }
2560 
2561 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2562 {
2563 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2564 
2565 	/*
2566 	 * Get calculated timer current count for remaining timer period (if
2567 	 * any) and store it in the returned register set.
2568 	 */
2569 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2570 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2571 
2572 	return kvm_apic_state_fixup(vcpu, s, false);
2573 }
2574 
2575 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2576 {
2577 	struct kvm_lapic *apic = vcpu->arch.apic;
2578 	int r;
2579 
2580 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2581 	/* set SPIV separately to get count of SW disabled APICs right */
2582 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2583 
2584 	r = kvm_apic_state_fixup(vcpu, s, true);
2585 	if (r) {
2586 		kvm_recalculate_apic_map(vcpu->kvm);
2587 		return r;
2588 	}
2589 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2590 
2591 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2592 	kvm_recalculate_apic_map(vcpu->kvm);
2593 	kvm_apic_set_version(vcpu);
2594 
2595 	apic_update_ppr(apic);
2596 	hrtimer_cancel(&apic->lapic_timer.timer);
2597 	apic_update_lvtt(apic);
2598 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2599 	update_divide_count(apic);
2600 	__start_apic_timer(apic, APIC_TMCCT);
2601 	kvm_apic_update_apicv(vcpu);
2602 	apic->highest_isr_cache = -1;
2603 	if (vcpu->arch.apicv_active) {
2604 		kvm_x86_ops.apicv_post_state_restore(vcpu);
2605 		kvm_x86_ops.hwapic_irr_update(vcpu,
2606 				apic_find_highest_irr(apic));
2607 		kvm_x86_ops.hwapic_isr_update(vcpu,
2608 				apic_find_highest_isr(apic));
2609 	}
2610 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2611 	if (ioapic_in_kernel(vcpu->kvm))
2612 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2613 
2614 	vcpu->arch.apic_arb_prio = 0;
2615 
2616 	return 0;
2617 }
2618 
2619 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2620 {
2621 	struct hrtimer *timer;
2622 
2623 	if (!lapic_in_kernel(vcpu) ||
2624 		kvm_can_post_timer_interrupt(vcpu))
2625 		return;
2626 
2627 	timer = &vcpu->arch.apic->lapic_timer.timer;
2628 	if (hrtimer_cancel(timer))
2629 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2630 }
2631 
2632 /*
2633  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2634  *
2635  * Detect whether guest triggered PV EOI since the
2636  * last entry. If yes, set EOI on guests's behalf.
2637  * Clear PV EOI in guest memory in any case.
2638  */
2639 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2640 					struct kvm_lapic *apic)
2641 {
2642 	bool pending;
2643 	int vector;
2644 	/*
2645 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2646 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2647 	 *
2648 	 * KVM_APIC_PV_EOI_PENDING is unset:
2649 	 * 	-> host disabled PV EOI.
2650 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2651 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
2652 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2653 	 * 	-> host enabled PV EOI, guest executed EOI.
2654 	 */
2655 	BUG_ON(!pv_eoi_enabled(vcpu));
2656 	pending = pv_eoi_get_pending(vcpu);
2657 	/*
2658 	 * Clear pending bit in any case: it will be set again on vmentry.
2659 	 * While this might not be ideal from performance point of view,
2660 	 * this makes sure pv eoi is only enabled when we know it's safe.
2661 	 */
2662 	pv_eoi_clr_pending(vcpu);
2663 	if (pending)
2664 		return;
2665 	vector = apic_set_eoi(apic);
2666 	trace_kvm_pv_eoi(apic, vector);
2667 }
2668 
2669 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2670 {
2671 	u32 data;
2672 
2673 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2674 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2675 
2676 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2677 		return;
2678 
2679 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2680 				  sizeof(u32)))
2681 		return;
2682 
2683 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
2684 }
2685 
2686 /*
2687  * apic_sync_pv_eoi_to_guest - called before vmentry
2688  *
2689  * Detect whether it's safe to enable PV EOI and
2690  * if yes do so.
2691  */
2692 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2693 					struct kvm_lapic *apic)
2694 {
2695 	if (!pv_eoi_enabled(vcpu) ||
2696 	    /* IRR set or many bits in ISR: could be nested. */
2697 	    apic->irr_pending ||
2698 	    /* Cache not set: could be safe but we don't bother. */
2699 	    apic->highest_isr_cache == -1 ||
2700 	    /* Need EOI to update ioapic. */
2701 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2702 		/*
2703 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2704 		 * so we need not do anything here.
2705 		 */
2706 		return;
2707 	}
2708 
2709 	pv_eoi_set_pending(apic->vcpu);
2710 }
2711 
2712 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2713 {
2714 	u32 data, tpr;
2715 	int max_irr, max_isr;
2716 	struct kvm_lapic *apic = vcpu->arch.apic;
2717 
2718 	apic_sync_pv_eoi_to_guest(vcpu, apic);
2719 
2720 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2721 		return;
2722 
2723 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2724 	max_irr = apic_find_highest_irr(apic);
2725 	if (max_irr < 0)
2726 		max_irr = 0;
2727 	max_isr = apic_find_highest_isr(apic);
2728 	if (max_isr < 0)
2729 		max_isr = 0;
2730 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2731 
2732 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2733 				sizeof(u32));
2734 }
2735 
2736 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2737 {
2738 	if (vapic_addr) {
2739 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2740 					&vcpu->arch.apic->vapic_cache,
2741 					vapic_addr, sizeof(u32)))
2742 			return -EINVAL;
2743 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2744 	} else {
2745 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2746 	}
2747 
2748 	vcpu->arch.apic->vapic_addr = vapic_addr;
2749 	return 0;
2750 }
2751 
2752 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2753 {
2754 	struct kvm_lapic *apic = vcpu->arch.apic;
2755 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2756 
2757 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2758 		return 1;
2759 
2760 	if (reg == APIC_ICR2)
2761 		return 1;
2762 
2763 	/* if this is ICR write vector before command */
2764 	if (reg == APIC_ICR)
2765 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2766 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2767 }
2768 
2769 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2770 {
2771 	struct kvm_lapic *apic = vcpu->arch.apic;
2772 	u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2773 
2774 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2775 		return 1;
2776 
2777 	if (reg == APIC_DFR || reg == APIC_ICR2)
2778 		return 1;
2779 
2780 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2781 		return 1;
2782 	if (reg == APIC_ICR)
2783 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2784 
2785 	*data = (((u64)high) << 32) | low;
2786 
2787 	return 0;
2788 }
2789 
2790 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2791 {
2792 	struct kvm_lapic *apic = vcpu->arch.apic;
2793 
2794 	if (!lapic_in_kernel(vcpu))
2795 		return 1;
2796 
2797 	/* if this is ICR write vector before command */
2798 	if (reg == APIC_ICR)
2799 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2800 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2801 }
2802 
2803 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2804 {
2805 	struct kvm_lapic *apic = vcpu->arch.apic;
2806 	u32 low, high = 0;
2807 
2808 	if (!lapic_in_kernel(vcpu))
2809 		return 1;
2810 
2811 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2812 		return 1;
2813 	if (reg == APIC_ICR)
2814 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2815 
2816 	*data = (((u64)high) << 32) | low;
2817 
2818 	return 0;
2819 }
2820 
2821 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2822 {
2823 	u64 addr = data & ~KVM_MSR_ENABLED;
2824 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2825 	unsigned long new_len;
2826 
2827 	if (!IS_ALIGNED(addr, 4))
2828 		return 1;
2829 
2830 	vcpu->arch.pv_eoi.msr_val = data;
2831 	if (!pv_eoi_enabled(vcpu))
2832 		return 0;
2833 
2834 	if (addr == ghc->gpa && len <= ghc->len)
2835 		new_len = ghc->len;
2836 	else
2837 		new_len = len;
2838 
2839 	return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2840 }
2841 
2842 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2843 {
2844 	struct kvm_lapic *apic = vcpu->arch.apic;
2845 	u8 sipi_vector;
2846 	int r;
2847 	unsigned long pe;
2848 
2849 	if (!lapic_in_kernel(vcpu))
2850 		return;
2851 
2852 	/*
2853 	 * Read pending events before calling the check_events
2854 	 * callback.
2855 	 */
2856 	pe = smp_load_acquire(&apic->pending_events);
2857 	if (!pe)
2858 		return;
2859 
2860 	if (is_guest_mode(vcpu)) {
2861 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
2862 		if (r < 0)
2863 			return;
2864 		/*
2865 		 * If an event has happened and caused a vmexit,
2866 		 * we know INITs are latched and therefore
2867 		 * we will not incorrectly deliver an APIC
2868 		 * event instead of a vmexit.
2869 		 */
2870 	}
2871 
2872 	/*
2873 	 * INITs are latched while CPU is in specific states
2874 	 * (SMM, VMX root mode, SVM with GIF=0).
2875 	 * Because a CPU cannot be in these states immediately
2876 	 * after it has processed an INIT signal (and thus in
2877 	 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2878 	 * and leave the INIT pending.
2879 	 */
2880 	if (kvm_vcpu_latch_init(vcpu)) {
2881 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2882 		if (test_bit(KVM_APIC_SIPI, &pe))
2883 			clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2884 		return;
2885 	}
2886 
2887 	if (test_bit(KVM_APIC_INIT, &pe)) {
2888 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
2889 		kvm_vcpu_reset(vcpu, true);
2890 		if (kvm_vcpu_is_bsp(apic->vcpu))
2891 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2892 		else
2893 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2894 	}
2895 	if (test_bit(KVM_APIC_SIPI, &pe)) {
2896 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2897 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2898 			/* evaluate pending_events before reading the vector */
2899 			smp_rmb();
2900 			sipi_vector = apic->sipi_vector;
2901 			kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2902 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2903 		}
2904 	}
2905 }
2906 
2907 void kvm_lapic_init(void)
2908 {
2909 	/* do not patch jump label more than once per second */
2910 	jump_label_rate_limit(&apic_hw_disabled, HZ);
2911 	jump_label_rate_limit(&apic_sw_disabled, HZ);
2912 }
2913 
2914 void kvm_lapic_exit(void)
2915 {
2916 	static_key_deferred_flush(&apic_hw_disabled);
2917 	static_key_deferred_flush(&apic_sw_disabled);
2918 }
2919