xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/mce.h>
31 #include <asm/msr.h>
32 #include <asm/page.h>
33 #include <asm/current.h>
34 #include <asm/apicdef.h>
35 #include <asm/delay.h>
36 #include <linux/atomic.h>
37 #include <linux/jump_label.h>
38 #include "kvm_cache_regs.h"
39 #include "irq.h"
40 #include "ioapic.h"
41 #include "trace.h"
42 #include "x86.h"
43 #include "cpuid.h"
44 #include "hyperv.h"
45 #include "smm.h"
46 
47 #ifndef CONFIG_X86_64
48 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
49 #else
50 #define mod_64(x, y) ((x) % (y))
51 #endif
52 
53 #define PRId64 "d"
54 #define PRIx64 "llx"
55 #define PRIu64 "u"
56 #define PRIo64 "o"
57 
58 /* 14 is the version for Xeon and Pentium 8.4.8*/
59 #define APIC_VERSION			0x14UL
60 #define LAPIC_MMIO_LENGTH		(1 << 12)
61 /* followed define is not in apicdef.h */
62 #define MAX_APIC_VECTOR			256
63 #define APIC_VECTORS_PER_REG		32
64 
65 static bool lapic_timer_advance_dynamic __read_mostly;
66 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
67 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
68 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
69 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
70 /* step-by-step approximation to mitigate fluctuation */
71 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
72 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
73 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
74 
75 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
76 {
77 	*((u32 *) (regs + reg_off)) = val;
78 }
79 
80 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
81 {
82 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
83 }
84 
85 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
86 {
87 	BUILD_BUG_ON(reg != APIC_ICR);
88 	return *((u64 *) (regs + reg));
89 }
90 
91 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
92 {
93 	return __kvm_lapic_get_reg64(apic->regs, reg);
94 }
95 
96 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
97 {
98 	BUILD_BUG_ON(reg != APIC_ICR);
99 	*((u64 *) (regs + reg)) = val;
100 }
101 
102 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
103 						int reg, u64 val)
104 {
105 	__kvm_lapic_set_reg64(apic->regs, reg, val);
106 }
107 
108 static inline int apic_test_vector(int vec, void *bitmap)
109 {
110 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
111 }
112 
113 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
114 {
115 	struct kvm_lapic *apic = vcpu->arch.apic;
116 
117 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
118 		apic_test_vector(vector, apic->regs + APIC_IRR);
119 }
120 
121 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
122 {
123 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
124 }
125 
126 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
127 {
128 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
129 }
130 
131 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
132 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
133 
134 static inline int apic_enabled(struct kvm_lapic *apic)
135 {
136 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
137 }
138 
139 #define LVT_MASK	\
140 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
141 
142 #define LINT_MASK	\
143 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
144 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
145 
146 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
147 {
148 	return apic->vcpu->vcpu_id;
149 }
150 
151 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
152 {
153 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
154 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
155 }
156 
157 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
158 {
159 	return kvm_x86_ops.set_hv_timer
160 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
161 		    kvm_can_post_timer_interrupt(vcpu));
162 }
163 
164 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
165 {
166 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
167 }
168 
169 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
170 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
171 	switch (map->mode) {
172 	case KVM_APIC_MODE_X2APIC: {
173 		u32 offset = (dest_id >> 16) * 16;
174 		u32 max_apic_id = map->max_apic_id;
175 
176 		if (offset <= max_apic_id) {
177 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
178 
179 			offset = array_index_nospec(offset, map->max_apic_id + 1);
180 			*cluster = &map->phys_map[offset];
181 			*mask = dest_id & (0xffff >> (16 - cluster_size));
182 		} else {
183 			*mask = 0;
184 		}
185 
186 		return true;
187 		}
188 	case KVM_APIC_MODE_XAPIC_FLAT:
189 		*cluster = map->xapic_flat_map;
190 		*mask = dest_id & 0xff;
191 		return true;
192 	case KVM_APIC_MODE_XAPIC_CLUSTER:
193 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
194 		*mask = dest_id & 0xf;
195 		return true;
196 	default:
197 		/* Not optimized. */
198 		return false;
199 	}
200 }
201 
202 static void kvm_apic_map_free(struct rcu_head *rcu)
203 {
204 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
205 
206 	kvfree(map);
207 }
208 
209 /*
210  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
211  *
212  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
213  * apic_map_lock_held.
214  */
215 enum {
216 	CLEAN,
217 	UPDATE_IN_PROGRESS,
218 	DIRTY
219 };
220 
221 void kvm_recalculate_apic_map(struct kvm *kvm)
222 {
223 	struct kvm_apic_map *new, *old = NULL;
224 	struct kvm_vcpu *vcpu;
225 	unsigned long i;
226 	u32 max_id = 255; /* enough space for any xAPIC ID */
227 
228 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
229 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
230 		return;
231 
232 	WARN_ONCE(!irqchip_in_kernel(kvm),
233 		  "Dirty APIC map without an in-kernel local APIC");
234 
235 	mutex_lock(&kvm->arch.apic_map_lock);
236 	/*
237 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
238 	 * (if clean) or the APIC registers (if dirty).
239 	 */
240 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
241 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
242 		/* Someone else has updated the map. */
243 		mutex_unlock(&kvm->arch.apic_map_lock);
244 		return;
245 	}
246 
247 	kvm_for_each_vcpu(i, vcpu, kvm)
248 		if (kvm_apic_present(vcpu))
249 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
250 
251 	new = kvzalloc(sizeof(struct kvm_apic_map) +
252 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
253 			   GFP_KERNEL_ACCOUNT);
254 
255 	if (!new)
256 		goto out;
257 
258 	new->max_apic_id = max_id;
259 
260 	kvm_for_each_vcpu(i, vcpu, kvm) {
261 		struct kvm_lapic *apic = vcpu->arch.apic;
262 		struct kvm_lapic **cluster;
263 		u16 mask;
264 		u32 ldr;
265 		u8 xapic_id;
266 		u32 x2apic_id;
267 
268 		if (!kvm_apic_present(vcpu))
269 			continue;
270 
271 		xapic_id = kvm_xapic_id(apic);
272 		x2apic_id = kvm_x2apic_id(apic);
273 
274 		/* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
275 		if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
276 				x2apic_id <= new->max_apic_id)
277 			new->phys_map[x2apic_id] = apic;
278 		/*
279 		 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
280 		 * prevent them from masking VCPUs with APIC ID <= 0xff.
281 		 */
282 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
283 			new->phys_map[xapic_id] = apic;
284 
285 		if (!kvm_apic_sw_enabled(apic))
286 			continue;
287 
288 		ldr = kvm_lapic_get_reg(apic, APIC_LDR);
289 
290 		if (apic_x2apic_mode(apic)) {
291 			new->mode |= KVM_APIC_MODE_X2APIC;
292 		} else if (ldr) {
293 			ldr = GET_APIC_LOGICAL_ID(ldr);
294 			if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
295 				new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
296 			else
297 				new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
298 		}
299 
300 		if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
301 			continue;
302 
303 		if (mask)
304 			cluster[ffs(mask) - 1] = apic;
305 	}
306 out:
307 	old = rcu_dereference_protected(kvm->arch.apic_map,
308 			lockdep_is_held(&kvm->arch.apic_map_lock));
309 	rcu_assign_pointer(kvm->arch.apic_map, new);
310 	/*
311 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
312 	 * If another update has come in, leave it DIRTY.
313 	 */
314 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
315 			       UPDATE_IN_PROGRESS, CLEAN);
316 	mutex_unlock(&kvm->arch.apic_map_lock);
317 
318 	if (old)
319 		call_rcu(&old->rcu, kvm_apic_map_free);
320 
321 	kvm_make_scan_ioapic_request(kvm);
322 }
323 
324 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
325 {
326 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
327 
328 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
329 
330 	if (enabled != apic->sw_enabled) {
331 		apic->sw_enabled = enabled;
332 		if (enabled)
333 			static_branch_slow_dec_deferred(&apic_sw_disabled);
334 		else
335 			static_branch_inc(&apic_sw_disabled.key);
336 
337 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
338 	}
339 
340 	/* Check if there are APF page ready requests pending */
341 	if (enabled)
342 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
343 }
344 
345 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
346 {
347 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
348 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
349 }
350 
351 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
352 {
353 	kvm_lapic_set_reg(apic, APIC_LDR, id);
354 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
355 }
356 
357 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
358 {
359 	kvm_lapic_set_reg(apic, APIC_DFR, val);
360 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
361 }
362 
363 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
364 {
365 	return ((id >> 4) << 16) | (1 << (id & 0xf));
366 }
367 
368 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
369 {
370 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
371 
372 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
373 
374 	kvm_lapic_set_reg(apic, APIC_ID, id);
375 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
376 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
377 }
378 
379 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
380 {
381 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
382 }
383 
384 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
385 {
386 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
387 }
388 
389 static inline int apic_lvtt_period(struct kvm_lapic *apic)
390 {
391 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
392 }
393 
394 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
395 {
396 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
397 }
398 
399 static inline int apic_lvt_nmi_mode(u32 lvt_val)
400 {
401 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
402 }
403 
404 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
405 {
406 	return apic->nr_lvt_entries > lvt_index;
407 }
408 
409 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
410 {
411 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
412 }
413 
414 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
415 {
416 	struct kvm_lapic *apic = vcpu->arch.apic;
417 	u32 v = 0;
418 
419 	if (!lapic_in_kernel(vcpu))
420 		return;
421 
422 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
423 
424 	/*
425 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
426 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
427 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
428 	 * version first and level-triggered interrupts never get EOIed in
429 	 * IOAPIC.
430 	 */
431 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
432 	    !ioapic_in_kernel(vcpu->kvm))
433 		v |= APIC_LVR_DIRECTED_EOI;
434 	kvm_lapic_set_reg(apic, APIC_LVR, v);
435 }
436 
437 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
438 {
439 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
440 	struct kvm_lapic *apic = vcpu->arch.apic;
441 	int i;
442 
443 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
444 		return;
445 
446 	/* Initialize/mask any "new" LVT entries. */
447 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
448 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
449 
450 	apic->nr_lvt_entries = nr_lvt_entries;
451 
452 	/* The number of LVT entries is reflected in the version register. */
453 	kvm_apic_set_version(vcpu);
454 }
455 
456 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
457 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
458 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
459 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
460 	[LVT_LINT0] = LINT_MASK,
461 	[LVT_LINT1] = LINT_MASK,
462 	[LVT_ERROR] = LVT_MASK,
463 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
464 };
465 
466 static int find_highest_vector(void *bitmap)
467 {
468 	int vec;
469 	u32 *reg;
470 
471 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
472 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
473 		reg = bitmap + REG_POS(vec);
474 		if (*reg)
475 			return __fls(*reg) + vec;
476 	}
477 
478 	return -1;
479 }
480 
481 static u8 count_vectors(void *bitmap)
482 {
483 	int vec;
484 	u32 *reg;
485 	u8 count = 0;
486 
487 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
488 		reg = bitmap + REG_POS(vec);
489 		count += hweight32(*reg);
490 	}
491 
492 	return count;
493 }
494 
495 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
496 {
497 	u32 i, vec;
498 	u32 pir_val, irr_val, prev_irr_val;
499 	int max_updated_irr;
500 
501 	max_updated_irr = -1;
502 	*max_irr = -1;
503 
504 	for (i = vec = 0; i <= 7; i++, vec += 32) {
505 		pir_val = READ_ONCE(pir[i]);
506 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
507 		if (pir_val) {
508 			prev_irr_val = irr_val;
509 			irr_val |= xchg(&pir[i], 0);
510 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
511 			if (prev_irr_val != irr_val) {
512 				max_updated_irr =
513 					__fls(irr_val ^ prev_irr_val) + vec;
514 			}
515 		}
516 		if (irr_val)
517 			*max_irr = __fls(irr_val) + vec;
518 	}
519 
520 	return ((max_updated_irr != -1) &&
521 		(max_updated_irr == *max_irr));
522 }
523 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
524 
525 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
526 {
527 	struct kvm_lapic *apic = vcpu->arch.apic;
528 
529 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
530 }
531 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
532 
533 static inline int apic_search_irr(struct kvm_lapic *apic)
534 {
535 	return find_highest_vector(apic->regs + APIC_IRR);
536 }
537 
538 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
539 {
540 	int result;
541 
542 	/*
543 	 * Note that irr_pending is just a hint. It will be always
544 	 * true with virtual interrupt delivery enabled.
545 	 */
546 	if (!apic->irr_pending)
547 		return -1;
548 
549 	result = apic_search_irr(apic);
550 	ASSERT(result == -1 || result >= 16);
551 
552 	return result;
553 }
554 
555 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
556 {
557 	if (unlikely(apic->apicv_active)) {
558 		/* need to update RVI */
559 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
560 		static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
561 							    apic_find_highest_irr(apic));
562 	} else {
563 		apic->irr_pending = false;
564 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
565 		if (apic_search_irr(apic) != -1)
566 			apic->irr_pending = true;
567 	}
568 }
569 
570 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
571 {
572 	apic_clear_irr(vec, vcpu->arch.apic);
573 }
574 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
575 
576 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
577 {
578 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
579 		return;
580 
581 	/*
582 	 * With APIC virtualization enabled, all caching is disabled
583 	 * because the processor can modify ISR under the hood.  Instead
584 	 * just set SVI.
585 	 */
586 	if (unlikely(apic->apicv_active))
587 		static_call_cond(kvm_x86_hwapic_isr_update)(vec);
588 	else {
589 		++apic->isr_count;
590 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
591 		/*
592 		 * ISR (in service register) bit is set when injecting an interrupt.
593 		 * The highest vector is injected. Thus the latest bit set matches
594 		 * the highest bit in ISR.
595 		 */
596 		apic->highest_isr_cache = vec;
597 	}
598 }
599 
600 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
601 {
602 	int result;
603 
604 	/*
605 	 * Note that isr_count is always 1, and highest_isr_cache
606 	 * is always -1, with APIC virtualization enabled.
607 	 */
608 	if (!apic->isr_count)
609 		return -1;
610 	if (likely(apic->highest_isr_cache != -1))
611 		return apic->highest_isr_cache;
612 
613 	result = find_highest_vector(apic->regs + APIC_ISR);
614 	ASSERT(result == -1 || result >= 16);
615 
616 	return result;
617 }
618 
619 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
620 {
621 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
622 		return;
623 
624 	/*
625 	 * We do get here for APIC virtualization enabled if the guest
626 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
627 	 * to trigger a new interrupt delivery by writing the SVI field;
628 	 * on the other hand isr_count and highest_isr_cache are unused
629 	 * and must be left alone.
630 	 */
631 	if (unlikely(apic->apicv_active))
632 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
633 	else {
634 		--apic->isr_count;
635 		BUG_ON(apic->isr_count < 0);
636 		apic->highest_isr_cache = -1;
637 	}
638 }
639 
640 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
641 {
642 	/* This may race with setting of irr in __apic_accept_irq() and
643 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
644 	 * will cause vmexit immediately and the value will be recalculated
645 	 * on the next vmentry.
646 	 */
647 	return apic_find_highest_irr(vcpu->arch.apic);
648 }
649 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
650 
651 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
652 			     int vector, int level, int trig_mode,
653 			     struct dest_map *dest_map);
654 
655 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
656 		     struct dest_map *dest_map)
657 {
658 	struct kvm_lapic *apic = vcpu->arch.apic;
659 
660 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
661 			irq->level, irq->trig_mode, dest_map);
662 }
663 
664 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
665 			 struct kvm_lapic_irq *irq, u32 min)
666 {
667 	int i, count = 0;
668 	struct kvm_vcpu *vcpu;
669 
670 	if (min > map->max_apic_id)
671 		return 0;
672 
673 	for_each_set_bit(i, ipi_bitmap,
674 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
675 		if (map->phys_map[min + i]) {
676 			vcpu = map->phys_map[min + i]->vcpu;
677 			count += kvm_apic_set_irq(vcpu, irq, NULL);
678 		}
679 	}
680 
681 	return count;
682 }
683 
684 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
685 		    unsigned long ipi_bitmap_high, u32 min,
686 		    unsigned long icr, int op_64_bit)
687 {
688 	struct kvm_apic_map *map;
689 	struct kvm_lapic_irq irq = {0};
690 	int cluster_size = op_64_bit ? 64 : 32;
691 	int count;
692 
693 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
694 		return -KVM_EINVAL;
695 
696 	irq.vector = icr & APIC_VECTOR_MASK;
697 	irq.delivery_mode = icr & APIC_MODE_MASK;
698 	irq.level = (icr & APIC_INT_ASSERT) != 0;
699 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
700 
701 	rcu_read_lock();
702 	map = rcu_dereference(kvm->arch.apic_map);
703 
704 	count = -EOPNOTSUPP;
705 	if (likely(map)) {
706 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
707 		min += cluster_size;
708 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
709 	}
710 
711 	rcu_read_unlock();
712 	return count;
713 }
714 
715 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
716 {
717 
718 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
719 				      sizeof(val));
720 }
721 
722 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
723 {
724 
725 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
726 				      sizeof(*val));
727 }
728 
729 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
730 {
731 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
732 }
733 
734 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
735 {
736 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
737 		return;
738 
739 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
740 }
741 
742 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
743 {
744 	u8 val;
745 
746 	if (pv_eoi_get_user(vcpu, &val) < 0)
747 		return false;
748 
749 	val &= KVM_PV_EOI_ENABLED;
750 
751 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
752 		return false;
753 
754 	/*
755 	 * Clear pending bit in any case: it will be set again on vmentry.
756 	 * While this might not be ideal from performance point of view,
757 	 * this makes sure pv eoi is only enabled when we know it's safe.
758 	 */
759 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
760 
761 	return val;
762 }
763 
764 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
765 {
766 	int highest_irr;
767 	if (kvm_x86_ops.sync_pir_to_irr)
768 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
769 	else
770 		highest_irr = apic_find_highest_irr(apic);
771 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
772 		return -1;
773 	return highest_irr;
774 }
775 
776 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
777 {
778 	u32 tpr, isrv, ppr, old_ppr;
779 	int isr;
780 
781 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
782 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
783 	isr = apic_find_highest_isr(apic);
784 	isrv = (isr != -1) ? isr : 0;
785 
786 	if ((tpr & 0xf0) >= (isrv & 0xf0))
787 		ppr = tpr & 0xff;
788 	else
789 		ppr = isrv & 0xf0;
790 
791 	*new_ppr = ppr;
792 	if (old_ppr != ppr)
793 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
794 
795 	return ppr < old_ppr;
796 }
797 
798 static void apic_update_ppr(struct kvm_lapic *apic)
799 {
800 	u32 ppr;
801 
802 	if (__apic_update_ppr(apic, &ppr) &&
803 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
804 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
805 }
806 
807 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
808 {
809 	apic_update_ppr(vcpu->arch.apic);
810 }
811 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
812 
813 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
814 {
815 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
816 	apic_update_ppr(apic);
817 }
818 
819 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
820 {
821 	return mda == (apic_x2apic_mode(apic) ?
822 			X2APIC_BROADCAST : APIC_BROADCAST);
823 }
824 
825 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
826 {
827 	if (kvm_apic_broadcast(apic, mda))
828 		return true;
829 
830 	/*
831 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
832 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
833 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
834 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
835 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
836 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
837 	 * changed its (addressable) xAPIC ID (which is writable).
838 	 */
839 	if (apic_x2apic_mode(apic) || mda > 0xff)
840 		return mda == kvm_x2apic_id(apic);
841 
842 	return mda == kvm_xapic_id(apic);
843 }
844 
845 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
846 {
847 	u32 logical_id;
848 
849 	if (kvm_apic_broadcast(apic, mda))
850 		return true;
851 
852 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
853 
854 	if (apic_x2apic_mode(apic))
855 		return ((logical_id >> 16) == (mda >> 16))
856 		       && (logical_id & mda & 0xffff) != 0;
857 
858 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
859 
860 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
861 	case APIC_DFR_FLAT:
862 		return (logical_id & mda) != 0;
863 	case APIC_DFR_CLUSTER:
864 		return ((logical_id >> 4) == (mda >> 4))
865 		       && (logical_id & mda & 0xf) != 0;
866 	default:
867 		return false;
868 	}
869 }
870 
871 /* The KVM local APIC implementation has two quirks:
872  *
873  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
874  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
875  *    KVM doesn't do that aliasing.
876  *
877  *  - in-kernel IOAPIC messages have to be delivered directly to
878  *    x2APIC, because the kernel does not support interrupt remapping.
879  *    In order to support broadcast without interrupt remapping, x2APIC
880  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
881  *    to X2APIC_BROADCAST.
882  *
883  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
884  * important when userspace wants to use x2APIC-format MSIs, because
885  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
886  */
887 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
888 		struct kvm_lapic *source, struct kvm_lapic *target)
889 {
890 	bool ipi = source != NULL;
891 
892 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
893 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
894 		return X2APIC_BROADCAST;
895 
896 	return dest_id;
897 }
898 
899 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
900 			   int shorthand, unsigned int dest, int dest_mode)
901 {
902 	struct kvm_lapic *target = vcpu->arch.apic;
903 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
904 
905 	ASSERT(target);
906 	switch (shorthand) {
907 	case APIC_DEST_NOSHORT:
908 		if (dest_mode == APIC_DEST_PHYSICAL)
909 			return kvm_apic_match_physical_addr(target, mda);
910 		else
911 			return kvm_apic_match_logical_addr(target, mda);
912 	case APIC_DEST_SELF:
913 		return target == source;
914 	case APIC_DEST_ALLINC:
915 		return true;
916 	case APIC_DEST_ALLBUT:
917 		return target != source;
918 	default:
919 		return false;
920 	}
921 }
922 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
923 
924 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
925 		       const unsigned long *bitmap, u32 bitmap_size)
926 {
927 	u32 mod;
928 	int i, idx = -1;
929 
930 	mod = vector % dest_vcpus;
931 
932 	for (i = 0; i <= mod; i++) {
933 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
934 		BUG_ON(idx == bitmap_size);
935 	}
936 
937 	return idx;
938 }
939 
940 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
941 {
942 	if (!kvm->arch.disabled_lapic_found) {
943 		kvm->arch.disabled_lapic_found = true;
944 		printk(KERN_INFO
945 		       "Disabled LAPIC found during irq injection\n");
946 	}
947 }
948 
949 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
950 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
951 {
952 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
953 		if ((irq->dest_id == APIC_BROADCAST &&
954 				map->mode != KVM_APIC_MODE_X2APIC))
955 			return true;
956 		if (irq->dest_id == X2APIC_BROADCAST)
957 			return true;
958 	} else {
959 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
960 		if (irq->dest_id == (x2apic_ipi ?
961 		                     X2APIC_BROADCAST : APIC_BROADCAST))
962 			return true;
963 	}
964 
965 	return false;
966 }
967 
968 /* Return true if the interrupt can be handled by using *bitmap as index mask
969  * for valid destinations in *dst array.
970  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
971  * Note: we may have zero kvm_lapic destinations when we return true, which
972  * means that the interrupt should be dropped.  In this case, *bitmap would be
973  * zero and *dst undefined.
974  */
975 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
976 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
977 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
978 		unsigned long *bitmap)
979 {
980 	int i, lowest;
981 
982 	if (irq->shorthand == APIC_DEST_SELF && src) {
983 		*dst = src;
984 		*bitmap = 1;
985 		return true;
986 	} else if (irq->shorthand)
987 		return false;
988 
989 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
990 		return false;
991 
992 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
993 		if (irq->dest_id > map->max_apic_id) {
994 			*bitmap = 0;
995 		} else {
996 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
997 			*dst = &map->phys_map[dest_id];
998 			*bitmap = 1;
999 		}
1000 		return true;
1001 	}
1002 
1003 	*bitmap = 0;
1004 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1005 				(u16 *)bitmap))
1006 		return false;
1007 
1008 	if (!kvm_lowest_prio_delivery(irq))
1009 		return true;
1010 
1011 	if (!kvm_vector_hashing_enabled()) {
1012 		lowest = -1;
1013 		for_each_set_bit(i, bitmap, 16) {
1014 			if (!(*dst)[i])
1015 				continue;
1016 			if (lowest < 0)
1017 				lowest = i;
1018 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1019 						(*dst)[lowest]->vcpu) < 0)
1020 				lowest = i;
1021 		}
1022 	} else {
1023 		if (!*bitmap)
1024 			return true;
1025 
1026 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1027 				bitmap, 16);
1028 
1029 		if (!(*dst)[lowest]) {
1030 			kvm_apic_disabled_lapic_found(kvm);
1031 			*bitmap = 0;
1032 			return true;
1033 		}
1034 	}
1035 
1036 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1037 
1038 	return true;
1039 }
1040 
1041 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1042 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1043 {
1044 	struct kvm_apic_map *map;
1045 	unsigned long bitmap;
1046 	struct kvm_lapic **dst = NULL;
1047 	int i;
1048 	bool ret;
1049 
1050 	*r = -1;
1051 
1052 	if (irq->shorthand == APIC_DEST_SELF) {
1053 		if (KVM_BUG_ON(!src, kvm)) {
1054 			*r = 0;
1055 			return true;
1056 		}
1057 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1058 		return true;
1059 	}
1060 
1061 	rcu_read_lock();
1062 	map = rcu_dereference(kvm->arch.apic_map);
1063 
1064 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1065 	if (ret) {
1066 		*r = 0;
1067 		for_each_set_bit(i, &bitmap, 16) {
1068 			if (!dst[i])
1069 				continue;
1070 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1071 		}
1072 	}
1073 
1074 	rcu_read_unlock();
1075 	return ret;
1076 }
1077 
1078 /*
1079  * This routine tries to handle interrupts in posted mode, here is how
1080  * it deals with different cases:
1081  * - For single-destination interrupts, handle it in posted mode
1082  * - Else if vector hashing is enabled and it is a lowest-priority
1083  *   interrupt, handle it in posted mode and use the following mechanism
1084  *   to find the destination vCPU.
1085  *	1. For lowest-priority interrupts, store all the possible
1086  *	   destination vCPUs in an array.
1087  *	2. Use "guest vector % max number of destination vCPUs" to find
1088  *	   the right destination vCPU in the array for the lowest-priority
1089  *	   interrupt.
1090  * - Otherwise, use remapped mode to inject the interrupt.
1091  */
1092 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1093 			struct kvm_vcpu **dest_vcpu)
1094 {
1095 	struct kvm_apic_map *map;
1096 	unsigned long bitmap;
1097 	struct kvm_lapic **dst = NULL;
1098 	bool ret = false;
1099 
1100 	if (irq->shorthand)
1101 		return false;
1102 
1103 	rcu_read_lock();
1104 	map = rcu_dereference(kvm->arch.apic_map);
1105 
1106 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1107 			hweight16(bitmap) == 1) {
1108 		unsigned long i = find_first_bit(&bitmap, 16);
1109 
1110 		if (dst[i]) {
1111 			*dest_vcpu = dst[i]->vcpu;
1112 			ret = true;
1113 		}
1114 	}
1115 
1116 	rcu_read_unlock();
1117 	return ret;
1118 }
1119 
1120 /*
1121  * Add a pending IRQ into lapic.
1122  * Return 1 if successfully added and 0 if discarded.
1123  */
1124 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1125 			     int vector, int level, int trig_mode,
1126 			     struct dest_map *dest_map)
1127 {
1128 	int result = 0;
1129 	struct kvm_vcpu *vcpu = apic->vcpu;
1130 
1131 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1132 				  trig_mode, vector);
1133 	switch (delivery_mode) {
1134 	case APIC_DM_LOWEST:
1135 		vcpu->arch.apic_arb_prio++;
1136 		fallthrough;
1137 	case APIC_DM_FIXED:
1138 		if (unlikely(trig_mode && !level))
1139 			break;
1140 
1141 		/* FIXME add logic for vcpu on reset */
1142 		if (unlikely(!apic_enabled(apic)))
1143 			break;
1144 
1145 		result = 1;
1146 
1147 		if (dest_map) {
1148 			__set_bit(vcpu->vcpu_id, dest_map->map);
1149 			dest_map->vectors[vcpu->vcpu_id] = vector;
1150 		}
1151 
1152 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1153 			if (trig_mode)
1154 				kvm_lapic_set_vector(vector,
1155 						     apic->regs + APIC_TMR);
1156 			else
1157 				kvm_lapic_clear_vector(vector,
1158 						       apic->regs + APIC_TMR);
1159 		}
1160 
1161 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1162 						       trig_mode, vector);
1163 		break;
1164 
1165 	case APIC_DM_REMRD:
1166 		result = 1;
1167 		vcpu->arch.pv.pv_unhalted = 1;
1168 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1169 		kvm_vcpu_kick(vcpu);
1170 		break;
1171 
1172 	case APIC_DM_SMI:
1173 		if (!kvm_inject_smi(vcpu)) {
1174 			kvm_vcpu_kick(vcpu);
1175 			result = 1;
1176 		}
1177 		break;
1178 
1179 	case APIC_DM_NMI:
1180 		result = 1;
1181 		kvm_inject_nmi(vcpu);
1182 		kvm_vcpu_kick(vcpu);
1183 		break;
1184 
1185 	case APIC_DM_INIT:
1186 		if (!trig_mode || level) {
1187 			result = 1;
1188 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1189 			apic->pending_events = (1UL << KVM_APIC_INIT);
1190 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1191 			kvm_vcpu_kick(vcpu);
1192 		}
1193 		break;
1194 
1195 	case APIC_DM_STARTUP:
1196 		result = 1;
1197 		apic->sipi_vector = vector;
1198 		/* make sure sipi_vector is visible for the receiver */
1199 		smp_wmb();
1200 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1201 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1202 		kvm_vcpu_kick(vcpu);
1203 		break;
1204 
1205 	case APIC_DM_EXTINT:
1206 		/*
1207 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1208 		 * before NMI watchdog was enabled. Already handled by
1209 		 * kvm_apic_accept_pic_intr().
1210 		 */
1211 		break;
1212 
1213 	default:
1214 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1215 		       delivery_mode);
1216 		break;
1217 	}
1218 	return result;
1219 }
1220 
1221 /*
1222  * This routine identifies the destination vcpus mask meant to receive the
1223  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1224  * out the destination vcpus array and set the bitmap or it traverses to
1225  * each available vcpu to identify the same.
1226  */
1227 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1228 			      unsigned long *vcpu_bitmap)
1229 {
1230 	struct kvm_lapic **dest_vcpu = NULL;
1231 	struct kvm_lapic *src = NULL;
1232 	struct kvm_apic_map *map;
1233 	struct kvm_vcpu *vcpu;
1234 	unsigned long bitmap, i;
1235 	int vcpu_idx;
1236 	bool ret;
1237 
1238 	rcu_read_lock();
1239 	map = rcu_dereference(kvm->arch.apic_map);
1240 
1241 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1242 					  &bitmap);
1243 	if (ret) {
1244 		for_each_set_bit(i, &bitmap, 16) {
1245 			if (!dest_vcpu[i])
1246 				continue;
1247 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1248 			__set_bit(vcpu_idx, vcpu_bitmap);
1249 		}
1250 	} else {
1251 		kvm_for_each_vcpu(i, vcpu, kvm) {
1252 			if (!kvm_apic_present(vcpu))
1253 				continue;
1254 			if (!kvm_apic_match_dest(vcpu, NULL,
1255 						 irq->shorthand,
1256 						 irq->dest_id,
1257 						 irq->dest_mode))
1258 				continue;
1259 			__set_bit(i, vcpu_bitmap);
1260 		}
1261 	}
1262 	rcu_read_unlock();
1263 }
1264 
1265 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1266 {
1267 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1268 }
1269 
1270 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1271 {
1272 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1273 }
1274 
1275 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1276 {
1277 	int trigger_mode;
1278 
1279 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1280 	if (!kvm_ioapic_handles_vector(apic, vector))
1281 		return;
1282 
1283 	/* Request a KVM exit to inform the userspace IOAPIC. */
1284 	if (irqchip_split(apic->vcpu->kvm)) {
1285 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1286 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1287 		return;
1288 	}
1289 
1290 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1291 		trigger_mode = IOAPIC_LEVEL_TRIG;
1292 	else
1293 		trigger_mode = IOAPIC_EDGE_TRIG;
1294 
1295 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1296 }
1297 
1298 static int apic_set_eoi(struct kvm_lapic *apic)
1299 {
1300 	int vector = apic_find_highest_isr(apic);
1301 
1302 	trace_kvm_eoi(apic, vector);
1303 
1304 	/*
1305 	 * Not every write EOI will has corresponding ISR,
1306 	 * one example is when Kernel check timer on setup_IO_APIC
1307 	 */
1308 	if (vector == -1)
1309 		return vector;
1310 
1311 	apic_clear_isr(vector, apic);
1312 	apic_update_ppr(apic);
1313 
1314 	if (to_hv_vcpu(apic->vcpu) &&
1315 	    test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1316 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1317 
1318 	kvm_ioapic_send_eoi(apic, vector);
1319 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1320 	return vector;
1321 }
1322 
1323 /*
1324  * this interface assumes a trap-like exit, which has already finished
1325  * desired side effect including vISR and vPPR update.
1326  */
1327 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1328 {
1329 	struct kvm_lapic *apic = vcpu->arch.apic;
1330 
1331 	trace_kvm_eoi(apic, vector);
1332 
1333 	kvm_ioapic_send_eoi(apic, vector);
1334 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1337 
1338 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1339 {
1340 	struct kvm_lapic_irq irq;
1341 
1342 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1343 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1344 
1345 	irq.vector = icr_low & APIC_VECTOR_MASK;
1346 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1347 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1348 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1349 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1350 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1351 	irq.msi_redir_hint = false;
1352 	if (apic_x2apic_mode(apic))
1353 		irq.dest_id = icr_high;
1354 	else
1355 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1356 
1357 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1358 
1359 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1362 
1363 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1364 {
1365 	ktime_t remaining, now;
1366 	s64 ns;
1367 	u32 tmcct;
1368 
1369 	ASSERT(apic != NULL);
1370 
1371 	/* if initial count is 0, current count should also be 0 */
1372 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1373 		apic->lapic_timer.period == 0)
1374 		return 0;
1375 
1376 	now = ktime_get();
1377 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1378 	if (ktime_to_ns(remaining) < 0)
1379 		remaining = 0;
1380 
1381 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1382 	tmcct = div64_u64(ns,
1383 			 (APIC_BUS_CYCLE_NS * apic->divide_count));
1384 
1385 	return tmcct;
1386 }
1387 
1388 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1389 {
1390 	struct kvm_vcpu *vcpu = apic->vcpu;
1391 	struct kvm_run *run = vcpu->run;
1392 
1393 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1394 	run->tpr_access.rip = kvm_rip_read(vcpu);
1395 	run->tpr_access.is_write = write;
1396 }
1397 
1398 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1399 {
1400 	if (apic->vcpu->arch.tpr_access_reporting)
1401 		__report_tpr_access(apic, write);
1402 }
1403 
1404 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1405 {
1406 	u32 val = 0;
1407 
1408 	if (offset >= LAPIC_MMIO_LENGTH)
1409 		return 0;
1410 
1411 	switch (offset) {
1412 	case APIC_ARBPRI:
1413 		break;
1414 
1415 	case APIC_TMCCT:	/* Timer CCR */
1416 		if (apic_lvtt_tscdeadline(apic))
1417 			return 0;
1418 
1419 		val = apic_get_tmcct(apic);
1420 		break;
1421 	case APIC_PROCPRI:
1422 		apic_update_ppr(apic);
1423 		val = kvm_lapic_get_reg(apic, offset);
1424 		break;
1425 	case APIC_TASKPRI:
1426 		report_tpr_access(apic, false);
1427 		fallthrough;
1428 	default:
1429 		val = kvm_lapic_get_reg(apic, offset);
1430 		break;
1431 	}
1432 
1433 	return val;
1434 }
1435 
1436 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1437 {
1438 	return container_of(dev, struct kvm_lapic, dev);
1439 }
1440 
1441 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1442 #define APIC_REGS_MASK(first, count) \
1443 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1444 
1445 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1446 			      void *data)
1447 {
1448 	unsigned char alignment = offset & 0xf;
1449 	u32 result;
1450 	/* this bitmask has a bit cleared for each reserved register */
1451 	u64 valid_reg_mask =
1452 		APIC_REG_MASK(APIC_ID) |
1453 		APIC_REG_MASK(APIC_LVR) |
1454 		APIC_REG_MASK(APIC_TASKPRI) |
1455 		APIC_REG_MASK(APIC_PROCPRI) |
1456 		APIC_REG_MASK(APIC_LDR) |
1457 		APIC_REG_MASK(APIC_DFR) |
1458 		APIC_REG_MASK(APIC_SPIV) |
1459 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1460 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1461 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1462 		APIC_REG_MASK(APIC_ESR) |
1463 		APIC_REG_MASK(APIC_ICR) |
1464 		APIC_REG_MASK(APIC_LVTT) |
1465 		APIC_REG_MASK(APIC_LVTTHMR) |
1466 		APIC_REG_MASK(APIC_LVTPC) |
1467 		APIC_REG_MASK(APIC_LVT0) |
1468 		APIC_REG_MASK(APIC_LVT1) |
1469 		APIC_REG_MASK(APIC_LVTERR) |
1470 		APIC_REG_MASK(APIC_TMICT) |
1471 		APIC_REG_MASK(APIC_TMCCT) |
1472 		APIC_REG_MASK(APIC_TDCR);
1473 
1474 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1475 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1476 
1477 	/*
1478 	 * ARBPRI and ICR2 are not valid in x2APIC mode.  WARN if KVM reads ICR
1479 	 * in x2APIC mode as it's an 8-byte register in x2APIC and needs to be
1480 	 * manually handled by the caller.
1481 	 */
1482 	if (!apic_x2apic_mode(apic))
1483 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1484 				  APIC_REG_MASK(APIC_ICR2);
1485 	else
1486 		WARN_ON_ONCE(offset == APIC_ICR);
1487 
1488 	if (alignment + len > 4)
1489 		return 1;
1490 
1491 	if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1492 		return 1;
1493 
1494 	result = __apic_read(apic, offset & ~0xf);
1495 
1496 	trace_kvm_apic_read(offset, result);
1497 
1498 	switch (len) {
1499 	case 1:
1500 	case 2:
1501 	case 4:
1502 		memcpy(data, (char *)&result + alignment, len);
1503 		break;
1504 	default:
1505 		printk(KERN_ERR "Local APIC read with len = %x, "
1506 		       "should be 1,2, or 4 instead\n", len);
1507 		break;
1508 	}
1509 	return 0;
1510 }
1511 
1512 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1513 {
1514 	return addr >= apic->base_address &&
1515 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1516 }
1517 
1518 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1519 			   gpa_t address, int len, void *data)
1520 {
1521 	struct kvm_lapic *apic = to_lapic(this);
1522 	u32 offset = address - apic->base_address;
1523 
1524 	if (!apic_mmio_in_range(apic, address))
1525 		return -EOPNOTSUPP;
1526 
1527 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1528 		if (!kvm_check_has_quirk(vcpu->kvm,
1529 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1530 			return -EOPNOTSUPP;
1531 
1532 		memset(data, 0xff, len);
1533 		return 0;
1534 	}
1535 
1536 	kvm_lapic_reg_read(apic, offset, len, data);
1537 
1538 	return 0;
1539 }
1540 
1541 static void update_divide_count(struct kvm_lapic *apic)
1542 {
1543 	u32 tmp1, tmp2, tdcr;
1544 
1545 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1546 	tmp1 = tdcr & 0xf;
1547 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1548 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1549 }
1550 
1551 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1552 {
1553 	/*
1554 	 * Do not allow the guest to program periodic timers with small
1555 	 * interval, since the hrtimers are not throttled by the host
1556 	 * scheduler.
1557 	 */
1558 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1559 		s64 min_period = min_timer_period_us * 1000LL;
1560 
1561 		if (apic->lapic_timer.period < min_period) {
1562 			pr_info_ratelimited(
1563 			    "kvm: vcpu %i: requested %lld ns "
1564 			    "lapic timer period limited to %lld ns\n",
1565 			    apic->vcpu->vcpu_id,
1566 			    apic->lapic_timer.period, min_period);
1567 			apic->lapic_timer.period = min_period;
1568 		}
1569 	}
1570 }
1571 
1572 static void cancel_hv_timer(struct kvm_lapic *apic);
1573 
1574 static void cancel_apic_timer(struct kvm_lapic *apic)
1575 {
1576 	hrtimer_cancel(&apic->lapic_timer.timer);
1577 	preempt_disable();
1578 	if (apic->lapic_timer.hv_timer_in_use)
1579 		cancel_hv_timer(apic);
1580 	preempt_enable();
1581 	atomic_set(&apic->lapic_timer.pending, 0);
1582 }
1583 
1584 static void apic_update_lvtt(struct kvm_lapic *apic)
1585 {
1586 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1587 			apic->lapic_timer.timer_mode_mask;
1588 
1589 	if (apic->lapic_timer.timer_mode != timer_mode) {
1590 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1591 				APIC_LVT_TIMER_TSCDEADLINE)) {
1592 			cancel_apic_timer(apic);
1593 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1594 			apic->lapic_timer.period = 0;
1595 			apic->lapic_timer.tscdeadline = 0;
1596 		}
1597 		apic->lapic_timer.timer_mode = timer_mode;
1598 		limit_periodic_timer_frequency(apic);
1599 	}
1600 }
1601 
1602 /*
1603  * On APICv, this test will cause a busy wait
1604  * during a higher-priority task.
1605  */
1606 
1607 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1608 {
1609 	struct kvm_lapic *apic = vcpu->arch.apic;
1610 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1611 
1612 	if (kvm_apic_hw_enabled(apic)) {
1613 		int vec = reg & APIC_VECTOR_MASK;
1614 		void *bitmap = apic->regs + APIC_ISR;
1615 
1616 		if (apic->apicv_active)
1617 			bitmap = apic->regs + APIC_IRR;
1618 
1619 		if (apic_test_vector(vec, bitmap))
1620 			return true;
1621 	}
1622 	return false;
1623 }
1624 
1625 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1626 {
1627 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1628 
1629 	/*
1630 	 * If the guest TSC is running at a different ratio than the host, then
1631 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1632 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1633 	 * always for VMX enabled hardware.
1634 	 */
1635 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1636 		__delay(min(guest_cycles,
1637 			nsec_to_cycles(vcpu, timer_advance_ns)));
1638 	} else {
1639 		u64 delay_ns = guest_cycles * 1000000ULL;
1640 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1641 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1642 	}
1643 }
1644 
1645 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1646 					      s64 advance_expire_delta)
1647 {
1648 	struct kvm_lapic *apic = vcpu->arch.apic;
1649 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1650 	u64 ns;
1651 
1652 	/* Do not adjust for tiny fluctuations or large random spikes. */
1653 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1654 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1655 		return;
1656 
1657 	/* too early */
1658 	if (advance_expire_delta < 0) {
1659 		ns = -advance_expire_delta * 1000000ULL;
1660 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1661 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1662 	} else {
1663 	/* too late */
1664 		ns = advance_expire_delta * 1000000ULL;
1665 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1666 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1667 	}
1668 
1669 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1670 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1671 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1672 }
1673 
1674 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1675 {
1676 	struct kvm_lapic *apic = vcpu->arch.apic;
1677 	u64 guest_tsc, tsc_deadline;
1678 
1679 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1680 	apic->lapic_timer.expired_tscdeadline = 0;
1681 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1682 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1683 
1684 	if (lapic_timer_advance_dynamic) {
1685 		adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1686 		/*
1687 		 * If the timer fired early, reread the TSC to account for the
1688 		 * overhead of the above adjustment to avoid waiting longer
1689 		 * than is necessary.
1690 		 */
1691 		if (guest_tsc < tsc_deadline)
1692 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1693 	}
1694 
1695 	if (guest_tsc < tsc_deadline)
1696 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1697 }
1698 
1699 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1700 {
1701 	if (lapic_in_kernel(vcpu) &&
1702 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1703 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1704 	    lapic_timer_int_injected(vcpu))
1705 		__kvm_wait_lapic_expire(vcpu);
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1708 
1709 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1710 {
1711 	struct kvm_timer *ktimer = &apic->lapic_timer;
1712 
1713 	kvm_apic_local_deliver(apic, APIC_LVTT);
1714 	if (apic_lvtt_tscdeadline(apic)) {
1715 		ktimer->tscdeadline = 0;
1716 	} else if (apic_lvtt_oneshot(apic)) {
1717 		ktimer->tscdeadline = 0;
1718 		ktimer->target_expiration = 0;
1719 	}
1720 }
1721 
1722 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1723 {
1724 	struct kvm_vcpu *vcpu = apic->vcpu;
1725 	struct kvm_timer *ktimer = &apic->lapic_timer;
1726 
1727 	if (atomic_read(&apic->lapic_timer.pending))
1728 		return;
1729 
1730 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1731 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1732 
1733 	if (!from_timer_fn && apic->apicv_active) {
1734 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1735 		kvm_apic_inject_pending_timer_irqs(apic);
1736 		return;
1737 	}
1738 
1739 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1740 		/*
1741 		 * Ensure the guest's timer has truly expired before posting an
1742 		 * interrupt.  Open code the relevant checks to avoid querying
1743 		 * lapic_timer_int_injected(), which will be false since the
1744 		 * interrupt isn't yet injected.  Waiting until after injecting
1745 		 * is not an option since that won't help a posted interrupt.
1746 		 */
1747 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1748 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1749 			__kvm_wait_lapic_expire(vcpu);
1750 		kvm_apic_inject_pending_timer_irqs(apic);
1751 		return;
1752 	}
1753 
1754 	atomic_inc(&apic->lapic_timer.pending);
1755 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1756 	if (from_timer_fn)
1757 		kvm_vcpu_kick(vcpu);
1758 }
1759 
1760 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1761 {
1762 	struct kvm_timer *ktimer = &apic->lapic_timer;
1763 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1764 	u64 ns = 0;
1765 	ktime_t expire;
1766 	struct kvm_vcpu *vcpu = apic->vcpu;
1767 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1768 	unsigned long flags;
1769 	ktime_t now;
1770 
1771 	if (unlikely(!tscdeadline || !this_tsc_khz))
1772 		return;
1773 
1774 	local_irq_save(flags);
1775 
1776 	now = ktime_get();
1777 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1778 
1779 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1780 	do_div(ns, this_tsc_khz);
1781 
1782 	if (likely(tscdeadline > guest_tsc) &&
1783 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1784 		expire = ktime_add_ns(now, ns);
1785 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1786 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1787 	} else
1788 		apic_timer_expired(apic, false);
1789 
1790 	local_irq_restore(flags);
1791 }
1792 
1793 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1794 {
1795 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1796 }
1797 
1798 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1799 {
1800 	ktime_t now, remaining;
1801 	u64 ns_remaining_old, ns_remaining_new;
1802 
1803 	apic->lapic_timer.period =
1804 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1805 	limit_periodic_timer_frequency(apic);
1806 
1807 	now = ktime_get();
1808 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1809 	if (ktime_to_ns(remaining) < 0)
1810 		remaining = 0;
1811 
1812 	ns_remaining_old = ktime_to_ns(remaining);
1813 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1814 	                                   apic->divide_count, old_divisor);
1815 
1816 	apic->lapic_timer.tscdeadline +=
1817 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1818 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1819 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1820 }
1821 
1822 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1823 {
1824 	ktime_t now;
1825 	u64 tscl = rdtsc();
1826 	s64 deadline;
1827 
1828 	now = ktime_get();
1829 	apic->lapic_timer.period =
1830 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1831 
1832 	if (!apic->lapic_timer.period) {
1833 		apic->lapic_timer.tscdeadline = 0;
1834 		return false;
1835 	}
1836 
1837 	limit_periodic_timer_frequency(apic);
1838 	deadline = apic->lapic_timer.period;
1839 
1840 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1841 		if (unlikely(count_reg != APIC_TMICT)) {
1842 			deadline = tmict_to_ns(apic,
1843 				     kvm_lapic_get_reg(apic, count_reg));
1844 			if (unlikely(deadline <= 0))
1845 				deadline = apic->lapic_timer.period;
1846 			else if (unlikely(deadline > apic->lapic_timer.period)) {
1847 				pr_info_ratelimited(
1848 				    "kvm: vcpu %i: requested lapic timer restore with "
1849 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
1850 				    "Using initial count to start timer.\n",
1851 				    apic->vcpu->vcpu_id,
1852 				    count_reg,
1853 				    kvm_lapic_get_reg(apic, count_reg),
1854 				    deadline, apic->lapic_timer.period);
1855 				kvm_lapic_set_reg(apic, count_reg, 0);
1856 				deadline = apic->lapic_timer.period;
1857 			}
1858 		}
1859 	}
1860 
1861 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1862 		nsec_to_cycles(apic->vcpu, deadline);
1863 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
1864 
1865 	return true;
1866 }
1867 
1868 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1869 {
1870 	ktime_t now = ktime_get();
1871 	u64 tscl = rdtsc();
1872 	ktime_t delta;
1873 
1874 	/*
1875 	 * Synchronize both deadlines to the same time source or
1876 	 * differences in the periods (caused by differences in the
1877 	 * underlying clocks or numerical approximation errors) will
1878 	 * cause the two to drift apart over time as the errors
1879 	 * accumulate.
1880 	 */
1881 	apic->lapic_timer.target_expiration =
1882 		ktime_add_ns(apic->lapic_timer.target_expiration,
1883 				apic->lapic_timer.period);
1884 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1885 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1886 		nsec_to_cycles(apic->vcpu, delta);
1887 }
1888 
1889 static void start_sw_period(struct kvm_lapic *apic)
1890 {
1891 	if (!apic->lapic_timer.period)
1892 		return;
1893 
1894 	if (ktime_after(ktime_get(),
1895 			apic->lapic_timer.target_expiration)) {
1896 		apic_timer_expired(apic, false);
1897 
1898 		if (apic_lvtt_oneshot(apic))
1899 			return;
1900 
1901 		advance_periodic_target_expiration(apic);
1902 	}
1903 
1904 	hrtimer_start(&apic->lapic_timer.timer,
1905 		apic->lapic_timer.target_expiration,
1906 		HRTIMER_MODE_ABS_HARD);
1907 }
1908 
1909 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1910 {
1911 	if (!lapic_in_kernel(vcpu))
1912 		return false;
1913 
1914 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1915 }
1916 
1917 static void cancel_hv_timer(struct kvm_lapic *apic)
1918 {
1919 	WARN_ON(preemptible());
1920 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1921 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
1922 	apic->lapic_timer.hv_timer_in_use = false;
1923 }
1924 
1925 static bool start_hv_timer(struct kvm_lapic *apic)
1926 {
1927 	struct kvm_timer *ktimer = &apic->lapic_timer;
1928 	struct kvm_vcpu *vcpu = apic->vcpu;
1929 	bool expired;
1930 
1931 	WARN_ON(preemptible());
1932 	if (!kvm_can_use_hv_timer(vcpu))
1933 		return false;
1934 
1935 	if (!ktimer->tscdeadline)
1936 		return false;
1937 
1938 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
1939 		return false;
1940 
1941 	ktimer->hv_timer_in_use = true;
1942 	hrtimer_cancel(&ktimer->timer);
1943 
1944 	/*
1945 	 * To simplify handling the periodic timer, leave the hv timer running
1946 	 * even if the deadline timer has expired, i.e. rely on the resulting
1947 	 * VM-Exit to recompute the periodic timer's target expiration.
1948 	 */
1949 	if (!apic_lvtt_period(apic)) {
1950 		/*
1951 		 * Cancel the hv timer if the sw timer fired while the hv timer
1952 		 * was being programmed, or if the hv timer itself expired.
1953 		 */
1954 		if (atomic_read(&ktimer->pending)) {
1955 			cancel_hv_timer(apic);
1956 		} else if (expired) {
1957 			apic_timer_expired(apic, false);
1958 			cancel_hv_timer(apic);
1959 		}
1960 	}
1961 
1962 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1963 
1964 	return true;
1965 }
1966 
1967 static void start_sw_timer(struct kvm_lapic *apic)
1968 {
1969 	struct kvm_timer *ktimer = &apic->lapic_timer;
1970 
1971 	WARN_ON(preemptible());
1972 	if (apic->lapic_timer.hv_timer_in_use)
1973 		cancel_hv_timer(apic);
1974 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1975 		return;
1976 
1977 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1978 		start_sw_period(apic);
1979 	else if (apic_lvtt_tscdeadline(apic))
1980 		start_sw_tscdeadline(apic);
1981 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1982 }
1983 
1984 static void restart_apic_timer(struct kvm_lapic *apic)
1985 {
1986 	preempt_disable();
1987 
1988 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1989 		goto out;
1990 
1991 	if (!start_hv_timer(apic))
1992 		start_sw_timer(apic);
1993 out:
1994 	preempt_enable();
1995 }
1996 
1997 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1998 {
1999 	struct kvm_lapic *apic = vcpu->arch.apic;
2000 
2001 	preempt_disable();
2002 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2003 	if (!apic->lapic_timer.hv_timer_in_use)
2004 		goto out;
2005 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2006 	apic_timer_expired(apic, false);
2007 	cancel_hv_timer(apic);
2008 
2009 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2010 		advance_periodic_target_expiration(apic);
2011 		restart_apic_timer(apic);
2012 	}
2013 out:
2014 	preempt_enable();
2015 }
2016 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2017 
2018 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2019 {
2020 	restart_apic_timer(vcpu->arch.apic);
2021 }
2022 
2023 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2024 {
2025 	struct kvm_lapic *apic = vcpu->arch.apic;
2026 
2027 	preempt_disable();
2028 	/* Possibly the TSC deadline timer is not enabled yet */
2029 	if (apic->lapic_timer.hv_timer_in_use)
2030 		start_sw_timer(apic);
2031 	preempt_enable();
2032 }
2033 
2034 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2035 {
2036 	struct kvm_lapic *apic = vcpu->arch.apic;
2037 
2038 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2039 	restart_apic_timer(apic);
2040 }
2041 
2042 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2043 {
2044 	atomic_set(&apic->lapic_timer.pending, 0);
2045 
2046 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2047 	    && !set_target_expiration(apic, count_reg))
2048 		return;
2049 
2050 	restart_apic_timer(apic);
2051 }
2052 
2053 static void start_apic_timer(struct kvm_lapic *apic)
2054 {
2055 	__start_apic_timer(apic, APIC_TMICT);
2056 }
2057 
2058 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2059 {
2060 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2061 
2062 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2063 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2064 		if (lvt0_in_nmi_mode) {
2065 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2066 		} else
2067 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2068 	}
2069 }
2070 
2071 static void kvm_lapic_xapic_id_updated(struct kvm_lapic *apic)
2072 {
2073 	struct kvm *kvm = apic->vcpu->kvm;
2074 
2075 	if (KVM_BUG_ON(apic_x2apic_mode(apic), kvm))
2076 		return;
2077 
2078 	if (kvm_xapic_id(apic) == apic->vcpu->vcpu_id)
2079 		return;
2080 
2081 	kvm_set_apicv_inhibit(apic->vcpu->kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
2082 }
2083 
2084 static int get_lvt_index(u32 reg)
2085 {
2086 	if (reg == APIC_LVTCMCI)
2087 		return LVT_CMCI;
2088 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2089 		return -1;
2090 	return array_index_nospec(
2091 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2092 }
2093 
2094 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2095 {
2096 	int ret = 0;
2097 
2098 	trace_kvm_apic_write(reg, val);
2099 
2100 	switch (reg) {
2101 	case APIC_ID:		/* Local APIC ID */
2102 		if (!apic_x2apic_mode(apic)) {
2103 			kvm_apic_set_xapic_id(apic, val >> 24);
2104 			kvm_lapic_xapic_id_updated(apic);
2105 		} else {
2106 			ret = 1;
2107 		}
2108 		break;
2109 
2110 	case APIC_TASKPRI:
2111 		report_tpr_access(apic, true);
2112 		apic_set_tpr(apic, val & 0xff);
2113 		break;
2114 
2115 	case APIC_EOI:
2116 		apic_set_eoi(apic);
2117 		break;
2118 
2119 	case APIC_LDR:
2120 		if (!apic_x2apic_mode(apic))
2121 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2122 		else
2123 			ret = 1;
2124 		break;
2125 
2126 	case APIC_DFR:
2127 		if (!apic_x2apic_mode(apic))
2128 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2129 		else
2130 			ret = 1;
2131 		break;
2132 
2133 	case APIC_SPIV: {
2134 		u32 mask = 0x3ff;
2135 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2136 			mask |= APIC_SPIV_DIRECTED_EOI;
2137 		apic_set_spiv(apic, val & mask);
2138 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2139 			int i;
2140 
2141 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2142 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2143 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2144 			}
2145 			apic_update_lvtt(apic);
2146 			atomic_set(&apic->lapic_timer.pending, 0);
2147 
2148 		}
2149 		break;
2150 	}
2151 	case APIC_ICR:
2152 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2153 
2154 		/* No delay here, so we always clear the pending bit */
2155 		val &= ~APIC_ICR_BUSY;
2156 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2157 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2158 		break;
2159 	case APIC_ICR2:
2160 		if (apic_x2apic_mode(apic))
2161 			ret = 1;
2162 		else
2163 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2164 		break;
2165 
2166 	case APIC_LVT0:
2167 		apic_manage_nmi_watchdog(apic, val);
2168 		fallthrough;
2169 	case APIC_LVTTHMR:
2170 	case APIC_LVTPC:
2171 	case APIC_LVT1:
2172 	case APIC_LVTERR:
2173 	case APIC_LVTCMCI: {
2174 		u32 index = get_lvt_index(reg);
2175 		if (!kvm_lapic_lvt_supported(apic, index)) {
2176 			ret = 1;
2177 			break;
2178 		}
2179 		if (!kvm_apic_sw_enabled(apic))
2180 			val |= APIC_LVT_MASKED;
2181 		val &= apic_lvt_mask[index];
2182 		kvm_lapic_set_reg(apic, reg, val);
2183 		break;
2184 	}
2185 
2186 	case APIC_LVTT:
2187 		if (!kvm_apic_sw_enabled(apic))
2188 			val |= APIC_LVT_MASKED;
2189 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2190 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2191 		apic_update_lvtt(apic);
2192 		break;
2193 
2194 	case APIC_TMICT:
2195 		if (apic_lvtt_tscdeadline(apic))
2196 			break;
2197 
2198 		cancel_apic_timer(apic);
2199 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2200 		start_apic_timer(apic);
2201 		break;
2202 
2203 	case APIC_TDCR: {
2204 		uint32_t old_divisor = apic->divide_count;
2205 
2206 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2207 		update_divide_count(apic);
2208 		if (apic->divide_count != old_divisor &&
2209 				apic->lapic_timer.period) {
2210 			hrtimer_cancel(&apic->lapic_timer.timer);
2211 			update_target_expiration(apic, old_divisor);
2212 			restart_apic_timer(apic);
2213 		}
2214 		break;
2215 	}
2216 	case APIC_ESR:
2217 		if (apic_x2apic_mode(apic) && val != 0)
2218 			ret = 1;
2219 		break;
2220 
2221 	case APIC_SELF_IPI:
2222 		if (apic_x2apic_mode(apic))
2223 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | (val & APIC_VECTOR_MASK), 0);
2224 		else
2225 			ret = 1;
2226 		break;
2227 	default:
2228 		ret = 1;
2229 		break;
2230 	}
2231 
2232 	/*
2233 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2234 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2235 	 * on relevant changes, i.e. this is a nop for most writes.
2236 	 */
2237 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2238 
2239 	return ret;
2240 }
2241 
2242 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2243 			    gpa_t address, int len, const void *data)
2244 {
2245 	struct kvm_lapic *apic = to_lapic(this);
2246 	unsigned int offset = address - apic->base_address;
2247 	u32 val;
2248 
2249 	if (!apic_mmio_in_range(apic, address))
2250 		return -EOPNOTSUPP;
2251 
2252 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2253 		if (!kvm_check_has_quirk(vcpu->kvm,
2254 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2255 			return -EOPNOTSUPP;
2256 
2257 		return 0;
2258 	}
2259 
2260 	/*
2261 	 * APIC register must be aligned on 128-bits boundary.
2262 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2263 	 * Refer SDM 8.4.1
2264 	 */
2265 	if (len != 4 || (offset & 0xf))
2266 		return 0;
2267 
2268 	val = *(u32*)data;
2269 
2270 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2271 
2272 	return 0;
2273 }
2274 
2275 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2276 {
2277 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2278 }
2279 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2280 
2281 /* emulate APIC access in a trap manner */
2282 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2283 {
2284 	struct kvm_lapic *apic = vcpu->arch.apic;
2285 	u64 val;
2286 
2287 	if (apic_x2apic_mode(apic)) {
2288 		if (KVM_BUG_ON(kvm_lapic_msr_read(apic, offset, &val), vcpu->kvm))
2289 			return;
2290 	} else {
2291 		val = kvm_lapic_get_reg(apic, offset);
2292 	}
2293 
2294 	/*
2295 	 * ICR is a single 64-bit register when x2APIC is enabled.  For legacy
2296 	 * xAPIC, ICR writes need to go down the common (slightly slower) path
2297 	 * to get the upper half from ICR2.
2298 	 */
2299 	if (apic_x2apic_mode(apic) && offset == APIC_ICR) {
2300 		kvm_apic_send_ipi(apic, (u32)val, (u32)(val >> 32));
2301 		trace_kvm_apic_write(APIC_ICR, val);
2302 	} else {
2303 		/* TODO: optimize to just emulate side effect w/o one more write */
2304 		kvm_lapic_reg_write(apic, offset, (u32)val);
2305 	}
2306 }
2307 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2308 
2309 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2310 {
2311 	struct kvm_lapic *apic = vcpu->arch.apic;
2312 
2313 	if (!vcpu->arch.apic)
2314 		return;
2315 
2316 	hrtimer_cancel(&apic->lapic_timer.timer);
2317 
2318 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2319 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2320 
2321 	if (!apic->sw_enabled)
2322 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2323 
2324 	if (apic->regs)
2325 		free_page((unsigned long)apic->regs);
2326 
2327 	kfree(apic);
2328 }
2329 
2330 /*
2331  *----------------------------------------------------------------------
2332  * LAPIC interface
2333  *----------------------------------------------------------------------
2334  */
2335 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2336 {
2337 	struct kvm_lapic *apic = vcpu->arch.apic;
2338 
2339 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2340 		return 0;
2341 
2342 	return apic->lapic_timer.tscdeadline;
2343 }
2344 
2345 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2346 {
2347 	struct kvm_lapic *apic = vcpu->arch.apic;
2348 
2349 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2350 		return;
2351 
2352 	hrtimer_cancel(&apic->lapic_timer.timer);
2353 	apic->lapic_timer.tscdeadline = data;
2354 	start_apic_timer(apic);
2355 }
2356 
2357 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2358 {
2359 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2360 }
2361 
2362 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2363 {
2364 	u64 tpr;
2365 
2366 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2367 
2368 	return (tpr & 0xf0) >> 4;
2369 }
2370 
2371 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2372 {
2373 	u64 old_value = vcpu->arch.apic_base;
2374 	struct kvm_lapic *apic = vcpu->arch.apic;
2375 
2376 	vcpu->arch.apic_base = value;
2377 
2378 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2379 		kvm_update_cpuid_runtime(vcpu);
2380 
2381 	if (!apic)
2382 		return;
2383 
2384 	/* update jump label if enable bit changes */
2385 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2386 		if (value & MSR_IA32_APICBASE_ENABLE) {
2387 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2388 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2389 			/* Check if there are APF page ready requests pending */
2390 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2391 		} else {
2392 			static_branch_inc(&apic_hw_disabled.key);
2393 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2394 		}
2395 	}
2396 
2397 	if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2398 		kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2399 
2400 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2401 		kvm_vcpu_update_apicv(vcpu);
2402 		static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2403 	}
2404 
2405 	apic->base_address = apic->vcpu->arch.apic_base &
2406 			     MSR_IA32_APICBASE_BASE;
2407 
2408 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2409 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2410 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2411 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2412 	}
2413 }
2414 
2415 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2416 {
2417 	struct kvm_lapic *apic = vcpu->arch.apic;
2418 
2419 	if (apic->apicv_active) {
2420 		/* irr_pending is always true when apicv is activated. */
2421 		apic->irr_pending = true;
2422 		apic->isr_count = 1;
2423 	} else {
2424 		/*
2425 		 * Don't clear irr_pending, searching the IRR can race with
2426 		 * updates from the CPU as APICv is still active from hardware's
2427 		 * perspective.  The flag will be cleared as appropriate when
2428 		 * KVM injects the interrupt.
2429 		 */
2430 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2431 	}
2432 }
2433 
2434 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2435 {
2436 	struct kvm_lapic *apic = vcpu->arch.apic;
2437 	u64 msr_val;
2438 	int i;
2439 
2440 	if (!init_event) {
2441 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2442 		if (kvm_vcpu_is_reset_bsp(vcpu))
2443 			msr_val |= MSR_IA32_APICBASE_BSP;
2444 		kvm_lapic_set_base(vcpu, msr_val);
2445 	}
2446 
2447 	if (!apic)
2448 		return;
2449 
2450 	/* Stop the timer in case it's a reset to an active apic */
2451 	hrtimer_cancel(&apic->lapic_timer.timer);
2452 
2453 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2454 	if (!init_event)
2455 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2456 	kvm_apic_set_version(apic->vcpu);
2457 
2458 	for (i = 0; i < apic->nr_lvt_entries; i++)
2459 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2460 	apic_update_lvtt(apic);
2461 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2462 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2463 		kvm_lapic_set_reg(apic, APIC_LVT0,
2464 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2465 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2466 
2467 	kvm_apic_set_dfr(apic, 0xffffffffU);
2468 	apic_set_spiv(apic, 0xff);
2469 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2470 	if (!apic_x2apic_mode(apic))
2471 		kvm_apic_set_ldr(apic, 0);
2472 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2473 	if (!apic_x2apic_mode(apic)) {
2474 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2475 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2476 	} else {
2477 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2478 	}
2479 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2480 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2481 	for (i = 0; i < 8; i++) {
2482 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2483 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2484 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2485 	}
2486 	kvm_apic_update_apicv(vcpu);
2487 	apic->highest_isr_cache = -1;
2488 	update_divide_count(apic);
2489 	atomic_set(&apic->lapic_timer.pending, 0);
2490 
2491 	vcpu->arch.pv_eoi.msr_val = 0;
2492 	apic_update_ppr(apic);
2493 	if (apic->apicv_active) {
2494 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2495 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2496 		static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2497 	}
2498 
2499 	vcpu->arch.apic_arb_prio = 0;
2500 	vcpu->arch.apic_attention = 0;
2501 
2502 	kvm_recalculate_apic_map(vcpu->kvm);
2503 }
2504 
2505 /*
2506  *----------------------------------------------------------------------
2507  * timer interface
2508  *----------------------------------------------------------------------
2509  */
2510 
2511 static bool lapic_is_periodic(struct kvm_lapic *apic)
2512 {
2513 	return apic_lvtt_period(apic);
2514 }
2515 
2516 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2517 {
2518 	struct kvm_lapic *apic = vcpu->arch.apic;
2519 
2520 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2521 		return atomic_read(&apic->lapic_timer.pending);
2522 
2523 	return 0;
2524 }
2525 
2526 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2527 {
2528 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2529 	int vector, mode, trig_mode;
2530 
2531 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2532 		vector = reg & APIC_VECTOR_MASK;
2533 		mode = reg & APIC_MODE_MASK;
2534 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2535 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2536 					NULL);
2537 	}
2538 	return 0;
2539 }
2540 
2541 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2542 {
2543 	struct kvm_lapic *apic = vcpu->arch.apic;
2544 
2545 	if (apic)
2546 		kvm_apic_local_deliver(apic, APIC_LVT0);
2547 }
2548 
2549 static const struct kvm_io_device_ops apic_mmio_ops = {
2550 	.read     = apic_mmio_read,
2551 	.write    = apic_mmio_write,
2552 };
2553 
2554 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2555 {
2556 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2557 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2558 
2559 	apic_timer_expired(apic, true);
2560 
2561 	if (lapic_is_periodic(apic)) {
2562 		advance_periodic_target_expiration(apic);
2563 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2564 		return HRTIMER_RESTART;
2565 	} else
2566 		return HRTIMER_NORESTART;
2567 }
2568 
2569 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2570 {
2571 	struct kvm_lapic *apic;
2572 
2573 	ASSERT(vcpu != NULL);
2574 
2575 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2576 	if (!apic)
2577 		goto nomem;
2578 
2579 	vcpu->arch.apic = apic;
2580 
2581 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2582 	if (!apic->regs) {
2583 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2584 		       vcpu->vcpu_id);
2585 		goto nomem_free_apic;
2586 	}
2587 	apic->vcpu = vcpu;
2588 
2589 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2590 
2591 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2592 		     HRTIMER_MODE_ABS_HARD);
2593 	apic->lapic_timer.timer.function = apic_timer_fn;
2594 	if (timer_advance_ns == -1) {
2595 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2596 		lapic_timer_advance_dynamic = true;
2597 	} else {
2598 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2599 		lapic_timer_advance_dynamic = false;
2600 	}
2601 
2602 	/*
2603 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2604 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2605 	 */
2606 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2607 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2608 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2609 
2610 	return 0;
2611 nomem_free_apic:
2612 	kfree(apic);
2613 	vcpu->arch.apic = NULL;
2614 nomem:
2615 	return -ENOMEM;
2616 }
2617 
2618 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2619 {
2620 	struct kvm_lapic *apic = vcpu->arch.apic;
2621 	u32 ppr;
2622 
2623 	if (!kvm_apic_present(vcpu))
2624 		return -1;
2625 
2626 	__apic_update_ppr(apic, &ppr);
2627 	return apic_has_interrupt_for_ppr(apic, ppr);
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2630 
2631 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2632 {
2633 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2634 
2635 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2636 		return 1;
2637 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2638 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2639 		return 1;
2640 	return 0;
2641 }
2642 
2643 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2644 {
2645 	struct kvm_lapic *apic = vcpu->arch.apic;
2646 
2647 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2648 		kvm_apic_inject_pending_timer_irqs(apic);
2649 		atomic_set(&apic->lapic_timer.pending, 0);
2650 	}
2651 }
2652 
2653 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2654 {
2655 	int vector = kvm_apic_has_interrupt(vcpu);
2656 	struct kvm_lapic *apic = vcpu->arch.apic;
2657 	u32 ppr;
2658 
2659 	if (vector == -1)
2660 		return -1;
2661 
2662 	/*
2663 	 * We get here even with APIC virtualization enabled, if doing
2664 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2665 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2666 	 * because the process would deliver it through the IDT.
2667 	 */
2668 
2669 	apic_clear_irr(vector, apic);
2670 	if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2671 		/*
2672 		 * For auto-EOI interrupts, there might be another pending
2673 		 * interrupt above PPR, so check whether to raise another
2674 		 * KVM_REQ_EVENT.
2675 		 */
2676 		apic_update_ppr(apic);
2677 	} else {
2678 		/*
2679 		 * For normal interrupts, PPR has been raised and there cannot
2680 		 * be a higher-priority pending interrupt---except if there was
2681 		 * a concurrent interrupt injection, but that would have
2682 		 * triggered KVM_REQ_EVENT already.
2683 		 */
2684 		apic_set_isr(vector, apic);
2685 		__apic_update_ppr(apic, &ppr);
2686 	}
2687 
2688 	return vector;
2689 }
2690 
2691 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2692 		struct kvm_lapic_state *s, bool set)
2693 {
2694 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2695 		u32 *id = (u32 *)(s->regs + APIC_ID);
2696 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2697 		u64 icr;
2698 
2699 		if (vcpu->kvm->arch.x2apic_format) {
2700 			if (*id != vcpu->vcpu_id)
2701 				return -EINVAL;
2702 		} else {
2703 			if (set)
2704 				*id >>= 24;
2705 			else
2706 				*id <<= 24;
2707 		}
2708 
2709 		/*
2710 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
2711 		 * ICR is internally a single 64-bit register, but needs to be
2712 		 * split to ICR+ICR2 in userspace for backwards compatibility.
2713 		 */
2714 		if (set) {
2715 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2716 
2717 			icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2718 			      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2719 			__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2720 		} else {
2721 			icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2722 			__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2723 		}
2724 	}
2725 
2726 	return 0;
2727 }
2728 
2729 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2730 {
2731 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2732 
2733 	/*
2734 	 * Get calculated timer current count for remaining timer period (if
2735 	 * any) and store it in the returned register set.
2736 	 */
2737 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2738 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2739 
2740 	return kvm_apic_state_fixup(vcpu, s, false);
2741 }
2742 
2743 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2744 {
2745 	struct kvm_lapic *apic = vcpu->arch.apic;
2746 	int r;
2747 
2748 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2749 	/* set SPIV separately to get count of SW disabled APICs right */
2750 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2751 
2752 	r = kvm_apic_state_fixup(vcpu, s, true);
2753 	if (r) {
2754 		kvm_recalculate_apic_map(vcpu->kvm);
2755 		return r;
2756 	}
2757 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2758 
2759 	if (!apic_x2apic_mode(apic))
2760 		kvm_lapic_xapic_id_updated(apic);
2761 
2762 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2763 	kvm_recalculate_apic_map(vcpu->kvm);
2764 	kvm_apic_set_version(vcpu);
2765 
2766 	apic_update_ppr(apic);
2767 	cancel_apic_timer(apic);
2768 	apic->lapic_timer.expired_tscdeadline = 0;
2769 	apic_update_lvtt(apic);
2770 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2771 	update_divide_count(apic);
2772 	__start_apic_timer(apic, APIC_TMCCT);
2773 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
2774 	kvm_apic_update_apicv(vcpu);
2775 	apic->highest_isr_cache = -1;
2776 	if (apic->apicv_active) {
2777 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2778 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
2779 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
2780 	}
2781 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2782 	if (ioapic_in_kernel(vcpu->kvm))
2783 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2784 
2785 	vcpu->arch.apic_arb_prio = 0;
2786 
2787 	return 0;
2788 }
2789 
2790 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2791 {
2792 	struct hrtimer *timer;
2793 
2794 	if (!lapic_in_kernel(vcpu) ||
2795 		kvm_can_post_timer_interrupt(vcpu))
2796 		return;
2797 
2798 	timer = &vcpu->arch.apic->lapic_timer.timer;
2799 	if (hrtimer_cancel(timer))
2800 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2801 }
2802 
2803 /*
2804  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2805  *
2806  * Detect whether guest triggered PV EOI since the
2807  * last entry. If yes, set EOI on guests's behalf.
2808  * Clear PV EOI in guest memory in any case.
2809  */
2810 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2811 					struct kvm_lapic *apic)
2812 {
2813 	int vector;
2814 	/*
2815 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2816 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2817 	 *
2818 	 * KVM_APIC_PV_EOI_PENDING is unset:
2819 	 * 	-> host disabled PV EOI.
2820 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2821 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
2822 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2823 	 * 	-> host enabled PV EOI, guest executed EOI.
2824 	 */
2825 	BUG_ON(!pv_eoi_enabled(vcpu));
2826 
2827 	if (pv_eoi_test_and_clr_pending(vcpu))
2828 		return;
2829 	vector = apic_set_eoi(apic);
2830 	trace_kvm_pv_eoi(apic, vector);
2831 }
2832 
2833 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2834 {
2835 	u32 data;
2836 
2837 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2838 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2839 
2840 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2841 		return;
2842 
2843 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2844 				  sizeof(u32)))
2845 		return;
2846 
2847 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
2848 }
2849 
2850 /*
2851  * apic_sync_pv_eoi_to_guest - called before vmentry
2852  *
2853  * Detect whether it's safe to enable PV EOI and
2854  * if yes do so.
2855  */
2856 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2857 					struct kvm_lapic *apic)
2858 {
2859 	if (!pv_eoi_enabled(vcpu) ||
2860 	    /* IRR set or many bits in ISR: could be nested. */
2861 	    apic->irr_pending ||
2862 	    /* Cache not set: could be safe but we don't bother. */
2863 	    apic->highest_isr_cache == -1 ||
2864 	    /* Need EOI to update ioapic. */
2865 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2866 		/*
2867 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2868 		 * so we need not do anything here.
2869 		 */
2870 		return;
2871 	}
2872 
2873 	pv_eoi_set_pending(apic->vcpu);
2874 }
2875 
2876 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2877 {
2878 	u32 data, tpr;
2879 	int max_irr, max_isr;
2880 	struct kvm_lapic *apic = vcpu->arch.apic;
2881 
2882 	apic_sync_pv_eoi_to_guest(vcpu, apic);
2883 
2884 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2885 		return;
2886 
2887 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2888 	max_irr = apic_find_highest_irr(apic);
2889 	if (max_irr < 0)
2890 		max_irr = 0;
2891 	max_isr = apic_find_highest_isr(apic);
2892 	if (max_isr < 0)
2893 		max_isr = 0;
2894 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2895 
2896 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2897 				sizeof(u32));
2898 }
2899 
2900 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2901 {
2902 	if (vapic_addr) {
2903 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2904 					&vcpu->arch.apic->vapic_cache,
2905 					vapic_addr, sizeof(u32)))
2906 			return -EINVAL;
2907 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2908 	} else {
2909 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2910 	}
2911 
2912 	vcpu->arch.apic->vapic_addr = vapic_addr;
2913 	return 0;
2914 }
2915 
2916 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2917 {
2918 	data &= ~APIC_ICR_BUSY;
2919 
2920 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2921 	kvm_lapic_set_reg64(apic, APIC_ICR, data);
2922 	trace_kvm_apic_write(APIC_ICR, data);
2923 	return 0;
2924 }
2925 
2926 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
2927 {
2928 	u32 low;
2929 
2930 	if (reg == APIC_ICR) {
2931 		*data = kvm_lapic_get_reg64(apic, APIC_ICR);
2932 		return 0;
2933 	}
2934 
2935 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2936 		return 1;
2937 
2938 	*data = low;
2939 
2940 	return 0;
2941 }
2942 
2943 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
2944 {
2945 	/*
2946 	 * ICR is a 64-bit register in x2APIC mode (and Hyper'v PV vAPIC) and
2947 	 * can be written as such, all other registers remain accessible only
2948 	 * through 32-bit reads/writes.
2949 	 */
2950 	if (reg == APIC_ICR)
2951 		return kvm_x2apic_icr_write(apic, data);
2952 
2953 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2954 }
2955 
2956 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2957 {
2958 	struct kvm_lapic *apic = vcpu->arch.apic;
2959 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2960 
2961 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2962 		return 1;
2963 
2964 	return kvm_lapic_msr_write(apic, reg, data);
2965 }
2966 
2967 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2968 {
2969 	struct kvm_lapic *apic = vcpu->arch.apic;
2970 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2971 
2972 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2973 		return 1;
2974 
2975 	if (reg == APIC_DFR)
2976 		return 1;
2977 
2978 	return kvm_lapic_msr_read(apic, reg, data);
2979 }
2980 
2981 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2982 {
2983 	if (!lapic_in_kernel(vcpu))
2984 		return 1;
2985 
2986 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
2987 }
2988 
2989 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2990 {
2991 	if (!lapic_in_kernel(vcpu))
2992 		return 1;
2993 
2994 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
2995 }
2996 
2997 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2998 {
2999 	u64 addr = data & ~KVM_MSR_ENABLED;
3000 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3001 	unsigned long new_len;
3002 	int ret;
3003 
3004 	if (!IS_ALIGNED(addr, 4))
3005 		return 1;
3006 
3007 	if (data & KVM_MSR_ENABLED) {
3008 		if (addr == ghc->gpa && len <= ghc->len)
3009 			new_len = ghc->len;
3010 		else
3011 			new_len = len;
3012 
3013 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3014 		if (ret)
3015 			return ret;
3016 	}
3017 
3018 	vcpu->arch.pv_eoi.msr_val = data;
3019 
3020 	return 0;
3021 }
3022 
3023 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3024 {
3025 	struct kvm_lapic *apic = vcpu->arch.apic;
3026 	u8 sipi_vector;
3027 	int r;
3028 
3029 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3030 		return 0;
3031 
3032 	if (is_guest_mode(vcpu)) {
3033 		r = kvm_check_nested_events(vcpu);
3034 		if (r < 0)
3035 			return r == -EBUSY ? 0 : r;
3036 		/*
3037 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3038 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3039 		 * are blocked as a result of transitioning to VMX root mode.
3040 		 */
3041 	}
3042 
3043 	/*
3044 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3045 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3046 	 * wait-for-SIPI (WFS).
3047 	 */
3048 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3049 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3050 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3051 		return 0;
3052 	}
3053 
3054 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3055 		kvm_vcpu_reset(vcpu, true);
3056 		if (kvm_vcpu_is_bsp(apic->vcpu))
3057 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3058 		else
3059 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3060 	}
3061 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3062 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3063 			/* evaluate pending_events before reading the vector */
3064 			smp_rmb();
3065 			sipi_vector = apic->sipi_vector;
3066 			static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3067 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3068 		}
3069 	}
3070 	return 0;
3071 }
3072 
3073 void kvm_lapic_exit(void)
3074 {
3075 	static_key_deferred_flush(&apic_hw_disabled);
3076 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3077 	static_key_deferred_flush(&apic_sw_disabled);
3078 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3079 }
3080