xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision a325f174)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "cpuid.h"
45 #include "hyperv.h"
46 #include "smm.h"
47 
48 #ifndef CONFIG_X86_64
49 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
50 #else
51 #define mod_64(x, y) ((x) % (y))
52 #endif
53 
54 /* 14 is the version for Xeon and Pentium 8.4.8*/
55 #define APIC_VERSION			0x14UL
56 #define LAPIC_MMIO_LENGTH		(1 << 12)
57 /* followed define is not in apicdef.h */
58 #define MAX_APIC_VECTOR			256
59 #define APIC_VECTORS_PER_REG		32
60 
61 static bool lapic_timer_advance_dynamic __read_mostly;
62 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
63 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
64 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
65 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
66 /* step-by-step approximation to mitigate fluctuation */
67 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
68 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
69 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
70 
71 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
72 {
73 	*((u32 *) (regs + reg_off)) = val;
74 }
75 
76 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
77 {
78 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
79 }
80 
81 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
82 {
83 	BUILD_BUG_ON(reg != APIC_ICR);
84 	return *((u64 *) (regs + reg));
85 }
86 
87 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
88 {
89 	return __kvm_lapic_get_reg64(apic->regs, reg);
90 }
91 
92 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
93 {
94 	BUILD_BUG_ON(reg != APIC_ICR);
95 	*((u64 *) (regs + reg)) = val;
96 }
97 
98 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
99 						int reg, u64 val)
100 {
101 	__kvm_lapic_set_reg64(apic->regs, reg, val);
102 }
103 
104 static inline int apic_test_vector(int vec, void *bitmap)
105 {
106 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
107 }
108 
109 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
110 {
111 	struct kvm_lapic *apic = vcpu->arch.apic;
112 
113 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
114 		apic_test_vector(vector, apic->regs + APIC_IRR);
115 }
116 
117 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
118 {
119 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
120 }
121 
122 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
123 {
124 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
125 }
126 
127 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
129 
130 static inline int apic_enabled(struct kvm_lapic *apic)
131 {
132 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
133 }
134 
135 #define LVT_MASK	\
136 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
137 
138 #define LINT_MASK	\
139 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
140 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
141 
142 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
143 {
144 	return apic->vcpu->vcpu_id;
145 }
146 
147 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
148 {
149 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
150 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
151 }
152 
153 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
154 {
155 	return kvm_x86_ops.set_hv_timer
156 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
157 		    kvm_can_post_timer_interrupt(vcpu));
158 }
159 
160 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
161 {
162 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
163 }
164 
165 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
166 {
167 	return ((id >> 4) << 16) | (1 << (id & 0xf));
168 }
169 
170 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
171 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
172 	switch (map->logical_mode) {
173 	case KVM_APIC_MODE_SW_DISABLED:
174 		/* Arbitrarily use the flat map so that @cluster isn't NULL. */
175 		*cluster = map->xapic_flat_map;
176 		*mask = 0;
177 		return true;
178 	case KVM_APIC_MODE_X2APIC: {
179 		u32 offset = (dest_id >> 16) * 16;
180 		u32 max_apic_id = map->max_apic_id;
181 
182 		if (offset <= max_apic_id) {
183 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
184 
185 			offset = array_index_nospec(offset, map->max_apic_id + 1);
186 			*cluster = &map->phys_map[offset];
187 			*mask = dest_id & (0xffff >> (16 - cluster_size));
188 		} else {
189 			*mask = 0;
190 		}
191 
192 		return true;
193 		}
194 	case KVM_APIC_MODE_XAPIC_FLAT:
195 		*cluster = map->xapic_flat_map;
196 		*mask = dest_id & 0xff;
197 		return true;
198 	case KVM_APIC_MODE_XAPIC_CLUSTER:
199 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
200 		*mask = dest_id & 0xf;
201 		return true;
202 	case KVM_APIC_MODE_MAP_DISABLED:
203 		return false;
204 	default:
205 		WARN_ON_ONCE(1);
206 		return false;
207 	}
208 }
209 
210 static void kvm_apic_map_free(struct rcu_head *rcu)
211 {
212 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
213 
214 	kvfree(map);
215 }
216 
217 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
218 				    struct kvm_vcpu *vcpu,
219 				    bool *xapic_id_mismatch)
220 {
221 	struct kvm_lapic *apic = vcpu->arch.apic;
222 	u32 x2apic_id = kvm_x2apic_id(apic);
223 	u32 xapic_id = kvm_xapic_id(apic);
224 	u32 physical_id;
225 
226 	/*
227 	 * For simplicity, KVM always allocates enough space for all possible
228 	 * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on
229 	 * without the optimized map.
230 	 */
231 	if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
232 		return -EINVAL;
233 
234 	/*
235 	 * Bail if a vCPU was added and/or enabled its APIC between allocating
236 	 * the map and doing the actual calculations for the map.  Note, KVM
237 	 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
238 	 * the compiler decides to reload x2apic_id after this check.
239 	 */
240 	if (x2apic_id > new->max_apic_id)
241 		return -E2BIG;
242 
243 	/*
244 	 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
245 	 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
246 	 * 32-bit value.  Any unwanted aliasing due to truncation results will
247 	 * be detected below.
248 	 */
249 	if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
250 		*xapic_id_mismatch = true;
251 
252 	/*
253 	 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
254 	 * Allow sending events to vCPUs by their x2APIC ID even if the target
255 	 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
256 	 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
257 	 * and collide).
258 	 *
259 	 * Honor the architectural (and KVM's non-optimized) behavior if
260 	 * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed
261 	 * to process messages independently.  If multiple vCPUs have the same
262 	 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
263 	 * manually modified its xAPIC IDs, events targeting that ID are
264 	 * supposed to be recognized by all vCPUs with said ID.
265 	 */
266 	if (vcpu->kvm->arch.x2apic_format) {
267 		/* See also kvm_apic_match_physical_addr(). */
268 		if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
269 			new->phys_map[x2apic_id] = apic;
270 
271 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
272 			new->phys_map[xapic_id] = apic;
273 	} else {
274 		/*
275 		 * Disable the optimized map if the physical APIC ID is already
276 		 * mapped, i.e. is aliased to multiple vCPUs.  The optimized
277 		 * map requires a strict 1:1 mapping between IDs and vCPUs.
278 		 */
279 		if (apic_x2apic_mode(apic))
280 			physical_id = x2apic_id;
281 		else
282 			physical_id = xapic_id;
283 
284 		if (new->phys_map[physical_id])
285 			return -EINVAL;
286 
287 		new->phys_map[physical_id] = apic;
288 	}
289 
290 	return 0;
291 }
292 
293 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
294 					struct kvm_vcpu *vcpu)
295 {
296 	struct kvm_lapic *apic = vcpu->arch.apic;
297 	enum kvm_apic_logical_mode logical_mode;
298 	struct kvm_lapic **cluster;
299 	u16 mask;
300 	u32 ldr;
301 
302 	if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
303 		return;
304 
305 	if (!kvm_apic_sw_enabled(apic))
306 		return;
307 
308 	ldr = kvm_lapic_get_reg(apic, APIC_LDR);
309 	if (!ldr)
310 		return;
311 
312 	if (apic_x2apic_mode(apic)) {
313 		logical_mode = KVM_APIC_MODE_X2APIC;
314 	} else {
315 		ldr = GET_APIC_LOGICAL_ID(ldr);
316 		if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
317 			logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
318 		else
319 			logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
320 	}
321 
322 	/*
323 	 * To optimize logical mode delivery, all software-enabled APICs must
324 	 * be configured for the same mode.
325 	 */
326 	if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
327 		new->logical_mode = logical_mode;
328 	} else if (new->logical_mode != logical_mode) {
329 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
330 		return;
331 	}
332 
333 	/*
334 	 * In x2APIC mode, the LDR is read-only and derived directly from the
335 	 * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses
336 	 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
337 	 * reversing the LDR calculation to get cluster of APICs, i.e. no
338 	 * additional work is required.
339 	 */
340 	if (apic_x2apic_mode(apic)) {
341 		WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
342 		return;
343 	}
344 
345 	if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
346 							&cluster, &mask))) {
347 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
348 		return;
349 	}
350 
351 	if (!mask)
352 		return;
353 
354 	ldr = ffs(mask) - 1;
355 	if (!is_power_of_2(mask) || cluster[ldr])
356 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
357 	else
358 		cluster[ldr] = apic;
359 }
360 
361 /*
362  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
363  *
364  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
365  * apic_map_lock_held.
366  */
367 enum {
368 	CLEAN,
369 	UPDATE_IN_PROGRESS,
370 	DIRTY
371 };
372 
373 void kvm_recalculate_apic_map(struct kvm *kvm)
374 {
375 	struct kvm_apic_map *new, *old = NULL;
376 	struct kvm_vcpu *vcpu;
377 	unsigned long i;
378 	u32 max_id = 255; /* enough space for any xAPIC ID */
379 	bool xapic_id_mismatch;
380 	int r;
381 
382 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
383 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
384 		return;
385 
386 	WARN_ONCE(!irqchip_in_kernel(kvm),
387 		  "Dirty APIC map without an in-kernel local APIC");
388 
389 	mutex_lock(&kvm->arch.apic_map_lock);
390 
391 retry:
392 	/*
393 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
394 	 * or the APIC registers (if dirty).  Note, on retry the map may have
395 	 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
396 	 * ID, i.e. the map may still show up as in-progress.  In that case
397 	 * this task still needs to retry and complete its calculation.
398 	 */
399 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
400 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
401 		/* Someone else has updated the map. */
402 		mutex_unlock(&kvm->arch.apic_map_lock);
403 		return;
404 	}
405 
406 	/*
407 	 * Reset the mismatch flag between attempts so that KVM does the right
408 	 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
409 	 * keep max_id strictly increasing.  Disallowing max_id from shrinking
410 	 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
411 	 * with the highest x2APIC ID is toggling its APIC on and off.
412 	 */
413 	xapic_id_mismatch = false;
414 
415 	kvm_for_each_vcpu(i, vcpu, kvm)
416 		if (kvm_apic_present(vcpu))
417 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
418 
419 	new = kvzalloc(sizeof(struct kvm_apic_map) +
420 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
421 			   GFP_KERNEL_ACCOUNT);
422 
423 	if (!new)
424 		goto out;
425 
426 	new->max_apic_id = max_id;
427 	new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
428 
429 	kvm_for_each_vcpu(i, vcpu, kvm) {
430 		if (!kvm_apic_present(vcpu))
431 			continue;
432 
433 		r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
434 		if (r) {
435 			kvfree(new);
436 			new = NULL;
437 			if (r == -E2BIG) {
438 				cond_resched();
439 				goto retry;
440 			}
441 
442 			goto out;
443 		}
444 
445 		kvm_recalculate_logical_map(new, vcpu);
446 	}
447 out:
448 	/*
449 	 * The optimized map is effectively KVM's internal version of APICv,
450 	 * and all unwanted aliasing that results in disabling the optimized
451 	 * map also applies to APICv.
452 	 */
453 	if (!new)
454 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
455 	else
456 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
457 
458 	if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
459 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
460 	else
461 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
462 
463 	if (xapic_id_mismatch)
464 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
465 	else
466 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
467 
468 	old = rcu_dereference_protected(kvm->arch.apic_map,
469 			lockdep_is_held(&kvm->arch.apic_map_lock));
470 	rcu_assign_pointer(kvm->arch.apic_map, new);
471 	/*
472 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
473 	 * If another update has come in, leave it DIRTY.
474 	 */
475 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
476 			       UPDATE_IN_PROGRESS, CLEAN);
477 	mutex_unlock(&kvm->arch.apic_map_lock);
478 
479 	if (old)
480 		call_rcu(&old->rcu, kvm_apic_map_free);
481 
482 	kvm_make_scan_ioapic_request(kvm);
483 }
484 
485 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
486 {
487 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
488 
489 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
490 
491 	if (enabled != apic->sw_enabled) {
492 		apic->sw_enabled = enabled;
493 		if (enabled)
494 			static_branch_slow_dec_deferred(&apic_sw_disabled);
495 		else
496 			static_branch_inc(&apic_sw_disabled.key);
497 
498 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
499 	}
500 
501 	/* Check if there are APF page ready requests pending */
502 	if (enabled)
503 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
504 }
505 
506 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
507 {
508 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
509 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
510 }
511 
512 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
513 {
514 	kvm_lapic_set_reg(apic, APIC_LDR, id);
515 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
516 }
517 
518 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
519 {
520 	kvm_lapic_set_reg(apic, APIC_DFR, val);
521 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
522 }
523 
524 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
525 {
526 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
527 
528 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
529 
530 	kvm_lapic_set_reg(apic, APIC_ID, id);
531 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
532 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
533 }
534 
535 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
536 {
537 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
538 }
539 
540 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
541 {
542 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
543 }
544 
545 static inline int apic_lvtt_period(struct kvm_lapic *apic)
546 {
547 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
548 }
549 
550 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
551 {
552 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
553 }
554 
555 static inline int apic_lvt_nmi_mode(u32 lvt_val)
556 {
557 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
558 }
559 
560 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
561 {
562 	return apic->nr_lvt_entries > lvt_index;
563 }
564 
565 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
566 {
567 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
568 }
569 
570 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
571 {
572 	struct kvm_lapic *apic = vcpu->arch.apic;
573 	u32 v = 0;
574 
575 	if (!lapic_in_kernel(vcpu))
576 		return;
577 
578 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
579 
580 	/*
581 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
582 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
583 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
584 	 * version first and level-triggered interrupts never get EOIed in
585 	 * IOAPIC.
586 	 */
587 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
588 	    !ioapic_in_kernel(vcpu->kvm))
589 		v |= APIC_LVR_DIRECTED_EOI;
590 	kvm_lapic_set_reg(apic, APIC_LVR, v);
591 }
592 
593 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
594 {
595 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
596 	struct kvm_lapic *apic = vcpu->arch.apic;
597 	int i;
598 
599 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
600 		return;
601 
602 	/* Initialize/mask any "new" LVT entries. */
603 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
604 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
605 
606 	apic->nr_lvt_entries = nr_lvt_entries;
607 
608 	/* The number of LVT entries is reflected in the version register. */
609 	kvm_apic_set_version(vcpu);
610 }
611 
612 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
613 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
614 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
615 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
616 	[LVT_LINT0] = LINT_MASK,
617 	[LVT_LINT1] = LINT_MASK,
618 	[LVT_ERROR] = LVT_MASK,
619 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
620 };
621 
622 static int find_highest_vector(void *bitmap)
623 {
624 	int vec;
625 	u32 *reg;
626 
627 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
628 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
629 		reg = bitmap + REG_POS(vec);
630 		if (*reg)
631 			return __fls(*reg) + vec;
632 	}
633 
634 	return -1;
635 }
636 
637 static u8 count_vectors(void *bitmap)
638 {
639 	int vec;
640 	u32 *reg;
641 	u8 count = 0;
642 
643 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
644 		reg = bitmap + REG_POS(vec);
645 		count += hweight32(*reg);
646 	}
647 
648 	return count;
649 }
650 
651 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
652 {
653 	u32 i, vec;
654 	u32 pir_val, irr_val, prev_irr_val;
655 	int max_updated_irr;
656 
657 	max_updated_irr = -1;
658 	*max_irr = -1;
659 
660 	for (i = vec = 0; i <= 7; i++, vec += 32) {
661 		u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
662 
663 		irr_val = *p_irr;
664 		pir_val = READ_ONCE(pir[i]);
665 
666 		if (pir_val) {
667 			pir_val = xchg(&pir[i], 0);
668 
669 			prev_irr_val = irr_val;
670 			do {
671 				irr_val = prev_irr_val | pir_val;
672 			} while (prev_irr_val != irr_val &&
673 				 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
674 
675 			if (prev_irr_val != irr_val)
676 				max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
677 		}
678 		if (irr_val)
679 			*max_irr = __fls(irr_val) + vec;
680 	}
681 
682 	return ((max_updated_irr != -1) &&
683 		(max_updated_irr == *max_irr));
684 }
685 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
686 
687 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
688 {
689 	struct kvm_lapic *apic = vcpu->arch.apic;
690 	bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
691 
692 	if (unlikely(!apic->apicv_active && irr_updated))
693 		apic->irr_pending = true;
694 	return irr_updated;
695 }
696 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
697 
698 static inline int apic_search_irr(struct kvm_lapic *apic)
699 {
700 	return find_highest_vector(apic->regs + APIC_IRR);
701 }
702 
703 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
704 {
705 	int result;
706 
707 	/*
708 	 * Note that irr_pending is just a hint. It will be always
709 	 * true with virtual interrupt delivery enabled.
710 	 */
711 	if (!apic->irr_pending)
712 		return -1;
713 
714 	result = apic_search_irr(apic);
715 	ASSERT(result == -1 || result >= 16);
716 
717 	return result;
718 }
719 
720 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
721 {
722 	if (unlikely(apic->apicv_active)) {
723 		/* need to update RVI */
724 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
725 		static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
726 							    apic_find_highest_irr(apic));
727 	} else {
728 		apic->irr_pending = false;
729 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
730 		if (apic_search_irr(apic) != -1)
731 			apic->irr_pending = true;
732 	}
733 }
734 
735 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
736 {
737 	apic_clear_irr(vec, vcpu->arch.apic);
738 }
739 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
740 
741 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
742 {
743 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
744 		return;
745 
746 	/*
747 	 * With APIC virtualization enabled, all caching is disabled
748 	 * because the processor can modify ISR under the hood.  Instead
749 	 * just set SVI.
750 	 */
751 	if (unlikely(apic->apicv_active))
752 		static_call_cond(kvm_x86_hwapic_isr_update)(vec);
753 	else {
754 		++apic->isr_count;
755 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
756 		/*
757 		 * ISR (in service register) bit is set when injecting an interrupt.
758 		 * The highest vector is injected. Thus the latest bit set matches
759 		 * the highest bit in ISR.
760 		 */
761 		apic->highest_isr_cache = vec;
762 	}
763 }
764 
765 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
766 {
767 	int result;
768 
769 	/*
770 	 * Note that isr_count is always 1, and highest_isr_cache
771 	 * is always -1, with APIC virtualization enabled.
772 	 */
773 	if (!apic->isr_count)
774 		return -1;
775 	if (likely(apic->highest_isr_cache != -1))
776 		return apic->highest_isr_cache;
777 
778 	result = find_highest_vector(apic->regs + APIC_ISR);
779 	ASSERT(result == -1 || result >= 16);
780 
781 	return result;
782 }
783 
784 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
785 {
786 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
787 		return;
788 
789 	/*
790 	 * We do get here for APIC virtualization enabled if the guest
791 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
792 	 * to trigger a new interrupt delivery by writing the SVI field;
793 	 * on the other hand isr_count and highest_isr_cache are unused
794 	 * and must be left alone.
795 	 */
796 	if (unlikely(apic->apicv_active))
797 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
798 	else {
799 		--apic->isr_count;
800 		BUG_ON(apic->isr_count < 0);
801 		apic->highest_isr_cache = -1;
802 	}
803 }
804 
805 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
806 {
807 	/* This may race with setting of irr in __apic_accept_irq() and
808 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
809 	 * will cause vmexit immediately and the value will be recalculated
810 	 * on the next vmentry.
811 	 */
812 	return apic_find_highest_irr(vcpu->arch.apic);
813 }
814 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
815 
816 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
817 			     int vector, int level, int trig_mode,
818 			     struct dest_map *dest_map);
819 
820 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
821 		     struct dest_map *dest_map)
822 {
823 	struct kvm_lapic *apic = vcpu->arch.apic;
824 
825 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
826 			irq->level, irq->trig_mode, dest_map);
827 }
828 
829 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
830 			 struct kvm_lapic_irq *irq, u32 min)
831 {
832 	int i, count = 0;
833 	struct kvm_vcpu *vcpu;
834 
835 	if (min > map->max_apic_id)
836 		return 0;
837 
838 	for_each_set_bit(i, ipi_bitmap,
839 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
840 		if (map->phys_map[min + i]) {
841 			vcpu = map->phys_map[min + i]->vcpu;
842 			count += kvm_apic_set_irq(vcpu, irq, NULL);
843 		}
844 	}
845 
846 	return count;
847 }
848 
849 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
850 		    unsigned long ipi_bitmap_high, u32 min,
851 		    unsigned long icr, int op_64_bit)
852 {
853 	struct kvm_apic_map *map;
854 	struct kvm_lapic_irq irq = {0};
855 	int cluster_size = op_64_bit ? 64 : 32;
856 	int count;
857 
858 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
859 		return -KVM_EINVAL;
860 
861 	irq.vector = icr & APIC_VECTOR_MASK;
862 	irq.delivery_mode = icr & APIC_MODE_MASK;
863 	irq.level = (icr & APIC_INT_ASSERT) != 0;
864 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
865 
866 	rcu_read_lock();
867 	map = rcu_dereference(kvm->arch.apic_map);
868 
869 	count = -EOPNOTSUPP;
870 	if (likely(map)) {
871 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
872 		min += cluster_size;
873 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
874 	}
875 
876 	rcu_read_unlock();
877 	return count;
878 }
879 
880 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
881 {
882 
883 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
884 				      sizeof(val));
885 }
886 
887 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
888 {
889 
890 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
891 				      sizeof(*val));
892 }
893 
894 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
895 {
896 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
897 }
898 
899 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
900 {
901 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
902 		return;
903 
904 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
905 }
906 
907 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
908 {
909 	u8 val;
910 
911 	if (pv_eoi_get_user(vcpu, &val) < 0)
912 		return false;
913 
914 	val &= KVM_PV_EOI_ENABLED;
915 
916 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
917 		return false;
918 
919 	/*
920 	 * Clear pending bit in any case: it will be set again on vmentry.
921 	 * While this might not be ideal from performance point of view,
922 	 * this makes sure pv eoi is only enabled when we know it's safe.
923 	 */
924 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
925 
926 	return val;
927 }
928 
929 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
930 {
931 	int highest_irr;
932 	if (kvm_x86_ops.sync_pir_to_irr)
933 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
934 	else
935 		highest_irr = apic_find_highest_irr(apic);
936 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
937 		return -1;
938 	return highest_irr;
939 }
940 
941 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
942 {
943 	u32 tpr, isrv, ppr, old_ppr;
944 	int isr;
945 
946 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
947 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
948 	isr = apic_find_highest_isr(apic);
949 	isrv = (isr != -1) ? isr : 0;
950 
951 	if ((tpr & 0xf0) >= (isrv & 0xf0))
952 		ppr = tpr & 0xff;
953 	else
954 		ppr = isrv & 0xf0;
955 
956 	*new_ppr = ppr;
957 	if (old_ppr != ppr)
958 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
959 
960 	return ppr < old_ppr;
961 }
962 
963 static void apic_update_ppr(struct kvm_lapic *apic)
964 {
965 	u32 ppr;
966 
967 	if (__apic_update_ppr(apic, &ppr) &&
968 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
969 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
970 }
971 
972 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
973 {
974 	apic_update_ppr(vcpu->arch.apic);
975 }
976 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
977 
978 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
979 {
980 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
981 	apic_update_ppr(apic);
982 }
983 
984 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
985 {
986 	return mda == (apic_x2apic_mode(apic) ?
987 			X2APIC_BROADCAST : APIC_BROADCAST);
988 }
989 
990 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
991 {
992 	if (kvm_apic_broadcast(apic, mda))
993 		return true;
994 
995 	/*
996 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
997 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
998 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
999 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1000 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
1001 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1002 	 * changed its (addressable) xAPIC ID (which is writable).
1003 	 */
1004 	if (apic_x2apic_mode(apic) || mda > 0xff)
1005 		return mda == kvm_x2apic_id(apic);
1006 
1007 	return mda == kvm_xapic_id(apic);
1008 }
1009 
1010 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1011 {
1012 	u32 logical_id;
1013 
1014 	if (kvm_apic_broadcast(apic, mda))
1015 		return true;
1016 
1017 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1018 
1019 	if (apic_x2apic_mode(apic))
1020 		return ((logical_id >> 16) == (mda >> 16))
1021 		       && (logical_id & mda & 0xffff) != 0;
1022 
1023 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
1024 
1025 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1026 	case APIC_DFR_FLAT:
1027 		return (logical_id & mda) != 0;
1028 	case APIC_DFR_CLUSTER:
1029 		return ((logical_id >> 4) == (mda >> 4))
1030 		       && (logical_id & mda & 0xf) != 0;
1031 	default:
1032 		return false;
1033 	}
1034 }
1035 
1036 /* The KVM local APIC implementation has two quirks:
1037  *
1038  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1039  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1040  *    KVM doesn't do that aliasing.
1041  *
1042  *  - in-kernel IOAPIC messages have to be delivered directly to
1043  *    x2APIC, because the kernel does not support interrupt remapping.
1044  *    In order to support broadcast without interrupt remapping, x2APIC
1045  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
1046  *    to X2APIC_BROADCAST.
1047  *
1048  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
1049  * important when userspace wants to use x2APIC-format MSIs, because
1050  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1051  */
1052 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1053 		struct kvm_lapic *source, struct kvm_lapic *target)
1054 {
1055 	bool ipi = source != NULL;
1056 
1057 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1058 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1059 		return X2APIC_BROADCAST;
1060 
1061 	return dest_id;
1062 }
1063 
1064 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1065 			   int shorthand, unsigned int dest, int dest_mode)
1066 {
1067 	struct kvm_lapic *target = vcpu->arch.apic;
1068 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1069 
1070 	ASSERT(target);
1071 	switch (shorthand) {
1072 	case APIC_DEST_NOSHORT:
1073 		if (dest_mode == APIC_DEST_PHYSICAL)
1074 			return kvm_apic_match_physical_addr(target, mda);
1075 		else
1076 			return kvm_apic_match_logical_addr(target, mda);
1077 	case APIC_DEST_SELF:
1078 		return target == source;
1079 	case APIC_DEST_ALLINC:
1080 		return true;
1081 	case APIC_DEST_ALLBUT:
1082 		return target != source;
1083 	default:
1084 		return false;
1085 	}
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1088 
1089 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1090 		       const unsigned long *bitmap, u32 bitmap_size)
1091 {
1092 	u32 mod;
1093 	int i, idx = -1;
1094 
1095 	mod = vector % dest_vcpus;
1096 
1097 	for (i = 0; i <= mod; i++) {
1098 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1099 		BUG_ON(idx == bitmap_size);
1100 	}
1101 
1102 	return idx;
1103 }
1104 
1105 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1106 {
1107 	if (!kvm->arch.disabled_lapic_found) {
1108 		kvm->arch.disabled_lapic_found = true;
1109 		pr_info("Disabled LAPIC found during irq injection\n");
1110 	}
1111 }
1112 
1113 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1114 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1115 {
1116 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1117 		if ((irq->dest_id == APIC_BROADCAST &&
1118 		     map->logical_mode != KVM_APIC_MODE_X2APIC))
1119 			return true;
1120 		if (irq->dest_id == X2APIC_BROADCAST)
1121 			return true;
1122 	} else {
1123 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1124 		if (irq->dest_id == (x2apic_ipi ?
1125 		                     X2APIC_BROADCAST : APIC_BROADCAST))
1126 			return true;
1127 	}
1128 
1129 	return false;
1130 }
1131 
1132 /* Return true if the interrupt can be handled by using *bitmap as index mask
1133  * for valid destinations in *dst array.
1134  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1135  * Note: we may have zero kvm_lapic destinations when we return true, which
1136  * means that the interrupt should be dropped.  In this case, *bitmap would be
1137  * zero and *dst undefined.
1138  */
1139 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1140 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1141 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
1142 		unsigned long *bitmap)
1143 {
1144 	int i, lowest;
1145 
1146 	if (irq->shorthand == APIC_DEST_SELF && src) {
1147 		*dst = src;
1148 		*bitmap = 1;
1149 		return true;
1150 	} else if (irq->shorthand)
1151 		return false;
1152 
1153 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1154 		return false;
1155 
1156 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1157 		if (irq->dest_id > map->max_apic_id) {
1158 			*bitmap = 0;
1159 		} else {
1160 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1161 			*dst = &map->phys_map[dest_id];
1162 			*bitmap = 1;
1163 		}
1164 		return true;
1165 	}
1166 
1167 	*bitmap = 0;
1168 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1169 				(u16 *)bitmap))
1170 		return false;
1171 
1172 	if (!kvm_lowest_prio_delivery(irq))
1173 		return true;
1174 
1175 	if (!kvm_vector_hashing_enabled()) {
1176 		lowest = -1;
1177 		for_each_set_bit(i, bitmap, 16) {
1178 			if (!(*dst)[i])
1179 				continue;
1180 			if (lowest < 0)
1181 				lowest = i;
1182 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1183 						(*dst)[lowest]->vcpu) < 0)
1184 				lowest = i;
1185 		}
1186 	} else {
1187 		if (!*bitmap)
1188 			return true;
1189 
1190 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1191 				bitmap, 16);
1192 
1193 		if (!(*dst)[lowest]) {
1194 			kvm_apic_disabled_lapic_found(kvm);
1195 			*bitmap = 0;
1196 			return true;
1197 		}
1198 	}
1199 
1200 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1201 
1202 	return true;
1203 }
1204 
1205 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1206 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1207 {
1208 	struct kvm_apic_map *map;
1209 	unsigned long bitmap;
1210 	struct kvm_lapic **dst = NULL;
1211 	int i;
1212 	bool ret;
1213 
1214 	*r = -1;
1215 
1216 	if (irq->shorthand == APIC_DEST_SELF) {
1217 		if (KVM_BUG_ON(!src, kvm)) {
1218 			*r = 0;
1219 			return true;
1220 		}
1221 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1222 		return true;
1223 	}
1224 
1225 	rcu_read_lock();
1226 	map = rcu_dereference(kvm->arch.apic_map);
1227 
1228 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1229 	if (ret) {
1230 		*r = 0;
1231 		for_each_set_bit(i, &bitmap, 16) {
1232 			if (!dst[i])
1233 				continue;
1234 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1235 		}
1236 	}
1237 
1238 	rcu_read_unlock();
1239 	return ret;
1240 }
1241 
1242 /*
1243  * This routine tries to handle interrupts in posted mode, here is how
1244  * it deals with different cases:
1245  * - For single-destination interrupts, handle it in posted mode
1246  * - Else if vector hashing is enabled and it is a lowest-priority
1247  *   interrupt, handle it in posted mode and use the following mechanism
1248  *   to find the destination vCPU.
1249  *	1. For lowest-priority interrupts, store all the possible
1250  *	   destination vCPUs in an array.
1251  *	2. Use "guest vector % max number of destination vCPUs" to find
1252  *	   the right destination vCPU in the array for the lowest-priority
1253  *	   interrupt.
1254  * - Otherwise, use remapped mode to inject the interrupt.
1255  */
1256 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1257 			struct kvm_vcpu **dest_vcpu)
1258 {
1259 	struct kvm_apic_map *map;
1260 	unsigned long bitmap;
1261 	struct kvm_lapic **dst = NULL;
1262 	bool ret = false;
1263 
1264 	if (irq->shorthand)
1265 		return false;
1266 
1267 	rcu_read_lock();
1268 	map = rcu_dereference(kvm->arch.apic_map);
1269 
1270 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1271 			hweight16(bitmap) == 1) {
1272 		unsigned long i = find_first_bit(&bitmap, 16);
1273 
1274 		if (dst[i]) {
1275 			*dest_vcpu = dst[i]->vcpu;
1276 			ret = true;
1277 		}
1278 	}
1279 
1280 	rcu_read_unlock();
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Add a pending IRQ into lapic.
1286  * Return 1 if successfully added and 0 if discarded.
1287  */
1288 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1289 			     int vector, int level, int trig_mode,
1290 			     struct dest_map *dest_map)
1291 {
1292 	int result = 0;
1293 	struct kvm_vcpu *vcpu = apic->vcpu;
1294 
1295 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1296 				  trig_mode, vector);
1297 	switch (delivery_mode) {
1298 	case APIC_DM_LOWEST:
1299 		vcpu->arch.apic_arb_prio++;
1300 		fallthrough;
1301 	case APIC_DM_FIXED:
1302 		if (unlikely(trig_mode && !level))
1303 			break;
1304 
1305 		/* FIXME add logic for vcpu on reset */
1306 		if (unlikely(!apic_enabled(apic)))
1307 			break;
1308 
1309 		result = 1;
1310 
1311 		if (dest_map) {
1312 			__set_bit(vcpu->vcpu_id, dest_map->map);
1313 			dest_map->vectors[vcpu->vcpu_id] = vector;
1314 		}
1315 
1316 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1317 			if (trig_mode)
1318 				kvm_lapic_set_vector(vector,
1319 						     apic->regs + APIC_TMR);
1320 			else
1321 				kvm_lapic_clear_vector(vector,
1322 						       apic->regs + APIC_TMR);
1323 		}
1324 
1325 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1326 						       trig_mode, vector);
1327 		break;
1328 
1329 	case APIC_DM_REMRD:
1330 		result = 1;
1331 		vcpu->arch.pv.pv_unhalted = 1;
1332 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1333 		kvm_vcpu_kick(vcpu);
1334 		break;
1335 
1336 	case APIC_DM_SMI:
1337 		if (!kvm_inject_smi(vcpu)) {
1338 			kvm_vcpu_kick(vcpu);
1339 			result = 1;
1340 		}
1341 		break;
1342 
1343 	case APIC_DM_NMI:
1344 		result = 1;
1345 		kvm_inject_nmi(vcpu);
1346 		kvm_vcpu_kick(vcpu);
1347 		break;
1348 
1349 	case APIC_DM_INIT:
1350 		if (!trig_mode || level) {
1351 			result = 1;
1352 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1353 			apic->pending_events = (1UL << KVM_APIC_INIT);
1354 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1355 			kvm_vcpu_kick(vcpu);
1356 		}
1357 		break;
1358 
1359 	case APIC_DM_STARTUP:
1360 		result = 1;
1361 		apic->sipi_vector = vector;
1362 		/* make sure sipi_vector is visible for the receiver */
1363 		smp_wmb();
1364 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1365 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1366 		kvm_vcpu_kick(vcpu);
1367 		break;
1368 
1369 	case APIC_DM_EXTINT:
1370 		/*
1371 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1372 		 * before NMI watchdog was enabled. Already handled by
1373 		 * kvm_apic_accept_pic_intr().
1374 		 */
1375 		break;
1376 
1377 	default:
1378 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1379 		       delivery_mode);
1380 		break;
1381 	}
1382 	return result;
1383 }
1384 
1385 /*
1386  * This routine identifies the destination vcpus mask meant to receive the
1387  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1388  * out the destination vcpus array and set the bitmap or it traverses to
1389  * each available vcpu to identify the same.
1390  */
1391 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1392 			      unsigned long *vcpu_bitmap)
1393 {
1394 	struct kvm_lapic **dest_vcpu = NULL;
1395 	struct kvm_lapic *src = NULL;
1396 	struct kvm_apic_map *map;
1397 	struct kvm_vcpu *vcpu;
1398 	unsigned long bitmap, i;
1399 	int vcpu_idx;
1400 	bool ret;
1401 
1402 	rcu_read_lock();
1403 	map = rcu_dereference(kvm->arch.apic_map);
1404 
1405 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1406 					  &bitmap);
1407 	if (ret) {
1408 		for_each_set_bit(i, &bitmap, 16) {
1409 			if (!dest_vcpu[i])
1410 				continue;
1411 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1412 			__set_bit(vcpu_idx, vcpu_bitmap);
1413 		}
1414 	} else {
1415 		kvm_for_each_vcpu(i, vcpu, kvm) {
1416 			if (!kvm_apic_present(vcpu))
1417 				continue;
1418 			if (!kvm_apic_match_dest(vcpu, NULL,
1419 						 irq->shorthand,
1420 						 irq->dest_id,
1421 						 irq->dest_mode))
1422 				continue;
1423 			__set_bit(i, vcpu_bitmap);
1424 		}
1425 	}
1426 	rcu_read_unlock();
1427 }
1428 
1429 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1430 {
1431 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1432 }
1433 
1434 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1435 {
1436 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1437 }
1438 
1439 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1440 {
1441 	int trigger_mode;
1442 
1443 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1444 	if (!kvm_ioapic_handles_vector(apic, vector))
1445 		return;
1446 
1447 	/* Request a KVM exit to inform the userspace IOAPIC. */
1448 	if (irqchip_split(apic->vcpu->kvm)) {
1449 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1450 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1451 		return;
1452 	}
1453 
1454 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1455 		trigger_mode = IOAPIC_LEVEL_TRIG;
1456 	else
1457 		trigger_mode = IOAPIC_EDGE_TRIG;
1458 
1459 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1460 }
1461 
1462 static int apic_set_eoi(struct kvm_lapic *apic)
1463 {
1464 	int vector = apic_find_highest_isr(apic);
1465 
1466 	trace_kvm_eoi(apic, vector);
1467 
1468 	/*
1469 	 * Not every write EOI will has corresponding ISR,
1470 	 * one example is when Kernel check timer on setup_IO_APIC
1471 	 */
1472 	if (vector == -1)
1473 		return vector;
1474 
1475 	apic_clear_isr(vector, apic);
1476 	apic_update_ppr(apic);
1477 
1478 	if (to_hv_vcpu(apic->vcpu) &&
1479 	    test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1480 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1481 
1482 	kvm_ioapic_send_eoi(apic, vector);
1483 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1484 	return vector;
1485 }
1486 
1487 /*
1488  * this interface assumes a trap-like exit, which has already finished
1489  * desired side effect including vISR and vPPR update.
1490  */
1491 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1492 {
1493 	struct kvm_lapic *apic = vcpu->arch.apic;
1494 
1495 	trace_kvm_eoi(apic, vector);
1496 
1497 	kvm_ioapic_send_eoi(apic, vector);
1498 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1501 
1502 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1503 {
1504 	struct kvm_lapic_irq irq;
1505 
1506 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1507 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1508 
1509 	irq.vector = icr_low & APIC_VECTOR_MASK;
1510 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1511 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1512 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1513 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1514 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1515 	irq.msi_redir_hint = false;
1516 	if (apic_x2apic_mode(apic))
1517 		irq.dest_id = icr_high;
1518 	else
1519 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1520 
1521 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1522 
1523 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1526 
1527 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1528 {
1529 	ktime_t remaining, now;
1530 	s64 ns;
1531 
1532 	ASSERT(apic != NULL);
1533 
1534 	/* if initial count is 0, current count should also be 0 */
1535 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1536 		apic->lapic_timer.period == 0)
1537 		return 0;
1538 
1539 	now = ktime_get();
1540 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1541 	if (ktime_to_ns(remaining) < 0)
1542 		remaining = 0;
1543 
1544 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1545 	return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
1546 }
1547 
1548 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1549 {
1550 	struct kvm_vcpu *vcpu = apic->vcpu;
1551 	struct kvm_run *run = vcpu->run;
1552 
1553 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1554 	run->tpr_access.rip = kvm_rip_read(vcpu);
1555 	run->tpr_access.is_write = write;
1556 }
1557 
1558 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1559 {
1560 	if (apic->vcpu->arch.tpr_access_reporting)
1561 		__report_tpr_access(apic, write);
1562 }
1563 
1564 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1565 {
1566 	u32 val = 0;
1567 
1568 	if (offset >= LAPIC_MMIO_LENGTH)
1569 		return 0;
1570 
1571 	switch (offset) {
1572 	case APIC_ARBPRI:
1573 		break;
1574 
1575 	case APIC_TMCCT:	/* Timer CCR */
1576 		if (apic_lvtt_tscdeadline(apic))
1577 			return 0;
1578 
1579 		val = apic_get_tmcct(apic);
1580 		break;
1581 	case APIC_PROCPRI:
1582 		apic_update_ppr(apic);
1583 		val = kvm_lapic_get_reg(apic, offset);
1584 		break;
1585 	case APIC_TASKPRI:
1586 		report_tpr_access(apic, false);
1587 		fallthrough;
1588 	default:
1589 		val = kvm_lapic_get_reg(apic, offset);
1590 		break;
1591 	}
1592 
1593 	return val;
1594 }
1595 
1596 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1597 {
1598 	return container_of(dev, struct kvm_lapic, dev);
1599 }
1600 
1601 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1602 #define APIC_REGS_MASK(first, count) \
1603 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1604 
1605 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1606 {
1607 	/* Leave bits '0' for reserved and write-only registers. */
1608 	u64 valid_reg_mask =
1609 		APIC_REG_MASK(APIC_ID) |
1610 		APIC_REG_MASK(APIC_LVR) |
1611 		APIC_REG_MASK(APIC_TASKPRI) |
1612 		APIC_REG_MASK(APIC_PROCPRI) |
1613 		APIC_REG_MASK(APIC_LDR) |
1614 		APIC_REG_MASK(APIC_SPIV) |
1615 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1616 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1617 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1618 		APIC_REG_MASK(APIC_ESR) |
1619 		APIC_REG_MASK(APIC_ICR) |
1620 		APIC_REG_MASK(APIC_LVTT) |
1621 		APIC_REG_MASK(APIC_LVTTHMR) |
1622 		APIC_REG_MASK(APIC_LVTPC) |
1623 		APIC_REG_MASK(APIC_LVT0) |
1624 		APIC_REG_MASK(APIC_LVT1) |
1625 		APIC_REG_MASK(APIC_LVTERR) |
1626 		APIC_REG_MASK(APIC_TMICT) |
1627 		APIC_REG_MASK(APIC_TMCCT) |
1628 		APIC_REG_MASK(APIC_TDCR);
1629 
1630 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1631 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1632 
1633 	/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1634 	if (!apic_x2apic_mode(apic))
1635 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1636 				  APIC_REG_MASK(APIC_DFR) |
1637 				  APIC_REG_MASK(APIC_ICR2);
1638 
1639 	return valid_reg_mask;
1640 }
1641 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1642 
1643 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1644 			      void *data)
1645 {
1646 	unsigned char alignment = offset & 0xf;
1647 	u32 result;
1648 
1649 	/*
1650 	 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1651 	 * x2APIC and needs to be manually handled by the caller.
1652 	 */
1653 	WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1654 
1655 	if (alignment + len > 4)
1656 		return 1;
1657 
1658 	if (offset > 0x3f0 ||
1659 	    !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1660 		return 1;
1661 
1662 	result = __apic_read(apic, offset & ~0xf);
1663 
1664 	trace_kvm_apic_read(offset, result);
1665 
1666 	switch (len) {
1667 	case 1:
1668 	case 2:
1669 	case 4:
1670 		memcpy(data, (char *)&result + alignment, len);
1671 		break;
1672 	default:
1673 		printk(KERN_ERR "Local APIC read with len = %x, "
1674 		       "should be 1,2, or 4 instead\n", len);
1675 		break;
1676 	}
1677 	return 0;
1678 }
1679 
1680 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1681 {
1682 	return addr >= apic->base_address &&
1683 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1684 }
1685 
1686 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1687 			   gpa_t address, int len, void *data)
1688 {
1689 	struct kvm_lapic *apic = to_lapic(this);
1690 	u32 offset = address - apic->base_address;
1691 
1692 	if (!apic_mmio_in_range(apic, address))
1693 		return -EOPNOTSUPP;
1694 
1695 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1696 		if (!kvm_check_has_quirk(vcpu->kvm,
1697 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1698 			return -EOPNOTSUPP;
1699 
1700 		memset(data, 0xff, len);
1701 		return 0;
1702 	}
1703 
1704 	kvm_lapic_reg_read(apic, offset, len, data);
1705 
1706 	return 0;
1707 }
1708 
1709 static void update_divide_count(struct kvm_lapic *apic)
1710 {
1711 	u32 tmp1, tmp2, tdcr;
1712 
1713 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1714 	tmp1 = tdcr & 0xf;
1715 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1716 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1717 }
1718 
1719 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1720 {
1721 	/*
1722 	 * Do not allow the guest to program periodic timers with small
1723 	 * interval, since the hrtimers are not throttled by the host
1724 	 * scheduler.
1725 	 */
1726 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1727 		s64 min_period = min_timer_period_us * 1000LL;
1728 
1729 		if (apic->lapic_timer.period < min_period) {
1730 			pr_info_ratelimited(
1731 			    "vcpu %i: requested %lld ns "
1732 			    "lapic timer period limited to %lld ns\n",
1733 			    apic->vcpu->vcpu_id,
1734 			    apic->lapic_timer.period, min_period);
1735 			apic->lapic_timer.period = min_period;
1736 		}
1737 	}
1738 }
1739 
1740 static void cancel_hv_timer(struct kvm_lapic *apic);
1741 
1742 static void cancel_apic_timer(struct kvm_lapic *apic)
1743 {
1744 	hrtimer_cancel(&apic->lapic_timer.timer);
1745 	preempt_disable();
1746 	if (apic->lapic_timer.hv_timer_in_use)
1747 		cancel_hv_timer(apic);
1748 	preempt_enable();
1749 	atomic_set(&apic->lapic_timer.pending, 0);
1750 }
1751 
1752 static void apic_update_lvtt(struct kvm_lapic *apic)
1753 {
1754 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1755 			apic->lapic_timer.timer_mode_mask;
1756 
1757 	if (apic->lapic_timer.timer_mode != timer_mode) {
1758 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1759 				APIC_LVT_TIMER_TSCDEADLINE)) {
1760 			cancel_apic_timer(apic);
1761 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1762 			apic->lapic_timer.period = 0;
1763 			apic->lapic_timer.tscdeadline = 0;
1764 		}
1765 		apic->lapic_timer.timer_mode = timer_mode;
1766 		limit_periodic_timer_frequency(apic);
1767 	}
1768 }
1769 
1770 /*
1771  * On APICv, this test will cause a busy wait
1772  * during a higher-priority task.
1773  */
1774 
1775 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1776 {
1777 	struct kvm_lapic *apic = vcpu->arch.apic;
1778 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1779 
1780 	if (kvm_apic_hw_enabled(apic)) {
1781 		int vec = reg & APIC_VECTOR_MASK;
1782 		void *bitmap = apic->regs + APIC_ISR;
1783 
1784 		if (apic->apicv_active)
1785 			bitmap = apic->regs + APIC_IRR;
1786 
1787 		if (apic_test_vector(vec, bitmap))
1788 			return true;
1789 	}
1790 	return false;
1791 }
1792 
1793 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1794 {
1795 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1796 
1797 	/*
1798 	 * If the guest TSC is running at a different ratio than the host, then
1799 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1800 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1801 	 * always for VMX enabled hardware.
1802 	 */
1803 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1804 		__delay(min(guest_cycles,
1805 			nsec_to_cycles(vcpu, timer_advance_ns)));
1806 	} else {
1807 		u64 delay_ns = guest_cycles * 1000000ULL;
1808 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1809 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1810 	}
1811 }
1812 
1813 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1814 					      s64 advance_expire_delta)
1815 {
1816 	struct kvm_lapic *apic = vcpu->arch.apic;
1817 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1818 	u64 ns;
1819 
1820 	/* Do not adjust for tiny fluctuations or large random spikes. */
1821 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1822 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1823 		return;
1824 
1825 	/* too early */
1826 	if (advance_expire_delta < 0) {
1827 		ns = -advance_expire_delta * 1000000ULL;
1828 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1829 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1830 	} else {
1831 	/* too late */
1832 		ns = advance_expire_delta * 1000000ULL;
1833 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1834 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1835 	}
1836 
1837 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1838 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1839 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1840 }
1841 
1842 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1843 {
1844 	struct kvm_lapic *apic = vcpu->arch.apic;
1845 	u64 guest_tsc, tsc_deadline;
1846 
1847 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1848 	apic->lapic_timer.expired_tscdeadline = 0;
1849 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1850 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1851 
1852 	if (lapic_timer_advance_dynamic) {
1853 		adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1854 		/*
1855 		 * If the timer fired early, reread the TSC to account for the
1856 		 * overhead of the above adjustment to avoid waiting longer
1857 		 * than is necessary.
1858 		 */
1859 		if (guest_tsc < tsc_deadline)
1860 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1861 	}
1862 
1863 	if (guest_tsc < tsc_deadline)
1864 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1865 }
1866 
1867 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1868 {
1869 	if (lapic_in_kernel(vcpu) &&
1870 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1871 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1872 	    lapic_timer_int_injected(vcpu))
1873 		__kvm_wait_lapic_expire(vcpu);
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1876 
1877 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1878 {
1879 	struct kvm_timer *ktimer = &apic->lapic_timer;
1880 
1881 	kvm_apic_local_deliver(apic, APIC_LVTT);
1882 	if (apic_lvtt_tscdeadline(apic)) {
1883 		ktimer->tscdeadline = 0;
1884 	} else if (apic_lvtt_oneshot(apic)) {
1885 		ktimer->tscdeadline = 0;
1886 		ktimer->target_expiration = 0;
1887 	}
1888 }
1889 
1890 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1891 {
1892 	struct kvm_vcpu *vcpu = apic->vcpu;
1893 	struct kvm_timer *ktimer = &apic->lapic_timer;
1894 
1895 	if (atomic_read(&apic->lapic_timer.pending))
1896 		return;
1897 
1898 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1899 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1900 
1901 	if (!from_timer_fn && apic->apicv_active) {
1902 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1903 		kvm_apic_inject_pending_timer_irqs(apic);
1904 		return;
1905 	}
1906 
1907 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1908 		/*
1909 		 * Ensure the guest's timer has truly expired before posting an
1910 		 * interrupt.  Open code the relevant checks to avoid querying
1911 		 * lapic_timer_int_injected(), which will be false since the
1912 		 * interrupt isn't yet injected.  Waiting until after injecting
1913 		 * is not an option since that won't help a posted interrupt.
1914 		 */
1915 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1916 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1917 			__kvm_wait_lapic_expire(vcpu);
1918 		kvm_apic_inject_pending_timer_irqs(apic);
1919 		return;
1920 	}
1921 
1922 	atomic_inc(&apic->lapic_timer.pending);
1923 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1924 	if (from_timer_fn)
1925 		kvm_vcpu_kick(vcpu);
1926 }
1927 
1928 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1929 {
1930 	struct kvm_timer *ktimer = &apic->lapic_timer;
1931 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1932 	u64 ns = 0;
1933 	ktime_t expire;
1934 	struct kvm_vcpu *vcpu = apic->vcpu;
1935 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1936 	unsigned long flags;
1937 	ktime_t now;
1938 
1939 	if (unlikely(!tscdeadline || !this_tsc_khz))
1940 		return;
1941 
1942 	local_irq_save(flags);
1943 
1944 	now = ktime_get();
1945 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1946 
1947 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1948 	do_div(ns, this_tsc_khz);
1949 
1950 	if (likely(tscdeadline > guest_tsc) &&
1951 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1952 		expire = ktime_add_ns(now, ns);
1953 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1954 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1955 	} else
1956 		apic_timer_expired(apic, false);
1957 
1958 	local_irq_restore(flags);
1959 }
1960 
1961 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1962 {
1963 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1964 }
1965 
1966 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1967 {
1968 	ktime_t now, remaining;
1969 	u64 ns_remaining_old, ns_remaining_new;
1970 
1971 	apic->lapic_timer.period =
1972 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1973 	limit_periodic_timer_frequency(apic);
1974 
1975 	now = ktime_get();
1976 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1977 	if (ktime_to_ns(remaining) < 0)
1978 		remaining = 0;
1979 
1980 	ns_remaining_old = ktime_to_ns(remaining);
1981 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1982 	                                   apic->divide_count, old_divisor);
1983 
1984 	apic->lapic_timer.tscdeadline +=
1985 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1986 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1987 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1988 }
1989 
1990 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1991 {
1992 	ktime_t now;
1993 	u64 tscl = rdtsc();
1994 	s64 deadline;
1995 
1996 	now = ktime_get();
1997 	apic->lapic_timer.period =
1998 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1999 
2000 	if (!apic->lapic_timer.period) {
2001 		apic->lapic_timer.tscdeadline = 0;
2002 		return false;
2003 	}
2004 
2005 	limit_periodic_timer_frequency(apic);
2006 	deadline = apic->lapic_timer.period;
2007 
2008 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2009 		if (unlikely(count_reg != APIC_TMICT)) {
2010 			deadline = tmict_to_ns(apic,
2011 				     kvm_lapic_get_reg(apic, count_reg));
2012 			if (unlikely(deadline <= 0)) {
2013 				if (apic_lvtt_period(apic))
2014 					deadline = apic->lapic_timer.period;
2015 				else
2016 					deadline = 0;
2017 			}
2018 			else if (unlikely(deadline > apic->lapic_timer.period)) {
2019 				pr_info_ratelimited(
2020 				    "vcpu %i: requested lapic timer restore with "
2021 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2022 				    "Using initial count to start timer.\n",
2023 				    apic->vcpu->vcpu_id,
2024 				    count_reg,
2025 				    kvm_lapic_get_reg(apic, count_reg),
2026 				    deadline, apic->lapic_timer.period);
2027 				kvm_lapic_set_reg(apic, count_reg, 0);
2028 				deadline = apic->lapic_timer.period;
2029 			}
2030 		}
2031 	}
2032 
2033 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2034 		nsec_to_cycles(apic->vcpu, deadline);
2035 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2036 
2037 	return true;
2038 }
2039 
2040 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2041 {
2042 	ktime_t now = ktime_get();
2043 	u64 tscl = rdtsc();
2044 	ktime_t delta;
2045 
2046 	/*
2047 	 * Synchronize both deadlines to the same time source or
2048 	 * differences in the periods (caused by differences in the
2049 	 * underlying clocks or numerical approximation errors) will
2050 	 * cause the two to drift apart over time as the errors
2051 	 * accumulate.
2052 	 */
2053 	apic->lapic_timer.target_expiration =
2054 		ktime_add_ns(apic->lapic_timer.target_expiration,
2055 				apic->lapic_timer.period);
2056 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2057 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2058 		nsec_to_cycles(apic->vcpu, delta);
2059 }
2060 
2061 static void start_sw_period(struct kvm_lapic *apic)
2062 {
2063 	if (!apic->lapic_timer.period)
2064 		return;
2065 
2066 	if (ktime_after(ktime_get(),
2067 			apic->lapic_timer.target_expiration)) {
2068 		apic_timer_expired(apic, false);
2069 
2070 		if (apic_lvtt_oneshot(apic))
2071 			return;
2072 
2073 		advance_periodic_target_expiration(apic);
2074 	}
2075 
2076 	hrtimer_start(&apic->lapic_timer.timer,
2077 		apic->lapic_timer.target_expiration,
2078 		HRTIMER_MODE_ABS_HARD);
2079 }
2080 
2081 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2082 {
2083 	if (!lapic_in_kernel(vcpu))
2084 		return false;
2085 
2086 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2087 }
2088 
2089 static void cancel_hv_timer(struct kvm_lapic *apic)
2090 {
2091 	WARN_ON(preemptible());
2092 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2093 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
2094 	apic->lapic_timer.hv_timer_in_use = false;
2095 }
2096 
2097 static bool start_hv_timer(struct kvm_lapic *apic)
2098 {
2099 	struct kvm_timer *ktimer = &apic->lapic_timer;
2100 	struct kvm_vcpu *vcpu = apic->vcpu;
2101 	bool expired;
2102 
2103 	WARN_ON(preemptible());
2104 	if (!kvm_can_use_hv_timer(vcpu))
2105 		return false;
2106 
2107 	if (!ktimer->tscdeadline)
2108 		return false;
2109 
2110 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2111 		return false;
2112 
2113 	ktimer->hv_timer_in_use = true;
2114 	hrtimer_cancel(&ktimer->timer);
2115 
2116 	/*
2117 	 * To simplify handling the periodic timer, leave the hv timer running
2118 	 * even if the deadline timer has expired, i.e. rely on the resulting
2119 	 * VM-Exit to recompute the periodic timer's target expiration.
2120 	 */
2121 	if (!apic_lvtt_period(apic)) {
2122 		/*
2123 		 * Cancel the hv timer if the sw timer fired while the hv timer
2124 		 * was being programmed, or if the hv timer itself expired.
2125 		 */
2126 		if (atomic_read(&ktimer->pending)) {
2127 			cancel_hv_timer(apic);
2128 		} else if (expired) {
2129 			apic_timer_expired(apic, false);
2130 			cancel_hv_timer(apic);
2131 		}
2132 	}
2133 
2134 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2135 
2136 	return true;
2137 }
2138 
2139 static void start_sw_timer(struct kvm_lapic *apic)
2140 {
2141 	struct kvm_timer *ktimer = &apic->lapic_timer;
2142 
2143 	WARN_ON(preemptible());
2144 	if (apic->lapic_timer.hv_timer_in_use)
2145 		cancel_hv_timer(apic);
2146 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2147 		return;
2148 
2149 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2150 		start_sw_period(apic);
2151 	else if (apic_lvtt_tscdeadline(apic))
2152 		start_sw_tscdeadline(apic);
2153 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2154 }
2155 
2156 static void restart_apic_timer(struct kvm_lapic *apic)
2157 {
2158 	preempt_disable();
2159 
2160 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2161 		goto out;
2162 
2163 	if (!start_hv_timer(apic))
2164 		start_sw_timer(apic);
2165 out:
2166 	preempt_enable();
2167 }
2168 
2169 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2170 {
2171 	struct kvm_lapic *apic = vcpu->arch.apic;
2172 
2173 	preempt_disable();
2174 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2175 	if (!apic->lapic_timer.hv_timer_in_use)
2176 		goto out;
2177 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2178 	apic_timer_expired(apic, false);
2179 	cancel_hv_timer(apic);
2180 
2181 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2182 		advance_periodic_target_expiration(apic);
2183 		restart_apic_timer(apic);
2184 	}
2185 out:
2186 	preempt_enable();
2187 }
2188 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2189 
2190 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2191 {
2192 	restart_apic_timer(vcpu->arch.apic);
2193 }
2194 
2195 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2196 {
2197 	struct kvm_lapic *apic = vcpu->arch.apic;
2198 
2199 	preempt_disable();
2200 	/* Possibly the TSC deadline timer is not enabled yet */
2201 	if (apic->lapic_timer.hv_timer_in_use)
2202 		start_sw_timer(apic);
2203 	preempt_enable();
2204 }
2205 
2206 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2207 {
2208 	struct kvm_lapic *apic = vcpu->arch.apic;
2209 
2210 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2211 	restart_apic_timer(apic);
2212 }
2213 
2214 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2215 {
2216 	atomic_set(&apic->lapic_timer.pending, 0);
2217 
2218 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2219 	    && !set_target_expiration(apic, count_reg))
2220 		return;
2221 
2222 	restart_apic_timer(apic);
2223 }
2224 
2225 static void start_apic_timer(struct kvm_lapic *apic)
2226 {
2227 	__start_apic_timer(apic, APIC_TMICT);
2228 }
2229 
2230 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2231 {
2232 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2233 
2234 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2235 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2236 		if (lvt0_in_nmi_mode) {
2237 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2238 		} else
2239 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2240 	}
2241 }
2242 
2243 static int get_lvt_index(u32 reg)
2244 {
2245 	if (reg == APIC_LVTCMCI)
2246 		return LVT_CMCI;
2247 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2248 		return -1;
2249 	return array_index_nospec(
2250 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2251 }
2252 
2253 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2254 {
2255 	int ret = 0;
2256 
2257 	trace_kvm_apic_write(reg, val);
2258 
2259 	switch (reg) {
2260 	case APIC_ID:		/* Local APIC ID */
2261 		if (!apic_x2apic_mode(apic)) {
2262 			kvm_apic_set_xapic_id(apic, val >> 24);
2263 		} else {
2264 			ret = 1;
2265 		}
2266 		break;
2267 
2268 	case APIC_TASKPRI:
2269 		report_tpr_access(apic, true);
2270 		apic_set_tpr(apic, val & 0xff);
2271 		break;
2272 
2273 	case APIC_EOI:
2274 		apic_set_eoi(apic);
2275 		break;
2276 
2277 	case APIC_LDR:
2278 		if (!apic_x2apic_mode(apic))
2279 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2280 		else
2281 			ret = 1;
2282 		break;
2283 
2284 	case APIC_DFR:
2285 		if (!apic_x2apic_mode(apic))
2286 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2287 		else
2288 			ret = 1;
2289 		break;
2290 
2291 	case APIC_SPIV: {
2292 		u32 mask = 0x3ff;
2293 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2294 			mask |= APIC_SPIV_DIRECTED_EOI;
2295 		apic_set_spiv(apic, val & mask);
2296 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2297 			int i;
2298 
2299 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2300 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2301 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2302 			}
2303 			apic_update_lvtt(apic);
2304 			atomic_set(&apic->lapic_timer.pending, 0);
2305 
2306 		}
2307 		break;
2308 	}
2309 	case APIC_ICR:
2310 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2311 
2312 		/* No delay here, so we always clear the pending bit */
2313 		val &= ~APIC_ICR_BUSY;
2314 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2315 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2316 		break;
2317 	case APIC_ICR2:
2318 		if (apic_x2apic_mode(apic))
2319 			ret = 1;
2320 		else
2321 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2322 		break;
2323 
2324 	case APIC_LVT0:
2325 		apic_manage_nmi_watchdog(apic, val);
2326 		fallthrough;
2327 	case APIC_LVTTHMR:
2328 	case APIC_LVTPC:
2329 	case APIC_LVT1:
2330 	case APIC_LVTERR:
2331 	case APIC_LVTCMCI: {
2332 		u32 index = get_lvt_index(reg);
2333 		if (!kvm_lapic_lvt_supported(apic, index)) {
2334 			ret = 1;
2335 			break;
2336 		}
2337 		if (!kvm_apic_sw_enabled(apic))
2338 			val |= APIC_LVT_MASKED;
2339 		val &= apic_lvt_mask[index];
2340 		kvm_lapic_set_reg(apic, reg, val);
2341 		break;
2342 	}
2343 
2344 	case APIC_LVTT:
2345 		if (!kvm_apic_sw_enabled(apic))
2346 			val |= APIC_LVT_MASKED;
2347 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2348 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2349 		apic_update_lvtt(apic);
2350 		break;
2351 
2352 	case APIC_TMICT:
2353 		if (apic_lvtt_tscdeadline(apic))
2354 			break;
2355 
2356 		cancel_apic_timer(apic);
2357 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2358 		start_apic_timer(apic);
2359 		break;
2360 
2361 	case APIC_TDCR: {
2362 		uint32_t old_divisor = apic->divide_count;
2363 
2364 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2365 		update_divide_count(apic);
2366 		if (apic->divide_count != old_divisor &&
2367 				apic->lapic_timer.period) {
2368 			hrtimer_cancel(&apic->lapic_timer.timer);
2369 			update_target_expiration(apic, old_divisor);
2370 			restart_apic_timer(apic);
2371 		}
2372 		break;
2373 	}
2374 	case APIC_ESR:
2375 		if (apic_x2apic_mode(apic) && val != 0)
2376 			ret = 1;
2377 		break;
2378 
2379 	case APIC_SELF_IPI:
2380 		/*
2381 		 * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold
2382 		 * the vector, everything else is reserved.
2383 		 */
2384 		if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2385 			ret = 1;
2386 		else
2387 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2388 		break;
2389 	default:
2390 		ret = 1;
2391 		break;
2392 	}
2393 
2394 	/*
2395 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2396 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2397 	 * on relevant changes, i.e. this is a nop for most writes.
2398 	 */
2399 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2400 
2401 	return ret;
2402 }
2403 
2404 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2405 			    gpa_t address, int len, const void *data)
2406 {
2407 	struct kvm_lapic *apic = to_lapic(this);
2408 	unsigned int offset = address - apic->base_address;
2409 	u32 val;
2410 
2411 	if (!apic_mmio_in_range(apic, address))
2412 		return -EOPNOTSUPP;
2413 
2414 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2415 		if (!kvm_check_has_quirk(vcpu->kvm,
2416 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2417 			return -EOPNOTSUPP;
2418 
2419 		return 0;
2420 	}
2421 
2422 	/*
2423 	 * APIC register must be aligned on 128-bits boundary.
2424 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2425 	 * Refer SDM 8.4.1
2426 	 */
2427 	if (len != 4 || (offset & 0xf))
2428 		return 0;
2429 
2430 	val = *(u32*)data;
2431 
2432 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2433 
2434 	return 0;
2435 }
2436 
2437 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2438 {
2439 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2442 
2443 /* emulate APIC access in a trap manner */
2444 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2445 {
2446 	struct kvm_lapic *apic = vcpu->arch.apic;
2447 	u64 val;
2448 
2449 	/*
2450 	 * ICR is a single 64-bit register when x2APIC is enabled.  For legacy
2451 	 * xAPIC, ICR writes need to go down the common (slightly slower) path
2452 	 * to get the upper half from ICR2.
2453 	 */
2454 	if (apic_x2apic_mode(apic) && offset == APIC_ICR) {
2455 		val = kvm_lapic_get_reg64(apic, APIC_ICR);
2456 		kvm_apic_send_ipi(apic, (u32)val, (u32)(val >> 32));
2457 		trace_kvm_apic_write(APIC_ICR, val);
2458 	} else {
2459 		/* TODO: optimize to just emulate side effect w/o one more write */
2460 		val = kvm_lapic_get_reg(apic, offset);
2461 		kvm_lapic_reg_write(apic, offset, (u32)val);
2462 	}
2463 }
2464 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2465 
2466 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2467 {
2468 	struct kvm_lapic *apic = vcpu->arch.apic;
2469 
2470 	if (!vcpu->arch.apic)
2471 		return;
2472 
2473 	hrtimer_cancel(&apic->lapic_timer.timer);
2474 
2475 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2476 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2477 
2478 	if (!apic->sw_enabled)
2479 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2480 
2481 	if (apic->regs)
2482 		free_page((unsigned long)apic->regs);
2483 
2484 	kfree(apic);
2485 }
2486 
2487 /*
2488  *----------------------------------------------------------------------
2489  * LAPIC interface
2490  *----------------------------------------------------------------------
2491  */
2492 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2493 {
2494 	struct kvm_lapic *apic = vcpu->arch.apic;
2495 
2496 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2497 		return 0;
2498 
2499 	return apic->lapic_timer.tscdeadline;
2500 }
2501 
2502 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2503 {
2504 	struct kvm_lapic *apic = vcpu->arch.apic;
2505 
2506 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2507 		return;
2508 
2509 	hrtimer_cancel(&apic->lapic_timer.timer);
2510 	apic->lapic_timer.tscdeadline = data;
2511 	start_apic_timer(apic);
2512 }
2513 
2514 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2515 {
2516 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2517 }
2518 
2519 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2520 {
2521 	u64 tpr;
2522 
2523 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2524 
2525 	return (tpr & 0xf0) >> 4;
2526 }
2527 
2528 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2529 {
2530 	u64 old_value = vcpu->arch.apic_base;
2531 	struct kvm_lapic *apic = vcpu->arch.apic;
2532 
2533 	vcpu->arch.apic_base = value;
2534 
2535 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2536 		kvm_update_cpuid_runtime(vcpu);
2537 
2538 	if (!apic)
2539 		return;
2540 
2541 	/* update jump label if enable bit changes */
2542 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2543 		if (value & MSR_IA32_APICBASE_ENABLE) {
2544 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2545 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2546 			/* Check if there are APF page ready requests pending */
2547 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2548 		} else {
2549 			static_branch_inc(&apic_hw_disabled.key);
2550 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2551 		}
2552 	}
2553 
2554 	if ((old_value ^ value) & X2APIC_ENABLE) {
2555 		if (value & X2APIC_ENABLE)
2556 			kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2557 		else if (value & MSR_IA32_APICBASE_ENABLE)
2558 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2559 	}
2560 
2561 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2562 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2563 		static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2564 	}
2565 
2566 	apic->base_address = apic->vcpu->arch.apic_base &
2567 			     MSR_IA32_APICBASE_BASE;
2568 
2569 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2570 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2571 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2572 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2573 	}
2574 }
2575 
2576 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2577 {
2578 	struct kvm_lapic *apic = vcpu->arch.apic;
2579 
2580 	if (apic->apicv_active) {
2581 		/* irr_pending is always true when apicv is activated. */
2582 		apic->irr_pending = true;
2583 		apic->isr_count = 1;
2584 	} else {
2585 		/*
2586 		 * Don't clear irr_pending, searching the IRR can race with
2587 		 * updates from the CPU as APICv is still active from hardware's
2588 		 * perspective.  The flag will be cleared as appropriate when
2589 		 * KVM injects the interrupt.
2590 		 */
2591 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2592 	}
2593 	apic->highest_isr_cache = -1;
2594 }
2595 
2596 int kvm_alloc_apic_access_page(struct kvm *kvm)
2597 {
2598 	struct page *page;
2599 	void __user *hva;
2600 	int ret = 0;
2601 
2602 	mutex_lock(&kvm->slots_lock);
2603 	if (kvm->arch.apic_access_memslot_enabled ||
2604 	    kvm->arch.apic_access_memslot_inhibited)
2605 		goto out;
2606 
2607 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2608 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2609 	if (IS_ERR(hva)) {
2610 		ret = PTR_ERR(hva);
2611 		goto out;
2612 	}
2613 
2614 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2615 	if (is_error_page(page)) {
2616 		ret = -EFAULT;
2617 		goto out;
2618 	}
2619 
2620 	/*
2621 	 * Do not pin the page in memory, so that memory hot-unplug
2622 	 * is able to migrate it.
2623 	 */
2624 	put_page(page);
2625 	kvm->arch.apic_access_memslot_enabled = true;
2626 out:
2627 	mutex_unlock(&kvm->slots_lock);
2628 	return ret;
2629 }
2630 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2631 
2632 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2633 {
2634 	struct kvm *kvm = vcpu->kvm;
2635 
2636 	if (!kvm->arch.apic_access_memslot_enabled)
2637 		return;
2638 
2639 	kvm_vcpu_srcu_read_unlock(vcpu);
2640 
2641 	mutex_lock(&kvm->slots_lock);
2642 
2643 	if (kvm->arch.apic_access_memslot_enabled) {
2644 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2645 		/*
2646 		 * Clear "enabled" after the memslot is deleted so that a
2647 		 * different vCPU doesn't get a false negative when checking
2648 		 * the flag out of slots_lock.  No additional memory barrier is
2649 		 * needed as modifying memslots requires waiting other vCPUs to
2650 		 * drop SRCU (see above), and false positives are ok as the
2651 		 * flag is rechecked after acquiring slots_lock.
2652 		 */
2653 		kvm->arch.apic_access_memslot_enabled = false;
2654 
2655 		/*
2656 		 * Mark the memslot as inhibited to prevent reallocating the
2657 		 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2658 		 */
2659 		kvm->arch.apic_access_memslot_inhibited = true;
2660 	}
2661 
2662 	mutex_unlock(&kvm->slots_lock);
2663 
2664 	kvm_vcpu_srcu_read_lock(vcpu);
2665 }
2666 
2667 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2668 {
2669 	struct kvm_lapic *apic = vcpu->arch.apic;
2670 	u64 msr_val;
2671 	int i;
2672 
2673 	if (!init_event) {
2674 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2675 		if (kvm_vcpu_is_reset_bsp(vcpu))
2676 			msr_val |= MSR_IA32_APICBASE_BSP;
2677 		kvm_lapic_set_base(vcpu, msr_val);
2678 	}
2679 
2680 	if (!apic)
2681 		return;
2682 
2683 	/* Stop the timer in case it's a reset to an active apic */
2684 	hrtimer_cancel(&apic->lapic_timer.timer);
2685 
2686 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2687 	if (!init_event)
2688 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2689 	kvm_apic_set_version(apic->vcpu);
2690 
2691 	for (i = 0; i < apic->nr_lvt_entries; i++)
2692 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2693 	apic_update_lvtt(apic);
2694 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2695 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2696 		kvm_lapic_set_reg(apic, APIC_LVT0,
2697 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2698 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2699 
2700 	kvm_apic_set_dfr(apic, 0xffffffffU);
2701 	apic_set_spiv(apic, 0xff);
2702 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2703 	if (!apic_x2apic_mode(apic))
2704 		kvm_apic_set_ldr(apic, 0);
2705 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2706 	if (!apic_x2apic_mode(apic)) {
2707 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2708 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2709 	} else {
2710 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2711 	}
2712 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2713 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2714 	for (i = 0; i < 8; i++) {
2715 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2716 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2717 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2718 	}
2719 	kvm_apic_update_apicv(vcpu);
2720 	update_divide_count(apic);
2721 	atomic_set(&apic->lapic_timer.pending, 0);
2722 
2723 	vcpu->arch.pv_eoi.msr_val = 0;
2724 	apic_update_ppr(apic);
2725 	if (apic->apicv_active) {
2726 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2727 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2728 		static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2729 	}
2730 
2731 	vcpu->arch.apic_arb_prio = 0;
2732 	vcpu->arch.apic_attention = 0;
2733 
2734 	kvm_recalculate_apic_map(vcpu->kvm);
2735 }
2736 
2737 /*
2738  *----------------------------------------------------------------------
2739  * timer interface
2740  *----------------------------------------------------------------------
2741  */
2742 
2743 static bool lapic_is_periodic(struct kvm_lapic *apic)
2744 {
2745 	return apic_lvtt_period(apic);
2746 }
2747 
2748 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2749 {
2750 	struct kvm_lapic *apic = vcpu->arch.apic;
2751 
2752 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2753 		return atomic_read(&apic->lapic_timer.pending);
2754 
2755 	return 0;
2756 }
2757 
2758 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2759 {
2760 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2761 	int vector, mode, trig_mode;
2762 
2763 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2764 		vector = reg & APIC_VECTOR_MASK;
2765 		mode = reg & APIC_MODE_MASK;
2766 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2767 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2768 					NULL);
2769 	}
2770 	return 0;
2771 }
2772 
2773 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2774 {
2775 	struct kvm_lapic *apic = vcpu->arch.apic;
2776 
2777 	if (apic)
2778 		kvm_apic_local_deliver(apic, APIC_LVT0);
2779 }
2780 
2781 static const struct kvm_io_device_ops apic_mmio_ops = {
2782 	.read     = apic_mmio_read,
2783 	.write    = apic_mmio_write,
2784 };
2785 
2786 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2787 {
2788 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2789 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2790 
2791 	apic_timer_expired(apic, true);
2792 
2793 	if (lapic_is_periodic(apic)) {
2794 		advance_periodic_target_expiration(apic);
2795 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2796 		return HRTIMER_RESTART;
2797 	} else
2798 		return HRTIMER_NORESTART;
2799 }
2800 
2801 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2802 {
2803 	struct kvm_lapic *apic;
2804 
2805 	ASSERT(vcpu != NULL);
2806 
2807 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2808 	if (!apic)
2809 		goto nomem;
2810 
2811 	vcpu->arch.apic = apic;
2812 
2813 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2814 	if (!apic->regs) {
2815 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2816 		       vcpu->vcpu_id);
2817 		goto nomem_free_apic;
2818 	}
2819 	apic->vcpu = vcpu;
2820 
2821 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2822 
2823 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2824 		     HRTIMER_MODE_ABS_HARD);
2825 	apic->lapic_timer.timer.function = apic_timer_fn;
2826 	if (timer_advance_ns == -1) {
2827 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2828 		lapic_timer_advance_dynamic = true;
2829 	} else {
2830 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2831 		lapic_timer_advance_dynamic = false;
2832 	}
2833 
2834 	/*
2835 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2836 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2837 	 */
2838 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2839 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2840 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2841 
2842 	return 0;
2843 nomem_free_apic:
2844 	kfree(apic);
2845 	vcpu->arch.apic = NULL;
2846 nomem:
2847 	return -ENOMEM;
2848 }
2849 
2850 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2851 {
2852 	struct kvm_lapic *apic = vcpu->arch.apic;
2853 	u32 ppr;
2854 
2855 	if (!kvm_apic_present(vcpu))
2856 		return -1;
2857 
2858 	__apic_update_ppr(apic, &ppr);
2859 	return apic_has_interrupt_for_ppr(apic, ppr);
2860 }
2861 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2862 
2863 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2864 {
2865 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2866 
2867 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2868 		return 1;
2869 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2870 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2871 		return 1;
2872 	return 0;
2873 }
2874 
2875 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2876 {
2877 	struct kvm_lapic *apic = vcpu->arch.apic;
2878 
2879 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2880 		kvm_apic_inject_pending_timer_irqs(apic);
2881 		atomic_set(&apic->lapic_timer.pending, 0);
2882 	}
2883 }
2884 
2885 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2886 {
2887 	int vector = kvm_apic_has_interrupt(vcpu);
2888 	struct kvm_lapic *apic = vcpu->arch.apic;
2889 	u32 ppr;
2890 
2891 	if (vector == -1)
2892 		return -1;
2893 
2894 	/*
2895 	 * We get here even with APIC virtualization enabled, if doing
2896 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2897 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2898 	 * because the process would deliver it through the IDT.
2899 	 */
2900 
2901 	apic_clear_irr(vector, apic);
2902 	if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2903 		/*
2904 		 * For auto-EOI interrupts, there might be another pending
2905 		 * interrupt above PPR, so check whether to raise another
2906 		 * KVM_REQ_EVENT.
2907 		 */
2908 		apic_update_ppr(apic);
2909 	} else {
2910 		/*
2911 		 * For normal interrupts, PPR has been raised and there cannot
2912 		 * be a higher-priority pending interrupt---except if there was
2913 		 * a concurrent interrupt injection, but that would have
2914 		 * triggered KVM_REQ_EVENT already.
2915 		 */
2916 		apic_set_isr(vector, apic);
2917 		__apic_update_ppr(apic, &ppr);
2918 	}
2919 
2920 	return vector;
2921 }
2922 
2923 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2924 		struct kvm_lapic_state *s, bool set)
2925 {
2926 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2927 		u32 *id = (u32 *)(s->regs + APIC_ID);
2928 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2929 		u64 icr;
2930 
2931 		if (vcpu->kvm->arch.x2apic_format) {
2932 			if (*id != vcpu->vcpu_id)
2933 				return -EINVAL;
2934 		} else {
2935 			if (set)
2936 				*id >>= 24;
2937 			else
2938 				*id <<= 24;
2939 		}
2940 
2941 		/*
2942 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
2943 		 * ICR is internally a single 64-bit register, but needs to be
2944 		 * split to ICR+ICR2 in userspace for backwards compatibility.
2945 		 */
2946 		if (set) {
2947 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2948 
2949 			icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2950 			      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2951 			__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2952 		} else {
2953 			icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2954 			__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2955 		}
2956 	}
2957 
2958 	return 0;
2959 }
2960 
2961 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2962 {
2963 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2964 
2965 	/*
2966 	 * Get calculated timer current count for remaining timer period (if
2967 	 * any) and store it in the returned register set.
2968 	 */
2969 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2970 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2971 
2972 	return kvm_apic_state_fixup(vcpu, s, false);
2973 }
2974 
2975 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2976 {
2977 	struct kvm_lapic *apic = vcpu->arch.apic;
2978 	int r;
2979 
2980 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2981 	/* set SPIV separately to get count of SW disabled APICs right */
2982 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2983 
2984 	r = kvm_apic_state_fixup(vcpu, s, true);
2985 	if (r) {
2986 		kvm_recalculate_apic_map(vcpu->kvm);
2987 		return r;
2988 	}
2989 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2990 
2991 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2992 	kvm_recalculate_apic_map(vcpu->kvm);
2993 	kvm_apic_set_version(vcpu);
2994 
2995 	apic_update_ppr(apic);
2996 	cancel_apic_timer(apic);
2997 	apic->lapic_timer.expired_tscdeadline = 0;
2998 	apic_update_lvtt(apic);
2999 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3000 	update_divide_count(apic);
3001 	__start_apic_timer(apic, APIC_TMCCT);
3002 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3003 	kvm_apic_update_apicv(vcpu);
3004 	if (apic->apicv_active) {
3005 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
3006 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
3007 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
3008 	}
3009 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3010 	if (ioapic_in_kernel(vcpu->kvm))
3011 		kvm_rtc_eoi_tracking_restore_one(vcpu);
3012 
3013 	vcpu->arch.apic_arb_prio = 0;
3014 
3015 	return 0;
3016 }
3017 
3018 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3019 {
3020 	struct hrtimer *timer;
3021 
3022 	if (!lapic_in_kernel(vcpu) ||
3023 		kvm_can_post_timer_interrupt(vcpu))
3024 		return;
3025 
3026 	timer = &vcpu->arch.apic->lapic_timer.timer;
3027 	if (hrtimer_cancel(timer))
3028 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3029 }
3030 
3031 /*
3032  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3033  *
3034  * Detect whether guest triggered PV EOI since the
3035  * last entry. If yes, set EOI on guests's behalf.
3036  * Clear PV EOI in guest memory in any case.
3037  */
3038 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3039 					struct kvm_lapic *apic)
3040 {
3041 	int vector;
3042 	/*
3043 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3044 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3045 	 *
3046 	 * KVM_APIC_PV_EOI_PENDING is unset:
3047 	 * 	-> host disabled PV EOI.
3048 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3049 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
3050 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3051 	 * 	-> host enabled PV EOI, guest executed EOI.
3052 	 */
3053 	BUG_ON(!pv_eoi_enabled(vcpu));
3054 
3055 	if (pv_eoi_test_and_clr_pending(vcpu))
3056 		return;
3057 	vector = apic_set_eoi(apic);
3058 	trace_kvm_pv_eoi(apic, vector);
3059 }
3060 
3061 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3062 {
3063 	u32 data;
3064 
3065 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3066 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3067 
3068 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3069 		return;
3070 
3071 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3072 				  sizeof(u32)))
3073 		return;
3074 
3075 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
3076 }
3077 
3078 /*
3079  * apic_sync_pv_eoi_to_guest - called before vmentry
3080  *
3081  * Detect whether it's safe to enable PV EOI and
3082  * if yes do so.
3083  */
3084 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3085 					struct kvm_lapic *apic)
3086 {
3087 	if (!pv_eoi_enabled(vcpu) ||
3088 	    /* IRR set or many bits in ISR: could be nested. */
3089 	    apic->irr_pending ||
3090 	    /* Cache not set: could be safe but we don't bother. */
3091 	    apic->highest_isr_cache == -1 ||
3092 	    /* Need EOI to update ioapic. */
3093 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3094 		/*
3095 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3096 		 * so we need not do anything here.
3097 		 */
3098 		return;
3099 	}
3100 
3101 	pv_eoi_set_pending(apic->vcpu);
3102 }
3103 
3104 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3105 {
3106 	u32 data, tpr;
3107 	int max_irr, max_isr;
3108 	struct kvm_lapic *apic = vcpu->arch.apic;
3109 
3110 	apic_sync_pv_eoi_to_guest(vcpu, apic);
3111 
3112 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3113 		return;
3114 
3115 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3116 	max_irr = apic_find_highest_irr(apic);
3117 	if (max_irr < 0)
3118 		max_irr = 0;
3119 	max_isr = apic_find_highest_isr(apic);
3120 	if (max_isr < 0)
3121 		max_isr = 0;
3122 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3123 
3124 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3125 				sizeof(u32));
3126 }
3127 
3128 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3129 {
3130 	if (vapic_addr) {
3131 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3132 					&vcpu->arch.apic->vapic_cache,
3133 					vapic_addr, sizeof(u32)))
3134 			return -EINVAL;
3135 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3136 	} else {
3137 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3138 	}
3139 
3140 	vcpu->arch.apic->vapic_addr = vapic_addr;
3141 	return 0;
3142 }
3143 
3144 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
3145 {
3146 	data &= ~APIC_ICR_BUSY;
3147 
3148 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
3149 	kvm_lapic_set_reg64(apic, APIC_ICR, data);
3150 	trace_kvm_apic_write(APIC_ICR, data);
3151 	return 0;
3152 }
3153 
3154 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3155 {
3156 	u32 low;
3157 
3158 	if (reg == APIC_ICR) {
3159 		*data = kvm_lapic_get_reg64(apic, APIC_ICR);
3160 		return 0;
3161 	}
3162 
3163 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
3164 		return 1;
3165 
3166 	*data = low;
3167 
3168 	return 0;
3169 }
3170 
3171 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3172 {
3173 	/*
3174 	 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3175 	 * can be written as such, all other registers remain accessible only
3176 	 * through 32-bit reads/writes.
3177 	 */
3178 	if (reg == APIC_ICR)
3179 		return kvm_x2apic_icr_write(apic, data);
3180 
3181 	/* Bits 63:32 are reserved in all other registers. */
3182 	if (data >> 32)
3183 		return 1;
3184 
3185 	return kvm_lapic_reg_write(apic, reg, (u32)data);
3186 }
3187 
3188 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3189 {
3190 	struct kvm_lapic *apic = vcpu->arch.apic;
3191 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3192 
3193 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3194 		return 1;
3195 
3196 	return kvm_lapic_msr_write(apic, reg, data);
3197 }
3198 
3199 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3200 {
3201 	struct kvm_lapic *apic = vcpu->arch.apic;
3202 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3203 
3204 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3205 		return 1;
3206 
3207 	return kvm_lapic_msr_read(apic, reg, data);
3208 }
3209 
3210 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3211 {
3212 	if (!lapic_in_kernel(vcpu))
3213 		return 1;
3214 
3215 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3216 }
3217 
3218 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3219 {
3220 	if (!lapic_in_kernel(vcpu))
3221 		return 1;
3222 
3223 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3224 }
3225 
3226 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3227 {
3228 	u64 addr = data & ~KVM_MSR_ENABLED;
3229 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3230 	unsigned long new_len;
3231 	int ret;
3232 
3233 	if (!IS_ALIGNED(addr, 4))
3234 		return 1;
3235 
3236 	if (data & KVM_MSR_ENABLED) {
3237 		if (addr == ghc->gpa && len <= ghc->len)
3238 			new_len = ghc->len;
3239 		else
3240 			new_len = len;
3241 
3242 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3243 		if (ret)
3244 			return ret;
3245 	}
3246 
3247 	vcpu->arch.pv_eoi.msr_val = data;
3248 
3249 	return 0;
3250 }
3251 
3252 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3253 {
3254 	struct kvm_lapic *apic = vcpu->arch.apic;
3255 	u8 sipi_vector;
3256 	int r;
3257 
3258 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3259 		return 0;
3260 
3261 	if (is_guest_mode(vcpu)) {
3262 		r = kvm_check_nested_events(vcpu);
3263 		if (r < 0)
3264 			return r == -EBUSY ? 0 : r;
3265 		/*
3266 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3267 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3268 		 * are blocked as a result of transitioning to VMX root mode.
3269 		 */
3270 	}
3271 
3272 	/*
3273 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3274 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3275 	 * wait-for-SIPI (WFS).
3276 	 */
3277 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3278 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3279 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3280 		return 0;
3281 	}
3282 
3283 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3284 		kvm_vcpu_reset(vcpu, true);
3285 		if (kvm_vcpu_is_bsp(apic->vcpu))
3286 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3287 		else
3288 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3289 	}
3290 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3291 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3292 			/* evaluate pending_events before reading the vector */
3293 			smp_rmb();
3294 			sipi_vector = apic->sipi_vector;
3295 			static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3296 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3297 		}
3298 	}
3299 	return 0;
3300 }
3301 
3302 void kvm_lapic_exit(void)
3303 {
3304 	static_key_deferred_flush(&apic_hw_disabled);
3305 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3306 	static_key_deferred_flush(&apic_sw_disabled);
3307 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3308 }
3309