1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline int apic_test_vector(int vec, void *bitmap) 72 { 73 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 74 } 75 76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 77 { 78 struct kvm_lapic *apic = vcpu->arch.apic; 79 80 return apic_test_vector(vector, apic->regs + APIC_ISR) || 81 apic_test_vector(vector, apic->regs + APIC_IRR); 82 } 83 84 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 85 { 86 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 87 } 88 89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 90 { 91 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 92 } 93 94 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 95 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 96 97 static inline int apic_enabled(struct kvm_lapic *apic) 98 { 99 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 100 } 101 102 #define LVT_MASK \ 103 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 104 105 #define LINT_MASK \ 106 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 107 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 108 109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 110 { 111 return apic->vcpu->vcpu_id; 112 } 113 114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 115 { 116 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 117 } 118 119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 120 { 121 return kvm_x86_ops.set_hv_timer 122 && !(kvm_mwait_in_guest(vcpu->kvm) || 123 kvm_can_post_timer_interrupt(vcpu)); 124 } 125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 126 127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 130 } 131 132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 134 switch (map->mode) { 135 case KVM_APIC_MODE_X2APIC: { 136 u32 offset = (dest_id >> 16) * 16; 137 u32 max_apic_id = map->max_apic_id; 138 139 if (offset <= max_apic_id) { 140 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 141 142 offset = array_index_nospec(offset, map->max_apic_id + 1); 143 *cluster = &map->phys_map[offset]; 144 *mask = dest_id & (0xffff >> (16 - cluster_size)); 145 } else { 146 *mask = 0; 147 } 148 149 return true; 150 } 151 case KVM_APIC_MODE_XAPIC_FLAT: 152 *cluster = map->xapic_flat_map; 153 *mask = dest_id & 0xff; 154 return true; 155 case KVM_APIC_MODE_XAPIC_CLUSTER: 156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 157 *mask = dest_id & 0xf; 158 return true; 159 default: 160 /* Not optimized. */ 161 return false; 162 } 163 } 164 165 static void kvm_apic_map_free(struct rcu_head *rcu) 166 { 167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 168 169 kvfree(map); 170 } 171 172 /* 173 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 174 * 175 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 176 * apic_map_lock_held. 177 */ 178 enum { 179 CLEAN, 180 UPDATE_IN_PROGRESS, 181 DIRTY 182 }; 183 184 void kvm_recalculate_apic_map(struct kvm *kvm) 185 { 186 struct kvm_apic_map *new, *old = NULL; 187 struct kvm_vcpu *vcpu; 188 unsigned long i; 189 u32 max_id = 255; /* enough space for any xAPIC ID */ 190 191 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 192 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 193 return; 194 195 WARN_ONCE(!irqchip_in_kernel(kvm), 196 "Dirty APIC map without an in-kernel local APIC"); 197 198 mutex_lock(&kvm->arch.apic_map_lock); 199 /* 200 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 201 * (if clean) or the APIC registers (if dirty). 202 */ 203 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 204 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 205 /* Someone else has updated the map. */ 206 mutex_unlock(&kvm->arch.apic_map_lock); 207 return; 208 } 209 210 kvm_for_each_vcpu(i, vcpu, kvm) 211 if (kvm_apic_present(vcpu)) 212 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 213 214 new = kvzalloc(sizeof(struct kvm_apic_map) + 215 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 216 GFP_KERNEL_ACCOUNT); 217 218 if (!new) 219 goto out; 220 221 new->max_apic_id = max_id; 222 223 kvm_for_each_vcpu(i, vcpu, kvm) { 224 struct kvm_lapic *apic = vcpu->arch.apic; 225 struct kvm_lapic **cluster; 226 u16 mask; 227 u32 ldr; 228 u8 xapic_id; 229 u32 x2apic_id; 230 231 if (!kvm_apic_present(vcpu)) 232 continue; 233 234 xapic_id = kvm_xapic_id(apic); 235 x2apic_id = kvm_x2apic_id(apic); 236 237 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 238 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 239 x2apic_id <= new->max_apic_id) 240 new->phys_map[x2apic_id] = apic; 241 /* 242 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 243 * prevent them from masking VCPUs with APIC ID <= 0xff. 244 */ 245 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 246 new->phys_map[xapic_id] = apic; 247 248 if (!kvm_apic_sw_enabled(apic)) 249 continue; 250 251 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 252 253 if (apic_x2apic_mode(apic)) { 254 new->mode |= KVM_APIC_MODE_X2APIC; 255 } else if (ldr) { 256 ldr = GET_APIC_LOGICAL_ID(ldr); 257 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 258 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 259 else 260 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 261 } 262 263 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 264 continue; 265 266 if (mask) 267 cluster[ffs(mask) - 1] = apic; 268 } 269 out: 270 old = rcu_dereference_protected(kvm->arch.apic_map, 271 lockdep_is_held(&kvm->arch.apic_map_lock)); 272 rcu_assign_pointer(kvm->arch.apic_map, new); 273 /* 274 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 275 * If another update has come in, leave it DIRTY. 276 */ 277 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 278 UPDATE_IN_PROGRESS, CLEAN); 279 mutex_unlock(&kvm->arch.apic_map_lock); 280 281 if (old) 282 call_rcu(&old->rcu, kvm_apic_map_free); 283 284 kvm_make_scan_ioapic_request(kvm); 285 } 286 287 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 288 { 289 bool enabled = val & APIC_SPIV_APIC_ENABLED; 290 291 kvm_lapic_set_reg(apic, APIC_SPIV, val); 292 293 if (enabled != apic->sw_enabled) { 294 apic->sw_enabled = enabled; 295 if (enabled) 296 static_branch_slow_dec_deferred(&apic_sw_disabled); 297 else 298 static_branch_inc(&apic_sw_disabled.key); 299 300 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 301 } 302 303 /* Check if there are APF page ready requests pending */ 304 if (enabled) 305 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 306 } 307 308 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 309 { 310 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 311 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 312 } 313 314 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 315 { 316 kvm_lapic_set_reg(apic, APIC_LDR, id); 317 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 318 } 319 320 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 321 { 322 kvm_lapic_set_reg(apic, APIC_DFR, val); 323 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 324 } 325 326 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 327 { 328 return ((id >> 4) << 16) | (1 << (id & 0xf)); 329 } 330 331 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 332 { 333 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 334 335 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 336 337 kvm_lapic_set_reg(apic, APIC_ID, id); 338 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 339 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 340 } 341 342 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 343 { 344 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 345 } 346 347 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 348 { 349 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 350 } 351 352 static inline int apic_lvtt_period(struct kvm_lapic *apic) 353 { 354 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 355 } 356 357 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 358 { 359 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 360 } 361 362 static inline int apic_lvt_nmi_mode(u32 lvt_val) 363 { 364 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 365 } 366 367 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 368 { 369 struct kvm_lapic *apic = vcpu->arch.apic; 370 u32 v = APIC_VERSION; 371 372 if (!lapic_in_kernel(vcpu)) 373 return; 374 375 /* 376 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 377 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 378 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 379 * version first and level-triggered interrupts never get EOIed in 380 * IOAPIC. 381 */ 382 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 383 !ioapic_in_kernel(vcpu->kvm)) 384 v |= APIC_LVR_DIRECTED_EOI; 385 kvm_lapic_set_reg(apic, APIC_LVR, v); 386 } 387 388 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 389 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 390 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 391 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 392 LINT_MASK, LINT_MASK, /* LVT0-1 */ 393 LVT_MASK /* LVTERR */ 394 }; 395 396 static int find_highest_vector(void *bitmap) 397 { 398 int vec; 399 u32 *reg; 400 401 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 402 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 403 reg = bitmap + REG_POS(vec); 404 if (*reg) 405 return __fls(*reg) + vec; 406 } 407 408 return -1; 409 } 410 411 static u8 count_vectors(void *bitmap) 412 { 413 int vec; 414 u32 *reg; 415 u8 count = 0; 416 417 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 418 reg = bitmap + REG_POS(vec); 419 count += hweight32(*reg); 420 } 421 422 return count; 423 } 424 425 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 426 { 427 u32 i, vec; 428 u32 pir_val, irr_val, prev_irr_val; 429 int max_updated_irr; 430 431 max_updated_irr = -1; 432 *max_irr = -1; 433 434 for (i = vec = 0; i <= 7; i++, vec += 32) { 435 pir_val = READ_ONCE(pir[i]); 436 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 437 if (pir_val) { 438 prev_irr_val = irr_val; 439 irr_val |= xchg(&pir[i], 0); 440 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 441 if (prev_irr_val != irr_val) { 442 max_updated_irr = 443 __fls(irr_val ^ prev_irr_val) + vec; 444 } 445 } 446 if (irr_val) 447 *max_irr = __fls(irr_val) + vec; 448 } 449 450 return ((max_updated_irr != -1) && 451 (max_updated_irr == *max_irr)); 452 } 453 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 454 455 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 456 { 457 struct kvm_lapic *apic = vcpu->arch.apic; 458 459 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 460 } 461 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 462 463 static inline int apic_search_irr(struct kvm_lapic *apic) 464 { 465 return find_highest_vector(apic->regs + APIC_IRR); 466 } 467 468 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 469 { 470 int result; 471 472 /* 473 * Note that irr_pending is just a hint. It will be always 474 * true with virtual interrupt delivery enabled. 475 */ 476 if (!apic->irr_pending) 477 return -1; 478 479 result = apic_search_irr(apic); 480 ASSERT(result == -1 || result >= 16); 481 482 return result; 483 } 484 485 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 486 { 487 struct kvm_vcpu *vcpu; 488 489 vcpu = apic->vcpu; 490 491 if (unlikely(vcpu->arch.apicv_active)) { 492 /* need to update RVI */ 493 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 494 static_call(kvm_x86_hwapic_irr_update)(vcpu, 495 apic_find_highest_irr(apic)); 496 } else { 497 apic->irr_pending = false; 498 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 499 if (apic_search_irr(apic) != -1) 500 apic->irr_pending = true; 501 } 502 } 503 504 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 505 { 506 apic_clear_irr(vec, vcpu->arch.apic); 507 } 508 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 509 510 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 511 { 512 struct kvm_vcpu *vcpu; 513 514 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 515 return; 516 517 vcpu = apic->vcpu; 518 519 /* 520 * With APIC virtualization enabled, all caching is disabled 521 * because the processor can modify ISR under the hood. Instead 522 * just set SVI. 523 */ 524 if (unlikely(vcpu->arch.apicv_active)) 525 static_call(kvm_x86_hwapic_isr_update)(vcpu, vec); 526 else { 527 ++apic->isr_count; 528 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 529 /* 530 * ISR (in service register) bit is set when injecting an interrupt. 531 * The highest vector is injected. Thus the latest bit set matches 532 * the highest bit in ISR. 533 */ 534 apic->highest_isr_cache = vec; 535 } 536 } 537 538 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 539 { 540 int result; 541 542 /* 543 * Note that isr_count is always 1, and highest_isr_cache 544 * is always -1, with APIC virtualization enabled. 545 */ 546 if (!apic->isr_count) 547 return -1; 548 if (likely(apic->highest_isr_cache != -1)) 549 return apic->highest_isr_cache; 550 551 result = find_highest_vector(apic->regs + APIC_ISR); 552 ASSERT(result == -1 || result >= 16); 553 554 return result; 555 } 556 557 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 558 { 559 struct kvm_vcpu *vcpu; 560 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 561 return; 562 563 vcpu = apic->vcpu; 564 565 /* 566 * We do get here for APIC virtualization enabled if the guest 567 * uses the Hyper-V APIC enlightenment. In this case we may need 568 * to trigger a new interrupt delivery by writing the SVI field; 569 * on the other hand isr_count and highest_isr_cache are unused 570 * and must be left alone. 571 */ 572 if (unlikely(vcpu->arch.apicv_active)) 573 static_call(kvm_x86_hwapic_isr_update)(vcpu, 574 apic_find_highest_isr(apic)); 575 else { 576 --apic->isr_count; 577 BUG_ON(apic->isr_count < 0); 578 apic->highest_isr_cache = -1; 579 } 580 } 581 582 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 583 { 584 /* This may race with setting of irr in __apic_accept_irq() and 585 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 586 * will cause vmexit immediately and the value will be recalculated 587 * on the next vmentry. 588 */ 589 return apic_find_highest_irr(vcpu->arch.apic); 590 } 591 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 592 593 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 594 int vector, int level, int trig_mode, 595 struct dest_map *dest_map); 596 597 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 598 struct dest_map *dest_map) 599 { 600 struct kvm_lapic *apic = vcpu->arch.apic; 601 602 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 603 irq->level, irq->trig_mode, dest_map); 604 } 605 606 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 607 struct kvm_lapic_irq *irq, u32 min) 608 { 609 int i, count = 0; 610 struct kvm_vcpu *vcpu; 611 612 if (min > map->max_apic_id) 613 return 0; 614 615 for_each_set_bit(i, ipi_bitmap, 616 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 617 if (map->phys_map[min + i]) { 618 vcpu = map->phys_map[min + i]->vcpu; 619 count += kvm_apic_set_irq(vcpu, irq, NULL); 620 } 621 } 622 623 return count; 624 } 625 626 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 627 unsigned long ipi_bitmap_high, u32 min, 628 unsigned long icr, int op_64_bit) 629 { 630 struct kvm_apic_map *map; 631 struct kvm_lapic_irq irq = {0}; 632 int cluster_size = op_64_bit ? 64 : 32; 633 int count; 634 635 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 636 return -KVM_EINVAL; 637 638 irq.vector = icr & APIC_VECTOR_MASK; 639 irq.delivery_mode = icr & APIC_MODE_MASK; 640 irq.level = (icr & APIC_INT_ASSERT) != 0; 641 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 642 643 rcu_read_lock(); 644 map = rcu_dereference(kvm->arch.apic_map); 645 646 count = -EOPNOTSUPP; 647 if (likely(map)) { 648 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 649 min += cluster_size; 650 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 651 } 652 653 rcu_read_unlock(); 654 return count; 655 } 656 657 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 658 { 659 660 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 661 sizeof(val)); 662 } 663 664 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 665 { 666 667 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 668 sizeof(*val)); 669 } 670 671 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 672 { 673 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 674 } 675 676 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 677 { 678 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 679 return; 680 681 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 682 } 683 684 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 685 { 686 u8 val; 687 688 if (pv_eoi_get_user(vcpu, &val) < 0) 689 return false; 690 691 val &= KVM_PV_EOI_ENABLED; 692 693 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 694 return false; 695 696 /* 697 * Clear pending bit in any case: it will be set again on vmentry. 698 * While this might not be ideal from performance point of view, 699 * this makes sure pv eoi is only enabled when we know it's safe. 700 */ 701 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 702 703 return val; 704 } 705 706 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 707 { 708 int highest_irr; 709 if (kvm_x86_ops.sync_pir_to_irr) 710 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 711 else 712 highest_irr = apic_find_highest_irr(apic); 713 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 714 return -1; 715 return highest_irr; 716 } 717 718 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 719 { 720 u32 tpr, isrv, ppr, old_ppr; 721 int isr; 722 723 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 724 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 725 isr = apic_find_highest_isr(apic); 726 isrv = (isr != -1) ? isr : 0; 727 728 if ((tpr & 0xf0) >= (isrv & 0xf0)) 729 ppr = tpr & 0xff; 730 else 731 ppr = isrv & 0xf0; 732 733 *new_ppr = ppr; 734 if (old_ppr != ppr) 735 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 736 737 return ppr < old_ppr; 738 } 739 740 static void apic_update_ppr(struct kvm_lapic *apic) 741 { 742 u32 ppr; 743 744 if (__apic_update_ppr(apic, &ppr) && 745 apic_has_interrupt_for_ppr(apic, ppr) != -1) 746 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 747 } 748 749 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 750 { 751 apic_update_ppr(vcpu->arch.apic); 752 } 753 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 754 755 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 756 { 757 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 758 apic_update_ppr(apic); 759 } 760 761 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 762 { 763 return mda == (apic_x2apic_mode(apic) ? 764 X2APIC_BROADCAST : APIC_BROADCAST); 765 } 766 767 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 768 { 769 if (kvm_apic_broadcast(apic, mda)) 770 return true; 771 772 if (apic_x2apic_mode(apic)) 773 return mda == kvm_x2apic_id(apic); 774 775 /* 776 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 777 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 778 * this allows unique addressing of VCPUs with APIC ID over 0xff. 779 * The 0xff condition is needed because writeable xAPIC ID. 780 */ 781 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 782 return true; 783 784 return mda == kvm_xapic_id(apic); 785 } 786 787 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 788 { 789 u32 logical_id; 790 791 if (kvm_apic_broadcast(apic, mda)) 792 return true; 793 794 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 795 796 if (apic_x2apic_mode(apic)) 797 return ((logical_id >> 16) == (mda >> 16)) 798 && (logical_id & mda & 0xffff) != 0; 799 800 logical_id = GET_APIC_LOGICAL_ID(logical_id); 801 802 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 803 case APIC_DFR_FLAT: 804 return (logical_id & mda) != 0; 805 case APIC_DFR_CLUSTER: 806 return ((logical_id >> 4) == (mda >> 4)) 807 && (logical_id & mda & 0xf) != 0; 808 default: 809 return false; 810 } 811 } 812 813 /* The KVM local APIC implementation has two quirks: 814 * 815 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 816 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 817 * KVM doesn't do that aliasing. 818 * 819 * - in-kernel IOAPIC messages have to be delivered directly to 820 * x2APIC, because the kernel does not support interrupt remapping. 821 * In order to support broadcast without interrupt remapping, x2APIC 822 * rewrites the destination of non-IPI messages from APIC_BROADCAST 823 * to X2APIC_BROADCAST. 824 * 825 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 826 * important when userspace wants to use x2APIC-format MSIs, because 827 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 828 */ 829 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 830 struct kvm_lapic *source, struct kvm_lapic *target) 831 { 832 bool ipi = source != NULL; 833 834 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 835 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 836 return X2APIC_BROADCAST; 837 838 return dest_id; 839 } 840 841 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 842 int shorthand, unsigned int dest, int dest_mode) 843 { 844 struct kvm_lapic *target = vcpu->arch.apic; 845 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 846 847 ASSERT(target); 848 switch (shorthand) { 849 case APIC_DEST_NOSHORT: 850 if (dest_mode == APIC_DEST_PHYSICAL) 851 return kvm_apic_match_physical_addr(target, mda); 852 else 853 return kvm_apic_match_logical_addr(target, mda); 854 case APIC_DEST_SELF: 855 return target == source; 856 case APIC_DEST_ALLINC: 857 return true; 858 case APIC_DEST_ALLBUT: 859 return target != source; 860 default: 861 return false; 862 } 863 } 864 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 865 866 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 867 const unsigned long *bitmap, u32 bitmap_size) 868 { 869 u32 mod; 870 int i, idx = -1; 871 872 mod = vector % dest_vcpus; 873 874 for (i = 0; i <= mod; i++) { 875 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 876 BUG_ON(idx == bitmap_size); 877 } 878 879 return idx; 880 } 881 882 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 883 { 884 if (!kvm->arch.disabled_lapic_found) { 885 kvm->arch.disabled_lapic_found = true; 886 printk(KERN_INFO 887 "Disabled LAPIC found during irq injection\n"); 888 } 889 } 890 891 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 892 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 893 { 894 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 895 if ((irq->dest_id == APIC_BROADCAST && 896 map->mode != KVM_APIC_MODE_X2APIC)) 897 return true; 898 if (irq->dest_id == X2APIC_BROADCAST) 899 return true; 900 } else { 901 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 902 if (irq->dest_id == (x2apic_ipi ? 903 X2APIC_BROADCAST : APIC_BROADCAST)) 904 return true; 905 } 906 907 return false; 908 } 909 910 /* Return true if the interrupt can be handled by using *bitmap as index mask 911 * for valid destinations in *dst array. 912 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 913 * Note: we may have zero kvm_lapic destinations when we return true, which 914 * means that the interrupt should be dropped. In this case, *bitmap would be 915 * zero and *dst undefined. 916 */ 917 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 918 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 919 struct kvm_apic_map *map, struct kvm_lapic ***dst, 920 unsigned long *bitmap) 921 { 922 int i, lowest; 923 924 if (irq->shorthand == APIC_DEST_SELF && src) { 925 *dst = src; 926 *bitmap = 1; 927 return true; 928 } else if (irq->shorthand) 929 return false; 930 931 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 932 return false; 933 934 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 935 if (irq->dest_id > map->max_apic_id) { 936 *bitmap = 0; 937 } else { 938 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 939 *dst = &map->phys_map[dest_id]; 940 *bitmap = 1; 941 } 942 return true; 943 } 944 945 *bitmap = 0; 946 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 947 (u16 *)bitmap)) 948 return false; 949 950 if (!kvm_lowest_prio_delivery(irq)) 951 return true; 952 953 if (!kvm_vector_hashing_enabled()) { 954 lowest = -1; 955 for_each_set_bit(i, bitmap, 16) { 956 if (!(*dst)[i]) 957 continue; 958 if (lowest < 0) 959 lowest = i; 960 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 961 (*dst)[lowest]->vcpu) < 0) 962 lowest = i; 963 } 964 } else { 965 if (!*bitmap) 966 return true; 967 968 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 969 bitmap, 16); 970 971 if (!(*dst)[lowest]) { 972 kvm_apic_disabled_lapic_found(kvm); 973 *bitmap = 0; 974 return true; 975 } 976 } 977 978 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 979 980 return true; 981 } 982 983 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 984 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 985 { 986 struct kvm_apic_map *map; 987 unsigned long bitmap; 988 struct kvm_lapic **dst = NULL; 989 int i; 990 bool ret; 991 992 *r = -1; 993 994 if (irq->shorthand == APIC_DEST_SELF) { 995 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 996 return true; 997 } 998 999 rcu_read_lock(); 1000 map = rcu_dereference(kvm->arch.apic_map); 1001 1002 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1003 if (ret) { 1004 *r = 0; 1005 for_each_set_bit(i, &bitmap, 16) { 1006 if (!dst[i]) 1007 continue; 1008 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1009 } 1010 } 1011 1012 rcu_read_unlock(); 1013 return ret; 1014 } 1015 1016 /* 1017 * This routine tries to handle interrupts in posted mode, here is how 1018 * it deals with different cases: 1019 * - For single-destination interrupts, handle it in posted mode 1020 * - Else if vector hashing is enabled and it is a lowest-priority 1021 * interrupt, handle it in posted mode and use the following mechanism 1022 * to find the destination vCPU. 1023 * 1. For lowest-priority interrupts, store all the possible 1024 * destination vCPUs in an array. 1025 * 2. Use "guest vector % max number of destination vCPUs" to find 1026 * the right destination vCPU in the array for the lowest-priority 1027 * interrupt. 1028 * - Otherwise, use remapped mode to inject the interrupt. 1029 */ 1030 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1031 struct kvm_vcpu **dest_vcpu) 1032 { 1033 struct kvm_apic_map *map; 1034 unsigned long bitmap; 1035 struct kvm_lapic **dst = NULL; 1036 bool ret = false; 1037 1038 if (irq->shorthand) 1039 return false; 1040 1041 rcu_read_lock(); 1042 map = rcu_dereference(kvm->arch.apic_map); 1043 1044 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1045 hweight16(bitmap) == 1) { 1046 unsigned long i = find_first_bit(&bitmap, 16); 1047 1048 if (dst[i]) { 1049 *dest_vcpu = dst[i]->vcpu; 1050 ret = true; 1051 } 1052 } 1053 1054 rcu_read_unlock(); 1055 return ret; 1056 } 1057 1058 /* 1059 * Add a pending IRQ into lapic. 1060 * Return 1 if successfully added and 0 if discarded. 1061 */ 1062 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1063 int vector, int level, int trig_mode, 1064 struct dest_map *dest_map) 1065 { 1066 int result = 0; 1067 struct kvm_vcpu *vcpu = apic->vcpu; 1068 1069 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1070 trig_mode, vector); 1071 switch (delivery_mode) { 1072 case APIC_DM_LOWEST: 1073 vcpu->arch.apic_arb_prio++; 1074 fallthrough; 1075 case APIC_DM_FIXED: 1076 if (unlikely(trig_mode && !level)) 1077 break; 1078 1079 /* FIXME add logic for vcpu on reset */ 1080 if (unlikely(!apic_enabled(apic))) 1081 break; 1082 1083 result = 1; 1084 1085 if (dest_map) { 1086 __set_bit(vcpu->vcpu_id, dest_map->map); 1087 dest_map->vectors[vcpu->vcpu_id] = vector; 1088 } 1089 1090 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1091 if (trig_mode) 1092 kvm_lapic_set_vector(vector, 1093 apic->regs + APIC_TMR); 1094 else 1095 kvm_lapic_clear_vector(vector, 1096 apic->regs + APIC_TMR); 1097 } 1098 1099 static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode, 1100 trig_mode, vector); 1101 break; 1102 1103 case APIC_DM_REMRD: 1104 result = 1; 1105 vcpu->arch.pv.pv_unhalted = 1; 1106 kvm_make_request(KVM_REQ_EVENT, vcpu); 1107 kvm_vcpu_kick(vcpu); 1108 break; 1109 1110 case APIC_DM_SMI: 1111 result = 1; 1112 kvm_make_request(KVM_REQ_SMI, vcpu); 1113 kvm_vcpu_kick(vcpu); 1114 break; 1115 1116 case APIC_DM_NMI: 1117 result = 1; 1118 kvm_inject_nmi(vcpu); 1119 kvm_vcpu_kick(vcpu); 1120 break; 1121 1122 case APIC_DM_INIT: 1123 if (!trig_mode || level) { 1124 result = 1; 1125 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1126 apic->pending_events = (1UL << KVM_APIC_INIT); 1127 kvm_make_request(KVM_REQ_EVENT, vcpu); 1128 kvm_vcpu_kick(vcpu); 1129 } 1130 break; 1131 1132 case APIC_DM_STARTUP: 1133 result = 1; 1134 apic->sipi_vector = vector; 1135 /* make sure sipi_vector is visible for the receiver */ 1136 smp_wmb(); 1137 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1138 kvm_make_request(KVM_REQ_EVENT, vcpu); 1139 kvm_vcpu_kick(vcpu); 1140 break; 1141 1142 case APIC_DM_EXTINT: 1143 /* 1144 * Should only be called by kvm_apic_local_deliver() with LVT0, 1145 * before NMI watchdog was enabled. Already handled by 1146 * kvm_apic_accept_pic_intr(). 1147 */ 1148 break; 1149 1150 default: 1151 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1152 delivery_mode); 1153 break; 1154 } 1155 return result; 1156 } 1157 1158 /* 1159 * This routine identifies the destination vcpus mask meant to receive the 1160 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1161 * out the destination vcpus array and set the bitmap or it traverses to 1162 * each available vcpu to identify the same. 1163 */ 1164 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1165 unsigned long *vcpu_bitmap) 1166 { 1167 struct kvm_lapic **dest_vcpu = NULL; 1168 struct kvm_lapic *src = NULL; 1169 struct kvm_apic_map *map; 1170 struct kvm_vcpu *vcpu; 1171 unsigned long bitmap, i; 1172 int vcpu_idx; 1173 bool ret; 1174 1175 rcu_read_lock(); 1176 map = rcu_dereference(kvm->arch.apic_map); 1177 1178 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1179 &bitmap); 1180 if (ret) { 1181 for_each_set_bit(i, &bitmap, 16) { 1182 if (!dest_vcpu[i]) 1183 continue; 1184 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1185 __set_bit(vcpu_idx, vcpu_bitmap); 1186 } 1187 } else { 1188 kvm_for_each_vcpu(i, vcpu, kvm) { 1189 if (!kvm_apic_present(vcpu)) 1190 continue; 1191 if (!kvm_apic_match_dest(vcpu, NULL, 1192 irq->shorthand, 1193 irq->dest_id, 1194 irq->dest_mode)) 1195 continue; 1196 __set_bit(i, vcpu_bitmap); 1197 } 1198 } 1199 rcu_read_unlock(); 1200 } 1201 1202 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1203 { 1204 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1205 } 1206 1207 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1208 { 1209 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1210 } 1211 1212 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1213 { 1214 int trigger_mode; 1215 1216 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1217 if (!kvm_ioapic_handles_vector(apic, vector)) 1218 return; 1219 1220 /* Request a KVM exit to inform the userspace IOAPIC. */ 1221 if (irqchip_split(apic->vcpu->kvm)) { 1222 apic->vcpu->arch.pending_ioapic_eoi = vector; 1223 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1224 return; 1225 } 1226 1227 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1228 trigger_mode = IOAPIC_LEVEL_TRIG; 1229 else 1230 trigger_mode = IOAPIC_EDGE_TRIG; 1231 1232 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1233 } 1234 1235 static int apic_set_eoi(struct kvm_lapic *apic) 1236 { 1237 int vector = apic_find_highest_isr(apic); 1238 1239 trace_kvm_eoi(apic, vector); 1240 1241 /* 1242 * Not every write EOI will has corresponding ISR, 1243 * one example is when Kernel check timer on setup_IO_APIC 1244 */ 1245 if (vector == -1) 1246 return vector; 1247 1248 apic_clear_isr(vector, apic); 1249 apic_update_ppr(apic); 1250 1251 if (to_hv_vcpu(apic->vcpu) && 1252 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1253 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1254 1255 kvm_ioapic_send_eoi(apic, vector); 1256 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1257 return vector; 1258 } 1259 1260 /* 1261 * this interface assumes a trap-like exit, which has already finished 1262 * desired side effect including vISR and vPPR update. 1263 */ 1264 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1265 { 1266 struct kvm_lapic *apic = vcpu->arch.apic; 1267 1268 trace_kvm_eoi(apic, vector); 1269 1270 kvm_ioapic_send_eoi(apic, vector); 1271 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1272 } 1273 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1274 1275 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1276 { 1277 struct kvm_lapic_irq irq; 1278 1279 irq.vector = icr_low & APIC_VECTOR_MASK; 1280 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1281 irq.dest_mode = icr_low & APIC_DEST_MASK; 1282 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1283 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1284 irq.shorthand = icr_low & APIC_SHORT_MASK; 1285 irq.msi_redir_hint = false; 1286 if (apic_x2apic_mode(apic)) 1287 irq.dest_id = icr_high; 1288 else 1289 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1290 1291 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1292 1293 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1294 } 1295 1296 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1297 { 1298 ktime_t remaining, now; 1299 s64 ns; 1300 u32 tmcct; 1301 1302 ASSERT(apic != NULL); 1303 1304 /* if initial count is 0, current count should also be 0 */ 1305 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1306 apic->lapic_timer.period == 0) 1307 return 0; 1308 1309 now = ktime_get(); 1310 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1311 if (ktime_to_ns(remaining) < 0) 1312 remaining = 0; 1313 1314 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1315 tmcct = div64_u64(ns, 1316 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1317 1318 return tmcct; 1319 } 1320 1321 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1322 { 1323 struct kvm_vcpu *vcpu = apic->vcpu; 1324 struct kvm_run *run = vcpu->run; 1325 1326 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1327 run->tpr_access.rip = kvm_rip_read(vcpu); 1328 run->tpr_access.is_write = write; 1329 } 1330 1331 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1332 { 1333 if (apic->vcpu->arch.tpr_access_reporting) 1334 __report_tpr_access(apic, write); 1335 } 1336 1337 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1338 { 1339 u32 val = 0; 1340 1341 if (offset >= LAPIC_MMIO_LENGTH) 1342 return 0; 1343 1344 switch (offset) { 1345 case APIC_ARBPRI: 1346 break; 1347 1348 case APIC_TMCCT: /* Timer CCR */ 1349 if (apic_lvtt_tscdeadline(apic)) 1350 return 0; 1351 1352 val = apic_get_tmcct(apic); 1353 break; 1354 case APIC_PROCPRI: 1355 apic_update_ppr(apic); 1356 val = kvm_lapic_get_reg(apic, offset); 1357 break; 1358 case APIC_TASKPRI: 1359 report_tpr_access(apic, false); 1360 fallthrough; 1361 default: 1362 val = kvm_lapic_get_reg(apic, offset); 1363 break; 1364 } 1365 1366 return val; 1367 } 1368 1369 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1370 { 1371 return container_of(dev, struct kvm_lapic, dev); 1372 } 1373 1374 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1375 #define APIC_REGS_MASK(first, count) \ 1376 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1377 1378 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1379 void *data) 1380 { 1381 unsigned char alignment = offset & 0xf; 1382 u32 result; 1383 /* this bitmask has a bit cleared for each reserved register */ 1384 u64 valid_reg_mask = 1385 APIC_REG_MASK(APIC_ID) | 1386 APIC_REG_MASK(APIC_LVR) | 1387 APIC_REG_MASK(APIC_TASKPRI) | 1388 APIC_REG_MASK(APIC_PROCPRI) | 1389 APIC_REG_MASK(APIC_LDR) | 1390 APIC_REG_MASK(APIC_DFR) | 1391 APIC_REG_MASK(APIC_SPIV) | 1392 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1393 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1394 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1395 APIC_REG_MASK(APIC_ESR) | 1396 APIC_REG_MASK(APIC_ICR) | 1397 APIC_REG_MASK(APIC_ICR2) | 1398 APIC_REG_MASK(APIC_LVTT) | 1399 APIC_REG_MASK(APIC_LVTTHMR) | 1400 APIC_REG_MASK(APIC_LVTPC) | 1401 APIC_REG_MASK(APIC_LVT0) | 1402 APIC_REG_MASK(APIC_LVT1) | 1403 APIC_REG_MASK(APIC_LVTERR) | 1404 APIC_REG_MASK(APIC_TMICT) | 1405 APIC_REG_MASK(APIC_TMCCT) | 1406 APIC_REG_MASK(APIC_TDCR); 1407 1408 /* ARBPRI is not valid on x2APIC */ 1409 if (!apic_x2apic_mode(apic)) 1410 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1411 1412 if (alignment + len > 4) 1413 return 1; 1414 1415 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1416 return 1; 1417 1418 result = __apic_read(apic, offset & ~0xf); 1419 1420 trace_kvm_apic_read(offset, result); 1421 1422 switch (len) { 1423 case 1: 1424 case 2: 1425 case 4: 1426 memcpy(data, (char *)&result + alignment, len); 1427 break; 1428 default: 1429 printk(KERN_ERR "Local APIC read with len = %x, " 1430 "should be 1,2, or 4 instead\n", len); 1431 break; 1432 } 1433 return 0; 1434 } 1435 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1436 1437 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1438 { 1439 return addr >= apic->base_address && 1440 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1441 } 1442 1443 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1444 gpa_t address, int len, void *data) 1445 { 1446 struct kvm_lapic *apic = to_lapic(this); 1447 u32 offset = address - apic->base_address; 1448 1449 if (!apic_mmio_in_range(apic, address)) 1450 return -EOPNOTSUPP; 1451 1452 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1453 if (!kvm_check_has_quirk(vcpu->kvm, 1454 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1455 return -EOPNOTSUPP; 1456 1457 memset(data, 0xff, len); 1458 return 0; 1459 } 1460 1461 kvm_lapic_reg_read(apic, offset, len, data); 1462 1463 return 0; 1464 } 1465 1466 static void update_divide_count(struct kvm_lapic *apic) 1467 { 1468 u32 tmp1, tmp2, tdcr; 1469 1470 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1471 tmp1 = tdcr & 0xf; 1472 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1473 apic->divide_count = 0x1 << (tmp2 & 0x7); 1474 } 1475 1476 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1477 { 1478 /* 1479 * Do not allow the guest to program periodic timers with small 1480 * interval, since the hrtimers are not throttled by the host 1481 * scheduler. 1482 */ 1483 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1484 s64 min_period = min_timer_period_us * 1000LL; 1485 1486 if (apic->lapic_timer.period < min_period) { 1487 pr_info_ratelimited( 1488 "kvm: vcpu %i: requested %lld ns " 1489 "lapic timer period limited to %lld ns\n", 1490 apic->vcpu->vcpu_id, 1491 apic->lapic_timer.period, min_period); 1492 apic->lapic_timer.period = min_period; 1493 } 1494 } 1495 } 1496 1497 static void cancel_hv_timer(struct kvm_lapic *apic); 1498 1499 static void cancel_apic_timer(struct kvm_lapic *apic) 1500 { 1501 hrtimer_cancel(&apic->lapic_timer.timer); 1502 preempt_disable(); 1503 if (apic->lapic_timer.hv_timer_in_use) 1504 cancel_hv_timer(apic); 1505 preempt_enable(); 1506 } 1507 1508 static void apic_update_lvtt(struct kvm_lapic *apic) 1509 { 1510 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1511 apic->lapic_timer.timer_mode_mask; 1512 1513 if (apic->lapic_timer.timer_mode != timer_mode) { 1514 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1515 APIC_LVT_TIMER_TSCDEADLINE)) { 1516 cancel_apic_timer(apic); 1517 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1518 apic->lapic_timer.period = 0; 1519 apic->lapic_timer.tscdeadline = 0; 1520 } 1521 apic->lapic_timer.timer_mode = timer_mode; 1522 limit_periodic_timer_frequency(apic); 1523 } 1524 } 1525 1526 /* 1527 * On APICv, this test will cause a busy wait 1528 * during a higher-priority task. 1529 */ 1530 1531 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1532 { 1533 struct kvm_lapic *apic = vcpu->arch.apic; 1534 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1535 1536 if (kvm_apic_hw_enabled(apic)) { 1537 int vec = reg & APIC_VECTOR_MASK; 1538 void *bitmap = apic->regs + APIC_ISR; 1539 1540 if (vcpu->arch.apicv_active) 1541 bitmap = apic->regs + APIC_IRR; 1542 1543 if (apic_test_vector(vec, bitmap)) 1544 return true; 1545 } 1546 return false; 1547 } 1548 1549 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1550 { 1551 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1552 1553 /* 1554 * If the guest TSC is running at a different ratio than the host, then 1555 * convert the delay to nanoseconds to achieve an accurate delay. Note 1556 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1557 * always for VMX enabled hardware. 1558 */ 1559 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1560 __delay(min(guest_cycles, 1561 nsec_to_cycles(vcpu, timer_advance_ns))); 1562 } else { 1563 u64 delay_ns = guest_cycles * 1000000ULL; 1564 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1565 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1566 } 1567 } 1568 1569 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1570 s64 advance_expire_delta) 1571 { 1572 struct kvm_lapic *apic = vcpu->arch.apic; 1573 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1574 u64 ns; 1575 1576 /* Do not adjust for tiny fluctuations or large random spikes. */ 1577 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1578 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1579 return; 1580 1581 /* too early */ 1582 if (advance_expire_delta < 0) { 1583 ns = -advance_expire_delta * 1000000ULL; 1584 do_div(ns, vcpu->arch.virtual_tsc_khz); 1585 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1586 } else { 1587 /* too late */ 1588 ns = advance_expire_delta * 1000000ULL; 1589 do_div(ns, vcpu->arch.virtual_tsc_khz); 1590 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1591 } 1592 1593 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1594 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1595 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1596 } 1597 1598 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1599 { 1600 struct kvm_lapic *apic = vcpu->arch.apic; 1601 u64 guest_tsc, tsc_deadline; 1602 1603 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1604 apic->lapic_timer.expired_tscdeadline = 0; 1605 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1606 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1607 1608 if (lapic_timer_advance_dynamic) { 1609 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1610 /* 1611 * If the timer fired early, reread the TSC to account for the 1612 * overhead of the above adjustment to avoid waiting longer 1613 * than is necessary. 1614 */ 1615 if (guest_tsc < tsc_deadline) 1616 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1617 } 1618 1619 if (guest_tsc < tsc_deadline) 1620 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1621 } 1622 1623 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1624 { 1625 if (lapic_in_kernel(vcpu) && 1626 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1627 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1628 lapic_timer_int_injected(vcpu)) 1629 __kvm_wait_lapic_expire(vcpu); 1630 } 1631 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1632 1633 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1634 { 1635 struct kvm_timer *ktimer = &apic->lapic_timer; 1636 1637 kvm_apic_local_deliver(apic, APIC_LVTT); 1638 if (apic_lvtt_tscdeadline(apic)) { 1639 ktimer->tscdeadline = 0; 1640 } else if (apic_lvtt_oneshot(apic)) { 1641 ktimer->tscdeadline = 0; 1642 ktimer->target_expiration = 0; 1643 } 1644 } 1645 1646 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1647 { 1648 struct kvm_vcpu *vcpu = apic->vcpu; 1649 struct kvm_timer *ktimer = &apic->lapic_timer; 1650 1651 if (atomic_read(&apic->lapic_timer.pending)) 1652 return; 1653 1654 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1655 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1656 1657 if (!from_timer_fn && vcpu->arch.apicv_active) { 1658 WARN_ON(kvm_get_running_vcpu() != vcpu); 1659 kvm_apic_inject_pending_timer_irqs(apic); 1660 return; 1661 } 1662 1663 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1664 /* 1665 * Ensure the guest's timer has truly expired before posting an 1666 * interrupt. Open code the relevant checks to avoid querying 1667 * lapic_timer_int_injected(), which will be false since the 1668 * interrupt isn't yet injected. Waiting until after injecting 1669 * is not an option since that won't help a posted interrupt. 1670 */ 1671 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1672 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1673 __kvm_wait_lapic_expire(vcpu); 1674 kvm_apic_inject_pending_timer_irqs(apic); 1675 return; 1676 } 1677 1678 atomic_inc(&apic->lapic_timer.pending); 1679 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1680 if (from_timer_fn) 1681 kvm_vcpu_kick(vcpu); 1682 } 1683 1684 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1685 { 1686 struct kvm_timer *ktimer = &apic->lapic_timer; 1687 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1688 u64 ns = 0; 1689 ktime_t expire; 1690 struct kvm_vcpu *vcpu = apic->vcpu; 1691 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1692 unsigned long flags; 1693 ktime_t now; 1694 1695 if (unlikely(!tscdeadline || !this_tsc_khz)) 1696 return; 1697 1698 local_irq_save(flags); 1699 1700 now = ktime_get(); 1701 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1702 1703 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1704 do_div(ns, this_tsc_khz); 1705 1706 if (likely(tscdeadline > guest_tsc) && 1707 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1708 expire = ktime_add_ns(now, ns); 1709 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1710 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1711 } else 1712 apic_timer_expired(apic, false); 1713 1714 local_irq_restore(flags); 1715 } 1716 1717 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1718 { 1719 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1720 } 1721 1722 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1723 { 1724 ktime_t now, remaining; 1725 u64 ns_remaining_old, ns_remaining_new; 1726 1727 apic->lapic_timer.period = 1728 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1729 limit_periodic_timer_frequency(apic); 1730 1731 now = ktime_get(); 1732 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1733 if (ktime_to_ns(remaining) < 0) 1734 remaining = 0; 1735 1736 ns_remaining_old = ktime_to_ns(remaining); 1737 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1738 apic->divide_count, old_divisor); 1739 1740 apic->lapic_timer.tscdeadline += 1741 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1742 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1743 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1744 } 1745 1746 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1747 { 1748 ktime_t now; 1749 u64 tscl = rdtsc(); 1750 s64 deadline; 1751 1752 now = ktime_get(); 1753 apic->lapic_timer.period = 1754 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1755 1756 if (!apic->lapic_timer.period) { 1757 apic->lapic_timer.tscdeadline = 0; 1758 return false; 1759 } 1760 1761 limit_periodic_timer_frequency(apic); 1762 deadline = apic->lapic_timer.period; 1763 1764 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1765 if (unlikely(count_reg != APIC_TMICT)) { 1766 deadline = tmict_to_ns(apic, 1767 kvm_lapic_get_reg(apic, count_reg)); 1768 if (unlikely(deadline <= 0)) 1769 deadline = apic->lapic_timer.period; 1770 else if (unlikely(deadline > apic->lapic_timer.period)) { 1771 pr_info_ratelimited( 1772 "kvm: vcpu %i: requested lapic timer restore with " 1773 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1774 "Using initial count to start timer.\n", 1775 apic->vcpu->vcpu_id, 1776 count_reg, 1777 kvm_lapic_get_reg(apic, count_reg), 1778 deadline, apic->lapic_timer.period); 1779 kvm_lapic_set_reg(apic, count_reg, 0); 1780 deadline = apic->lapic_timer.period; 1781 } 1782 } 1783 } 1784 1785 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1786 nsec_to_cycles(apic->vcpu, deadline); 1787 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1788 1789 return true; 1790 } 1791 1792 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1793 { 1794 ktime_t now = ktime_get(); 1795 u64 tscl = rdtsc(); 1796 ktime_t delta; 1797 1798 /* 1799 * Synchronize both deadlines to the same time source or 1800 * differences in the periods (caused by differences in the 1801 * underlying clocks or numerical approximation errors) will 1802 * cause the two to drift apart over time as the errors 1803 * accumulate. 1804 */ 1805 apic->lapic_timer.target_expiration = 1806 ktime_add_ns(apic->lapic_timer.target_expiration, 1807 apic->lapic_timer.period); 1808 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1809 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1810 nsec_to_cycles(apic->vcpu, delta); 1811 } 1812 1813 static void start_sw_period(struct kvm_lapic *apic) 1814 { 1815 if (!apic->lapic_timer.period) 1816 return; 1817 1818 if (ktime_after(ktime_get(), 1819 apic->lapic_timer.target_expiration)) { 1820 apic_timer_expired(apic, false); 1821 1822 if (apic_lvtt_oneshot(apic)) 1823 return; 1824 1825 advance_periodic_target_expiration(apic); 1826 } 1827 1828 hrtimer_start(&apic->lapic_timer.timer, 1829 apic->lapic_timer.target_expiration, 1830 HRTIMER_MODE_ABS_HARD); 1831 } 1832 1833 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1834 { 1835 if (!lapic_in_kernel(vcpu)) 1836 return false; 1837 1838 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1839 } 1840 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1841 1842 static void cancel_hv_timer(struct kvm_lapic *apic) 1843 { 1844 WARN_ON(preemptible()); 1845 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1846 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 1847 apic->lapic_timer.hv_timer_in_use = false; 1848 } 1849 1850 static bool start_hv_timer(struct kvm_lapic *apic) 1851 { 1852 struct kvm_timer *ktimer = &apic->lapic_timer; 1853 struct kvm_vcpu *vcpu = apic->vcpu; 1854 bool expired; 1855 1856 WARN_ON(preemptible()); 1857 if (!kvm_can_use_hv_timer(vcpu)) 1858 return false; 1859 1860 if (!ktimer->tscdeadline) 1861 return false; 1862 1863 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 1864 return false; 1865 1866 ktimer->hv_timer_in_use = true; 1867 hrtimer_cancel(&ktimer->timer); 1868 1869 /* 1870 * To simplify handling the periodic timer, leave the hv timer running 1871 * even if the deadline timer has expired, i.e. rely on the resulting 1872 * VM-Exit to recompute the periodic timer's target expiration. 1873 */ 1874 if (!apic_lvtt_period(apic)) { 1875 /* 1876 * Cancel the hv timer if the sw timer fired while the hv timer 1877 * was being programmed, or if the hv timer itself expired. 1878 */ 1879 if (atomic_read(&ktimer->pending)) { 1880 cancel_hv_timer(apic); 1881 } else if (expired) { 1882 apic_timer_expired(apic, false); 1883 cancel_hv_timer(apic); 1884 } 1885 } 1886 1887 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1888 1889 return true; 1890 } 1891 1892 static void start_sw_timer(struct kvm_lapic *apic) 1893 { 1894 struct kvm_timer *ktimer = &apic->lapic_timer; 1895 1896 WARN_ON(preemptible()); 1897 if (apic->lapic_timer.hv_timer_in_use) 1898 cancel_hv_timer(apic); 1899 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1900 return; 1901 1902 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1903 start_sw_period(apic); 1904 else if (apic_lvtt_tscdeadline(apic)) 1905 start_sw_tscdeadline(apic); 1906 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1907 } 1908 1909 static void restart_apic_timer(struct kvm_lapic *apic) 1910 { 1911 preempt_disable(); 1912 1913 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1914 goto out; 1915 1916 if (!start_hv_timer(apic)) 1917 start_sw_timer(apic); 1918 out: 1919 preempt_enable(); 1920 } 1921 1922 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1923 { 1924 struct kvm_lapic *apic = vcpu->arch.apic; 1925 1926 preempt_disable(); 1927 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1928 if (!apic->lapic_timer.hv_timer_in_use) 1929 goto out; 1930 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 1931 apic_timer_expired(apic, false); 1932 cancel_hv_timer(apic); 1933 1934 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1935 advance_periodic_target_expiration(apic); 1936 restart_apic_timer(apic); 1937 } 1938 out: 1939 preempt_enable(); 1940 } 1941 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1942 1943 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1944 { 1945 restart_apic_timer(vcpu->arch.apic); 1946 } 1947 1948 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1949 { 1950 struct kvm_lapic *apic = vcpu->arch.apic; 1951 1952 preempt_disable(); 1953 /* Possibly the TSC deadline timer is not enabled yet */ 1954 if (apic->lapic_timer.hv_timer_in_use) 1955 start_sw_timer(apic); 1956 preempt_enable(); 1957 } 1958 1959 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1960 { 1961 struct kvm_lapic *apic = vcpu->arch.apic; 1962 1963 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1964 restart_apic_timer(apic); 1965 } 1966 1967 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 1968 { 1969 atomic_set(&apic->lapic_timer.pending, 0); 1970 1971 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1972 && !set_target_expiration(apic, count_reg)) 1973 return; 1974 1975 restart_apic_timer(apic); 1976 } 1977 1978 static void start_apic_timer(struct kvm_lapic *apic) 1979 { 1980 __start_apic_timer(apic, APIC_TMICT); 1981 } 1982 1983 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1984 { 1985 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1986 1987 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1988 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1989 if (lvt0_in_nmi_mode) { 1990 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1991 } else 1992 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1993 } 1994 } 1995 1996 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1997 { 1998 int ret = 0; 1999 2000 trace_kvm_apic_write(reg, val); 2001 2002 switch (reg) { 2003 case APIC_ID: /* Local APIC ID */ 2004 if (!apic_x2apic_mode(apic)) 2005 kvm_apic_set_xapic_id(apic, val >> 24); 2006 else 2007 ret = 1; 2008 break; 2009 2010 case APIC_TASKPRI: 2011 report_tpr_access(apic, true); 2012 apic_set_tpr(apic, val & 0xff); 2013 break; 2014 2015 case APIC_EOI: 2016 apic_set_eoi(apic); 2017 break; 2018 2019 case APIC_LDR: 2020 if (!apic_x2apic_mode(apic)) 2021 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2022 else 2023 ret = 1; 2024 break; 2025 2026 case APIC_DFR: 2027 if (!apic_x2apic_mode(apic)) 2028 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2029 else 2030 ret = 1; 2031 break; 2032 2033 case APIC_SPIV: { 2034 u32 mask = 0x3ff; 2035 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2036 mask |= APIC_SPIV_DIRECTED_EOI; 2037 apic_set_spiv(apic, val & mask); 2038 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2039 int i; 2040 u32 lvt_val; 2041 2042 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2043 lvt_val = kvm_lapic_get_reg(apic, 2044 APIC_LVTT + 0x10 * i); 2045 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2046 lvt_val | APIC_LVT_MASKED); 2047 } 2048 apic_update_lvtt(apic); 2049 atomic_set(&apic->lapic_timer.pending, 0); 2050 2051 } 2052 break; 2053 } 2054 case APIC_ICR: 2055 /* No delay here, so we always clear the pending bit */ 2056 val &= ~(1 << 12); 2057 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2058 kvm_lapic_set_reg(apic, APIC_ICR, val); 2059 break; 2060 2061 case APIC_ICR2: 2062 if (!apic_x2apic_mode(apic)) 2063 val &= 0xff000000; 2064 kvm_lapic_set_reg(apic, APIC_ICR2, val); 2065 break; 2066 2067 case APIC_LVT0: 2068 apic_manage_nmi_watchdog(apic, val); 2069 fallthrough; 2070 case APIC_LVTTHMR: 2071 case APIC_LVTPC: 2072 case APIC_LVT1: 2073 case APIC_LVTERR: { 2074 /* TODO: Check vector */ 2075 size_t size; 2076 u32 index; 2077 2078 if (!kvm_apic_sw_enabled(apic)) 2079 val |= APIC_LVT_MASKED; 2080 size = ARRAY_SIZE(apic_lvt_mask); 2081 index = array_index_nospec( 2082 (reg - APIC_LVTT) >> 4, size); 2083 val &= apic_lvt_mask[index]; 2084 kvm_lapic_set_reg(apic, reg, val); 2085 break; 2086 } 2087 2088 case APIC_LVTT: 2089 if (!kvm_apic_sw_enabled(apic)) 2090 val |= APIC_LVT_MASKED; 2091 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2092 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2093 apic_update_lvtt(apic); 2094 break; 2095 2096 case APIC_TMICT: 2097 if (apic_lvtt_tscdeadline(apic)) 2098 break; 2099 2100 cancel_apic_timer(apic); 2101 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2102 start_apic_timer(apic); 2103 break; 2104 2105 case APIC_TDCR: { 2106 uint32_t old_divisor = apic->divide_count; 2107 2108 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2109 update_divide_count(apic); 2110 if (apic->divide_count != old_divisor && 2111 apic->lapic_timer.period) { 2112 hrtimer_cancel(&apic->lapic_timer.timer); 2113 update_target_expiration(apic, old_divisor); 2114 restart_apic_timer(apic); 2115 } 2116 break; 2117 } 2118 case APIC_ESR: 2119 if (apic_x2apic_mode(apic) && val != 0) 2120 ret = 1; 2121 break; 2122 2123 case APIC_SELF_IPI: 2124 if (apic_x2apic_mode(apic)) { 2125 kvm_lapic_reg_write(apic, APIC_ICR, 2126 APIC_DEST_SELF | (val & APIC_VECTOR_MASK)); 2127 } else 2128 ret = 1; 2129 break; 2130 default: 2131 ret = 1; 2132 break; 2133 } 2134 2135 kvm_recalculate_apic_map(apic->vcpu->kvm); 2136 2137 return ret; 2138 } 2139 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2140 2141 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2142 gpa_t address, int len, const void *data) 2143 { 2144 struct kvm_lapic *apic = to_lapic(this); 2145 unsigned int offset = address - apic->base_address; 2146 u32 val; 2147 2148 if (!apic_mmio_in_range(apic, address)) 2149 return -EOPNOTSUPP; 2150 2151 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2152 if (!kvm_check_has_quirk(vcpu->kvm, 2153 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2154 return -EOPNOTSUPP; 2155 2156 return 0; 2157 } 2158 2159 /* 2160 * APIC register must be aligned on 128-bits boundary. 2161 * 32/64/128 bits registers must be accessed thru 32 bits. 2162 * Refer SDM 8.4.1 2163 */ 2164 if (len != 4 || (offset & 0xf)) 2165 return 0; 2166 2167 val = *(u32*)data; 2168 2169 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2170 2171 return 0; 2172 } 2173 2174 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2175 { 2176 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2177 } 2178 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2179 2180 /* emulate APIC access in a trap manner */ 2181 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2182 { 2183 u32 val = 0; 2184 2185 /* hw has done the conditional check and inst decode */ 2186 offset &= 0xff0; 2187 2188 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2189 2190 /* TODO: optimize to just emulate side effect w/o one more write */ 2191 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2192 } 2193 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2194 2195 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2196 { 2197 struct kvm_lapic *apic = vcpu->arch.apic; 2198 2199 if (!vcpu->arch.apic) 2200 return; 2201 2202 hrtimer_cancel(&apic->lapic_timer.timer); 2203 2204 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2205 static_branch_slow_dec_deferred(&apic_hw_disabled); 2206 2207 if (!apic->sw_enabled) 2208 static_branch_slow_dec_deferred(&apic_sw_disabled); 2209 2210 if (apic->regs) 2211 free_page((unsigned long)apic->regs); 2212 2213 kfree(apic); 2214 } 2215 2216 /* 2217 *---------------------------------------------------------------------- 2218 * LAPIC interface 2219 *---------------------------------------------------------------------- 2220 */ 2221 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2222 { 2223 struct kvm_lapic *apic = vcpu->arch.apic; 2224 2225 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2226 return 0; 2227 2228 return apic->lapic_timer.tscdeadline; 2229 } 2230 2231 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2232 { 2233 struct kvm_lapic *apic = vcpu->arch.apic; 2234 2235 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2236 return; 2237 2238 hrtimer_cancel(&apic->lapic_timer.timer); 2239 apic->lapic_timer.tscdeadline = data; 2240 start_apic_timer(apic); 2241 } 2242 2243 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2244 { 2245 struct kvm_lapic *apic = vcpu->arch.apic; 2246 2247 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2248 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2249 } 2250 2251 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2252 { 2253 u64 tpr; 2254 2255 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2256 2257 return (tpr & 0xf0) >> 4; 2258 } 2259 2260 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2261 { 2262 u64 old_value = vcpu->arch.apic_base; 2263 struct kvm_lapic *apic = vcpu->arch.apic; 2264 2265 vcpu->arch.apic_base = value; 2266 2267 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2268 kvm_update_cpuid_runtime(vcpu); 2269 2270 if (!apic) 2271 return; 2272 2273 /* update jump label if enable bit changes */ 2274 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2275 if (value & MSR_IA32_APICBASE_ENABLE) { 2276 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2277 static_branch_slow_dec_deferred(&apic_hw_disabled); 2278 /* Check if there are APF page ready requests pending */ 2279 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2280 } else { 2281 static_branch_inc(&apic_hw_disabled.key); 2282 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2283 } 2284 } 2285 2286 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2287 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2288 2289 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2290 static_call(kvm_x86_set_virtual_apic_mode)(vcpu); 2291 2292 apic->base_address = apic->vcpu->arch.apic_base & 2293 MSR_IA32_APICBASE_BASE; 2294 2295 if ((value & MSR_IA32_APICBASE_ENABLE) && 2296 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2297 pr_warn_once("APIC base relocation is unsupported by KVM"); 2298 } 2299 2300 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2301 { 2302 struct kvm_lapic *apic = vcpu->arch.apic; 2303 2304 if (vcpu->arch.apicv_active) { 2305 /* irr_pending is always true when apicv is activated. */ 2306 apic->irr_pending = true; 2307 apic->isr_count = 1; 2308 } else { 2309 /* 2310 * Don't clear irr_pending, searching the IRR can race with 2311 * updates from the CPU as APICv is still active from hardware's 2312 * perspective. The flag will be cleared as appropriate when 2313 * KVM injects the interrupt. 2314 */ 2315 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2316 } 2317 } 2318 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2319 2320 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2321 { 2322 struct kvm_lapic *apic = vcpu->arch.apic; 2323 u64 msr_val; 2324 int i; 2325 2326 if (!init_event) { 2327 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2328 if (kvm_vcpu_is_reset_bsp(vcpu)) 2329 msr_val |= MSR_IA32_APICBASE_BSP; 2330 kvm_lapic_set_base(vcpu, msr_val); 2331 } 2332 2333 if (!apic) 2334 return; 2335 2336 /* Stop the timer in case it's a reset to an active apic */ 2337 hrtimer_cancel(&apic->lapic_timer.timer); 2338 2339 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2340 if (!init_event) 2341 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2342 kvm_apic_set_version(apic->vcpu); 2343 2344 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2345 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2346 apic_update_lvtt(apic); 2347 if (kvm_vcpu_is_reset_bsp(vcpu) && 2348 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2349 kvm_lapic_set_reg(apic, APIC_LVT0, 2350 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2351 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2352 2353 kvm_apic_set_dfr(apic, 0xffffffffU); 2354 apic_set_spiv(apic, 0xff); 2355 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2356 if (!apic_x2apic_mode(apic)) 2357 kvm_apic_set_ldr(apic, 0); 2358 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2359 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2360 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2361 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2362 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2363 for (i = 0; i < 8; i++) { 2364 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2365 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2366 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2367 } 2368 kvm_apic_update_apicv(vcpu); 2369 apic->highest_isr_cache = -1; 2370 update_divide_count(apic); 2371 atomic_set(&apic->lapic_timer.pending, 0); 2372 2373 vcpu->arch.pv_eoi.msr_val = 0; 2374 apic_update_ppr(apic); 2375 if (vcpu->arch.apicv_active) { 2376 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2377 static_call(kvm_x86_hwapic_irr_update)(vcpu, -1); 2378 static_call(kvm_x86_hwapic_isr_update)(vcpu, -1); 2379 } 2380 2381 vcpu->arch.apic_arb_prio = 0; 2382 vcpu->arch.apic_attention = 0; 2383 2384 kvm_recalculate_apic_map(vcpu->kvm); 2385 } 2386 2387 /* 2388 *---------------------------------------------------------------------- 2389 * timer interface 2390 *---------------------------------------------------------------------- 2391 */ 2392 2393 static bool lapic_is_periodic(struct kvm_lapic *apic) 2394 { 2395 return apic_lvtt_period(apic); 2396 } 2397 2398 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2399 { 2400 struct kvm_lapic *apic = vcpu->arch.apic; 2401 2402 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2403 return atomic_read(&apic->lapic_timer.pending); 2404 2405 return 0; 2406 } 2407 2408 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2409 { 2410 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2411 int vector, mode, trig_mode; 2412 2413 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2414 vector = reg & APIC_VECTOR_MASK; 2415 mode = reg & APIC_MODE_MASK; 2416 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2417 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2418 NULL); 2419 } 2420 return 0; 2421 } 2422 2423 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2424 { 2425 struct kvm_lapic *apic = vcpu->arch.apic; 2426 2427 if (apic) 2428 kvm_apic_local_deliver(apic, APIC_LVT0); 2429 } 2430 2431 static const struct kvm_io_device_ops apic_mmio_ops = { 2432 .read = apic_mmio_read, 2433 .write = apic_mmio_write, 2434 }; 2435 2436 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2437 { 2438 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2439 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2440 2441 apic_timer_expired(apic, true); 2442 2443 if (lapic_is_periodic(apic)) { 2444 advance_periodic_target_expiration(apic); 2445 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2446 return HRTIMER_RESTART; 2447 } else 2448 return HRTIMER_NORESTART; 2449 } 2450 2451 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2452 { 2453 struct kvm_lapic *apic; 2454 2455 ASSERT(vcpu != NULL); 2456 2457 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2458 if (!apic) 2459 goto nomem; 2460 2461 vcpu->arch.apic = apic; 2462 2463 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2464 if (!apic->regs) { 2465 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2466 vcpu->vcpu_id); 2467 goto nomem_free_apic; 2468 } 2469 apic->vcpu = vcpu; 2470 2471 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2472 HRTIMER_MODE_ABS_HARD); 2473 apic->lapic_timer.timer.function = apic_timer_fn; 2474 if (timer_advance_ns == -1) { 2475 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2476 lapic_timer_advance_dynamic = true; 2477 } else { 2478 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2479 lapic_timer_advance_dynamic = false; 2480 } 2481 2482 /* 2483 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2484 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2485 */ 2486 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2487 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2488 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2489 2490 return 0; 2491 nomem_free_apic: 2492 kfree(apic); 2493 vcpu->arch.apic = NULL; 2494 nomem: 2495 return -ENOMEM; 2496 } 2497 2498 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2499 { 2500 struct kvm_lapic *apic = vcpu->arch.apic; 2501 u32 ppr; 2502 2503 if (!kvm_apic_present(vcpu)) 2504 return -1; 2505 2506 __apic_update_ppr(apic, &ppr); 2507 return apic_has_interrupt_for_ppr(apic, ppr); 2508 } 2509 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2510 2511 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2512 { 2513 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2514 2515 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2516 return 1; 2517 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2518 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2519 return 1; 2520 return 0; 2521 } 2522 2523 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2524 { 2525 struct kvm_lapic *apic = vcpu->arch.apic; 2526 2527 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2528 kvm_apic_inject_pending_timer_irqs(apic); 2529 atomic_set(&apic->lapic_timer.pending, 0); 2530 } 2531 } 2532 2533 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2534 { 2535 int vector = kvm_apic_has_interrupt(vcpu); 2536 struct kvm_lapic *apic = vcpu->arch.apic; 2537 u32 ppr; 2538 2539 if (vector == -1) 2540 return -1; 2541 2542 /* 2543 * We get here even with APIC virtualization enabled, if doing 2544 * nested virtualization and L1 runs with the "acknowledge interrupt 2545 * on exit" mode. Then we cannot inject the interrupt via RVI, 2546 * because the process would deliver it through the IDT. 2547 */ 2548 2549 apic_clear_irr(vector, apic); 2550 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2551 /* 2552 * For auto-EOI interrupts, there might be another pending 2553 * interrupt above PPR, so check whether to raise another 2554 * KVM_REQ_EVENT. 2555 */ 2556 apic_update_ppr(apic); 2557 } else { 2558 /* 2559 * For normal interrupts, PPR has been raised and there cannot 2560 * be a higher-priority pending interrupt---except if there was 2561 * a concurrent interrupt injection, but that would have 2562 * triggered KVM_REQ_EVENT already. 2563 */ 2564 apic_set_isr(vector, apic); 2565 __apic_update_ppr(apic, &ppr); 2566 } 2567 2568 return vector; 2569 } 2570 2571 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2572 struct kvm_lapic_state *s, bool set) 2573 { 2574 if (apic_x2apic_mode(vcpu->arch.apic)) { 2575 u32 *id = (u32 *)(s->regs + APIC_ID); 2576 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2577 2578 if (vcpu->kvm->arch.x2apic_format) { 2579 if (*id != vcpu->vcpu_id) 2580 return -EINVAL; 2581 } else { 2582 if (set) 2583 *id >>= 24; 2584 else 2585 *id <<= 24; 2586 } 2587 2588 /* In x2APIC mode, the LDR is fixed and based on the id */ 2589 if (set) 2590 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2591 } 2592 2593 return 0; 2594 } 2595 2596 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2597 { 2598 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2599 2600 /* 2601 * Get calculated timer current count for remaining timer period (if 2602 * any) and store it in the returned register set. 2603 */ 2604 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2605 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2606 2607 return kvm_apic_state_fixup(vcpu, s, false); 2608 } 2609 2610 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2611 { 2612 struct kvm_lapic *apic = vcpu->arch.apic; 2613 int r; 2614 2615 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2616 /* set SPIV separately to get count of SW disabled APICs right */ 2617 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2618 2619 r = kvm_apic_state_fixup(vcpu, s, true); 2620 if (r) { 2621 kvm_recalculate_apic_map(vcpu->kvm); 2622 return r; 2623 } 2624 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2625 2626 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2627 kvm_recalculate_apic_map(vcpu->kvm); 2628 kvm_apic_set_version(vcpu); 2629 2630 apic_update_ppr(apic); 2631 cancel_apic_timer(apic); 2632 apic->lapic_timer.expired_tscdeadline = 0; 2633 apic_update_lvtt(apic); 2634 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2635 update_divide_count(apic); 2636 __start_apic_timer(apic, APIC_TMCCT); 2637 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 2638 kvm_apic_update_apicv(vcpu); 2639 apic->highest_isr_cache = -1; 2640 if (vcpu->arch.apicv_active) { 2641 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2642 static_call(kvm_x86_hwapic_irr_update)(vcpu, 2643 apic_find_highest_irr(apic)); 2644 static_call(kvm_x86_hwapic_isr_update)(vcpu, 2645 apic_find_highest_isr(apic)); 2646 } 2647 kvm_make_request(KVM_REQ_EVENT, vcpu); 2648 if (ioapic_in_kernel(vcpu->kvm)) 2649 kvm_rtc_eoi_tracking_restore_one(vcpu); 2650 2651 vcpu->arch.apic_arb_prio = 0; 2652 2653 return 0; 2654 } 2655 2656 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2657 { 2658 struct hrtimer *timer; 2659 2660 if (!lapic_in_kernel(vcpu) || 2661 kvm_can_post_timer_interrupt(vcpu)) 2662 return; 2663 2664 timer = &vcpu->arch.apic->lapic_timer.timer; 2665 if (hrtimer_cancel(timer)) 2666 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2667 } 2668 2669 /* 2670 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2671 * 2672 * Detect whether guest triggered PV EOI since the 2673 * last entry. If yes, set EOI on guests's behalf. 2674 * Clear PV EOI in guest memory in any case. 2675 */ 2676 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2677 struct kvm_lapic *apic) 2678 { 2679 int vector; 2680 /* 2681 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2682 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2683 * 2684 * KVM_APIC_PV_EOI_PENDING is unset: 2685 * -> host disabled PV EOI. 2686 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2687 * -> host enabled PV EOI, guest did not execute EOI yet. 2688 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2689 * -> host enabled PV EOI, guest executed EOI. 2690 */ 2691 BUG_ON(!pv_eoi_enabled(vcpu)); 2692 2693 if (pv_eoi_test_and_clr_pending(vcpu)) 2694 return; 2695 vector = apic_set_eoi(apic); 2696 trace_kvm_pv_eoi(apic, vector); 2697 } 2698 2699 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2700 { 2701 u32 data; 2702 2703 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2704 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2705 2706 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2707 return; 2708 2709 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2710 sizeof(u32))) 2711 return; 2712 2713 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2714 } 2715 2716 /* 2717 * apic_sync_pv_eoi_to_guest - called before vmentry 2718 * 2719 * Detect whether it's safe to enable PV EOI and 2720 * if yes do so. 2721 */ 2722 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2723 struct kvm_lapic *apic) 2724 { 2725 if (!pv_eoi_enabled(vcpu) || 2726 /* IRR set or many bits in ISR: could be nested. */ 2727 apic->irr_pending || 2728 /* Cache not set: could be safe but we don't bother. */ 2729 apic->highest_isr_cache == -1 || 2730 /* Need EOI to update ioapic. */ 2731 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2732 /* 2733 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2734 * so we need not do anything here. 2735 */ 2736 return; 2737 } 2738 2739 pv_eoi_set_pending(apic->vcpu); 2740 } 2741 2742 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2743 { 2744 u32 data, tpr; 2745 int max_irr, max_isr; 2746 struct kvm_lapic *apic = vcpu->arch.apic; 2747 2748 apic_sync_pv_eoi_to_guest(vcpu, apic); 2749 2750 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2751 return; 2752 2753 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2754 max_irr = apic_find_highest_irr(apic); 2755 if (max_irr < 0) 2756 max_irr = 0; 2757 max_isr = apic_find_highest_isr(apic); 2758 if (max_isr < 0) 2759 max_isr = 0; 2760 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2761 2762 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2763 sizeof(u32)); 2764 } 2765 2766 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2767 { 2768 if (vapic_addr) { 2769 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2770 &vcpu->arch.apic->vapic_cache, 2771 vapic_addr, sizeof(u32))) 2772 return -EINVAL; 2773 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2774 } else { 2775 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2776 } 2777 2778 vcpu->arch.apic->vapic_addr = vapic_addr; 2779 return 0; 2780 } 2781 2782 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2783 { 2784 struct kvm_lapic *apic = vcpu->arch.apic; 2785 u32 reg = (msr - APIC_BASE_MSR) << 4; 2786 2787 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2788 return 1; 2789 2790 if (reg == APIC_ICR2) 2791 return 1; 2792 2793 /* if this is ICR write vector before command */ 2794 if (reg == APIC_ICR) 2795 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2796 return kvm_lapic_reg_write(apic, reg, (u32)data); 2797 } 2798 2799 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2800 { 2801 struct kvm_lapic *apic = vcpu->arch.apic; 2802 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2803 2804 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2805 return 1; 2806 2807 if (reg == APIC_DFR || reg == APIC_ICR2) 2808 return 1; 2809 2810 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2811 return 1; 2812 if (reg == APIC_ICR) 2813 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2814 2815 *data = (((u64)high) << 32) | low; 2816 2817 return 0; 2818 } 2819 2820 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2821 { 2822 struct kvm_lapic *apic = vcpu->arch.apic; 2823 2824 if (!lapic_in_kernel(vcpu)) 2825 return 1; 2826 2827 /* if this is ICR write vector before command */ 2828 if (reg == APIC_ICR) 2829 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2830 return kvm_lapic_reg_write(apic, reg, (u32)data); 2831 } 2832 2833 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2834 { 2835 struct kvm_lapic *apic = vcpu->arch.apic; 2836 u32 low, high = 0; 2837 2838 if (!lapic_in_kernel(vcpu)) 2839 return 1; 2840 2841 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2842 return 1; 2843 if (reg == APIC_ICR) 2844 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2845 2846 *data = (((u64)high) << 32) | low; 2847 2848 return 0; 2849 } 2850 2851 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2852 { 2853 u64 addr = data & ~KVM_MSR_ENABLED; 2854 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2855 unsigned long new_len; 2856 int ret; 2857 2858 if (!IS_ALIGNED(addr, 4)) 2859 return 1; 2860 2861 if (data & KVM_MSR_ENABLED) { 2862 if (addr == ghc->gpa && len <= ghc->len) 2863 new_len = ghc->len; 2864 else 2865 new_len = len; 2866 2867 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2868 if (ret) 2869 return ret; 2870 } 2871 2872 vcpu->arch.pv_eoi.msr_val = data; 2873 2874 return 0; 2875 } 2876 2877 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2878 { 2879 struct kvm_lapic *apic = vcpu->arch.apic; 2880 u8 sipi_vector; 2881 int r; 2882 unsigned long pe; 2883 2884 if (!lapic_in_kernel(vcpu)) 2885 return 0; 2886 2887 /* 2888 * Read pending events before calling the check_events 2889 * callback. 2890 */ 2891 pe = smp_load_acquire(&apic->pending_events); 2892 if (!pe) 2893 return 0; 2894 2895 if (is_guest_mode(vcpu)) { 2896 r = kvm_check_nested_events(vcpu); 2897 if (r < 0) 2898 return r == -EBUSY ? 0 : r; 2899 /* 2900 * If an event has happened and caused a vmexit, 2901 * we know INITs are latched and therefore 2902 * we will not incorrectly deliver an APIC 2903 * event instead of a vmexit. 2904 */ 2905 } 2906 2907 /* 2908 * INITs are latched while CPU is in specific states 2909 * (SMM, VMX root mode, SVM with GIF=0). 2910 * Because a CPU cannot be in these states immediately 2911 * after it has processed an INIT signal (and thus in 2912 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2913 * and leave the INIT pending. 2914 */ 2915 if (kvm_vcpu_latch_init(vcpu)) { 2916 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2917 if (test_bit(KVM_APIC_SIPI, &pe)) 2918 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2919 return 0; 2920 } 2921 2922 if (test_bit(KVM_APIC_INIT, &pe)) { 2923 clear_bit(KVM_APIC_INIT, &apic->pending_events); 2924 kvm_vcpu_reset(vcpu, true); 2925 if (kvm_vcpu_is_bsp(apic->vcpu)) 2926 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2927 else 2928 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2929 } 2930 if (test_bit(KVM_APIC_SIPI, &pe)) { 2931 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2932 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2933 /* evaluate pending_events before reading the vector */ 2934 smp_rmb(); 2935 sipi_vector = apic->sipi_vector; 2936 kvm_x86_ops.vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2937 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2938 } 2939 } 2940 return 0; 2941 } 2942 2943 void kvm_lapic_exit(void) 2944 { 2945 static_key_deferred_flush(&apic_hw_disabled); 2946 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 2947 static_key_deferred_flush(&apic_sw_disabled); 2948 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 2949 } 2950