xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision 6bfb56e93bcef41859c2d5ab234ffd80b691be35)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "ioapic.h"
40 #include "trace.h"
41 #include "x86.h"
42 #include "cpuid.h"
43 #include "hyperv.h"
44 
45 #ifndef CONFIG_X86_64
46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
47 #else
48 #define mod_64(x, y) ((x) % (y))
49 #endif
50 
51 #define PRId64 "d"
52 #define PRIx64 "llx"
53 #define PRIu64 "u"
54 #define PRIo64 "o"
55 
56 /* 14 is the version for Xeon and Pentium 8.4.8*/
57 #define APIC_VERSION			(0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
58 #define LAPIC_MMIO_LENGTH		(1 << 12)
59 /* followed define is not in apicdef.h */
60 #define MAX_APIC_VECTOR			256
61 #define APIC_VECTORS_PER_REG		32
62 
63 static bool lapic_timer_advance_dynamic __read_mostly;
64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
66 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
67 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
68 /* step-by-step approximation to mitigate fluctuation */
69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
70 
71 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
72 {
73 	*((u32 *) (regs + reg_off)) = val;
74 }
75 
76 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
77 {
78 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
79 }
80 
81 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
82 {
83 	BUILD_BUG_ON(reg != APIC_ICR);
84 	return *((u64 *) (regs + reg));
85 }
86 
87 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
88 {
89 	return __kvm_lapic_get_reg64(apic->regs, reg);
90 }
91 
92 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
93 {
94 	BUILD_BUG_ON(reg != APIC_ICR);
95 	*((u64 *) (regs + reg)) = val;
96 }
97 
98 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
99 						int reg, u64 val)
100 {
101 	__kvm_lapic_set_reg64(apic->regs, reg, val);
102 }
103 
104 static inline int apic_test_vector(int vec, void *bitmap)
105 {
106 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
107 }
108 
109 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
110 {
111 	struct kvm_lapic *apic = vcpu->arch.apic;
112 
113 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
114 		apic_test_vector(vector, apic->regs + APIC_IRR);
115 }
116 
117 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
118 {
119 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
120 }
121 
122 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
123 {
124 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
125 }
126 
127 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
129 
130 static inline int apic_enabled(struct kvm_lapic *apic)
131 {
132 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
133 }
134 
135 #define LVT_MASK	\
136 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
137 
138 #define LINT_MASK	\
139 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
140 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
141 
142 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
143 {
144 	return apic->vcpu->vcpu_id;
145 }
146 
147 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
148 {
149 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
150 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
151 }
152 
153 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
154 {
155 	return kvm_x86_ops.set_hv_timer
156 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
157 		    kvm_can_post_timer_interrupt(vcpu));
158 }
159 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer);
160 
161 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
162 {
163 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
164 }
165 
166 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
167 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
168 	switch (map->mode) {
169 	case KVM_APIC_MODE_X2APIC: {
170 		u32 offset = (dest_id >> 16) * 16;
171 		u32 max_apic_id = map->max_apic_id;
172 
173 		if (offset <= max_apic_id) {
174 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
175 
176 			offset = array_index_nospec(offset, map->max_apic_id + 1);
177 			*cluster = &map->phys_map[offset];
178 			*mask = dest_id & (0xffff >> (16 - cluster_size));
179 		} else {
180 			*mask = 0;
181 		}
182 
183 		return true;
184 		}
185 	case KVM_APIC_MODE_XAPIC_FLAT:
186 		*cluster = map->xapic_flat_map;
187 		*mask = dest_id & 0xff;
188 		return true;
189 	case KVM_APIC_MODE_XAPIC_CLUSTER:
190 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
191 		*mask = dest_id & 0xf;
192 		return true;
193 	default:
194 		/* Not optimized. */
195 		return false;
196 	}
197 }
198 
199 static void kvm_apic_map_free(struct rcu_head *rcu)
200 {
201 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
202 
203 	kvfree(map);
204 }
205 
206 /*
207  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
208  *
209  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
210  * apic_map_lock_held.
211  */
212 enum {
213 	CLEAN,
214 	UPDATE_IN_PROGRESS,
215 	DIRTY
216 };
217 
218 void kvm_recalculate_apic_map(struct kvm *kvm)
219 {
220 	struct kvm_apic_map *new, *old = NULL;
221 	struct kvm_vcpu *vcpu;
222 	unsigned long i;
223 	u32 max_id = 255; /* enough space for any xAPIC ID */
224 
225 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
226 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
227 		return;
228 
229 	WARN_ONCE(!irqchip_in_kernel(kvm),
230 		  "Dirty APIC map without an in-kernel local APIC");
231 
232 	mutex_lock(&kvm->arch.apic_map_lock);
233 	/*
234 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
235 	 * (if clean) or the APIC registers (if dirty).
236 	 */
237 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
238 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
239 		/* Someone else has updated the map. */
240 		mutex_unlock(&kvm->arch.apic_map_lock);
241 		return;
242 	}
243 
244 	kvm_for_each_vcpu(i, vcpu, kvm)
245 		if (kvm_apic_present(vcpu))
246 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
247 
248 	new = kvzalloc(sizeof(struct kvm_apic_map) +
249 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
250 			   GFP_KERNEL_ACCOUNT);
251 
252 	if (!new)
253 		goto out;
254 
255 	new->max_apic_id = max_id;
256 
257 	kvm_for_each_vcpu(i, vcpu, kvm) {
258 		struct kvm_lapic *apic = vcpu->arch.apic;
259 		struct kvm_lapic **cluster;
260 		u16 mask;
261 		u32 ldr;
262 		u8 xapic_id;
263 		u32 x2apic_id;
264 
265 		if (!kvm_apic_present(vcpu))
266 			continue;
267 
268 		xapic_id = kvm_xapic_id(apic);
269 		x2apic_id = kvm_x2apic_id(apic);
270 
271 		/* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
272 		if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
273 				x2apic_id <= new->max_apic_id)
274 			new->phys_map[x2apic_id] = apic;
275 		/*
276 		 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
277 		 * prevent them from masking VCPUs with APIC ID <= 0xff.
278 		 */
279 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
280 			new->phys_map[xapic_id] = apic;
281 
282 		if (!kvm_apic_sw_enabled(apic))
283 			continue;
284 
285 		ldr = kvm_lapic_get_reg(apic, APIC_LDR);
286 
287 		if (apic_x2apic_mode(apic)) {
288 			new->mode |= KVM_APIC_MODE_X2APIC;
289 		} else if (ldr) {
290 			ldr = GET_APIC_LOGICAL_ID(ldr);
291 			if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
292 				new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
293 			else
294 				new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
295 		}
296 
297 		if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
298 			continue;
299 
300 		if (mask)
301 			cluster[ffs(mask) - 1] = apic;
302 	}
303 out:
304 	old = rcu_dereference_protected(kvm->arch.apic_map,
305 			lockdep_is_held(&kvm->arch.apic_map_lock));
306 	rcu_assign_pointer(kvm->arch.apic_map, new);
307 	/*
308 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
309 	 * If another update has come in, leave it DIRTY.
310 	 */
311 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
312 			       UPDATE_IN_PROGRESS, CLEAN);
313 	mutex_unlock(&kvm->arch.apic_map_lock);
314 
315 	if (old)
316 		call_rcu(&old->rcu, kvm_apic_map_free);
317 
318 	kvm_make_scan_ioapic_request(kvm);
319 }
320 
321 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
322 {
323 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
324 
325 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
326 
327 	if (enabled != apic->sw_enabled) {
328 		apic->sw_enabled = enabled;
329 		if (enabled)
330 			static_branch_slow_dec_deferred(&apic_sw_disabled);
331 		else
332 			static_branch_inc(&apic_sw_disabled.key);
333 
334 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
335 	}
336 
337 	/* Check if there are APF page ready requests pending */
338 	if (enabled)
339 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
340 }
341 
342 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
343 {
344 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
345 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
346 }
347 
348 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
349 {
350 	kvm_lapic_set_reg(apic, APIC_LDR, id);
351 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
352 }
353 
354 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
355 {
356 	kvm_lapic_set_reg(apic, APIC_DFR, val);
357 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
358 }
359 
360 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
361 {
362 	return ((id >> 4) << 16) | (1 << (id & 0xf));
363 }
364 
365 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
366 {
367 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
368 
369 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
370 
371 	kvm_lapic_set_reg(apic, APIC_ID, id);
372 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
373 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
374 }
375 
376 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
377 {
378 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
379 }
380 
381 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
382 {
383 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
384 }
385 
386 static inline int apic_lvtt_period(struct kvm_lapic *apic)
387 {
388 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
389 }
390 
391 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
392 {
393 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
394 }
395 
396 static inline int apic_lvt_nmi_mode(u32 lvt_val)
397 {
398 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
399 }
400 
401 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
402 {
403 	struct kvm_lapic *apic = vcpu->arch.apic;
404 	u32 v = APIC_VERSION;
405 
406 	if (!lapic_in_kernel(vcpu))
407 		return;
408 
409 	/*
410 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
411 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
412 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
413 	 * version first and level-triggered interrupts never get EOIed in
414 	 * IOAPIC.
415 	 */
416 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
417 	    !ioapic_in_kernel(vcpu->kvm))
418 		v |= APIC_LVR_DIRECTED_EOI;
419 	kvm_lapic_set_reg(apic, APIC_LVR, v);
420 }
421 
422 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
423 	LVT_MASK ,      /* part LVTT mask, timer mode mask added at runtime */
424 	LVT_MASK | APIC_MODE_MASK,	/* LVTTHMR */
425 	LVT_MASK | APIC_MODE_MASK,	/* LVTPC */
426 	LINT_MASK, LINT_MASK,	/* LVT0-1 */
427 	LVT_MASK		/* LVTERR */
428 };
429 
430 static int find_highest_vector(void *bitmap)
431 {
432 	int vec;
433 	u32 *reg;
434 
435 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
436 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
437 		reg = bitmap + REG_POS(vec);
438 		if (*reg)
439 			return __fls(*reg) + vec;
440 	}
441 
442 	return -1;
443 }
444 
445 static u8 count_vectors(void *bitmap)
446 {
447 	int vec;
448 	u32 *reg;
449 	u8 count = 0;
450 
451 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
452 		reg = bitmap + REG_POS(vec);
453 		count += hweight32(*reg);
454 	}
455 
456 	return count;
457 }
458 
459 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
460 {
461 	u32 i, vec;
462 	u32 pir_val, irr_val, prev_irr_val;
463 	int max_updated_irr;
464 
465 	max_updated_irr = -1;
466 	*max_irr = -1;
467 
468 	for (i = vec = 0; i <= 7; i++, vec += 32) {
469 		pir_val = READ_ONCE(pir[i]);
470 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
471 		if (pir_val) {
472 			prev_irr_val = irr_val;
473 			irr_val |= xchg(&pir[i], 0);
474 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
475 			if (prev_irr_val != irr_val) {
476 				max_updated_irr =
477 					__fls(irr_val ^ prev_irr_val) + vec;
478 			}
479 		}
480 		if (irr_val)
481 			*max_irr = __fls(irr_val) + vec;
482 	}
483 
484 	return ((max_updated_irr != -1) &&
485 		(max_updated_irr == *max_irr));
486 }
487 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
488 
489 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
490 {
491 	struct kvm_lapic *apic = vcpu->arch.apic;
492 
493 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
494 }
495 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
496 
497 static inline int apic_search_irr(struct kvm_lapic *apic)
498 {
499 	return find_highest_vector(apic->regs + APIC_IRR);
500 }
501 
502 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
503 {
504 	int result;
505 
506 	/*
507 	 * Note that irr_pending is just a hint. It will be always
508 	 * true with virtual interrupt delivery enabled.
509 	 */
510 	if (!apic->irr_pending)
511 		return -1;
512 
513 	result = apic_search_irr(apic);
514 	ASSERT(result == -1 || result >= 16);
515 
516 	return result;
517 }
518 
519 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
520 {
521 	struct kvm_vcpu *vcpu;
522 
523 	vcpu = apic->vcpu;
524 
525 	if (unlikely(vcpu->arch.apicv_active)) {
526 		/* need to update RVI */
527 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
528 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
529 	} else {
530 		apic->irr_pending = false;
531 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
532 		if (apic_search_irr(apic) != -1)
533 			apic->irr_pending = true;
534 	}
535 }
536 
537 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
538 {
539 	apic_clear_irr(vec, vcpu->arch.apic);
540 }
541 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
542 
543 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
544 {
545 	struct kvm_vcpu *vcpu;
546 
547 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
548 		return;
549 
550 	vcpu = apic->vcpu;
551 
552 	/*
553 	 * With APIC virtualization enabled, all caching is disabled
554 	 * because the processor can modify ISR under the hood.  Instead
555 	 * just set SVI.
556 	 */
557 	if (unlikely(vcpu->arch.apicv_active))
558 		static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, vec);
559 	else {
560 		++apic->isr_count;
561 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
562 		/*
563 		 * ISR (in service register) bit is set when injecting an interrupt.
564 		 * The highest vector is injected. Thus the latest bit set matches
565 		 * the highest bit in ISR.
566 		 */
567 		apic->highest_isr_cache = vec;
568 	}
569 }
570 
571 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
572 {
573 	int result;
574 
575 	/*
576 	 * Note that isr_count is always 1, and highest_isr_cache
577 	 * is always -1, with APIC virtualization enabled.
578 	 */
579 	if (!apic->isr_count)
580 		return -1;
581 	if (likely(apic->highest_isr_cache != -1))
582 		return apic->highest_isr_cache;
583 
584 	result = find_highest_vector(apic->regs + APIC_ISR);
585 	ASSERT(result == -1 || result >= 16);
586 
587 	return result;
588 }
589 
590 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
591 {
592 	struct kvm_vcpu *vcpu;
593 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
594 		return;
595 
596 	vcpu = apic->vcpu;
597 
598 	/*
599 	 * We do get here for APIC virtualization enabled if the guest
600 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
601 	 * to trigger a new interrupt delivery by writing the SVI field;
602 	 * on the other hand isr_count and highest_isr_cache are unused
603 	 * and must be left alone.
604 	 */
605 	if (unlikely(vcpu->arch.apicv_active))
606 		static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
607 	else {
608 		--apic->isr_count;
609 		BUG_ON(apic->isr_count < 0);
610 		apic->highest_isr_cache = -1;
611 	}
612 }
613 
614 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
615 {
616 	/* This may race with setting of irr in __apic_accept_irq() and
617 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
618 	 * will cause vmexit immediately and the value will be recalculated
619 	 * on the next vmentry.
620 	 */
621 	return apic_find_highest_irr(vcpu->arch.apic);
622 }
623 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
624 
625 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
626 			     int vector, int level, int trig_mode,
627 			     struct dest_map *dest_map);
628 
629 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
630 		     struct dest_map *dest_map)
631 {
632 	struct kvm_lapic *apic = vcpu->arch.apic;
633 
634 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
635 			irq->level, irq->trig_mode, dest_map);
636 }
637 
638 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
639 			 struct kvm_lapic_irq *irq, u32 min)
640 {
641 	int i, count = 0;
642 	struct kvm_vcpu *vcpu;
643 
644 	if (min > map->max_apic_id)
645 		return 0;
646 
647 	for_each_set_bit(i, ipi_bitmap,
648 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
649 		if (map->phys_map[min + i]) {
650 			vcpu = map->phys_map[min + i]->vcpu;
651 			count += kvm_apic_set_irq(vcpu, irq, NULL);
652 		}
653 	}
654 
655 	return count;
656 }
657 
658 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
659 		    unsigned long ipi_bitmap_high, u32 min,
660 		    unsigned long icr, int op_64_bit)
661 {
662 	struct kvm_apic_map *map;
663 	struct kvm_lapic_irq irq = {0};
664 	int cluster_size = op_64_bit ? 64 : 32;
665 	int count;
666 
667 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
668 		return -KVM_EINVAL;
669 
670 	irq.vector = icr & APIC_VECTOR_MASK;
671 	irq.delivery_mode = icr & APIC_MODE_MASK;
672 	irq.level = (icr & APIC_INT_ASSERT) != 0;
673 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
674 
675 	rcu_read_lock();
676 	map = rcu_dereference(kvm->arch.apic_map);
677 
678 	count = -EOPNOTSUPP;
679 	if (likely(map)) {
680 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
681 		min += cluster_size;
682 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
683 	}
684 
685 	rcu_read_unlock();
686 	return count;
687 }
688 
689 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
690 {
691 
692 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
693 				      sizeof(val));
694 }
695 
696 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
697 {
698 
699 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
700 				      sizeof(*val));
701 }
702 
703 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
704 {
705 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
706 }
707 
708 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
709 {
710 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
711 		return;
712 
713 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
714 }
715 
716 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
717 {
718 	u8 val;
719 
720 	if (pv_eoi_get_user(vcpu, &val) < 0)
721 		return false;
722 
723 	val &= KVM_PV_EOI_ENABLED;
724 
725 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
726 		return false;
727 
728 	/*
729 	 * Clear pending bit in any case: it will be set again on vmentry.
730 	 * While this might not be ideal from performance point of view,
731 	 * this makes sure pv eoi is only enabled when we know it's safe.
732 	 */
733 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
734 
735 	return val;
736 }
737 
738 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
739 {
740 	int highest_irr;
741 	if (kvm_x86_ops.sync_pir_to_irr)
742 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
743 	else
744 		highest_irr = apic_find_highest_irr(apic);
745 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
746 		return -1;
747 	return highest_irr;
748 }
749 
750 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
751 {
752 	u32 tpr, isrv, ppr, old_ppr;
753 	int isr;
754 
755 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
756 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
757 	isr = apic_find_highest_isr(apic);
758 	isrv = (isr != -1) ? isr : 0;
759 
760 	if ((tpr & 0xf0) >= (isrv & 0xf0))
761 		ppr = tpr & 0xff;
762 	else
763 		ppr = isrv & 0xf0;
764 
765 	*new_ppr = ppr;
766 	if (old_ppr != ppr)
767 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
768 
769 	return ppr < old_ppr;
770 }
771 
772 static void apic_update_ppr(struct kvm_lapic *apic)
773 {
774 	u32 ppr;
775 
776 	if (__apic_update_ppr(apic, &ppr) &&
777 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
778 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
779 }
780 
781 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
782 {
783 	apic_update_ppr(vcpu->arch.apic);
784 }
785 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
786 
787 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
788 {
789 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
790 	apic_update_ppr(apic);
791 }
792 
793 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
794 {
795 	return mda == (apic_x2apic_mode(apic) ?
796 			X2APIC_BROADCAST : APIC_BROADCAST);
797 }
798 
799 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
800 {
801 	if (kvm_apic_broadcast(apic, mda))
802 		return true;
803 
804 	if (apic_x2apic_mode(apic))
805 		return mda == kvm_x2apic_id(apic);
806 
807 	/*
808 	 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
809 	 * it were in x2APIC mode.  Hotplugged VCPUs start in xAPIC mode and
810 	 * this allows unique addressing of VCPUs with APIC ID over 0xff.
811 	 * The 0xff condition is needed because writeable xAPIC ID.
812 	 */
813 	if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
814 		return true;
815 
816 	return mda == kvm_xapic_id(apic);
817 }
818 
819 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
820 {
821 	u32 logical_id;
822 
823 	if (kvm_apic_broadcast(apic, mda))
824 		return true;
825 
826 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
827 
828 	if (apic_x2apic_mode(apic))
829 		return ((logical_id >> 16) == (mda >> 16))
830 		       && (logical_id & mda & 0xffff) != 0;
831 
832 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
833 
834 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
835 	case APIC_DFR_FLAT:
836 		return (logical_id & mda) != 0;
837 	case APIC_DFR_CLUSTER:
838 		return ((logical_id >> 4) == (mda >> 4))
839 		       && (logical_id & mda & 0xf) != 0;
840 	default:
841 		return false;
842 	}
843 }
844 
845 /* The KVM local APIC implementation has two quirks:
846  *
847  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
848  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
849  *    KVM doesn't do that aliasing.
850  *
851  *  - in-kernel IOAPIC messages have to be delivered directly to
852  *    x2APIC, because the kernel does not support interrupt remapping.
853  *    In order to support broadcast without interrupt remapping, x2APIC
854  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
855  *    to X2APIC_BROADCAST.
856  *
857  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
858  * important when userspace wants to use x2APIC-format MSIs, because
859  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
860  */
861 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
862 		struct kvm_lapic *source, struct kvm_lapic *target)
863 {
864 	bool ipi = source != NULL;
865 
866 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
867 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
868 		return X2APIC_BROADCAST;
869 
870 	return dest_id;
871 }
872 
873 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
874 			   int shorthand, unsigned int dest, int dest_mode)
875 {
876 	struct kvm_lapic *target = vcpu->arch.apic;
877 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
878 
879 	ASSERT(target);
880 	switch (shorthand) {
881 	case APIC_DEST_NOSHORT:
882 		if (dest_mode == APIC_DEST_PHYSICAL)
883 			return kvm_apic_match_physical_addr(target, mda);
884 		else
885 			return kvm_apic_match_logical_addr(target, mda);
886 	case APIC_DEST_SELF:
887 		return target == source;
888 	case APIC_DEST_ALLINC:
889 		return true;
890 	case APIC_DEST_ALLBUT:
891 		return target != source;
892 	default:
893 		return false;
894 	}
895 }
896 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
897 
898 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
899 		       const unsigned long *bitmap, u32 bitmap_size)
900 {
901 	u32 mod;
902 	int i, idx = -1;
903 
904 	mod = vector % dest_vcpus;
905 
906 	for (i = 0; i <= mod; i++) {
907 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
908 		BUG_ON(idx == bitmap_size);
909 	}
910 
911 	return idx;
912 }
913 
914 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
915 {
916 	if (!kvm->arch.disabled_lapic_found) {
917 		kvm->arch.disabled_lapic_found = true;
918 		printk(KERN_INFO
919 		       "Disabled LAPIC found during irq injection\n");
920 	}
921 }
922 
923 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
924 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
925 {
926 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
927 		if ((irq->dest_id == APIC_BROADCAST &&
928 				map->mode != KVM_APIC_MODE_X2APIC))
929 			return true;
930 		if (irq->dest_id == X2APIC_BROADCAST)
931 			return true;
932 	} else {
933 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
934 		if (irq->dest_id == (x2apic_ipi ?
935 		                     X2APIC_BROADCAST : APIC_BROADCAST))
936 			return true;
937 	}
938 
939 	return false;
940 }
941 
942 /* Return true if the interrupt can be handled by using *bitmap as index mask
943  * for valid destinations in *dst array.
944  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
945  * Note: we may have zero kvm_lapic destinations when we return true, which
946  * means that the interrupt should be dropped.  In this case, *bitmap would be
947  * zero and *dst undefined.
948  */
949 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
950 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
951 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
952 		unsigned long *bitmap)
953 {
954 	int i, lowest;
955 
956 	if (irq->shorthand == APIC_DEST_SELF && src) {
957 		*dst = src;
958 		*bitmap = 1;
959 		return true;
960 	} else if (irq->shorthand)
961 		return false;
962 
963 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
964 		return false;
965 
966 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
967 		if (irq->dest_id > map->max_apic_id) {
968 			*bitmap = 0;
969 		} else {
970 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
971 			*dst = &map->phys_map[dest_id];
972 			*bitmap = 1;
973 		}
974 		return true;
975 	}
976 
977 	*bitmap = 0;
978 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
979 				(u16 *)bitmap))
980 		return false;
981 
982 	if (!kvm_lowest_prio_delivery(irq))
983 		return true;
984 
985 	if (!kvm_vector_hashing_enabled()) {
986 		lowest = -1;
987 		for_each_set_bit(i, bitmap, 16) {
988 			if (!(*dst)[i])
989 				continue;
990 			if (lowest < 0)
991 				lowest = i;
992 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
993 						(*dst)[lowest]->vcpu) < 0)
994 				lowest = i;
995 		}
996 	} else {
997 		if (!*bitmap)
998 			return true;
999 
1000 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1001 				bitmap, 16);
1002 
1003 		if (!(*dst)[lowest]) {
1004 			kvm_apic_disabled_lapic_found(kvm);
1005 			*bitmap = 0;
1006 			return true;
1007 		}
1008 	}
1009 
1010 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1011 
1012 	return true;
1013 }
1014 
1015 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1016 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1017 {
1018 	struct kvm_apic_map *map;
1019 	unsigned long bitmap;
1020 	struct kvm_lapic **dst = NULL;
1021 	int i;
1022 	bool ret;
1023 
1024 	*r = -1;
1025 
1026 	if (irq->shorthand == APIC_DEST_SELF) {
1027 		if (KVM_BUG_ON(!src, kvm)) {
1028 			*r = 0;
1029 			return true;
1030 		}
1031 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1032 		return true;
1033 	}
1034 
1035 	rcu_read_lock();
1036 	map = rcu_dereference(kvm->arch.apic_map);
1037 
1038 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1039 	if (ret) {
1040 		*r = 0;
1041 		for_each_set_bit(i, &bitmap, 16) {
1042 			if (!dst[i])
1043 				continue;
1044 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1045 		}
1046 	}
1047 
1048 	rcu_read_unlock();
1049 	return ret;
1050 }
1051 
1052 /*
1053  * This routine tries to handle interrupts in posted mode, here is how
1054  * it deals with different cases:
1055  * - For single-destination interrupts, handle it in posted mode
1056  * - Else if vector hashing is enabled and it is a lowest-priority
1057  *   interrupt, handle it in posted mode and use the following mechanism
1058  *   to find the destination vCPU.
1059  *	1. For lowest-priority interrupts, store all the possible
1060  *	   destination vCPUs in an array.
1061  *	2. Use "guest vector % max number of destination vCPUs" to find
1062  *	   the right destination vCPU in the array for the lowest-priority
1063  *	   interrupt.
1064  * - Otherwise, use remapped mode to inject the interrupt.
1065  */
1066 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1067 			struct kvm_vcpu **dest_vcpu)
1068 {
1069 	struct kvm_apic_map *map;
1070 	unsigned long bitmap;
1071 	struct kvm_lapic **dst = NULL;
1072 	bool ret = false;
1073 
1074 	if (irq->shorthand)
1075 		return false;
1076 
1077 	rcu_read_lock();
1078 	map = rcu_dereference(kvm->arch.apic_map);
1079 
1080 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1081 			hweight16(bitmap) == 1) {
1082 		unsigned long i = find_first_bit(&bitmap, 16);
1083 
1084 		if (dst[i]) {
1085 			*dest_vcpu = dst[i]->vcpu;
1086 			ret = true;
1087 		}
1088 	}
1089 
1090 	rcu_read_unlock();
1091 	return ret;
1092 }
1093 
1094 /*
1095  * Add a pending IRQ into lapic.
1096  * Return 1 if successfully added and 0 if discarded.
1097  */
1098 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1099 			     int vector, int level, int trig_mode,
1100 			     struct dest_map *dest_map)
1101 {
1102 	int result = 0;
1103 	struct kvm_vcpu *vcpu = apic->vcpu;
1104 
1105 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1106 				  trig_mode, vector);
1107 	switch (delivery_mode) {
1108 	case APIC_DM_LOWEST:
1109 		vcpu->arch.apic_arb_prio++;
1110 		fallthrough;
1111 	case APIC_DM_FIXED:
1112 		if (unlikely(trig_mode && !level))
1113 			break;
1114 
1115 		/* FIXME add logic for vcpu on reset */
1116 		if (unlikely(!apic_enabled(apic)))
1117 			break;
1118 
1119 		result = 1;
1120 
1121 		if (dest_map) {
1122 			__set_bit(vcpu->vcpu_id, dest_map->map);
1123 			dest_map->vectors[vcpu->vcpu_id] = vector;
1124 		}
1125 
1126 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1127 			if (trig_mode)
1128 				kvm_lapic_set_vector(vector,
1129 						     apic->regs + APIC_TMR);
1130 			else
1131 				kvm_lapic_clear_vector(vector,
1132 						       apic->regs + APIC_TMR);
1133 		}
1134 
1135 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1136 						       trig_mode, vector);
1137 		break;
1138 
1139 	case APIC_DM_REMRD:
1140 		result = 1;
1141 		vcpu->arch.pv.pv_unhalted = 1;
1142 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1143 		kvm_vcpu_kick(vcpu);
1144 		break;
1145 
1146 	case APIC_DM_SMI:
1147 		result = 1;
1148 		kvm_make_request(KVM_REQ_SMI, vcpu);
1149 		kvm_vcpu_kick(vcpu);
1150 		break;
1151 
1152 	case APIC_DM_NMI:
1153 		result = 1;
1154 		kvm_inject_nmi(vcpu);
1155 		kvm_vcpu_kick(vcpu);
1156 		break;
1157 
1158 	case APIC_DM_INIT:
1159 		if (!trig_mode || level) {
1160 			result = 1;
1161 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1162 			apic->pending_events = (1UL << KVM_APIC_INIT);
1163 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1164 			kvm_vcpu_kick(vcpu);
1165 		}
1166 		break;
1167 
1168 	case APIC_DM_STARTUP:
1169 		result = 1;
1170 		apic->sipi_vector = vector;
1171 		/* make sure sipi_vector is visible for the receiver */
1172 		smp_wmb();
1173 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1174 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1175 		kvm_vcpu_kick(vcpu);
1176 		break;
1177 
1178 	case APIC_DM_EXTINT:
1179 		/*
1180 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1181 		 * before NMI watchdog was enabled. Already handled by
1182 		 * kvm_apic_accept_pic_intr().
1183 		 */
1184 		break;
1185 
1186 	default:
1187 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1188 		       delivery_mode);
1189 		break;
1190 	}
1191 	return result;
1192 }
1193 
1194 /*
1195  * This routine identifies the destination vcpus mask meant to receive the
1196  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1197  * out the destination vcpus array and set the bitmap or it traverses to
1198  * each available vcpu to identify the same.
1199  */
1200 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1201 			      unsigned long *vcpu_bitmap)
1202 {
1203 	struct kvm_lapic **dest_vcpu = NULL;
1204 	struct kvm_lapic *src = NULL;
1205 	struct kvm_apic_map *map;
1206 	struct kvm_vcpu *vcpu;
1207 	unsigned long bitmap, i;
1208 	int vcpu_idx;
1209 	bool ret;
1210 
1211 	rcu_read_lock();
1212 	map = rcu_dereference(kvm->arch.apic_map);
1213 
1214 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1215 					  &bitmap);
1216 	if (ret) {
1217 		for_each_set_bit(i, &bitmap, 16) {
1218 			if (!dest_vcpu[i])
1219 				continue;
1220 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1221 			__set_bit(vcpu_idx, vcpu_bitmap);
1222 		}
1223 	} else {
1224 		kvm_for_each_vcpu(i, vcpu, kvm) {
1225 			if (!kvm_apic_present(vcpu))
1226 				continue;
1227 			if (!kvm_apic_match_dest(vcpu, NULL,
1228 						 irq->shorthand,
1229 						 irq->dest_id,
1230 						 irq->dest_mode))
1231 				continue;
1232 			__set_bit(i, vcpu_bitmap);
1233 		}
1234 	}
1235 	rcu_read_unlock();
1236 }
1237 
1238 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1239 {
1240 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1241 }
1242 
1243 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1244 {
1245 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1246 }
1247 
1248 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1249 {
1250 	int trigger_mode;
1251 
1252 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1253 	if (!kvm_ioapic_handles_vector(apic, vector))
1254 		return;
1255 
1256 	/* Request a KVM exit to inform the userspace IOAPIC. */
1257 	if (irqchip_split(apic->vcpu->kvm)) {
1258 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1259 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1260 		return;
1261 	}
1262 
1263 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1264 		trigger_mode = IOAPIC_LEVEL_TRIG;
1265 	else
1266 		trigger_mode = IOAPIC_EDGE_TRIG;
1267 
1268 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1269 }
1270 
1271 static int apic_set_eoi(struct kvm_lapic *apic)
1272 {
1273 	int vector = apic_find_highest_isr(apic);
1274 
1275 	trace_kvm_eoi(apic, vector);
1276 
1277 	/*
1278 	 * Not every write EOI will has corresponding ISR,
1279 	 * one example is when Kernel check timer on setup_IO_APIC
1280 	 */
1281 	if (vector == -1)
1282 		return vector;
1283 
1284 	apic_clear_isr(vector, apic);
1285 	apic_update_ppr(apic);
1286 
1287 	if (to_hv_vcpu(apic->vcpu) &&
1288 	    test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1289 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1290 
1291 	kvm_ioapic_send_eoi(apic, vector);
1292 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1293 	return vector;
1294 }
1295 
1296 /*
1297  * this interface assumes a trap-like exit, which has already finished
1298  * desired side effect including vISR and vPPR update.
1299  */
1300 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1301 {
1302 	struct kvm_lapic *apic = vcpu->arch.apic;
1303 
1304 	trace_kvm_eoi(apic, vector);
1305 
1306 	kvm_ioapic_send_eoi(apic, vector);
1307 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1308 }
1309 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1310 
1311 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1312 {
1313 	struct kvm_lapic_irq irq;
1314 
1315 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1316 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1317 
1318 	irq.vector = icr_low & APIC_VECTOR_MASK;
1319 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1320 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1321 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1322 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1323 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1324 	irq.msi_redir_hint = false;
1325 	if (apic_x2apic_mode(apic))
1326 		irq.dest_id = icr_high;
1327 	else
1328 		irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1329 
1330 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1331 
1332 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1335 
1336 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1337 {
1338 	ktime_t remaining, now;
1339 	s64 ns;
1340 	u32 tmcct;
1341 
1342 	ASSERT(apic != NULL);
1343 
1344 	/* if initial count is 0, current count should also be 0 */
1345 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1346 		apic->lapic_timer.period == 0)
1347 		return 0;
1348 
1349 	now = ktime_get();
1350 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1351 	if (ktime_to_ns(remaining) < 0)
1352 		remaining = 0;
1353 
1354 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1355 	tmcct = div64_u64(ns,
1356 			 (APIC_BUS_CYCLE_NS * apic->divide_count));
1357 
1358 	return tmcct;
1359 }
1360 
1361 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1362 {
1363 	struct kvm_vcpu *vcpu = apic->vcpu;
1364 	struct kvm_run *run = vcpu->run;
1365 
1366 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1367 	run->tpr_access.rip = kvm_rip_read(vcpu);
1368 	run->tpr_access.is_write = write;
1369 }
1370 
1371 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1372 {
1373 	if (apic->vcpu->arch.tpr_access_reporting)
1374 		__report_tpr_access(apic, write);
1375 }
1376 
1377 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1378 {
1379 	u32 val = 0;
1380 
1381 	if (offset >= LAPIC_MMIO_LENGTH)
1382 		return 0;
1383 
1384 	switch (offset) {
1385 	case APIC_ARBPRI:
1386 		break;
1387 
1388 	case APIC_TMCCT:	/* Timer CCR */
1389 		if (apic_lvtt_tscdeadline(apic))
1390 			return 0;
1391 
1392 		val = apic_get_tmcct(apic);
1393 		break;
1394 	case APIC_PROCPRI:
1395 		apic_update_ppr(apic);
1396 		val = kvm_lapic_get_reg(apic, offset);
1397 		break;
1398 	case APIC_TASKPRI:
1399 		report_tpr_access(apic, false);
1400 		fallthrough;
1401 	default:
1402 		val = kvm_lapic_get_reg(apic, offset);
1403 		break;
1404 	}
1405 
1406 	return val;
1407 }
1408 
1409 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1410 {
1411 	return container_of(dev, struct kvm_lapic, dev);
1412 }
1413 
1414 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1415 #define APIC_REGS_MASK(first, count) \
1416 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1417 
1418 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1419 			      void *data)
1420 {
1421 	unsigned char alignment = offset & 0xf;
1422 	u32 result;
1423 	/* this bitmask has a bit cleared for each reserved register */
1424 	u64 valid_reg_mask =
1425 		APIC_REG_MASK(APIC_ID) |
1426 		APIC_REG_MASK(APIC_LVR) |
1427 		APIC_REG_MASK(APIC_TASKPRI) |
1428 		APIC_REG_MASK(APIC_PROCPRI) |
1429 		APIC_REG_MASK(APIC_LDR) |
1430 		APIC_REG_MASK(APIC_DFR) |
1431 		APIC_REG_MASK(APIC_SPIV) |
1432 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1433 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1434 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1435 		APIC_REG_MASK(APIC_ESR) |
1436 		APIC_REG_MASK(APIC_ICR) |
1437 		APIC_REG_MASK(APIC_LVTT) |
1438 		APIC_REG_MASK(APIC_LVTTHMR) |
1439 		APIC_REG_MASK(APIC_LVTPC) |
1440 		APIC_REG_MASK(APIC_LVT0) |
1441 		APIC_REG_MASK(APIC_LVT1) |
1442 		APIC_REG_MASK(APIC_LVTERR) |
1443 		APIC_REG_MASK(APIC_TMICT) |
1444 		APIC_REG_MASK(APIC_TMCCT) |
1445 		APIC_REG_MASK(APIC_TDCR);
1446 
1447 	/*
1448 	 * ARBPRI and ICR2 are not valid in x2APIC mode.  WARN if KVM reads ICR
1449 	 * in x2APIC mode as it's an 8-byte register in x2APIC and needs to be
1450 	 * manually handled by the caller.
1451 	 */
1452 	if (!apic_x2apic_mode(apic))
1453 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1454 				  APIC_REG_MASK(APIC_ICR2);
1455 	else
1456 		WARN_ON_ONCE(offset == APIC_ICR);
1457 
1458 	if (alignment + len > 4)
1459 		return 1;
1460 
1461 	if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1462 		return 1;
1463 
1464 	result = __apic_read(apic, offset & ~0xf);
1465 
1466 	trace_kvm_apic_read(offset, result);
1467 
1468 	switch (len) {
1469 	case 1:
1470 	case 2:
1471 	case 4:
1472 		memcpy(data, (char *)&result + alignment, len);
1473 		break;
1474 	default:
1475 		printk(KERN_ERR "Local APIC read with len = %x, "
1476 		       "should be 1,2, or 4 instead\n", len);
1477 		break;
1478 	}
1479 	return 0;
1480 }
1481 
1482 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1483 {
1484 	return addr >= apic->base_address &&
1485 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1486 }
1487 
1488 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1489 			   gpa_t address, int len, void *data)
1490 {
1491 	struct kvm_lapic *apic = to_lapic(this);
1492 	u32 offset = address - apic->base_address;
1493 
1494 	if (!apic_mmio_in_range(apic, address))
1495 		return -EOPNOTSUPP;
1496 
1497 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1498 		if (!kvm_check_has_quirk(vcpu->kvm,
1499 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1500 			return -EOPNOTSUPP;
1501 
1502 		memset(data, 0xff, len);
1503 		return 0;
1504 	}
1505 
1506 	kvm_lapic_reg_read(apic, offset, len, data);
1507 
1508 	return 0;
1509 }
1510 
1511 static void update_divide_count(struct kvm_lapic *apic)
1512 {
1513 	u32 tmp1, tmp2, tdcr;
1514 
1515 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1516 	tmp1 = tdcr & 0xf;
1517 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1518 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1519 }
1520 
1521 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1522 {
1523 	/*
1524 	 * Do not allow the guest to program periodic timers with small
1525 	 * interval, since the hrtimers are not throttled by the host
1526 	 * scheduler.
1527 	 */
1528 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1529 		s64 min_period = min_timer_period_us * 1000LL;
1530 
1531 		if (apic->lapic_timer.period < min_period) {
1532 			pr_info_ratelimited(
1533 			    "kvm: vcpu %i: requested %lld ns "
1534 			    "lapic timer period limited to %lld ns\n",
1535 			    apic->vcpu->vcpu_id,
1536 			    apic->lapic_timer.period, min_period);
1537 			apic->lapic_timer.period = min_period;
1538 		}
1539 	}
1540 }
1541 
1542 static void cancel_hv_timer(struct kvm_lapic *apic);
1543 
1544 static void cancel_apic_timer(struct kvm_lapic *apic)
1545 {
1546 	hrtimer_cancel(&apic->lapic_timer.timer);
1547 	preempt_disable();
1548 	if (apic->lapic_timer.hv_timer_in_use)
1549 		cancel_hv_timer(apic);
1550 	preempt_enable();
1551 	atomic_set(&apic->lapic_timer.pending, 0);
1552 }
1553 
1554 static void apic_update_lvtt(struct kvm_lapic *apic)
1555 {
1556 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1557 			apic->lapic_timer.timer_mode_mask;
1558 
1559 	if (apic->lapic_timer.timer_mode != timer_mode) {
1560 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1561 				APIC_LVT_TIMER_TSCDEADLINE)) {
1562 			cancel_apic_timer(apic);
1563 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1564 			apic->lapic_timer.period = 0;
1565 			apic->lapic_timer.tscdeadline = 0;
1566 		}
1567 		apic->lapic_timer.timer_mode = timer_mode;
1568 		limit_periodic_timer_frequency(apic);
1569 	}
1570 }
1571 
1572 /*
1573  * On APICv, this test will cause a busy wait
1574  * during a higher-priority task.
1575  */
1576 
1577 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1578 {
1579 	struct kvm_lapic *apic = vcpu->arch.apic;
1580 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1581 
1582 	if (kvm_apic_hw_enabled(apic)) {
1583 		int vec = reg & APIC_VECTOR_MASK;
1584 		void *bitmap = apic->regs + APIC_ISR;
1585 
1586 		if (vcpu->arch.apicv_active)
1587 			bitmap = apic->regs + APIC_IRR;
1588 
1589 		if (apic_test_vector(vec, bitmap))
1590 			return true;
1591 	}
1592 	return false;
1593 }
1594 
1595 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1596 {
1597 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1598 
1599 	/*
1600 	 * If the guest TSC is running at a different ratio than the host, then
1601 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1602 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1603 	 * always for VMX enabled hardware.
1604 	 */
1605 	if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1606 		__delay(min(guest_cycles,
1607 			nsec_to_cycles(vcpu, timer_advance_ns)));
1608 	} else {
1609 		u64 delay_ns = guest_cycles * 1000000ULL;
1610 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1611 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1612 	}
1613 }
1614 
1615 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1616 					      s64 advance_expire_delta)
1617 {
1618 	struct kvm_lapic *apic = vcpu->arch.apic;
1619 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1620 	u64 ns;
1621 
1622 	/* Do not adjust for tiny fluctuations or large random spikes. */
1623 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1624 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1625 		return;
1626 
1627 	/* too early */
1628 	if (advance_expire_delta < 0) {
1629 		ns = -advance_expire_delta * 1000000ULL;
1630 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1631 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1632 	} else {
1633 	/* too late */
1634 		ns = advance_expire_delta * 1000000ULL;
1635 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1636 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1637 	}
1638 
1639 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1640 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1641 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1642 }
1643 
1644 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1645 {
1646 	struct kvm_lapic *apic = vcpu->arch.apic;
1647 	u64 guest_tsc, tsc_deadline;
1648 
1649 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1650 	apic->lapic_timer.expired_tscdeadline = 0;
1651 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1652 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1653 
1654 	if (lapic_timer_advance_dynamic) {
1655 		adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1656 		/*
1657 		 * If the timer fired early, reread the TSC to account for the
1658 		 * overhead of the above adjustment to avoid waiting longer
1659 		 * than is necessary.
1660 		 */
1661 		if (guest_tsc < tsc_deadline)
1662 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1663 	}
1664 
1665 	if (guest_tsc < tsc_deadline)
1666 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1667 }
1668 
1669 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1670 {
1671 	if (lapic_in_kernel(vcpu) &&
1672 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1673 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1674 	    lapic_timer_int_injected(vcpu))
1675 		__kvm_wait_lapic_expire(vcpu);
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1678 
1679 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1680 {
1681 	struct kvm_timer *ktimer = &apic->lapic_timer;
1682 
1683 	kvm_apic_local_deliver(apic, APIC_LVTT);
1684 	if (apic_lvtt_tscdeadline(apic)) {
1685 		ktimer->tscdeadline = 0;
1686 	} else if (apic_lvtt_oneshot(apic)) {
1687 		ktimer->tscdeadline = 0;
1688 		ktimer->target_expiration = 0;
1689 	}
1690 }
1691 
1692 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1693 {
1694 	struct kvm_vcpu *vcpu = apic->vcpu;
1695 	struct kvm_timer *ktimer = &apic->lapic_timer;
1696 
1697 	if (atomic_read(&apic->lapic_timer.pending))
1698 		return;
1699 
1700 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1701 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1702 
1703 	if (!from_timer_fn && vcpu->arch.apicv_active) {
1704 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1705 		kvm_apic_inject_pending_timer_irqs(apic);
1706 		return;
1707 	}
1708 
1709 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1710 		/*
1711 		 * Ensure the guest's timer has truly expired before posting an
1712 		 * interrupt.  Open code the relevant checks to avoid querying
1713 		 * lapic_timer_int_injected(), which will be false since the
1714 		 * interrupt isn't yet injected.  Waiting until after injecting
1715 		 * is not an option since that won't help a posted interrupt.
1716 		 */
1717 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1718 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1719 			__kvm_wait_lapic_expire(vcpu);
1720 		kvm_apic_inject_pending_timer_irqs(apic);
1721 		return;
1722 	}
1723 
1724 	atomic_inc(&apic->lapic_timer.pending);
1725 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1726 	if (from_timer_fn)
1727 		kvm_vcpu_kick(vcpu);
1728 }
1729 
1730 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1731 {
1732 	struct kvm_timer *ktimer = &apic->lapic_timer;
1733 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1734 	u64 ns = 0;
1735 	ktime_t expire;
1736 	struct kvm_vcpu *vcpu = apic->vcpu;
1737 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1738 	unsigned long flags;
1739 	ktime_t now;
1740 
1741 	if (unlikely(!tscdeadline || !this_tsc_khz))
1742 		return;
1743 
1744 	local_irq_save(flags);
1745 
1746 	now = ktime_get();
1747 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1748 
1749 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1750 	do_div(ns, this_tsc_khz);
1751 
1752 	if (likely(tscdeadline > guest_tsc) &&
1753 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1754 		expire = ktime_add_ns(now, ns);
1755 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1756 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1757 	} else
1758 		apic_timer_expired(apic, false);
1759 
1760 	local_irq_restore(flags);
1761 }
1762 
1763 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1764 {
1765 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1766 }
1767 
1768 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1769 {
1770 	ktime_t now, remaining;
1771 	u64 ns_remaining_old, ns_remaining_new;
1772 
1773 	apic->lapic_timer.period =
1774 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1775 	limit_periodic_timer_frequency(apic);
1776 
1777 	now = ktime_get();
1778 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1779 	if (ktime_to_ns(remaining) < 0)
1780 		remaining = 0;
1781 
1782 	ns_remaining_old = ktime_to_ns(remaining);
1783 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1784 	                                   apic->divide_count, old_divisor);
1785 
1786 	apic->lapic_timer.tscdeadline +=
1787 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1788 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1789 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1790 }
1791 
1792 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1793 {
1794 	ktime_t now;
1795 	u64 tscl = rdtsc();
1796 	s64 deadline;
1797 
1798 	now = ktime_get();
1799 	apic->lapic_timer.period =
1800 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1801 
1802 	if (!apic->lapic_timer.period) {
1803 		apic->lapic_timer.tscdeadline = 0;
1804 		return false;
1805 	}
1806 
1807 	limit_periodic_timer_frequency(apic);
1808 	deadline = apic->lapic_timer.period;
1809 
1810 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1811 		if (unlikely(count_reg != APIC_TMICT)) {
1812 			deadline = tmict_to_ns(apic,
1813 				     kvm_lapic_get_reg(apic, count_reg));
1814 			if (unlikely(deadline <= 0))
1815 				deadline = apic->lapic_timer.period;
1816 			else if (unlikely(deadline > apic->lapic_timer.period)) {
1817 				pr_info_ratelimited(
1818 				    "kvm: vcpu %i: requested lapic timer restore with "
1819 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
1820 				    "Using initial count to start timer.\n",
1821 				    apic->vcpu->vcpu_id,
1822 				    count_reg,
1823 				    kvm_lapic_get_reg(apic, count_reg),
1824 				    deadline, apic->lapic_timer.period);
1825 				kvm_lapic_set_reg(apic, count_reg, 0);
1826 				deadline = apic->lapic_timer.period;
1827 			}
1828 		}
1829 	}
1830 
1831 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1832 		nsec_to_cycles(apic->vcpu, deadline);
1833 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
1834 
1835 	return true;
1836 }
1837 
1838 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1839 {
1840 	ktime_t now = ktime_get();
1841 	u64 tscl = rdtsc();
1842 	ktime_t delta;
1843 
1844 	/*
1845 	 * Synchronize both deadlines to the same time source or
1846 	 * differences in the periods (caused by differences in the
1847 	 * underlying clocks or numerical approximation errors) will
1848 	 * cause the two to drift apart over time as the errors
1849 	 * accumulate.
1850 	 */
1851 	apic->lapic_timer.target_expiration =
1852 		ktime_add_ns(apic->lapic_timer.target_expiration,
1853 				apic->lapic_timer.period);
1854 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1855 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1856 		nsec_to_cycles(apic->vcpu, delta);
1857 }
1858 
1859 static void start_sw_period(struct kvm_lapic *apic)
1860 {
1861 	if (!apic->lapic_timer.period)
1862 		return;
1863 
1864 	if (ktime_after(ktime_get(),
1865 			apic->lapic_timer.target_expiration)) {
1866 		apic_timer_expired(apic, false);
1867 
1868 		if (apic_lvtt_oneshot(apic))
1869 			return;
1870 
1871 		advance_periodic_target_expiration(apic);
1872 	}
1873 
1874 	hrtimer_start(&apic->lapic_timer.timer,
1875 		apic->lapic_timer.target_expiration,
1876 		HRTIMER_MODE_ABS_HARD);
1877 }
1878 
1879 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1880 {
1881 	if (!lapic_in_kernel(vcpu))
1882 		return false;
1883 
1884 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1887 
1888 static void cancel_hv_timer(struct kvm_lapic *apic)
1889 {
1890 	WARN_ON(preemptible());
1891 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1892 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
1893 	apic->lapic_timer.hv_timer_in_use = false;
1894 }
1895 
1896 static bool start_hv_timer(struct kvm_lapic *apic)
1897 {
1898 	struct kvm_timer *ktimer = &apic->lapic_timer;
1899 	struct kvm_vcpu *vcpu = apic->vcpu;
1900 	bool expired;
1901 
1902 	WARN_ON(preemptible());
1903 	if (!kvm_can_use_hv_timer(vcpu))
1904 		return false;
1905 
1906 	if (!ktimer->tscdeadline)
1907 		return false;
1908 
1909 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
1910 		return false;
1911 
1912 	ktimer->hv_timer_in_use = true;
1913 	hrtimer_cancel(&ktimer->timer);
1914 
1915 	/*
1916 	 * To simplify handling the periodic timer, leave the hv timer running
1917 	 * even if the deadline timer has expired, i.e. rely on the resulting
1918 	 * VM-Exit to recompute the periodic timer's target expiration.
1919 	 */
1920 	if (!apic_lvtt_period(apic)) {
1921 		/*
1922 		 * Cancel the hv timer if the sw timer fired while the hv timer
1923 		 * was being programmed, or if the hv timer itself expired.
1924 		 */
1925 		if (atomic_read(&ktimer->pending)) {
1926 			cancel_hv_timer(apic);
1927 		} else if (expired) {
1928 			apic_timer_expired(apic, false);
1929 			cancel_hv_timer(apic);
1930 		}
1931 	}
1932 
1933 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1934 
1935 	return true;
1936 }
1937 
1938 static void start_sw_timer(struct kvm_lapic *apic)
1939 {
1940 	struct kvm_timer *ktimer = &apic->lapic_timer;
1941 
1942 	WARN_ON(preemptible());
1943 	if (apic->lapic_timer.hv_timer_in_use)
1944 		cancel_hv_timer(apic);
1945 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1946 		return;
1947 
1948 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1949 		start_sw_period(apic);
1950 	else if (apic_lvtt_tscdeadline(apic))
1951 		start_sw_tscdeadline(apic);
1952 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1953 }
1954 
1955 static void restart_apic_timer(struct kvm_lapic *apic)
1956 {
1957 	preempt_disable();
1958 
1959 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1960 		goto out;
1961 
1962 	if (!start_hv_timer(apic))
1963 		start_sw_timer(apic);
1964 out:
1965 	preempt_enable();
1966 }
1967 
1968 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1969 {
1970 	struct kvm_lapic *apic = vcpu->arch.apic;
1971 
1972 	preempt_disable();
1973 	/* If the preempt notifier has already run, it also called apic_timer_expired */
1974 	if (!apic->lapic_timer.hv_timer_in_use)
1975 		goto out;
1976 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
1977 	apic_timer_expired(apic, false);
1978 	cancel_hv_timer(apic);
1979 
1980 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1981 		advance_periodic_target_expiration(apic);
1982 		restart_apic_timer(apic);
1983 	}
1984 out:
1985 	preempt_enable();
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1988 
1989 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1990 {
1991 	restart_apic_timer(vcpu->arch.apic);
1992 }
1993 
1994 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1995 {
1996 	struct kvm_lapic *apic = vcpu->arch.apic;
1997 
1998 	preempt_disable();
1999 	/* Possibly the TSC deadline timer is not enabled yet */
2000 	if (apic->lapic_timer.hv_timer_in_use)
2001 		start_sw_timer(apic);
2002 	preempt_enable();
2003 }
2004 
2005 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2006 {
2007 	struct kvm_lapic *apic = vcpu->arch.apic;
2008 
2009 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2010 	restart_apic_timer(apic);
2011 }
2012 
2013 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2014 {
2015 	atomic_set(&apic->lapic_timer.pending, 0);
2016 
2017 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2018 	    && !set_target_expiration(apic, count_reg))
2019 		return;
2020 
2021 	restart_apic_timer(apic);
2022 }
2023 
2024 static void start_apic_timer(struct kvm_lapic *apic)
2025 {
2026 	__start_apic_timer(apic, APIC_TMICT);
2027 }
2028 
2029 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2030 {
2031 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2032 
2033 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2034 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2035 		if (lvt0_in_nmi_mode) {
2036 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2037 		} else
2038 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2039 	}
2040 }
2041 
2042 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2043 {
2044 	int ret = 0;
2045 
2046 	trace_kvm_apic_write(reg, val);
2047 
2048 	switch (reg) {
2049 	case APIC_ID:		/* Local APIC ID */
2050 		if (!apic_x2apic_mode(apic))
2051 			kvm_apic_set_xapic_id(apic, val >> 24);
2052 		else
2053 			ret = 1;
2054 		break;
2055 
2056 	case APIC_TASKPRI:
2057 		report_tpr_access(apic, true);
2058 		apic_set_tpr(apic, val & 0xff);
2059 		break;
2060 
2061 	case APIC_EOI:
2062 		apic_set_eoi(apic);
2063 		break;
2064 
2065 	case APIC_LDR:
2066 		if (!apic_x2apic_mode(apic))
2067 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2068 		else
2069 			ret = 1;
2070 		break;
2071 
2072 	case APIC_DFR:
2073 		if (!apic_x2apic_mode(apic))
2074 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2075 		else
2076 			ret = 1;
2077 		break;
2078 
2079 	case APIC_SPIV: {
2080 		u32 mask = 0x3ff;
2081 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2082 			mask |= APIC_SPIV_DIRECTED_EOI;
2083 		apic_set_spiv(apic, val & mask);
2084 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2085 			int i;
2086 			u32 lvt_val;
2087 
2088 			for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
2089 				lvt_val = kvm_lapic_get_reg(apic,
2090 						       APIC_LVTT + 0x10 * i);
2091 				kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
2092 					     lvt_val | APIC_LVT_MASKED);
2093 			}
2094 			apic_update_lvtt(apic);
2095 			atomic_set(&apic->lapic_timer.pending, 0);
2096 
2097 		}
2098 		break;
2099 	}
2100 	case APIC_ICR:
2101 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2102 
2103 		/* No delay here, so we always clear the pending bit */
2104 		val &= ~APIC_ICR_BUSY;
2105 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2106 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2107 		break;
2108 	case APIC_ICR2:
2109 		if (apic_x2apic_mode(apic))
2110 			ret = 1;
2111 		else
2112 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2113 		break;
2114 
2115 	case APIC_LVT0:
2116 		apic_manage_nmi_watchdog(apic, val);
2117 		fallthrough;
2118 	case APIC_LVTTHMR:
2119 	case APIC_LVTPC:
2120 	case APIC_LVT1:
2121 	case APIC_LVTERR: {
2122 		/* TODO: Check vector */
2123 		size_t size;
2124 		u32 index;
2125 
2126 		if (!kvm_apic_sw_enabled(apic))
2127 			val |= APIC_LVT_MASKED;
2128 		size = ARRAY_SIZE(apic_lvt_mask);
2129 		index = array_index_nospec(
2130 				(reg - APIC_LVTT) >> 4, size);
2131 		val &= apic_lvt_mask[index];
2132 		kvm_lapic_set_reg(apic, reg, val);
2133 		break;
2134 	}
2135 
2136 	case APIC_LVTT:
2137 		if (!kvm_apic_sw_enabled(apic))
2138 			val |= APIC_LVT_MASKED;
2139 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2140 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2141 		apic_update_lvtt(apic);
2142 		break;
2143 
2144 	case APIC_TMICT:
2145 		if (apic_lvtt_tscdeadline(apic))
2146 			break;
2147 
2148 		cancel_apic_timer(apic);
2149 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2150 		start_apic_timer(apic);
2151 		break;
2152 
2153 	case APIC_TDCR: {
2154 		uint32_t old_divisor = apic->divide_count;
2155 
2156 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2157 		update_divide_count(apic);
2158 		if (apic->divide_count != old_divisor &&
2159 				apic->lapic_timer.period) {
2160 			hrtimer_cancel(&apic->lapic_timer.timer);
2161 			update_target_expiration(apic, old_divisor);
2162 			restart_apic_timer(apic);
2163 		}
2164 		break;
2165 	}
2166 	case APIC_ESR:
2167 		if (apic_x2apic_mode(apic) && val != 0)
2168 			ret = 1;
2169 		break;
2170 
2171 	case APIC_SELF_IPI:
2172 		if (apic_x2apic_mode(apic))
2173 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | (val & APIC_VECTOR_MASK), 0);
2174 		else
2175 			ret = 1;
2176 		break;
2177 	default:
2178 		ret = 1;
2179 		break;
2180 	}
2181 
2182 	/*
2183 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2184 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2185 	 * on relevant changes, i.e. this is a nop for most writes.
2186 	 */
2187 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2188 
2189 	return ret;
2190 }
2191 
2192 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2193 			    gpa_t address, int len, const void *data)
2194 {
2195 	struct kvm_lapic *apic = to_lapic(this);
2196 	unsigned int offset = address - apic->base_address;
2197 	u32 val;
2198 
2199 	if (!apic_mmio_in_range(apic, address))
2200 		return -EOPNOTSUPP;
2201 
2202 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2203 		if (!kvm_check_has_quirk(vcpu->kvm,
2204 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2205 			return -EOPNOTSUPP;
2206 
2207 		return 0;
2208 	}
2209 
2210 	/*
2211 	 * APIC register must be aligned on 128-bits boundary.
2212 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2213 	 * Refer SDM 8.4.1
2214 	 */
2215 	if (len != 4 || (offset & 0xf))
2216 		return 0;
2217 
2218 	val = *(u32*)data;
2219 
2220 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2221 
2222 	return 0;
2223 }
2224 
2225 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2226 {
2227 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2230 
2231 /* emulate APIC access in a trap manner */
2232 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2233 {
2234 	u32 val = kvm_lapic_get_reg(vcpu->arch.apic, offset);
2235 
2236 	/* TODO: optimize to just emulate side effect w/o one more write */
2237 	kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2240 
2241 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2242 {
2243 	struct kvm_lapic *apic = vcpu->arch.apic;
2244 
2245 	if (!vcpu->arch.apic)
2246 		return;
2247 
2248 	hrtimer_cancel(&apic->lapic_timer.timer);
2249 
2250 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2251 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2252 
2253 	if (!apic->sw_enabled)
2254 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2255 
2256 	if (apic->regs)
2257 		free_page((unsigned long)apic->regs);
2258 
2259 	kfree(apic);
2260 }
2261 
2262 /*
2263  *----------------------------------------------------------------------
2264  * LAPIC interface
2265  *----------------------------------------------------------------------
2266  */
2267 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2268 {
2269 	struct kvm_lapic *apic = vcpu->arch.apic;
2270 
2271 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2272 		return 0;
2273 
2274 	return apic->lapic_timer.tscdeadline;
2275 }
2276 
2277 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2278 {
2279 	struct kvm_lapic *apic = vcpu->arch.apic;
2280 
2281 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2282 		return;
2283 
2284 	hrtimer_cancel(&apic->lapic_timer.timer);
2285 	apic->lapic_timer.tscdeadline = data;
2286 	start_apic_timer(apic);
2287 }
2288 
2289 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2290 {
2291 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2292 }
2293 
2294 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2295 {
2296 	u64 tpr;
2297 
2298 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2299 
2300 	return (tpr & 0xf0) >> 4;
2301 }
2302 
2303 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2304 {
2305 	u64 old_value = vcpu->arch.apic_base;
2306 	struct kvm_lapic *apic = vcpu->arch.apic;
2307 
2308 	vcpu->arch.apic_base = value;
2309 
2310 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2311 		kvm_update_cpuid_runtime(vcpu);
2312 
2313 	if (!apic)
2314 		return;
2315 
2316 	/* update jump label if enable bit changes */
2317 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2318 		if (value & MSR_IA32_APICBASE_ENABLE) {
2319 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2320 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2321 			/* Check if there are APF page ready requests pending */
2322 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2323 		} else {
2324 			static_branch_inc(&apic_hw_disabled.key);
2325 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2326 		}
2327 	}
2328 
2329 	if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2330 		kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2331 
2332 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2333 		static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2334 
2335 	apic->base_address = apic->vcpu->arch.apic_base &
2336 			     MSR_IA32_APICBASE_BASE;
2337 
2338 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2339 	     apic->base_address != APIC_DEFAULT_PHYS_BASE)
2340 		pr_warn_once("APIC base relocation is unsupported by KVM");
2341 }
2342 
2343 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2344 {
2345 	struct kvm_lapic *apic = vcpu->arch.apic;
2346 
2347 	if (vcpu->arch.apicv_active) {
2348 		/* irr_pending is always true when apicv is activated. */
2349 		apic->irr_pending = true;
2350 		apic->isr_count = 1;
2351 	} else {
2352 		/*
2353 		 * Don't clear irr_pending, searching the IRR can race with
2354 		 * updates from the CPU as APICv is still active from hardware's
2355 		 * perspective.  The flag will be cleared as appropriate when
2356 		 * KVM injects the interrupt.
2357 		 */
2358 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2359 	}
2360 }
2361 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv);
2362 
2363 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2364 {
2365 	struct kvm_lapic *apic = vcpu->arch.apic;
2366 	u64 msr_val;
2367 	int i;
2368 
2369 	if (!init_event) {
2370 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2371 		if (kvm_vcpu_is_reset_bsp(vcpu))
2372 			msr_val |= MSR_IA32_APICBASE_BSP;
2373 		kvm_lapic_set_base(vcpu, msr_val);
2374 	}
2375 
2376 	if (!apic)
2377 		return;
2378 
2379 	/* Stop the timer in case it's a reset to an active apic */
2380 	hrtimer_cancel(&apic->lapic_timer.timer);
2381 
2382 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2383 	if (!init_event)
2384 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2385 	kvm_apic_set_version(apic->vcpu);
2386 
2387 	for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2388 		kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2389 	apic_update_lvtt(apic);
2390 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2391 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2392 		kvm_lapic_set_reg(apic, APIC_LVT0,
2393 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2394 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2395 
2396 	kvm_apic_set_dfr(apic, 0xffffffffU);
2397 	apic_set_spiv(apic, 0xff);
2398 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2399 	if (!apic_x2apic_mode(apic))
2400 		kvm_apic_set_ldr(apic, 0);
2401 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2402 	if (!apic_x2apic_mode(apic)) {
2403 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2404 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2405 	} else {
2406 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2407 	}
2408 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2409 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2410 	for (i = 0; i < 8; i++) {
2411 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2412 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2413 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2414 	}
2415 	kvm_apic_update_apicv(vcpu);
2416 	apic->highest_isr_cache = -1;
2417 	update_divide_count(apic);
2418 	atomic_set(&apic->lapic_timer.pending, 0);
2419 
2420 	vcpu->arch.pv_eoi.msr_val = 0;
2421 	apic_update_ppr(apic);
2422 	if (vcpu->arch.apicv_active) {
2423 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2424 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2425 		static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, -1);
2426 	}
2427 
2428 	vcpu->arch.apic_arb_prio = 0;
2429 	vcpu->arch.apic_attention = 0;
2430 
2431 	kvm_recalculate_apic_map(vcpu->kvm);
2432 }
2433 
2434 /*
2435  *----------------------------------------------------------------------
2436  * timer interface
2437  *----------------------------------------------------------------------
2438  */
2439 
2440 static bool lapic_is_periodic(struct kvm_lapic *apic)
2441 {
2442 	return apic_lvtt_period(apic);
2443 }
2444 
2445 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2446 {
2447 	struct kvm_lapic *apic = vcpu->arch.apic;
2448 
2449 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2450 		return atomic_read(&apic->lapic_timer.pending);
2451 
2452 	return 0;
2453 }
2454 
2455 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2456 {
2457 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2458 	int vector, mode, trig_mode;
2459 
2460 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2461 		vector = reg & APIC_VECTOR_MASK;
2462 		mode = reg & APIC_MODE_MASK;
2463 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2464 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2465 					NULL);
2466 	}
2467 	return 0;
2468 }
2469 
2470 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2471 {
2472 	struct kvm_lapic *apic = vcpu->arch.apic;
2473 
2474 	if (apic)
2475 		kvm_apic_local_deliver(apic, APIC_LVT0);
2476 }
2477 
2478 static const struct kvm_io_device_ops apic_mmio_ops = {
2479 	.read     = apic_mmio_read,
2480 	.write    = apic_mmio_write,
2481 };
2482 
2483 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2484 {
2485 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2486 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2487 
2488 	apic_timer_expired(apic, true);
2489 
2490 	if (lapic_is_periodic(apic)) {
2491 		advance_periodic_target_expiration(apic);
2492 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2493 		return HRTIMER_RESTART;
2494 	} else
2495 		return HRTIMER_NORESTART;
2496 }
2497 
2498 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2499 {
2500 	struct kvm_lapic *apic;
2501 
2502 	ASSERT(vcpu != NULL);
2503 
2504 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2505 	if (!apic)
2506 		goto nomem;
2507 
2508 	vcpu->arch.apic = apic;
2509 
2510 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2511 	if (!apic->regs) {
2512 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2513 		       vcpu->vcpu_id);
2514 		goto nomem_free_apic;
2515 	}
2516 	apic->vcpu = vcpu;
2517 
2518 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2519 		     HRTIMER_MODE_ABS_HARD);
2520 	apic->lapic_timer.timer.function = apic_timer_fn;
2521 	if (timer_advance_ns == -1) {
2522 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2523 		lapic_timer_advance_dynamic = true;
2524 	} else {
2525 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2526 		lapic_timer_advance_dynamic = false;
2527 	}
2528 
2529 	/*
2530 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2531 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2532 	 */
2533 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2534 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2535 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2536 
2537 	return 0;
2538 nomem_free_apic:
2539 	kfree(apic);
2540 	vcpu->arch.apic = NULL;
2541 nomem:
2542 	return -ENOMEM;
2543 }
2544 
2545 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2546 {
2547 	struct kvm_lapic *apic = vcpu->arch.apic;
2548 	u32 ppr;
2549 
2550 	if (!kvm_apic_present(vcpu))
2551 		return -1;
2552 
2553 	__apic_update_ppr(apic, &ppr);
2554 	return apic_has_interrupt_for_ppr(apic, ppr);
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2557 
2558 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2559 {
2560 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2561 
2562 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2563 		return 1;
2564 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2565 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2566 		return 1;
2567 	return 0;
2568 }
2569 
2570 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2571 {
2572 	struct kvm_lapic *apic = vcpu->arch.apic;
2573 
2574 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2575 		kvm_apic_inject_pending_timer_irqs(apic);
2576 		atomic_set(&apic->lapic_timer.pending, 0);
2577 	}
2578 }
2579 
2580 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2581 {
2582 	int vector = kvm_apic_has_interrupt(vcpu);
2583 	struct kvm_lapic *apic = vcpu->arch.apic;
2584 	u32 ppr;
2585 
2586 	if (vector == -1)
2587 		return -1;
2588 
2589 	/*
2590 	 * We get here even with APIC virtualization enabled, if doing
2591 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2592 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2593 	 * because the process would deliver it through the IDT.
2594 	 */
2595 
2596 	apic_clear_irr(vector, apic);
2597 	if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2598 		/*
2599 		 * For auto-EOI interrupts, there might be another pending
2600 		 * interrupt above PPR, so check whether to raise another
2601 		 * KVM_REQ_EVENT.
2602 		 */
2603 		apic_update_ppr(apic);
2604 	} else {
2605 		/*
2606 		 * For normal interrupts, PPR has been raised and there cannot
2607 		 * be a higher-priority pending interrupt---except if there was
2608 		 * a concurrent interrupt injection, but that would have
2609 		 * triggered KVM_REQ_EVENT already.
2610 		 */
2611 		apic_set_isr(vector, apic);
2612 		__apic_update_ppr(apic, &ppr);
2613 	}
2614 
2615 	return vector;
2616 }
2617 
2618 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2619 		struct kvm_lapic_state *s, bool set)
2620 {
2621 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2622 		u32 *id = (u32 *)(s->regs + APIC_ID);
2623 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2624 		u64 icr;
2625 
2626 		if (vcpu->kvm->arch.x2apic_format) {
2627 			if (*id != vcpu->vcpu_id)
2628 				return -EINVAL;
2629 		} else {
2630 			if (set)
2631 				*id >>= 24;
2632 			else
2633 				*id <<= 24;
2634 		}
2635 
2636 		/*
2637 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
2638 		 * ICR is internally a single 64-bit register, but needs to be
2639 		 * split to ICR+ICR2 in userspace for backwards compatibility.
2640 		 */
2641 		if (set) {
2642 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2643 
2644 			icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2645 			      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2646 			__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2647 		} else {
2648 			icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2649 			__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2650 		}
2651 	}
2652 
2653 	return 0;
2654 }
2655 
2656 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2657 {
2658 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2659 
2660 	/*
2661 	 * Get calculated timer current count for remaining timer period (if
2662 	 * any) and store it in the returned register set.
2663 	 */
2664 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2665 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2666 
2667 	return kvm_apic_state_fixup(vcpu, s, false);
2668 }
2669 
2670 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2671 {
2672 	struct kvm_lapic *apic = vcpu->arch.apic;
2673 	int r;
2674 
2675 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2676 	/* set SPIV separately to get count of SW disabled APICs right */
2677 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2678 
2679 	r = kvm_apic_state_fixup(vcpu, s, true);
2680 	if (r) {
2681 		kvm_recalculate_apic_map(vcpu->kvm);
2682 		return r;
2683 	}
2684 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2685 
2686 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2687 	kvm_recalculate_apic_map(vcpu->kvm);
2688 	kvm_apic_set_version(vcpu);
2689 
2690 	apic_update_ppr(apic);
2691 	cancel_apic_timer(apic);
2692 	apic->lapic_timer.expired_tscdeadline = 0;
2693 	apic_update_lvtt(apic);
2694 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2695 	update_divide_count(apic);
2696 	__start_apic_timer(apic, APIC_TMCCT);
2697 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
2698 	kvm_apic_update_apicv(vcpu);
2699 	apic->highest_isr_cache = -1;
2700 	if (vcpu->arch.apicv_active) {
2701 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2702 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
2703 		static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, apic_find_highest_isr(apic));
2704 	}
2705 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2706 	if (ioapic_in_kernel(vcpu->kvm))
2707 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2708 
2709 	vcpu->arch.apic_arb_prio = 0;
2710 
2711 	return 0;
2712 }
2713 
2714 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2715 {
2716 	struct hrtimer *timer;
2717 
2718 	if (!lapic_in_kernel(vcpu) ||
2719 		kvm_can_post_timer_interrupt(vcpu))
2720 		return;
2721 
2722 	timer = &vcpu->arch.apic->lapic_timer.timer;
2723 	if (hrtimer_cancel(timer))
2724 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2725 }
2726 
2727 /*
2728  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2729  *
2730  * Detect whether guest triggered PV EOI since the
2731  * last entry. If yes, set EOI on guests's behalf.
2732  * Clear PV EOI in guest memory in any case.
2733  */
2734 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2735 					struct kvm_lapic *apic)
2736 {
2737 	int vector;
2738 	/*
2739 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2740 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2741 	 *
2742 	 * KVM_APIC_PV_EOI_PENDING is unset:
2743 	 * 	-> host disabled PV EOI.
2744 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2745 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
2746 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2747 	 * 	-> host enabled PV EOI, guest executed EOI.
2748 	 */
2749 	BUG_ON(!pv_eoi_enabled(vcpu));
2750 
2751 	if (pv_eoi_test_and_clr_pending(vcpu))
2752 		return;
2753 	vector = apic_set_eoi(apic);
2754 	trace_kvm_pv_eoi(apic, vector);
2755 }
2756 
2757 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2758 {
2759 	u32 data;
2760 
2761 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2762 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2763 
2764 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2765 		return;
2766 
2767 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2768 				  sizeof(u32)))
2769 		return;
2770 
2771 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
2772 }
2773 
2774 /*
2775  * apic_sync_pv_eoi_to_guest - called before vmentry
2776  *
2777  * Detect whether it's safe to enable PV EOI and
2778  * if yes do so.
2779  */
2780 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2781 					struct kvm_lapic *apic)
2782 {
2783 	if (!pv_eoi_enabled(vcpu) ||
2784 	    /* IRR set or many bits in ISR: could be nested. */
2785 	    apic->irr_pending ||
2786 	    /* Cache not set: could be safe but we don't bother. */
2787 	    apic->highest_isr_cache == -1 ||
2788 	    /* Need EOI to update ioapic. */
2789 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2790 		/*
2791 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2792 		 * so we need not do anything here.
2793 		 */
2794 		return;
2795 	}
2796 
2797 	pv_eoi_set_pending(apic->vcpu);
2798 }
2799 
2800 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2801 {
2802 	u32 data, tpr;
2803 	int max_irr, max_isr;
2804 	struct kvm_lapic *apic = vcpu->arch.apic;
2805 
2806 	apic_sync_pv_eoi_to_guest(vcpu, apic);
2807 
2808 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2809 		return;
2810 
2811 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2812 	max_irr = apic_find_highest_irr(apic);
2813 	if (max_irr < 0)
2814 		max_irr = 0;
2815 	max_isr = apic_find_highest_isr(apic);
2816 	if (max_isr < 0)
2817 		max_isr = 0;
2818 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2819 
2820 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2821 				sizeof(u32));
2822 }
2823 
2824 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2825 {
2826 	if (vapic_addr) {
2827 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2828 					&vcpu->arch.apic->vapic_cache,
2829 					vapic_addr, sizeof(u32)))
2830 			return -EINVAL;
2831 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2832 	} else {
2833 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2834 	}
2835 
2836 	vcpu->arch.apic->vapic_addr = vapic_addr;
2837 	return 0;
2838 }
2839 
2840 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
2841 {
2842 	data &= ~APIC_ICR_BUSY;
2843 
2844 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
2845 	kvm_lapic_set_reg64(apic, APIC_ICR, data);
2846 	trace_kvm_apic_write(APIC_ICR, data);
2847 	return 0;
2848 }
2849 
2850 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
2851 {
2852 	u32 low;
2853 
2854 	if (reg == APIC_ICR) {
2855 		*data = kvm_lapic_get_reg64(apic, APIC_ICR);
2856 		return 0;
2857 	}
2858 
2859 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2860 		return 1;
2861 
2862 	*data = low;
2863 
2864 	return 0;
2865 }
2866 
2867 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
2868 {
2869 	/*
2870 	 * ICR is a 64-bit register in x2APIC mode (and Hyper'v PV vAPIC) and
2871 	 * can be written as such, all other registers remain accessible only
2872 	 * through 32-bit reads/writes.
2873 	 */
2874 	if (reg == APIC_ICR)
2875 		return kvm_x2apic_icr_write(apic, data);
2876 
2877 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2878 }
2879 
2880 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2881 {
2882 	struct kvm_lapic *apic = vcpu->arch.apic;
2883 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2884 
2885 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2886 		return 1;
2887 
2888 	return kvm_lapic_msr_write(apic, reg, data);
2889 }
2890 
2891 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2892 {
2893 	struct kvm_lapic *apic = vcpu->arch.apic;
2894 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2895 
2896 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2897 		return 1;
2898 
2899 	if (reg == APIC_DFR)
2900 		return 1;
2901 
2902 	return kvm_lapic_msr_read(apic, reg, data);
2903 }
2904 
2905 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2906 {
2907 	if (!lapic_in_kernel(vcpu))
2908 		return 1;
2909 
2910 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
2911 }
2912 
2913 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2914 {
2915 	if (!lapic_in_kernel(vcpu))
2916 		return 1;
2917 
2918 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
2919 }
2920 
2921 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2922 {
2923 	u64 addr = data & ~KVM_MSR_ENABLED;
2924 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2925 	unsigned long new_len;
2926 	int ret;
2927 
2928 	if (!IS_ALIGNED(addr, 4))
2929 		return 1;
2930 
2931 	if (data & KVM_MSR_ENABLED) {
2932 		if (addr == ghc->gpa && len <= ghc->len)
2933 			new_len = ghc->len;
2934 		else
2935 			new_len = len;
2936 
2937 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2938 		if (ret)
2939 			return ret;
2940 	}
2941 
2942 	vcpu->arch.pv_eoi.msr_val = data;
2943 
2944 	return 0;
2945 }
2946 
2947 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2948 {
2949 	struct kvm_lapic *apic = vcpu->arch.apic;
2950 	u8 sipi_vector;
2951 	int r;
2952 	unsigned long pe;
2953 
2954 	if (!lapic_in_kernel(vcpu))
2955 		return 0;
2956 
2957 	/*
2958 	 * Read pending events before calling the check_events
2959 	 * callback.
2960 	 */
2961 	pe = smp_load_acquire(&apic->pending_events);
2962 	if (!pe)
2963 		return 0;
2964 
2965 	if (is_guest_mode(vcpu)) {
2966 		r = kvm_check_nested_events(vcpu);
2967 		if (r < 0)
2968 			return r == -EBUSY ? 0 : r;
2969 		/*
2970 		 * If an event has happened and caused a vmexit,
2971 		 * we know INITs are latched and therefore
2972 		 * we will not incorrectly deliver an APIC
2973 		 * event instead of a vmexit.
2974 		 */
2975 	}
2976 
2977 	/*
2978 	 * INITs are latched while CPU is in specific states
2979 	 * (SMM, VMX root mode, SVM with GIF=0).
2980 	 * Because a CPU cannot be in these states immediately
2981 	 * after it has processed an INIT signal (and thus in
2982 	 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2983 	 * and leave the INIT pending.
2984 	 */
2985 	if (kvm_vcpu_latch_init(vcpu)) {
2986 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2987 		if (test_bit(KVM_APIC_SIPI, &pe))
2988 			clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2989 		return 0;
2990 	}
2991 
2992 	if (test_bit(KVM_APIC_INIT, &pe)) {
2993 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
2994 		kvm_vcpu_reset(vcpu, true);
2995 		if (kvm_vcpu_is_bsp(apic->vcpu))
2996 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2997 		else
2998 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2999 	}
3000 	if (test_bit(KVM_APIC_SIPI, &pe)) {
3001 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3002 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3003 			/* evaluate pending_events before reading the vector */
3004 			smp_rmb();
3005 			sipi_vector = apic->sipi_vector;
3006 			static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3007 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3008 		}
3009 	}
3010 	return 0;
3011 }
3012 
3013 void kvm_lapic_exit(void)
3014 {
3015 	static_key_deferred_flush(&apic_hw_disabled);
3016 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3017 	static_key_deferred_flush(&apic_sw_disabled);
3018 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3019 }
3020