xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision 6548d543)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "xen.h"
45 #include "cpuid.h"
46 #include "hyperv.h"
47 #include "smm.h"
48 
49 #ifndef CONFIG_X86_64
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
51 #else
52 #define mod_64(x, y) ((x) % (y))
53 #endif
54 
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION			0x14UL
57 #define LAPIC_MMIO_LENGTH		(1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR			256
60 #define APIC_VECTORS_PER_REG		32
61 
62 static bool lapic_timer_advance_dynamic __read_mostly;
63 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
64 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
65 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
66 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
67 /* step-by-step approximation to mitigate fluctuation */
68 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
69 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
70 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
71 
72 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
73 {
74 	*((u32 *) (regs + reg_off)) = val;
75 }
76 
77 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
78 {
79 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
80 }
81 
82 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
83 {
84 	BUILD_BUG_ON(reg != APIC_ICR);
85 	return *((u64 *) (regs + reg));
86 }
87 
88 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
89 {
90 	return __kvm_lapic_get_reg64(apic->regs, reg);
91 }
92 
93 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
94 {
95 	BUILD_BUG_ON(reg != APIC_ICR);
96 	*((u64 *) (regs + reg)) = val;
97 }
98 
99 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
100 						int reg, u64 val)
101 {
102 	__kvm_lapic_set_reg64(apic->regs, reg, val);
103 }
104 
105 static inline int apic_test_vector(int vec, void *bitmap)
106 {
107 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
108 }
109 
110 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
111 {
112 	struct kvm_lapic *apic = vcpu->arch.apic;
113 
114 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
115 		apic_test_vector(vector, apic->regs + APIC_IRR);
116 }
117 
118 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
119 {
120 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
121 }
122 
123 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
124 {
125 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
126 }
127 
128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
129 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
130 
131 static inline int apic_enabled(struct kvm_lapic *apic)
132 {
133 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
134 }
135 
136 #define LVT_MASK	\
137 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
138 
139 #define LINT_MASK	\
140 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
141 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
142 
143 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
144 {
145 	return apic->vcpu->vcpu_id;
146 }
147 
148 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
149 {
150 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
151 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
152 }
153 
154 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
155 {
156 	return kvm_x86_ops.set_hv_timer
157 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
158 		    kvm_can_post_timer_interrupt(vcpu));
159 }
160 
161 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
162 {
163 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
164 }
165 
166 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
167 {
168 	return ((id >> 4) << 16) | (1 << (id & 0xf));
169 }
170 
171 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
172 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
173 	switch (map->logical_mode) {
174 	case KVM_APIC_MODE_SW_DISABLED:
175 		/* Arbitrarily use the flat map so that @cluster isn't NULL. */
176 		*cluster = map->xapic_flat_map;
177 		*mask = 0;
178 		return true;
179 	case KVM_APIC_MODE_X2APIC: {
180 		u32 offset = (dest_id >> 16) * 16;
181 		u32 max_apic_id = map->max_apic_id;
182 
183 		if (offset <= max_apic_id) {
184 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
185 
186 			offset = array_index_nospec(offset, map->max_apic_id + 1);
187 			*cluster = &map->phys_map[offset];
188 			*mask = dest_id & (0xffff >> (16 - cluster_size));
189 		} else {
190 			*mask = 0;
191 		}
192 
193 		return true;
194 		}
195 	case KVM_APIC_MODE_XAPIC_FLAT:
196 		*cluster = map->xapic_flat_map;
197 		*mask = dest_id & 0xff;
198 		return true;
199 	case KVM_APIC_MODE_XAPIC_CLUSTER:
200 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
201 		*mask = dest_id & 0xf;
202 		return true;
203 	case KVM_APIC_MODE_MAP_DISABLED:
204 		return false;
205 	default:
206 		WARN_ON_ONCE(1);
207 		return false;
208 	}
209 }
210 
211 static void kvm_apic_map_free(struct rcu_head *rcu)
212 {
213 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
214 
215 	kvfree(map);
216 }
217 
218 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
219 				    struct kvm_vcpu *vcpu,
220 				    bool *xapic_id_mismatch)
221 {
222 	struct kvm_lapic *apic = vcpu->arch.apic;
223 	u32 x2apic_id = kvm_x2apic_id(apic);
224 	u32 xapic_id = kvm_xapic_id(apic);
225 	u32 physical_id;
226 
227 	/*
228 	 * For simplicity, KVM always allocates enough space for all possible
229 	 * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on
230 	 * without the optimized map.
231 	 */
232 	if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
233 		return -EINVAL;
234 
235 	/*
236 	 * Bail if a vCPU was added and/or enabled its APIC between allocating
237 	 * the map and doing the actual calculations for the map.  Note, KVM
238 	 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
239 	 * the compiler decides to reload x2apic_id after this check.
240 	 */
241 	if (x2apic_id > new->max_apic_id)
242 		return -E2BIG;
243 
244 	/*
245 	 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
246 	 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
247 	 * 32-bit value.  Any unwanted aliasing due to truncation results will
248 	 * be detected below.
249 	 */
250 	if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
251 		*xapic_id_mismatch = true;
252 
253 	/*
254 	 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
255 	 * Allow sending events to vCPUs by their x2APIC ID even if the target
256 	 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
257 	 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
258 	 * and collide).
259 	 *
260 	 * Honor the architectural (and KVM's non-optimized) behavior if
261 	 * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed
262 	 * to process messages independently.  If multiple vCPUs have the same
263 	 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
264 	 * manually modified its xAPIC IDs, events targeting that ID are
265 	 * supposed to be recognized by all vCPUs with said ID.
266 	 */
267 	if (vcpu->kvm->arch.x2apic_format) {
268 		/* See also kvm_apic_match_physical_addr(). */
269 		if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
270 			new->phys_map[x2apic_id] = apic;
271 
272 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
273 			new->phys_map[xapic_id] = apic;
274 	} else {
275 		/*
276 		 * Disable the optimized map if the physical APIC ID is already
277 		 * mapped, i.e. is aliased to multiple vCPUs.  The optimized
278 		 * map requires a strict 1:1 mapping between IDs and vCPUs.
279 		 */
280 		if (apic_x2apic_mode(apic))
281 			physical_id = x2apic_id;
282 		else
283 			physical_id = xapic_id;
284 
285 		if (new->phys_map[physical_id])
286 			return -EINVAL;
287 
288 		new->phys_map[physical_id] = apic;
289 	}
290 
291 	return 0;
292 }
293 
294 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
295 					struct kvm_vcpu *vcpu)
296 {
297 	struct kvm_lapic *apic = vcpu->arch.apic;
298 	enum kvm_apic_logical_mode logical_mode;
299 	struct kvm_lapic **cluster;
300 	u16 mask;
301 	u32 ldr;
302 
303 	if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
304 		return;
305 
306 	if (!kvm_apic_sw_enabled(apic))
307 		return;
308 
309 	ldr = kvm_lapic_get_reg(apic, APIC_LDR);
310 	if (!ldr)
311 		return;
312 
313 	if (apic_x2apic_mode(apic)) {
314 		logical_mode = KVM_APIC_MODE_X2APIC;
315 	} else {
316 		ldr = GET_APIC_LOGICAL_ID(ldr);
317 		if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
318 			logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
319 		else
320 			logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
321 	}
322 
323 	/*
324 	 * To optimize logical mode delivery, all software-enabled APICs must
325 	 * be configured for the same mode.
326 	 */
327 	if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
328 		new->logical_mode = logical_mode;
329 	} else if (new->logical_mode != logical_mode) {
330 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
331 		return;
332 	}
333 
334 	/*
335 	 * In x2APIC mode, the LDR is read-only and derived directly from the
336 	 * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses
337 	 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
338 	 * reversing the LDR calculation to get cluster of APICs, i.e. no
339 	 * additional work is required.
340 	 */
341 	if (apic_x2apic_mode(apic)) {
342 		WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
343 		return;
344 	}
345 
346 	if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
347 							&cluster, &mask))) {
348 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
349 		return;
350 	}
351 
352 	if (!mask)
353 		return;
354 
355 	ldr = ffs(mask) - 1;
356 	if (!is_power_of_2(mask) || cluster[ldr])
357 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
358 	else
359 		cluster[ldr] = apic;
360 }
361 
362 /*
363  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
364  *
365  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
366  * apic_map_lock_held.
367  */
368 enum {
369 	CLEAN,
370 	UPDATE_IN_PROGRESS,
371 	DIRTY
372 };
373 
374 void kvm_recalculate_apic_map(struct kvm *kvm)
375 {
376 	struct kvm_apic_map *new, *old = NULL;
377 	struct kvm_vcpu *vcpu;
378 	unsigned long i;
379 	u32 max_id = 255; /* enough space for any xAPIC ID */
380 	bool xapic_id_mismatch;
381 	int r;
382 
383 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
384 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
385 		return;
386 
387 	WARN_ONCE(!irqchip_in_kernel(kvm),
388 		  "Dirty APIC map without an in-kernel local APIC");
389 
390 	mutex_lock(&kvm->arch.apic_map_lock);
391 
392 retry:
393 	/*
394 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
395 	 * or the APIC registers (if dirty).  Note, on retry the map may have
396 	 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
397 	 * ID, i.e. the map may still show up as in-progress.  In that case
398 	 * this task still needs to retry and complete its calculation.
399 	 */
400 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
401 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
402 		/* Someone else has updated the map. */
403 		mutex_unlock(&kvm->arch.apic_map_lock);
404 		return;
405 	}
406 
407 	/*
408 	 * Reset the mismatch flag between attempts so that KVM does the right
409 	 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
410 	 * keep max_id strictly increasing.  Disallowing max_id from shrinking
411 	 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
412 	 * with the highest x2APIC ID is toggling its APIC on and off.
413 	 */
414 	xapic_id_mismatch = false;
415 
416 	kvm_for_each_vcpu(i, vcpu, kvm)
417 		if (kvm_apic_present(vcpu))
418 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
419 
420 	new = kvzalloc(sizeof(struct kvm_apic_map) +
421 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
422 			   GFP_KERNEL_ACCOUNT);
423 
424 	if (!new)
425 		goto out;
426 
427 	new->max_apic_id = max_id;
428 	new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
429 
430 	kvm_for_each_vcpu(i, vcpu, kvm) {
431 		if (!kvm_apic_present(vcpu))
432 			continue;
433 
434 		r = kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch);
435 		if (r) {
436 			kvfree(new);
437 			new = NULL;
438 			if (r == -E2BIG) {
439 				cond_resched();
440 				goto retry;
441 			}
442 
443 			goto out;
444 		}
445 
446 		kvm_recalculate_logical_map(new, vcpu);
447 	}
448 out:
449 	/*
450 	 * The optimized map is effectively KVM's internal version of APICv,
451 	 * and all unwanted aliasing that results in disabling the optimized
452 	 * map also applies to APICv.
453 	 */
454 	if (!new)
455 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
456 	else
457 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
458 
459 	if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
460 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
461 	else
462 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
463 
464 	if (xapic_id_mismatch)
465 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
466 	else
467 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
468 
469 	old = rcu_dereference_protected(kvm->arch.apic_map,
470 			lockdep_is_held(&kvm->arch.apic_map_lock));
471 	rcu_assign_pointer(kvm->arch.apic_map, new);
472 	/*
473 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
474 	 * If another update has come in, leave it DIRTY.
475 	 */
476 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
477 			       UPDATE_IN_PROGRESS, CLEAN);
478 	mutex_unlock(&kvm->arch.apic_map_lock);
479 
480 	if (old)
481 		call_rcu(&old->rcu, kvm_apic_map_free);
482 
483 	kvm_make_scan_ioapic_request(kvm);
484 }
485 
486 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
487 {
488 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
489 
490 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
491 
492 	if (enabled != apic->sw_enabled) {
493 		apic->sw_enabled = enabled;
494 		if (enabled)
495 			static_branch_slow_dec_deferred(&apic_sw_disabled);
496 		else
497 			static_branch_inc(&apic_sw_disabled.key);
498 
499 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
500 	}
501 
502 	/* Check if there are APF page ready requests pending */
503 	if (enabled) {
504 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
505 		kvm_xen_sw_enable_lapic(apic->vcpu);
506 	}
507 }
508 
509 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
510 {
511 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
512 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
513 }
514 
515 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
516 {
517 	kvm_lapic_set_reg(apic, APIC_LDR, id);
518 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
519 }
520 
521 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
522 {
523 	kvm_lapic_set_reg(apic, APIC_DFR, val);
524 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
525 }
526 
527 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
528 {
529 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
530 
531 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
532 
533 	kvm_lapic_set_reg(apic, APIC_ID, id);
534 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
535 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
536 }
537 
538 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
539 {
540 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
541 }
542 
543 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
544 {
545 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
546 }
547 
548 static inline int apic_lvtt_period(struct kvm_lapic *apic)
549 {
550 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
551 }
552 
553 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
554 {
555 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
556 }
557 
558 static inline int apic_lvt_nmi_mode(u32 lvt_val)
559 {
560 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
561 }
562 
563 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
564 {
565 	return apic->nr_lvt_entries > lvt_index;
566 }
567 
568 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
569 {
570 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
571 }
572 
573 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
574 {
575 	struct kvm_lapic *apic = vcpu->arch.apic;
576 	u32 v = 0;
577 
578 	if (!lapic_in_kernel(vcpu))
579 		return;
580 
581 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
582 
583 	/*
584 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
585 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
586 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
587 	 * version first and level-triggered interrupts never get EOIed in
588 	 * IOAPIC.
589 	 */
590 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
591 	    !ioapic_in_kernel(vcpu->kvm))
592 		v |= APIC_LVR_DIRECTED_EOI;
593 	kvm_lapic_set_reg(apic, APIC_LVR, v);
594 }
595 
596 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
597 {
598 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
599 	struct kvm_lapic *apic = vcpu->arch.apic;
600 	int i;
601 
602 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
603 		return;
604 
605 	/* Initialize/mask any "new" LVT entries. */
606 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
607 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
608 
609 	apic->nr_lvt_entries = nr_lvt_entries;
610 
611 	/* The number of LVT entries is reflected in the version register. */
612 	kvm_apic_set_version(vcpu);
613 }
614 
615 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
616 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
617 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
618 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
619 	[LVT_LINT0] = LINT_MASK,
620 	[LVT_LINT1] = LINT_MASK,
621 	[LVT_ERROR] = LVT_MASK,
622 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
623 };
624 
625 static int find_highest_vector(void *bitmap)
626 {
627 	int vec;
628 	u32 *reg;
629 
630 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
631 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
632 		reg = bitmap + REG_POS(vec);
633 		if (*reg)
634 			return __fls(*reg) + vec;
635 	}
636 
637 	return -1;
638 }
639 
640 static u8 count_vectors(void *bitmap)
641 {
642 	int vec;
643 	u32 *reg;
644 	u8 count = 0;
645 
646 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
647 		reg = bitmap + REG_POS(vec);
648 		count += hweight32(*reg);
649 	}
650 
651 	return count;
652 }
653 
654 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
655 {
656 	u32 i, vec;
657 	u32 pir_val, irr_val, prev_irr_val;
658 	int max_updated_irr;
659 
660 	max_updated_irr = -1;
661 	*max_irr = -1;
662 
663 	for (i = vec = 0; i <= 7; i++, vec += 32) {
664 		u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
665 
666 		irr_val = *p_irr;
667 		pir_val = READ_ONCE(pir[i]);
668 
669 		if (pir_val) {
670 			pir_val = xchg(&pir[i], 0);
671 
672 			prev_irr_val = irr_val;
673 			do {
674 				irr_val = prev_irr_val | pir_val;
675 			} while (prev_irr_val != irr_val &&
676 				 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
677 
678 			if (prev_irr_val != irr_val)
679 				max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
680 		}
681 		if (irr_val)
682 			*max_irr = __fls(irr_val) + vec;
683 	}
684 
685 	return ((max_updated_irr != -1) &&
686 		(max_updated_irr == *max_irr));
687 }
688 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
689 
690 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
691 {
692 	struct kvm_lapic *apic = vcpu->arch.apic;
693 	bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
694 
695 	if (unlikely(!apic->apicv_active && irr_updated))
696 		apic->irr_pending = true;
697 	return irr_updated;
698 }
699 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
700 
701 static inline int apic_search_irr(struct kvm_lapic *apic)
702 {
703 	return find_highest_vector(apic->regs + APIC_IRR);
704 }
705 
706 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
707 {
708 	int result;
709 
710 	/*
711 	 * Note that irr_pending is just a hint. It will be always
712 	 * true with virtual interrupt delivery enabled.
713 	 */
714 	if (!apic->irr_pending)
715 		return -1;
716 
717 	result = apic_search_irr(apic);
718 	ASSERT(result == -1 || result >= 16);
719 
720 	return result;
721 }
722 
723 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
724 {
725 	if (unlikely(apic->apicv_active)) {
726 		/* need to update RVI */
727 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
728 		static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
729 							    apic_find_highest_irr(apic));
730 	} else {
731 		apic->irr_pending = false;
732 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
733 		if (apic_search_irr(apic) != -1)
734 			apic->irr_pending = true;
735 	}
736 }
737 
738 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
739 {
740 	apic_clear_irr(vec, vcpu->arch.apic);
741 }
742 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
743 
744 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
745 {
746 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
747 		return;
748 
749 	/*
750 	 * With APIC virtualization enabled, all caching is disabled
751 	 * because the processor can modify ISR under the hood.  Instead
752 	 * just set SVI.
753 	 */
754 	if (unlikely(apic->apicv_active))
755 		static_call_cond(kvm_x86_hwapic_isr_update)(vec);
756 	else {
757 		++apic->isr_count;
758 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
759 		/*
760 		 * ISR (in service register) bit is set when injecting an interrupt.
761 		 * The highest vector is injected. Thus the latest bit set matches
762 		 * the highest bit in ISR.
763 		 */
764 		apic->highest_isr_cache = vec;
765 	}
766 }
767 
768 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
769 {
770 	int result;
771 
772 	/*
773 	 * Note that isr_count is always 1, and highest_isr_cache
774 	 * is always -1, with APIC virtualization enabled.
775 	 */
776 	if (!apic->isr_count)
777 		return -1;
778 	if (likely(apic->highest_isr_cache != -1))
779 		return apic->highest_isr_cache;
780 
781 	result = find_highest_vector(apic->regs + APIC_ISR);
782 	ASSERT(result == -1 || result >= 16);
783 
784 	return result;
785 }
786 
787 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
788 {
789 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
790 		return;
791 
792 	/*
793 	 * We do get here for APIC virtualization enabled if the guest
794 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
795 	 * to trigger a new interrupt delivery by writing the SVI field;
796 	 * on the other hand isr_count and highest_isr_cache are unused
797 	 * and must be left alone.
798 	 */
799 	if (unlikely(apic->apicv_active))
800 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
801 	else {
802 		--apic->isr_count;
803 		BUG_ON(apic->isr_count < 0);
804 		apic->highest_isr_cache = -1;
805 	}
806 }
807 
808 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
809 {
810 	/* This may race with setting of irr in __apic_accept_irq() and
811 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
812 	 * will cause vmexit immediately and the value will be recalculated
813 	 * on the next vmentry.
814 	 */
815 	return apic_find_highest_irr(vcpu->arch.apic);
816 }
817 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
818 
819 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
820 			     int vector, int level, int trig_mode,
821 			     struct dest_map *dest_map);
822 
823 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
824 		     struct dest_map *dest_map)
825 {
826 	struct kvm_lapic *apic = vcpu->arch.apic;
827 
828 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
829 			irq->level, irq->trig_mode, dest_map);
830 }
831 
832 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
833 			 struct kvm_lapic_irq *irq, u32 min)
834 {
835 	int i, count = 0;
836 	struct kvm_vcpu *vcpu;
837 
838 	if (min > map->max_apic_id)
839 		return 0;
840 
841 	for_each_set_bit(i, ipi_bitmap,
842 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
843 		if (map->phys_map[min + i]) {
844 			vcpu = map->phys_map[min + i]->vcpu;
845 			count += kvm_apic_set_irq(vcpu, irq, NULL);
846 		}
847 	}
848 
849 	return count;
850 }
851 
852 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
853 		    unsigned long ipi_bitmap_high, u32 min,
854 		    unsigned long icr, int op_64_bit)
855 {
856 	struct kvm_apic_map *map;
857 	struct kvm_lapic_irq irq = {0};
858 	int cluster_size = op_64_bit ? 64 : 32;
859 	int count;
860 
861 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
862 		return -KVM_EINVAL;
863 
864 	irq.vector = icr & APIC_VECTOR_MASK;
865 	irq.delivery_mode = icr & APIC_MODE_MASK;
866 	irq.level = (icr & APIC_INT_ASSERT) != 0;
867 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
868 
869 	rcu_read_lock();
870 	map = rcu_dereference(kvm->arch.apic_map);
871 
872 	count = -EOPNOTSUPP;
873 	if (likely(map)) {
874 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
875 		min += cluster_size;
876 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
877 	}
878 
879 	rcu_read_unlock();
880 	return count;
881 }
882 
883 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
884 {
885 
886 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
887 				      sizeof(val));
888 }
889 
890 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
891 {
892 
893 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
894 				      sizeof(*val));
895 }
896 
897 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
898 {
899 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
900 }
901 
902 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
903 {
904 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
905 		return;
906 
907 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
908 }
909 
910 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
911 {
912 	u8 val;
913 
914 	if (pv_eoi_get_user(vcpu, &val) < 0)
915 		return false;
916 
917 	val &= KVM_PV_EOI_ENABLED;
918 
919 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
920 		return false;
921 
922 	/*
923 	 * Clear pending bit in any case: it will be set again on vmentry.
924 	 * While this might not be ideal from performance point of view,
925 	 * this makes sure pv eoi is only enabled when we know it's safe.
926 	 */
927 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
928 
929 	return val;
930 }
931 
932 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
933 {
934 	int highest_irr;
935 	if (kvm_x86_ops.sync_pir_to_irr)
936 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
937 	else
938 		highest_irr = apic_find_highest_irr(apic);
939 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
940 		return -1;
941 	return highest_irr;
942 }
943 
944 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
945 {
946 	u32 tpr, isrv, ppr, old_ppr;
947 	int isr;
948 
949 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
950 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
951 	isr = apic_find_highest_isr(apic);
952 	isrv = (isr != -1) ? isr : 0;
953 
954 	if ((tpr & 0xf0) >= (isrv & 0xf0))
955 		ppr = tpr & 0xff;
956 	else
957 		ppr = isrv & 0xf0;
958 
959 	*new_ppr = ppr;
960 	if (old_ppr != ppr)
961 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
962 
963 	return ppr < old_ppr;
964 }
965 
966 static void apic_update_ppr(struct kvm_lapic *apic)
967 {
968 	u32 ppr;
969 
970 	if (__apic_update_ppr(apic, &ppr) &&
971 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
972 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
973 }
974 
975 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
976 {
977 	apic_update_ppr(vcpu->arch.apic);
978 }
979 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
980 
981 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
982 {
983 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
984 	apic_update_ppr(apic);
985 }
986 
987 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
988 {
989 	return mda == (apic_x2apic_mode(apic) ?
990 			X2APIC_BROADCAST : APIC_BROADCAST);
991 }
992 
993 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
994 {
995 	if (kvm_apic_broadcast(apic, mda))
996 		return true;
997 
998 	/*
999 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1000 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
1001 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
1002 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1003 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
1004 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1005 	 * changed its (addressable) xAPIC ID (which is writable).
1006 	 */
1007 	if (apic_x2apic_mode(apic) || mda > 0xff)
1008 		return mda == kvm_x2apic_id(apic);
1009 
1010 	return mda == kvm_xapic_id(apic);
1011 }
1012 
1013 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
1014 {
1015 	u32 logical_id;
1016 
1017 	if (kvm_apic_broadcast(apic, mda))
1018 		return true;
1019 
1020 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
1021 
1022 	if (apic_x2apic_mode(apic))
1023 		return ((logical_id >> 16) == (mda >> 16))
1024 		       && (logical_id & mda & 0xffff) != 0;
1025 
1026 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
1027 
1028 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1029 	case APIC_DFR_FLAT:
1030 		return (logical_id & mda) != 0;
1031 	case APIC_DFR_CLUSTER:
1032 		return ((logical_id >> 4) == (mda >> 4))
1033 		       && (logical_id & mda & 0xf) != 0;
1034 	default:
1035 		return false;
1036 	}
1037 }
1038 
1039 /* The KVM local APIC implementation has two quirks:
1040  *
1041  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1042  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1043  *    KVM doesn't do that aliasing.
1044  *
1045  *  - in-kernel IOAPIC messages have to be delivered directly to
1046  *    x2APIC, because the kernel does not support interrupt remapping.
1047  *    In order to support broadcast without interrupt remapping, x2APIC
1048  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
1049  *    to X2APIC_BROADCAST.
1050  *
1051  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
1052  * important when userspace wants to use x2APIC-format MSIs, because
1053  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1054  */
1055 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1056 		struct kvm_lapic *source, struct kvm_lapic *target)
1057 {
1058 	bool ipi = source != NULL;
1059 
1060 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1061 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1062 		return X2APIC_BROADCAST;
1063 
1064 	return dest_id;
1065 }
1066 
1067 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1068 			   int shorthand, unsigned int dest, int dest_mode)
1069 {
1070 	struct kvm_lapic *target = vcpu->arch.apic;
1071 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1072 
1073 	ASSERT(target);
1074 	switch (shorthand) {
1075 	case APIC_DEST_NOSHORT:
1076 		if (dest_mode == APIC_DEST_PHYSICAL)
1077 			return kvm_apic_match_physical_addr(target, mda);
1078 		else
1079 			return kvm_apic_match_logical_addr(target, mda);
1080 	case APIC_DEST_SELF:
1081 		return target == source;
1082 	case APIC_DEST_ALLINC:
1083 		return true;
1084 	case APIC_DEST_ALLBUT:
1085 		return target != source;
1086 	default:
1087 		return false;
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1091 
1092 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1093 		       const unsigned long *bitmap, u32 bitmap_size)
1094 {
1095 	u32 mod;
1096 	int i, idx = -1;
1097 
1098 	mod = vector % dest_vcpus;
1099 
1100 	for (i = 0; i <= mod; i++) {
1101 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1102 		BUG_ON(idx == bitmap_size);
1103 	}
1104 
1105 	return idx;
1106 }
1107 
1108 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1109 {
1110 	if (!kvm->arch.disabled_lapic_found) {
1111 		kvm->arch.disabled_lapic_found = true;
1112 		pr_info("Disabled LAPIC found during irq injection\n");
1113 	}
1114 }
1115 
1116 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1117 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1118 {
1119 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1120 		if ((irq->dest_id == APIC_BROADCAST &&
1121 		     map->logical_mode != KVM_APIC_MODE_X2APIC))
1122 			return true;
1123 		if (irq->dest_id == X2APIC_BROADCAST)
1124 			return true;
1125 	} else {
1126 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1127 		if (irq->dest_id == (x2apic_ipi ?
1128 		                     X2APIC_BROADCAST : APIC_BROADCAST))
1129 			return true;
1130 	}
1131 
1132 	return false;
1133 }
1134 
1135 /* Return true if the interrupt can be handled by using *bitmap as index mask
1136  * for valid destinations in *dst array.
1137  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1138  * Note: we may have zero kvm_lapic destinations when we return true, which
1139  * means that the interrupt should be dropped.  In this case, *bitmap would be
1140  * zero and *dst undefined.
1141  */
1142 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1143 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1144 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
1145 		unsigned long *bitmap)
1146 {
1147 	int i, lowest;
1148 
1149 	if (irq->shorthand == APIC_DEST_SELF && src) {
1150 		*dst = src;
1151 		*bitmap = 1;
1152 		return true;
1153 	} else if (irq->shorthand)
1154 		return false;
1155 
1156 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1157 		return false;
1158 
1159 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1160 		if (irq->dest_id > map->max_apic_id) {
1161 			*bitmap = 0;
1162 		} else {
1163 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1164 			*dst = &map->phys_map[dest_id];
1165 			*bitmap = 1;
1166 		}
1167 		return true;
1168 	}
1169 
1170 	*bitmap = 0;
1171 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1172 				(u16 *)bitmap))
1173 		return false;
1174 
1175 	if (!kvm_lowest_prio_delivery(irq))
1176 		return true;
1177 
1178 	if (!kvm_vector_hashing_enabled()) {
1179 		lowest = -1;
1180 		for_each_set_bit(i, bitmap, 16) {
1181 			if (!(*dst)[i])
1182 				continue;
1183 			if (lowest < 0)
1184 				lowest = i;
1185 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1186 						(*dst)[lowest]->vcpu) < 0)
1187 				lowest = i;
1188 		}
1189 	} else {
1190 		if (!*bitmap)
1191 			return true;
1192 
1193 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1194 				bitmap, 16);
1195 
1196 		if (!(*dst)[lowest]) {
1197 			kvm_apic_disabled_lapic_found(kvm);
1198 			*bitmap = 0;
1199 			return true;
1200 		}
1201 	}
1202 
1203 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1204 
1205 	return true;
1206 }
1207 
1208 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1209 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1210 {
1211 	struct kvm_apic_map *map;
1212 	unsigned long bitmap;
1213 	struct kvm_lapic **dst = NULL;
1214 	int i;
1215 	bool ret;
1216 
1217 	*r = -1;
1218 
1219 	if (irq->shorthand == APIC_DEST_SELF) {
1220 		if (KVM_BUG_ON(!src, kvm)) {
1221 			*r = 0;
1222 			return true;
1223 		}
1224 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1225 		return true;
1226 	}
1227 
1228 	rcu_read_lock();
1229 	map = rcu_dereference(kvm->arch.apic_map);
1230 
1231 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1232 	if (ret) {
1233 		*r = 0;
1234 		for_each_set_bit(i, &bitmap, 16) {
1235 			if (!dst[i])
1236 				continue;
1237 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1238 		}
1239 	}
1240 
1241 	rcu_read_unlock();
1242 	return ret;
1243 }
1244 
1245 /*
1246  * This routine tries to handle interrupts in posted mode, here is how
1247  * it deals with different cases:
1248  * - For single-destination interrupts, handle it in posted mode
1249  * - Else if vector hashing is enabled and it is a lowest-priority
1250  *   interrupt, handle it in posted mode and use the following mechanism
1251  *   to find the destination vCPU.
1252  *	1. For lowest-priority interrupts, store all the possible
1253  *	   destination vCPUs in an array.
1254  *	2. Use "guest vector % max number of destination vCPUs" to find
1255  *	   the right destination vCPU in the array for the lowest-priority
1256  *	   interrupt.
1257  * - Otherwise, use remapped mode to inject the interrupt.
1258  */
1259 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1260 			struct kvm_vcpu **dest_vcpu)
1261 {
1262 	struct kvm_apic_map *map;
1263 	unsigned long bitmap;
1264 	struct kvm_lapic **dst = NULL;
1265 	bool ret = false;
1266 
1267 	if (irq->shorthand)
1268 		return false;
1269 
1270 	rcu_read_lock();
1271 	map = rcu_dereference(kvm->arch.apic_map);
1272 
1273 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1274 			hweight16(bitmap) == 1) {
1275 		unsigned long i = find_first_bit(&bitmap, 16);
1276 
1277 		if (dst[i]) {
1278 			*dest_vcpu = dst[i]->vcpu;
1279 			ret = true;
1280 		}
1281 	}
1282 
1283 	rcu_read_unlock();
1284 	return ret;
1285 }
1286 
1287 /*
1288  * Add a pending IRQ into lapic.
1289  * Return 1 if successfully added and 0 if discarded.
1290  */
1291 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1292 			     int vector, int level, int trig_mode,
1293 			     struct dest_map *dest_map)
1294 {
1295 	int result = 0;
1296 	struct kvm_vcpu *vcpu = apic->vcpu;
1297 
1298 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1299 				  trig_mode, vector);
1300 	switch (delivery_mode) {
1301 	case APIC_DM_LOWEST:
1302 		vcpu->arch.apic_arb_prio++;
1303 		fallthrough;
1304 	case APIC_DM_FIXED:
1305 		if (unlikely(trig_mode && !level))
1306 			break;
1307 
1308 		/* FIXME add logic for vcpu on reset */
1309 		if (unlikely(!apic_enabled(apic)))
1310 			break;
1311 
1312 		result = 1;
1313 
1314 		if (dest_map) {
1315 			__set_bit(vcpu->vcpu_id, dest_map->map);
1316 			dest_map->vectors[vcpu->vcpu_id] = vector;
1317 		}
1318 
1319 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1320 			if (trig_mode)
1321 				kvm_lapic_set_vector(vector,
1322 						     apic->regs + APIC_TMR);
1323 			else
1324 				kvm_lapic_clear_vector(vector,
1325 						       apic->regs + APIC_TMR);
1326 		}
1327 
1328 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1329 						       trig_mode, vector);
1330 		break;
1331 
1332 	case APIC_DM_REMRD:
1333 		result = 1;
1334 		vcpu->arch.pv.pv_unhalted = 1;
1335 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1336 		kvm_vcpu_kick(vcpu);
1337 		break;
1338 
1339 	case APIC_DM_SMI:
1340 		if (!kvm_inject_smi(vcpu)) {
1341 			kvm_vcpu_kick(vcpu);
1342 			result = 1;
1343 		}
1344 		break;
1345 
1346 	case APIC_DM_NMI:
1347 		result = 1;
1348 		kvm_inject_nmi(vcpu);
1349 		kvm_vcpu_kick(vcpu);
1350 		break;
1351 
1352 	case APIC_DM_INIT:
1353 		if (!trig_mode || level) {
1354 			result = 1;
1355 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1356 			apic->pending_events = (1UL << KVM_APIC_INIT);
1357 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1358 			kvm_vcpu_kick(vcpu);
1359 		}
1360 		break;
1361 
1362 	case APIC_DM_STARTUP:
1363 		result = 1;
1364 		apic->sipi_vector = vector;
1365 		/* make sure sipi_vector is visible for the receiver */
1366 		smp_wmb();
1367 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1368 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1369 		kvm_vcpu_kick(vcpu);
1370 		break;
1371 
1372 	case APIC_DM_EXTINT:
1373 		/*
1374 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1375 		 * before NMI watchdog was enabled. Already handled by
1376 		 * kvm_apic_accept_pic_intr().
1377 		 */
1378 		break;
1379 
1380 	default:
1381 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1382 		       delivery_mode);
1383 		break;
1384 	}
1385 	return result;
1386 }
1387 
1388 /*
1389  * This routine identifies the destination vcpus mask meant to receive the
1390  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1391  * out the destination vcpus array and set the bitmap or it traverses to
1392  * each available vcpu to identify the same.
1393  */
1394 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1395 			      unsigned long *vcpu_bitmap)
1396 {
1397 	struct kvm_lapic **dest_vcpu = NULL;
1398 	struct kvm_lapic *src = NULL;
1399 	struct kvm_apic_map *map;
1400 	struct kvm_vcpu *vcpu;
1401 	unsigned long bitmap, i;
1402 	int vcpu_idx;
1403 	bool ret;
1404 
1405 	rcu_read_lock();
1406 	map = rcu_dereference(kvm->arch.apic_map);
1407 
1408 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1409 					  &bitmap);
1410 	if (ret) {
1411 		for_each_set_bit(i, &bitmap, 16) {
1412 			if (!dest_vcpu[i])
1413 				continue;
1414 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1415 			__set_bit(vcpu_idx, vcpu_bitmap);
1416 		}
1417 	} else {
1418 		kvm_for_each_vcpu(i, vcpu, kvm) {
1419 			if (!kvm_apic_present(vcpu))
1420 				continue;
1421 			if (!kvm_apic_match_dest(vcpu, NULL,
1422 						 irq->shorthand,
1423 						 irq->dest_id,
1424 						 irq->dest_mode))
1425 				continue;
1426 			__set_bit(i, vcpu_bitmap);
1427 		}
1428 	}
1429 	rcu_read_unlock();
1430 }
1431 
1432 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1433 {
1434 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1435 }
1436 
1437 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1438 {
1439 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1440 }
1441 
1442 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1443 {
1444 	int trigger_mode;
1445 
1446 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1447 	if (!kvm_ioapic_handles_vector(apic, vector))
1448 		return;
1449 
1450 	/* Request a KVM exit to inform the userspace IOAPIC. */
1451 	if (irqchip_split(apic->vcpu->kvm)) {
1452 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1453 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1454 		return;
1455 	}
1456 
1457 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1458 		trigger_mode = IOAPIC_LEVEL_TRIG;
1459 	else
1460 		trigger_mode = IOAPIC_EDGE_TRIG;
1461 
1462 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1463 }
1464 
1465 static int apic_set_eoi(struct kvm_lapic *apic)
1466 {
1467 	int vector = apic_find_highest_isr(apic);
1468 
1469 	trace_kvm_eoi(apic, vector);
1470 
1471 	/*
1472 	 * Not every write EOI will has corresponding ISR,
1473 	 * one example is when Kernel check timer on setup_IO_APIC
1474 	 */
1475 	if (vector == -1)
1476 		return vector;
1477 
1478 	apic_clear_isr(vector, apic);
1479 	apic_update_ppr(apic);
1480 
1481 	if (to_hv_vcpu(apic->vcpu) &&
1482 	    test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1483 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1484 
1485 	kvm_ioapic_send_eoi(apic, vector);
1486 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1487 	return vector;
1488 }
1489 
1490 /*
1491  * this interface assumes a trap-like exit, which has already finished
1492  * desired side effect including vISR and vPPR update.
1493  */
1494 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1495 {
1496 	struct kvm_lapic *apic = vcpu->arch.apic;
1497 
1498 	trace_kvm_eoi(apic, vector);
1499 
1500 	kvm_ioapic_send_eoi(apic, vector);
1501 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1502 }
1503 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1504 
1505 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1506 {
1507 	struct kvm_lapic_irq irq;
1508 
1509 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1510 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1511 
1512 	irq.vector = icr_low & APIC_VECTOR_MASK;
1513 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1514 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1515 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1516 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1517 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1518 	irq.msi_redir_hint = false;
1519 	if (apic_x2apic_mode(apic))
1520 		irq.dest_id = icr_high;
1521 	else
1522 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1523 
1524 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1525 
1526 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1527 }
1528 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1529 
1530 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1531 {
1532 	ktime_t remaining, now;
1533 	s64 ns;
1534 
1535 	ASSERT(apic != NULL);
1536 
1537 	/* if initial count is 0, current count should also be 0 */
1538 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1539 		apic->lapic_timer.period == 0)
1540 		return 0;
1541 
1542 	now = ktime_get();
1543 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1544 	if (ktime_to_ns(remaining) < 0)
1545 		remaining = 0;
1546 
1547 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1548 	return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
1549 }
1550 
1551 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1552 {
1553 	struct kvm_vcpu *vcpu = apic->vcpu;
1554 	struct kvm_run *run = vcpu->run;
1555 
1556 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1557 	run->tpr_access.rip = kvm_rip_read(vcpu);
1558 	run->tpr_access.is_write = write;
1559 }
1560 
1561 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1562 {
1563 	if (apic->vcpu->arch.tpr_access_reporting)
1564 		__report_tpr_access(apic, write);
1565 }
1566 
1567 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1568 {
1569 	u32 val = 0;
1570 
1571 	if (offset >= LAPIC_MMIO_LENGTH)
1572 		return 0;
1573 
1574 	switch (offset) {
1575 	case APIC_ARBPRI:
1576 		break;
1577 
1578 	case APIC_TMCCT:	/* Timer CCR */
1579 		if (apic_lvtt_tscdeadline(apic))
1580 			return 0;
1581 
1582 		val = apic_get_tmcct(apic);
1583 		break;
1584 	case APIC_PROCPRI:
1585 		apic_update_ppr(apic);
1586 		val = kvm_lapic_get_reg(apic, offset);
1587 		break;
1588 	case APIC_TASKPRI:
1589 		report_tpr_access(apic, false);
1590 		fallthrough;
1591 	default:
1592 		val = kvm_lapic_get_reg(apic, offset);
1593 		break;
1594 	}
1595 
1596 	return val;
1597 }
1598 
1599 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1600 {
1601 	return container_of(dev, struct kvm_lapic, dev);
1602 }
1603 
1604 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1605 #define APIC_REGS_MASK(first, count) \
1606 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1607 
1608 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1609 {
1610 	/* Leave bits '0' for reserved and write-only registers. */
1611 	u64 valid_reg_mask =
1612 		APIC_REG_MASK(APIC_ID) |
1613 		APIC_REG_MASK(APIC_LVR) |
1614 		APIC_REG_MASK(APIC_TASKPRI) |
1615 		APIC_REG_MASK(APIC_PROCPRI) |
1616 		APIC_REG_MASK(APIC_LDR) |
1617 		APIC_REG_MASK(APIC_SPIV) |
1618 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1619 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1620 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1621 		APIC_REG_MASK(APIC_ESR) |
1622 		APIC_REG_MASK(APIC_ICR) |
1623 		APIC_REG_MASK(APIC_LVTT) |
1624 		APIC_REG_MASK(APIC_LVTTHMR) |
1625 		APIC_REG_MASK(APIC_LVTPC) |
1626 		APIC_REG_MASK(APIC_LVT0) |
1627 		APIC_REG_MASK(APIC_LVT1) |
1628 		APIC_REG_MASK(APIC_LVTERR) |
1629 		APIC_REG_MASK(APIC_TMICT) |
1630 		APIC_REG_MASK(APIC_TMCCT) |
1631 		APIC_REG_MASK(APIC_TDCR);
1632 
1633 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1634 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1635 
1636 	/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1637 	if (!apic_x2apic_mode(apic))
1638 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1639 				  APIC_REG_MASK(APIC_DFR) |
1640 				  APIC_REG_MASK(APIC_ICR2);
1641 
1642 	return valid_reg_mask;
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1645 
1646 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1647 			      void *data)
1648 {
1649 	unsigned char alignment = offset & 0xf;
1650 	u32 result;
1651 
1652 	/*
1653 	 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1654 	 * x2APIC and needs to be manually handled by the caller.
1655 	 */
1656 	WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1657 
1658 	if (alignment + len > 4)
1659 		return 1;
1660 
1661 	if (offset > 0x3f0 ||
1662 	    !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1663 		return 1;
1664 
1665 	result = __apic_read(apic, offset & ~0xf);
1666 
1667 	trace_kvm_apic_read(offset, result);
1668 
1669 	switch (len) {
1670 	case 1:
1671 	case 2:
1672 	case 4:
1673 		memcpy(data, (char *)&result + alignment, len);
1674 		break;
1675 	default:
1676 		printk(KERN_ERR "Local APIC read with len = %x, "
1677 		       "should be 1,2, or 4 instead\n", len);
1678 		break;
1679 	}
1680 	return 0;
1681 }
1682 
1683 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1684 {
1685 	return addr >= apic->base_address &&
1686 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1687 }
1688 
1689 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1690 			   gpa_t address, int len, void *data)
1691 {
1692 	struct kvm_lapic *apic = to_lapic(this);
1693 	u32 offset = address - apic->base_address;
1694 
1695 	if (!apic_mmio_in_range(apic, address))
1696 		return -EOPNOTSUPP;
1697 
1698 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1699 		if (!kvm_check_has_quirk(vcpu->kvm,
1700 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1701 			return -EOPNOTSUPP;
1702 
1703 		memset(data, 0xff, len);
1704 		return 0;
1705 	}
1706 
1707 	kvm_lapic_reg_read(apic, offset, len, data);
1708 
1709 	return 0;
1710 }
1711 
1712 static void update_divide_count(struct kvm_lapic *apic)
1713 {
1714 	u32 tmp1, tmp2, tdcr;
1715 
1716 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1717 	tmp1 = tdcr & 0xf;
1718 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1719 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1720 }
1721 
1722 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1723 {
1724 	/*
1725 	 * Do not allow the guest to program periodic timers with small
1726 	 * interval, since the hrtimers are not throttled by the host
1727 	 * scheduler.
1728 	 */
1729 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1730 		s64 min_period = min_timer_period_us * 1000LL;
1731 
1732 		if (apic->lapic_timer.period < min_period) {
1733 			pr_info_ratelimited(
1734 			    "vcpu %i: requested %lld ns "
1735 			    "lapic timer period limited to %lld ns\n",
1736 			    apic->vcpu->vcpu_id,
1737 			    apic->lapic_timer.period, min_period);
1738 			apic->lapic_timer.period = min_period;
1739 		}
1740 	}
1741 }
1742 
1743 static void cancel_hv_timer(struct kvm_lapic *apic);
1744 
1745 static void cancel_apic_timer(struct kvm_lapic *apic)
1746 {
1747 	hrtimer_cancel(&apic->lapic_timer.timer);
1748 	preempt_disable();
1749 	if (apic->lapic_timer.hv_timer_in_use)
1750 		cancel_hv_timer(apic);
1751 	preempt_enable();
1752 	atomic_set(&apic->lapic_timer.pending, 0);
1753 }
1754 
1755 static void apic_update_lvtt(struct kvm_lapic *apic)
1756 {
1757 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1758 			apic->lapic_timer.timer_mode_mask;
1759 
1760 	if (apic->lapic_timer.timer_mode != timer_mode) {
1761 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1762 				APIC_LVT_TIMER_TSCDEADLINE)) {
1763 			cancel_apic_timer(apic);
1764 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1765 			apic->lapic_timer.period = 0;
1766 			apic->lapic_timer.tscdeadline = 0;
1767 		}
1768 		apic->lapic_timer.timer_mode = timer_mode;
1769 		limit_periodic_timer_frequency(apic);
1770 	}
1771 }
1772 
1773 /*
1774  * On APICv, this test will cause a busy wait
1775  * during a higher-priority task.
1776  */
1777 
1778 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1779 {
1780 	struct kvm_lapic *apic = vcpu->arch.apic;
1781 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1782 
1783 	if (kvm_apic_hw_enabled(apic)) {
1784 		int vec = reg & APIC_VECTOR_MASK;
1785 		void *bitmap = apic->regs + APIC_ISR;
1786 
1787 		if (apic->apicv_active)
1788 			bitmap = apic->regs + APIC_IRR;
1789 
1790 		if (apic_test_vector(vec, bitmap))
1791 			return true;
1792 	}
1793 	return false;
1794 }
1795 
1796 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1797 {
1798 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1799 
1800 	/*
1801 	 * If the guest TSC is running at a different ratio than the host, then
1802 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1803 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1804 	 * always for VMX enabled hardware.
1805 	 */
1806 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1807 		__delay(min(guest_cycles,
1808 			nsec_to_cycles(vcpu, timer_advance_ns)));
1809 	} else {
1810 		u64 delay_ns = guest_cycles * 1000000ULL;
1811 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1812 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1813 	}
1814 }
1815 
1816 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1817 					      s64 advance_expire_delta)
1818 {
1819 	struct kvm_lapic *apic = vcpu->arch.apic;
1820 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1821 	u64 ns;
1822 
1823 	/* Do not adjust for tiny fluctuations or large random spikes. */
1824 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1825 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1826 		return;
1827 
1828 	/* too early */
1829 	if (advance_expire_delta < 0) {
1830 		ns = -advance_expire_delta * 1000000ULL;
1831 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1832 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1833 	} else {
1834 	/* too late */
1835 		ns = advance_expire_delta * 1000000ULL;
1836 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1837 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1838 	}
1839 
1840 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1841 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1842 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1843 }
1844 
1845 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1846 {
1847 	struct kvm_lapic *apic = vcpu->arch.apic;
1848 	u64 guest_tsc, tsc_deadline;
1849 
1850 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1851 	apic->lapic_timer.expired_tscdeadline = 0;
1852 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1853 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1854 
1855 	if (lapic_timer_advance_dynamic) {
1856 		adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1857 		/*
1858 		 * If the timer fired early, reread the TSC to account for the
1859 		 * overhead of the above adjustment to avoid waiting longer
1860 		 * than is necessary.
1861 		 */
1862 		if (guest_tsc < tsc_deadline)
1863 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1864 	}
1865 
1866 	if (guest_tsc < tsc_deadline)
1867 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1868 }
1869 
1870 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1871 {
1872 	if (lapic_in_kernel(vcpu) &&
1873 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1874 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1875 	    lapic_timer_int_injected(vcpu))
1876 		__kvm_wait_lapic_expire(vcpu);
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1879 
1880 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1881 {
1882 	struct kvm_timer *ktimer = &apic->lapic_timer;
1883 
1884 	kvm_apic_local_deliver(apic, APIC_LVTT);
1885 	if (apic_lvtt_tscdeadline(apic)) {
1886 		ktimer->tscdeadline = 0;
1887 	} else if (apic_lvtt_oneshot(apic)) {
1888 		ktimer->tscdeadline = 0;
1889 		ktimer->target_expiration = 0;
1890 	}
1891 }
1892 
1893 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1894 {
1895 	struct kvm_vcpu *vcpu = apic->vcpu;
1896 	struct kvm_timer *ktimer = &apic->lapic_timer;
1897 
1898 	if (atomic_read(&apic->lapic_timer.pending))
1899 		return;
1900 
1901 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1902 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1903 
1904 	if (!from_timer_fn && apic->apicv_active) {
1905 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1906 		kvm_apic_inject_pending_timer_irqs(apic);
1907 		return;
1908 	}
1909 
1910 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1911 		/*
1912 		 * Ensure the guest's timer has truly expired before posting an
1913 		 * interrupt.  Open code the relevant checks to avoid querying
1914 		 * lapic_timer_int_injected(), which will be false since the
1915 		 * interrupt isn't yet injected.  Waiting until after injecting
1916 		 * is not an option since that won't help a posted interrupt.
1917 		 */
1918 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1919 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1920 			__kvm_wait_lapic_expire(vcpu);
1921 		kvm_apic_inject_pending_timer_irqs(apic);
1922 		return;
1923 	}
1924 
1925 	atomic_inc(&apic->lapic_timer.pending);
1926 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1927 	if (from_timer_fn)
1928 		kvm_vcpu_kick(vcpu);
1929 }
1930 
1931 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1932 {
1933 	struct kvm_timer *ktimer = &apic->lapic_timer;
1934 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1935 	u64 ns = 0;
1936 	ktime_t expire;
1937 	struct kvm_vcpu *vcpu = apic->vcpu;
1938 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1939 	unsigned long flags;
1940 	ktime_t now;
1941 
1942 	if (unlikely(!tscdeadline || !this_tsc_khz))
1943 		return;
1944 
1945 	local_irq_save(flags);
1946 
1947 	now = ktime_get();
1948 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1949 
1950 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1951 	do_div(ns, this_tsc_khz);
1952 
1953 	if (likely(tscdeadline > guest_tsc) &&
1954 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1955 		expire = ktime_add_ns(now, ns);
1956 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1957 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1958 	} else
1959 		apic_timer_expired(apic, false);
1960 
1961 	local_irq_restore(flags);
1962 }
1963 
1964 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1965 {
1966 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1967 }
1968 
1969 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1970 {
1971 	ktime_t now, remaining;
1972 	u64 ns_remaining_old, ns_remaining_new;
1973 
1974 	apic->lapic_timer.period =
1975 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1976 	limit_periodic_timer_frequency(apic);
1977 
1978 	now = ktime_get();
1979 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1980 	if (ktime_to_ns(remaining) < 0)
1981 		remaining = 0;
1982 
1983 	ns_remaining_old = ktime_to_ns(remaining);
1984 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1985 	                                   apic->divide_count, old_divisor);
1986 
1987 	apic->lapic_timer.tscdeadline +=
1988 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1989 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1990 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1991 }
1992 
1993 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1994 {
1995 	ktime_t now;
1996 	u64 tscl = rdtsc();
1997 	s64 deadline;
1998 
1999 	now = ktime_get();
2000 	apic->lapic_timer.period =
2001 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
2002 
2003 	if (!apic->lapic_timer.period) {
2004 		apic->lapic_timer.tscdeadline = 0;
2005 		return false;
2006 	}
2007 
2008 	limit_periodic_timer_frequency(apic);
2009 	deadline = apic->lapic_timer.period;
2010 
2011 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
2012 		if (unlikely(count_reg != APIC_TMICT)) {
2013 			deadline = tmict_to_ns(apic,
2014 				     kvm_lapic_get_reg(apic, count_reg));
2015 			if (unlikely(deadline <= 0)) {
2016 				if (apic_lvtt_period(apic))
2017 					deadline = apic->lapic_timer.period;
2018 				else
2019 					deadline = 0;
2020 			}
2021 			else if (unlikely(deadline > apic->lapic_timer.period)) {
2022 				pr_info_ratelimited(
2023 				    "vcpu %i: requested lapic timer restore with "
2024 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2025 				    "Using initial count to start timer.\n",
2026 				    apic->vcpu->vcpu_id,
2027 				    count_reg,
2028 				    kvm_lapic_get_reg(apic, count_reg),
2029 				    deadline, apic->lapic_timer.period);
2030 				kvm_lapic_set_reg(apic, count_reg, 0);
2031 				deadline = apic->lapic_timer.period;
2032 			}
2033 		}
2034 	}
2035 
2036 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2037 		nsec_to_cycles(apic->vcpu, deadline);
2038 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2039 
2040 	return true;
2041 }
2042 
2043 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2044 {
2045 	ktime_t now = ktime_get();
2046 	u64 tscl = rdtsc();
2047 	ktime_t delta;
2048 
2049 	/*
2050 	 * Synchronize both deadlines to the same time source or
2051 	 * differences in the periods (caused by differences in the
2052 	 * underlying clocks or numerical approximation errors) will
2053 	 * cause the two to drift apart over time as the errors
2054 	 * accumulate.
2055 	 */
2056 	apic->lapic_timer.target_expiration =
2057 		ktime_add_ns(apic->lapic_timer.target_expiration,
2058 				apic->lapic_timer.period);
2059 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2060 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2061 		nsec_to_cycles(apic->vcpu, delta);
2062 }
2063 
2064 static void start_sw_period(struct kvm_lapic *apic)
2065 {
2066 	if (!apic->lapic_timer.period)
2067 		return;
2068 
2069 	if (ktime_after(ktime_get(),
2070 			apic->lapic_timer.target_expiration)) {
2071 		apic_timer_expired(apic, false);
2072 
2073 		if (apic_lvtt_oneshot(apic))
2074 			return;
2075 
2076 		advance_periodic_target_expiration(apic);
2077 	}
2078 
2079 	hrtimer_start(&apic->lapic_timer.timer,
2080 		apic->lapic_timer.target_expiration,
2081 		HRTIMER_MODE_ABS_HARD);
2082 }
2083 
2084 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2085 {
2086 	if (!lapic_in_kernel(vcpu))
2087 		return false;
2088 
2089 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2090 }
2091 
2092 static void cancel_hv_timer(struct kvm_lapic *apic)
2093 {
2094 	WARN_ON(preemptible());
2095 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2096 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
2097 	apic->lapic_timer.hv_timer_in_use = false;
2098 }
2099 
2100 static bool start_hv_timer(struct kvm_lapic *apic)
2101 {
2102 	struct kvm_timer *ktimer = &apic->lapic_timer;
2103 	struct kvm_vcpu *vcpu = apic->vcpu;
2104 	bool expired;
2105 
2106 	WARN_ON(preemptible());
2107 	if (!kvm_can_use_hv_timer(vcpu))
2108 		return false;
2109 
2110 	if (!ktimer->tscdeadline)
2111 		return false;
2112 
2113 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2114 		return false;
2115 
2116 	ktimer->hv_timer_in_use = true;
2117 	hrtimer_cancel(&ktimer->timer);
2118 
2119 	/*
2120 	 * To simplify handling the periodic timer, leave the hv timer running
2121 	 * even if the deadline timer has expired, i.e. rely on the resulting
2122 	 * VM-Exit to recompute the periodic timer's target expiration.
2123 	 */
2124 	if (!apic_lvtt_period(apic)) {
2125 		/*
2126 		 * Cancel the hv timer if the sw timer fired while the hv timer
2127 		 * was being programmed, or if the hv timer itself expired.
2128 		 */
2129 		if (atomic_read(&ktimer->pending)) {
2130 			cancel_hv_timer(apic);
2131 		} else if (expired) {
2132 			apic_timer_expired(apic, false);
2133 			cancel_hv_timer(apic);
2134 		}
2135 	}
2136 
2137 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2138 
2139 	return true;
2140 }
2141 
2142 static void start_sw_timer(struct kvm_lapic *apic)
2143 {
2144 	struct kvm_timer *ktimer = &apic->lapic_timer;
2145 
2146 	WARN_ON(preemptible());
2147 	if (apic->lapic_timer.hv_timer_in_use)
2148 		cancel_hv_timer(apic);
2149 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2150 		return;
2151 
2152 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2153 		start_sw_period(apic);
2154 	else if (apic_lvtt_tscdeadline(apic))
2155 		start_sw_tscdeadline(apic);
2156 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2157 }
2158 
2159 static void restart_apic_timer(struct kvm_lapic *apic)
2160 {
2161 	preempt_disable();
2162 
2163 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2164 		goto out;
2165 
2166 	if (!start_hv_timer(apic))
2167 		start_sw_timer(apic);
2168 out:
2169 	preempt_enable();
2170 }
2171 
2172 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2173 {
2174 	struct kvm_lapic *apic = vcpu->arch.apic;
2175 
2176 	preempt_disable();
2177 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2178 	if (!apic->lapic_timer.hv_timer_in_use)
2179 		goto out;
2180 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2181 	apic_timer_expired(apic, false);
2182 	cancel_hv_timer(apic);
2183 
2184 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2185 		advance_periodic_target_expiration(apic);
2186 		restart_apic_timer(apic);
2187 	}
2188 out:
2189 	preempt_enable();
2190 }
2191 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2192 
2193 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2194 {
2195 	restart_apic_timer(vcpu->arch.apic);
2196 }
2197 
2198 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2199 {
2200 	struct kvm_lapic *apic = vcpu->arch.apic;
2201 
2202 	preempt_disable();
2203 	/* Possibly the TSC deadline timer is not enabled yet */
2204 	if (apic->lapic_timer.hv_timer_in_use)
2205 		start_sw_timer(apic);
2206 	preempt_enable();
2207 }
2208 
2209 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2210 {
2211 	struct kvm_lapic *apic = vcpu->arch.apic;
2212 
2213 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2214 	restart_apic_timer(apic);
2215 }
2216 
2217 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2218 {
2219 	atomic_set(&apic->lapic_timer.pending, 0);
2220 
2221 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2222 	    && !set_target_expiration(apic, count_reg))
2223 		return;
2224 
2225 	restart_apic_timer(apic);
2226 }
2227 
2228 static void start_apic_timer(struct kvm_lapic *apic)
2229 {
2230 	__start_apic_timer(apic, APIC_TMICT);
2231 }
2232 
2233 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2234 {
2235 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2236 
2237 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2238 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2239 		if (lvt0_in_nmi_mode) {
2240 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2241 		} else
2242 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2243 	}
2244 }
2245 
2246 static int get_lvt_index(u32 reg)
2247 {
2248 	if (reg == APIC_LVTCMCI)
2249 		return LVT_CMCI;
2250 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2251 		return -1;
2252 	return array_index_nospec(
2253 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2254 }
2255 
2256 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2257 {
2258 	int ret = 0;
2259 
2260 	trace_kvm_apic_write(reg, val);
2261 
2262 	switch (reg) {
2263 	case APIC_ID:		/* Local APIC ID */
2264 		if (!apic_x2apic_mode(apic)) {
2265 			kvm_apic_set_xapic_id(apic, val >> 24);
2266 		} else {
2267 			ret = 1;
2268 		}
2269 		break;
2270 
2271 	case APIC_TASKPRI:
2272 		report_tpr_access(apic, true);
2273 		apic_set_tpr(apic, val & 0xff);
2274 		break;
2275 
2276 	case APIC_EOI:
2277 		apic_set_eoi(apic);
2278 		break;
2279 
2280 	case APIC_LDR:
2281 		if (!apic_x2apic_mode(apic))
2282 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2283 		else
2284 			ret = 1;
2285 		break;
2286 
2287 	case APIC_DFR:
2288 		if (!apic_x2apic_mode(apic))
2289 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2290 		else
2291 			ret = 1;
2292 		break;
2293 
2294 	case APIC_SPIV: {
2295 		u32 mask = 0x3ff;
2296 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2297 			mask |= APIC_SPIV_DIRECTED_EOI;
2298 		apic_set_spiv(apic, val & mask);
2299 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2300 			int i;
2301 
2302 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2303 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2304 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2305 			}
2306 			apic_update_lvtt(apic);
2307 			atomic_set(&apic->lapic_timer.pending, 0);
2308 
2309 		}
2310 		break;
2311 	}
2312 	case APIC_ICR:
2313 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2314 
2315 		/* No delay here, so we always clear the pending bit */
2316 		val &= ~APIC_ICR_BUSY;
2317 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2318 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2319 		break;
2320 	case APIC_ICR2:
2321 		if (apic_x2apic_mode(apic))
2322 			ret = 1;
2323 		else
2324 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2325 		break;
2326 
2327 	case APIC_LVT0:
2328 		apic_manage_nmi_watchdog(apic, val);
2329 		fallthrough;
2330 	case APIC_LVTTHMR:
2331 	case APIC_LVTPC:
2332 	case APIC_LVT1:
2333 	case APIC_LVTERR:
2334 	case APIC_LVTCMCI: {
2335 		u32 index = get_lvt_index(reg);
2336 		if (!kvm_lapic_lvt_supported(apic, index)) {
2337 			ret = 1;
2338 			break;
2339 		}
2340 		if (!kvm_apic_sw_enabled(apic))
2341 			val |= APIC_LVT_MASKED;
2342 		val &= apic_lvt_mask[index];
2343 		kvm_lapic_set_reg(apic, reg, val);
2344 		break;
2345 	}
2346 
2347 	case APIC_LVTT:
2348 		if (!kvm_apic_sw_enabled(apic))
2349 			val |= APIC_LVT_MASKED;
2350 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2351 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2352 		apic_update_lvtt(apic);
2353 		break;
2354 
2355 	case APIC_TMICT:
2356 		if (apic_lvtt_tscdeadline(apic))
2357 			break;
2358 
2359 		cancel_apic_timer(apic);
2360 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2361 		start_apic_timer(apic);
2362 		break;
2363 
2364 	case APIC_TDCR: {
2365 		uint32_t old_divisor = apic->divide_count;
2366 
2367 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2368 		update_divide_count(apic);
2369 		if (apic->divide_count != old_divisor &&
2370 				apic->lapic_timer.period) {
2371 			hrtimer_cancel(&apic->lapic_timer.timer);
2372 			update_target_expiration(apic, old_divisor);
2373 			restart_apic_timer(apic);
2374 		}
2375 		break;
2376 	}
2377 	case APIC_ESR:
2378 		if (apic_x2apic_mode(apic) && val != 0)
2379 			ret = 1;
2380 		break;
2381 
2382 	case APIC_SELF_IPI:
2383 		/*
2384 		 * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold
2385 		 * the vector, everything else is reserved.
2386 		 */
2387 		if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2388 			ret = 1;
2389 		else
2390 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2391 		break;
2392 	default:
2393 		ret = 1;
2394 		break;
2395 	}
2396 
2397 	/*
2398 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2399 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2400 	 * on relevant changes, i.e. this is a nop for most writes.
2401 	 */
2402 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2403 
2404 	return ret;
2405 }
2406 
2407 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2408 			    gpa_t address, int len, const void *data)
2409 {
2410 	struct kvm_lapic *apic = to_lapic(this);
2411 	unsigned int offset = address - apic->base_address;
2412 	u32 val;
2413 
2414 	if (!apic_mmio_in_range(apic, address))
2415 		return -EOPNOTSUPP;
2416 
2417 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2418 		if (!kvm_check_has_quirk(vcpu->kvm,
2419 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2420 			return -EOPNOTSUPP;
2421 
2422 		return 0;
2423 	}
2424 
2425 	/*
2426 	 * APIC register must be aligned on 128-bits boundary.
2427 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2428 	 * Refer SDM 8.4.1
2429 	 */
2430 	if (len != 4 || (offset & 0xf))
2431 		return 0;
2432 
2433 	val = *(u32*)data;
2434 
2435 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2436 
2437 	return 0;
2438 }
2439 
2440 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2441 {
2442 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2445 
2446 /* emulate APIC access in a trap manner */
2447 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2448 {
2449 	struct kvm_lapic *apic = vcpu->arch.apic;
2450 
2451 	/*
2452 	 * ICR is a single 64-bit register when x2APIC is enabled, all others
2453 	 * registers hold 32-bit values.  For legacy xAPIC, ICR writes need to
2454 	 * go down the common path to get the upper half from ICR2.
2455 	 *
2456 	 * Note, using the write helpers may incur an unnecessary write to the
2457 	 * virtual APIC state, but KVM needs to conditionally modify the value
2458 	 * in certain cases, e.g. to clear the ICR busy bit.  The cost of extra
2459 	 * conditional branches is likely a wash relative to the cost of the
2460 	 * maybe-unecessary write, and both are in the noise anyways.
2461 	 */
2462 	if (apic_x2apic_mode(apic) && offset == APIC_ICR)
2463 		kvm_x2apic_icr_write(apic, kvm_lapic_get_reg64(apic, APIC_ICR));
2464 	else
2465 		kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2468 
2469 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2470 {
2471 	struct kvm_lapic *apic = vcpu->arch.apic;
2472 
2473 	if (!vcpu->arch.apic)
2474 		return;
2475 
2476 	hrtimer_cancel(&apic->lapic_timer.timer);
2477 
2478 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2479 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2480 
2481 	if (!apic->sw_enabled)
2482 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2483 
2484 	if (apic->regs)
2485 		free_page((unsigned long)apic->regs);
2486 
2487 	kfree(apic);
2488 }
2489 
2490 /*
2491  *----------------------------------------------------------------------
2492  * LAPIC interface
2493  *----------------------------------------------------------------------
2494  */
2495 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2496 {
2497 	struct kvm_lapic *apic = vcpu->arch.apic;
2498 
2499 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2500 		return 0;
2501 
2502 	return apic->lapic_timer.tscdeadline;
2503 }
2504 
2505 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2506 {
2507 	struct kvm_lapic *apic = vcpu->arch.apic;
2508 
2509 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2510 		return;
2511 
2512 	hrtimer_cancel(&apic->lapic_timer.timer);
2513 	apic->lapic_timer.tscdeadline = data;
2514 	start_apic_timer(apic);
2515 }
2516 
2517 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2518 {
2519 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2520 }
2521 
2522 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2523 {
2524 	u64 tpr;
2525 
2526 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2527 
2528 	return (tpr & 0xf0) >> 4;
2529 }
2530 
2531 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2532 {
2533 	u64 old_value = vcpu->arch.apic_base;
2534 	struct kvm_lapic *apic = vcpu->arch.apic;
2535 
2536 	vcpu->arch.apic_base = value;
2537 
2538 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2539 		kvm_update_cpuid_runtime(vcpu);
2540 
2541 	if (!apic)
2542 		return;
2543 
2544 	/* update jump label if enable bit changes */
2545 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2546 		if (value & MSR_IA32_APICBASE_ENABLE) {
2547 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2548 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2549 			/* Check if there are APF page ready requests pending */
2550 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2551 		} else {
2552 			static_branch_inc(&apic_hw_disabled.key);
2553 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2554 		}
2555 	}
2556 
2557 	if ((old_value ^ value) & X2APIC_ENABLE) {
2558 		if (value & X2APIC_ENABLE)
2559 			kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2560 		else if (value & MSR_IA32_APICBASE_ENABLE)
2561 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2562 	}
2563 
2564 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2565 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2566 		static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2567 	}
2568 
2569 	apic->base_address = apic->vcpu->arch.apic_base &
2570 			     MSR_IA32_APICBASE_BASE;
2571 
2572 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2573 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2574 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2575 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2576 	}
2577 }
2578 
2579 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2580 {
2581 	struct kvm_lapic *apic = vcpu->arch.apic;
2582 
2583 	if (apic->apicv_active) {
2584 		/* irr_pending is always true when apicv is activated. */
2585 		apic->irr_pending = true;
2586 		apic->isr_count = 1;
2587 	} else {
2588 		/*
2589 		 * Don't clear irr_pending, searching the IRR can race with
2590 		 * updates from the CPU as APICv is still active from hardware's
2591 		 * perspective.  The flag will be cleared as appropriate when
2592 		 * KVM injects the interrupt.
2593 		 */
2594 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2595 	}
2596 	apic->highest_isr_cache = -1;
2597 }
2598 
2599 int kvm_alloc_apic_access_page(struct kvm *kvm)
2600 {
2601 	struct page *page;
2602 	void __user *hva;
2603 	int ret = 0;
2604 
2605 	mutex_lock(&kvm->slots_lock);
2606 	if (kvm->arch.apic_access_memslot_enabled ||
2607 	    kvm->arch.apic_access_memslot_inhibited)
2608 		goto out;
2609 
2610 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2611 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2612 	if (IS_ERR(hva)) {
2613 		ret = PTR_ERR(hva);
2614 		goto out;
2615 	}
2616 
2617 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2618 	if (is_error_page(page)) {
2619 		ret = -EFAULT;
2620 		goto out;
2621 	}
2622 
2623 	/*
2624 	 * Do not pin the page in memory, so that memory hot-unplug
2625 	 * is able to migrate it.
2626 	 */
2627 	put_page(page);
2628 	kvm->arch.apic_access_memslot_enabled = true;
2629 out:
2630 	mutex_unlock(&kvm->slots_lock);
2631 	return ret;
2632 }
2633 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2634 
2635 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2636 {
2637 	struct kvm *kvm = vcpu->kvm;
2638 
2639 	if (!kvm->arch.apic_access_memslot_enabled)
2640 		return;
2641 
2642 	kvm_vcpu_srcu_read_unlock(vcpu);
2643 
2644 	mutex_lock(&kvm->slots_lock);
2645 
2646 	if (kvm->arch.apic_access_memslot_enabled) {
2647 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2648 		/*
2649 		 * Clear "enabled" after the memslot is deleted so that a
2650 		 * different vCPU doesn't get a false negative when checking
2651 		 * the flag out of slots_lock.  No additional memory barrier is
2652 		 * needed as modifying memslots requires waiting other vCPUs to
2653 		 * drop SRCU (see above), and false positives are ok as the
2654 		 * flag is rechecked after acquiring slots_lock.
2655 		 */
2656 		kvm->arch.apic_access_memslot_enabled = false;
2657 
2658 		/*
2659 		 * Mark the memslot as inhibited to prevent reallocating the
2660 		 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2661 		 */
2662 		kvm->arch.apic_access_memslot_inhibited = true;
2663 	}
2664 
2665 	mutex_unlock(&kvm->slots_lock);
2666 
2667 	kvm_vcpu_srcu_read_lock(vcpu);
2668 }
2669 
2670 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2671 {
2672 	struct kvm_lapic *apic = vcpu->arch.apic;
2673 	u64 msr_val;
2674 	int i;
2675 
2676 	static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
2677 
2678 	if (!init_event) {
2679 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2680 		if (kvm_vcpu_is_reset_bsp(vcpu))
2681 			msr_val |= MSR_IA32_APICBASE_BSP;
2682 		kvm_lapic_set_base(vcpu, msr_val);
2683 	}
2684 
2685 	if (!apic)
2686 		return;
2687 
2688 	/* Stop the timer in case it's a reset to an active apic */
2689 	hrtimer_cancel(&apic->lapic_timer.timer);
2690 
2691 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2692 	if (!init_event)
2693 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2694 	kvm_apic_set_version(apic->vcpu);
2695 
2696 	for (i = 0; i < apic->nr_lvt_entries; i++)
2697 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2698 	apic_update_lvtt(apic);
2699 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2700 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2701 		kvm_lapic_set_reg(apic, APIC_LVT0,
2702 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2703 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2704 
2705 	kvm_apic_set_dfr(apic, 0xffffffffU);
2706 	apic_set_spiv(apic, 0xff);
2707 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2708 	if (!apic_x2apic_mode(apic))
2709 		kvm_apic_set_ldr(apic, 0);
2710 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2711 	if (!apic_x2apic_mode(apic)) {
2712 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2713 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2714 	} else {
2715 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2716 	}
2717 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2718 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2719 	for (i = 0; i < 8; i++) {
2720 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2721 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2722 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2723 	}
2724 	kvm_apic_update_apicv(vcpu);
2725 	update_divide_count(apic);
2726 	atomic_set(&apic->lapic_timer.pending, 0);
2727 
2728 	vcpu->arch.pv_eoi.msr_val = 0;
2729 	apic_update_ppr(apic);
2730 	if (apic->apicv_active) {
2731 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2732 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2733 		static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2734 	}
2735 
2736 	vcpu->arch.apic_arb_prio = 0;
2737 	vcpu->arch.apic_attention = 0;
2738 
2739 	kvm_recalculate_apic_map(vcpu->kvm);
2740 }
2741 
2742 /*
2743  *----------------------------------------------------------------------
2744  * timer interface
2745  *----------------------------------------------------------------------
2746  */
2747 
2748 static bool lapic_is_periodic(struct kvm_lapic *apic)
2749 {
2750 	return apic_lvtt_period(apic);
2751 }
2752 
2753 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2754 {
2755 	struct kvm_lapic *apic = vcpu->arch.apic;
2756 
2757 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2758 		return atomic_read(&apic->lapic_timer.pending);
2759 
2760 	return 0;
2761 }
2762 
2763 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2764 {
2765 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2766 	int vector, mode, trig_mode;
2767 	int r;
2768 
2769 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2770 		vector = reg & APIC_VECTOR_MASK;
2771 		mode = reg & APIC_MODE_MASK;
2772 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2773 
2774 		r = __apic_accept_irq(apic, mode, vector, 1, trig_mode, NULL);
2775 		if (r && lvt_type == APIC_LVTPC &&
2776 		    guest_cpuid_is_intel_compatible(apic->vcpu))
2777 			kvm_lapic_set_reg(apic, APIC_LVTPC, reg | APIC_LVT_MASKED);
2778 		return r;
2779 	}
2780 	return 0;
2781 }
2782 
2783 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2784 {
2785 	struct kvm_lapic *apic = vcpu->arch.apic;
2786 
2787 	if (apic)
2788 		kvm_apic_local_deliver(apic, APIC_LVT0);
2789 }
2790 
2791 static const struct kvm_io_device_ops apic_mmio_ops = {
2792 	.read     = apic_mmio_read,
2793 	.write    = apic_mmio_write,
2794 };
2795 
2796 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2797 {
2798 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2799 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2800 
2801 	apic_timer_expired(apic, true);
2802 
2803 	if (lapic_is_periodic(apic)) {
2804 		advance_periodic_target_expiration(apic);
2805 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2806 		return HRTIMER_RESTART;
2807 	} else
2808 		return HRTIMER_NORESTART;
2809 }
2810 
2811 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2812 {
2813 	struct kvm_lapic *apic;
2814 
2815 	ASSERT(vcpu != NULL);
2816 
2817 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2818 	if (!apic)
2819 		goto nomem;
2820 
2821 	vcpu->arch.apic = apic;
2822 
2823 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2824 	if (!apic->regs) {
2825 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2826 		       vcpu->vcpu_id);
2827 		goto nomem_free_apic;
2828 	}
2829 	apic->vcpu = vcpu;
2830 
2831 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2832 
2833 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2834 		     HRTIMER_MODE_ABS_HARD);
2835 	apic->lapic_timer.timer.function = apic_timer_fn;
2836 	if (timer_advance_ns == -1) {
2837 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2838 		lapic_timer_advance_dynamic = true;
2839 	} else {
2840 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2841 		lapic_timer_advance_dynamic = false;
2842 	}
2843 
2844 	/*
2845 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2846 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2847 	 */
2848 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2849 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2850 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2851 
2852 	return 0;
2853 nomem_free_apic:
2854 	kfree(apic);
2855 	vcpu->arch.apic = NULL;
2856 nomem:
2857 	return -ENOMEM;
2858 }
2859 
2860 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2861 {
2862 	struct kvm_lapic *apic = vcpu->arch.apic;
2863 	u32 ppr;
2864 
2865 	if (!kvm_apic_present(vcpu))
2866 		return -1;
2867 
2868 	__apic_update_ppr(apic, &ppr);
2869 	return apic_has_interrupt_for_ppr(apic, ppr);
2870 }
2871 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2872 
2873 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2874 {
2875 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2876 
2877 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2878 		return 1;
2879 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2880 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2881 		return 1;
2882 	return 0;
2883 }
2884 
2885 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2886 {
2887 	struct kvm_lapic *apic = vcpu->arch.apic;
2888 
2889 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2890 		kvm_apic_inject_pending_timer_irqs(apic);
2891 		atomic_set(&apic->lapic_timer.pending, 0);
2892 	}
2893 }
2894 
2895 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2896 {
2897 	int vector = kvm_apic_has_interrupt(vcpu);
2898 	struct kvm_lapic *apic = vcpu->arch.apic;
2899 	u32 ppr;
2900 
2901 	if (vector == -1)
2902 		return -1;
2903 
2904 	/*
2905 	 * We get here even with APIC virtualization enabled, if doing
2906 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2907 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2908 	 * because the process would deliver it through the IDT.
2909 	 */
2910 
2911 	apic_clear_irr(vector, apic);
2912 	if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2913 		/*
2914 		 * For auto-EOI interrupts, there might be another pending
2915 		 * interrupt above PPR, so check whether to raise another
2916 		 * KVM_REQ_EVENT.
2917 		 */
2918 		apic_update_ppr(apic);
2919 	} else {
2920 		/*
2921 		 * For normal interrupts, PPR has been raised and there cannot
2922 		 * be a higher-priority pending interrupt---except if there was
2923 		 * a concurrent interrupt injection, but that would have
2924 		 * triggered KVM_REQ_EVENT already.
2925 		 */
2926 		apic_set_isr(vector, apic);
2927 		__apic_update_ppr(apic, &ppr);
2928 	}
2929 
2930 	return vector;
2931 }
2932 
2933 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2934 		struct kvm_lapic_state *s, bool set)
2935 {
2936 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2937 		u32 *id = (u32 *)(s->regs + APIC_ID);
2938 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2939 		u64 icr;
2940 
2941 		if (vcpu->kvm->arch.x2apic_format) {
2942 			if (*id != vcpu->vcpu_id)
2943 				return -EINVAL;
2944 		} else {
2945 			if (set)
2946 				*id >>= 24;
2947 			else
2948 				*id <<= 24;
2949 		}
2950 
2951 		/*
2952 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
2953 		 * ICR is internally a single 64-bit register, but needs to be
2954 		 * split to ICR+ICR2 in userspace for backwards compatibility.
2955 		 */
2956 		if (set) {
2957 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2958 
2959 			icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2960 			      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2961 			__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2962 		} else {
2963 			icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2964 			__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2965 		}
2966 	}
2967 
2968 	return 0;
2969 }
2970 
2971 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2972 {
2973 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2974 
2975 	/*
2976 	 * Get calculated timer current count for remaining timer period (if
2977 	 * any) and store it in the returned register set.
2978 	 */
2979 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2980 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2981 
2982 	return kvm_apic_state_fixup(vcpu, s, false);
2983 }
2984 
2985 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2986 {
2987 	struct kvm_lapic *apic = vcpu->arch.apic;
2988 	int r;
2989 
2990 	static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu);
2991 
2992 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2993 	/* set SPIV separately to get count of SW disabled APICs right */
2994 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2995 
2996 	r = kvm_apic_state_fixup(vcpu, s, true);
2997 	if (r) {
2998 		kvm_recalculate_apic_map(vcpu->kvm);
2999 		return r;
3000 	}
3001 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
3002 
3003 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
3004 	kvm_recalculate_apic_map(vcpu->kvm);
3005 	kvm_apic_set_version(vcpu);
3006 
3007 	apic_update_ppr(apic);
3008 	cancel_apic_timer(apic);
3009 	apic->lapic_timer.expired_tscdeadline = 0;
3010 	apic_update_lvtt(apic);
3011 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
3012 	update_divide_count(apic);
3013 	__start_apic_timer(apic, APIC_TMCCT);
3014 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
3015 	kvm_apic_update_apicv(vcpu);
3016 	if (apic->apicv_active) {
3017 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
3018 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
3019 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
3020 	}
3021 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3022 	if (ioapic_in_kernel(vcpu->kvm))
3023 		kvm_rtc_eoi_tracking_restore_one(vcpu);
3024 
3025 	vcpu->arch.apic_arb_prio = 0;
3026 
3027 	return 0;
3028 }
3029 
3030 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
3031 {
3032 	struct hrtimer *timer;
3033 
3034 	if (!lapic_in_kernel(vcpu) ||
3035 		kvm_can_post_timer_interrupt(vcpu))
3036 		return;
3037 
3038 	timer = &vcpu->arch.apic->lapic_timer.timer;
3039 	if (hrtimer_cancel(timer))
3040 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3041 }
3042 
3043 /*
3044  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3045  *
3046  * Detect whether guest triggered PV EOI since the
3047  * last entry. If yes, set EOI on guests's behalf.
3048  * Clear PV EOI in guest memory in any case.
3049  */
3050 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3051 					struct kvm_lapic *apic)
3052 {
3053 	int vector;
3054 	/*
3055 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3056 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3057 	 *
3058 	 * KVM_APIC_PV_EOI_PENDING is unset:
3059 	 * 	-> host disabled PV EOI.
3060 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3061 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
3062 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3063 	 * 	-> host enabled PV EOI, guest executed EOI.
3064 	 */
3065 	BUG_ON(!pv_eoi_enabled(vcpu));
3066 
3067 	if (pv_eoi_test_and_clr_pending(vcpu))
3068 		return;
3069 	vector = apic_set_eoi(apic);
3070 	trace_kvm_pv_eoi(apic, vector);
3071 }
3072 
3073 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3074 {
3075 	u32 data;
3076 
3077 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3078 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3079 
3080 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3081 		return;
3082 
3083 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3084 				  sizeof(u32)))
3085 		return;
3086 
3087 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
3088 }
3089 
3090 /*
3091  * apic_sync_pv_eoi_to_guest - called before vmentry
3092  *
3093  * Detect whether it's safe to enable PV EOI and
3094  * if yes do so.
3095  */
3096 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3097 					struct kvm_lapic *apic)
3098 {
3099 	if (!pv_eoi_enabled(vcpu) ||
3100 	    /* IRR set or many bits in ISR: could be nested. */
3101 	    apic->irr_pending ||
3102 	    /* Cache not set: could be safe but we don't bother. */
3103 	    apic->highest_isr_cache == -1 ||
3104 	    /* Need EOI to update ioapic. */
3105 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3106 		/*
3107 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3108 		 * so we need not do anything here.
3109 		 */
3110 		return;
3111 	}
3112 
3113 	pv_eoi_set_pending(apic->vcpu);
3114 }
3115 
3116 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3117 {
3118 	u32 data, tpr;
3119 	int max_irr, max_isr;
3120 	struct kvm_lapic *apic = vcpu->arch.apic;
3121 
3122 	apic_sync_pv_eoi_to_guest(vcpu, apic);
3123 
3124 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3125 		return;
3126 
3127 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3128 	max_irr = apic_find_highest_irr(apic);
3129 	if (max_irr < 0)
3130 		max_irr = 0;
3131 	max_isr = apic_find_highest_isr(apic);
3132 	if (max_isr < 0)
3133 		max_isr = 0;
3134 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3135 
3136 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3137 				sizeof(u32));
3138 }
3139 
3140 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3141 {
3142 	if (vapic_addr) {
3143 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3144 					&vcpu->arch.apic->vapic_cache,
3145 					vapic_addr, sizeof(u32)))
3146 			return -EINVAL;
3147 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3148 	} else {
3149 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3150 	}
3151 
3152 	vcpu->arch.apic->vapic_addr = vapic_addr;
3153 	return 0;
3154 }
3155 
3156 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
3157 {
3158 	data &= ~APIC_ICR_BUSY;
3159 
3160 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
3161 	kvm_lapic_set_reg64(apic, APIC_ICR, data);
3162 	trace_kvm_apic_write(APIC_ICR, data);
3163 	return 0;
3164 }
3165 
3166 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3167 {
3168 	u32 low;
3169 
3170 	if (reg == APIC_ICR) {
3171 		*data = kvm_lapic_get_reg64(apic, APIC_ICR);
3172 		return 0;
3173 	}
3174 
3175 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
3176 		return 1;
3177 
3178 	*data = low;
3179 
3180 	return 0;
3181 }
3182 
3183 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3184 {
3185 	/*
3186 	 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3187 	 * can be written as such, all other registers remain accessible only
3188 	 * through 32-bit reads/writes.
3189 	 */
3190 	if (reg == APIC_ICR)
3191 		return kvm_x2apic_icr_write(apic, data);
3192 
3193 	/* Bits 63:32 are reserved in all other registers. */
3194 	if (data >> 32)
3195 		return 1;
3196 
3197 	return kvm_lapic_reg_write(apic, reg, (u32)data);
3198 }
3199 
3200 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3201 {
3202 	struct kvm_lapic *apic = vcpu->arch.apic;
3203 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3204 
3205 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3206 		return 1;
3207 
3208 	return kvm_lapic_msr_write(apic, reg, data);
3209 }
3210 
3211 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3212 {
3213 	struct kvm_lapic *apic = vcpu->arch.apic;
3214 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3215 
3216 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3217 		return 1;
3218 
3219 	return kvm_lapic_msr_read(apic, reg, data);
3220 }
3221 
3222 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3223 {
3224 	if (!lapic_in_kernel(vcpu))
3225 		return 1;
3226 
3227 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3228 }
3229 
3230 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3231 {
3232 	if (!lapic_in_kernel(vcpu))
3233 		return 1;
3234 
3235 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3236 }
3237 
3238 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3239 {
3240 	u64 addr = data & ~KVM_MSR_ENABLED;
3241 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3242 	unsigned long new_len;
3243 	int ret;
3244 
3245 	if (!IS_ALIGNED(addr, 4))
3246 		return 1;
3247 
3248 	if (data & KVM_MSR_ENABLED) {
3249 		if (addr == ghc->gpa && len <= ghc->len)
3250 			new_len = ghc->len;
3251 		else
3252 			new_len = len;
3253 
3254 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3255 		if (ret)
3256 			return ret;
3257 	}
3258 
3259 	vcpu->arch.pv_eoi.msr_val = data;
3260 
3261 	return 0;
3262 }
3263 
3264 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3265 {
3266 	struct kvm_lapic *apic = vcpu->arch.apic;
3267 	u8 sipi_vector;
3268 	int r;
3269 
3270 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3271 		return 0;
3272 
3273 	if (is_guest_mode(vcpu)) {
3274 		r = kvm_check_nested_events(vcpu);
3275 		if (r < 0)
3276 			return r == -EBUSY ? 0 : r;
3277 		/*
3278 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3279 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3280 		 * are blocked as a result of transitioning to VMX root mode.
3281 		 */
3282 	}
3283 
3284 	/*
3285 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3286 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3287 	 * wait-for-SIPI (WFS).
3288 	 */
3289 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3290 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3291 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3292 		return 0;
3293 	}
3294 
3295 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3296 		kvm_vcpu_reset(vcpu, true);
3297 		if (kvm_vcpu_is_bsp(apic->vcpu))
3298 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3299 		else
3300 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3301 	}
3302 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3303 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3304 			/* evaluate pending_events before reading the vector */
3305 			smp_rmb();
3306 			sipi_vector = apic->sipi_vector;
3307 			static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3308 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3309 		}
3310 	}
3311 	return 0;
3312 }
3313 
3314 void kvm_lapic_exit(void)
3315 {
3316 	static_key_deferred_flush(&apic_hw_disabled);
3317 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3318 	static_key_deferred_flush(&apic_sw_disabled);
3319 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3320 }
3321