xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision 6486c0f44ed8e91073c1b08e83075e3832618ae5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
26 #include <linux/io.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
31 #include <asm/mce.h>
32 #include <asm/msr.h>
33 #include <asm/page.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
40 #include "irq.h"
41 #include "ioapic.h"
42 #include "trace.h"
43 #include "x86.h"
44 #include "cpuid.h"
45 #include "hyperv.h"
46 #include "smm.h"
47 
48 #ifndef CONFIG_X86_64
49 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
50 #else
51 #define mod_64(x, y) ((x) % (y))
52 #endif
53 
54 /* 14 is the version for Xeon and Pentium 8.4.8*/
55 #define APIC_VERSION			0x14UL
56 #define LAPIC_MMIO_LENGTH		(1 << 12)
57 /* followed define is not in apicdef.h */
58 #define MAX_APIC_VECTOR			256
59 #define APIC_VECTORS_PER_REG		32
60 
61 static bool lapic_timer_advance_dynamic __read_mostly;
62 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
63 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
64 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
65 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
66 /* step-by-step approximation to mitigate fluctuation */
67 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
68 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data);
69 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data);
70 
71 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val)
72 {
73 	*((u32 *) (regs + reg_off)) = val;
74 }
75 
76 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val)
77 {
78 	__kvm_lapic_set_reg(apic->regs, reg_off, val);
79 }
80 
81 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg)
82 {
83 	BUILD_BUG_ON(reg != APIC_ICR);
84 	return *((u64 *) (regs + reg));
85 }
86 
87 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg)
88 {
89 	return __kvm_lapic_get_reg64(apic->regs, reg);
90 }
91 
92 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val)
93 {
94 	BUILD_BUG_ON(reg != APIC_ICR);
95 	*((u64 *) (regs + reg)) = val;
96 }
97 
98 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic,
99 						int reg, u64 val)
100 {
101 	__kvm_lapic_set_reg64(apic->regs, reg, val);
102 }
103 
104 static inline int apic_test_vector(int vec, void *bitmap)
105 {
106 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
107 }
108 
109 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
110 {
111 	struct kvm_lapic *apic = vcpu->arch.apic;
112 
113 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
114 		apic_test_vector(vector, apic->regs + APIC_IRR);
115 }
116 
117 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
118 {
119 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
120 }
121 
122 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
123 {
124 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
125 }
126 
127 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
129 
130 static inline int apic_enabled(struct kvm_lapic *apic)
131 {
132 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
133 }
134 
135 #define LVT_MASK	\
136 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
137 
138 #define LINT_MASK	\
139 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
140 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
141 
142 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
143 {
144 	return apic->vcpu->vcpu_id;
145 }
146 
147 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
148 {
149 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) &&
150 		(kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm));
151 }
152 
153 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
154 {
155 	return kvm_x86_ops.set_hv_timer
156 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
157 		    kvm_can_post_timer_interrupt(vcpu));
158 }
159 
160 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
161 {
162 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
163 }
164 
165 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
166 {
167 	return ((id >> 4) << 16) | (1 << (id & 0xf));
168 }
169 
170 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
171 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
172 	switch (map->logical_mode) {
173 	case KVM_APIC_MODE_SW_DISABLED:
174 		/* Arbitrarily use the flat map so that @cluster isn't NULL. */
175 		*cluster = map->xapic_flat_map;
176 		*mask = 0;
177 		return true;
178 	case KVM_APIC_MODE_X2APIC: {
179 		u32 offset = (dest_id >> 16) * 16;
180 		u32 max_apic_id = map->max_apic_id;
181 
182 		if (offset <= max_apic_id) {
183 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
184 
185 			offset = array_index_nospec(offset, map->max_apic_id + 1);
186 			*cluster = &map->phys_map[offset];
187 			*mask = dest_id & (0xffff >> (16 - cluster_size));
188 		} else {
189 			*mask = 0;
190 		}
191 
192 		return true;
193 		}
194 	case KVM_APIC_MODE_XAPIC_FLAT:
195 		*cluster = map->xapic_flat_map;
196 		*mask = dest_id & 0xff;
197 		return true;
198 	case KVM_APIC_MODE_XAPIC_CLUSTER:
199 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
200 		*mask = dest_id & 0xf;
201 		return true;
202 	case KVM_APIC_MODE_MAP_DISABLED:
203 		return false;
204 	default:
205 		WARN_ON_ONCE(1);
206 		return false;
207 	}
208 }
209 
210 static void kvm_apic_map_free(struct rcu_head *rcu)
211 {
212 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
213 
214 	kvfree(map);
215 }
216 
217 static int kvm_recalculate_phys_map(struct kvm_apic_map *new,
218 				    struct kvm_vcpu *vcpu,
219 				    bool *xapic_id_mismatch)
220 {
221 	struct kvm_lapic *apic = vcpu->arch.apic;
222 	u32 x2apic_id = kvm_x2apic_id(apic);
223 	u32 xapic_id = kvm_xapic_id(apic);
224 	u32 physical_id;
225 
226 	/*
227 	 * For simplicity, KVM always allocates enough space for all possible
228 	 * xAPIC IDs.  Yell, but don't kill the VM, as KVM can continue on
229 	 * without the optimized map.
230 	 */
231 	if (WARN_ON_ONCE(xapic_id > new->max_apic_id))
232 		return -EINVAL;
233 
234 	/*
235 	 * Bail if a vCPU was added and/or enabled its APIC between allocating
236 	 * the map and doing the actual calculations for the map.  Note, KVM
237 	 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
238 	 * the compiler decides to reload x2apic_id after this check.
239 	 */
240 	if (x2apic_id > new->max_apic_id)
241 		return -E2BIG;
242 
243 	/*
244 	 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
245 	 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
246 	 * 32-bit value.  Any unwanted aliasing due to truncation results will
247 	 * be detected below.
248 	 */
249 	if (!apic_x2apic_mode(apic) && xapic_id != (u8)vcpu->vcpu_id)
250 		*xapic_id_mismatch = true;
251 
252 	/*
253 	 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
254 	 * Allow sending events to vCPUs by their x2APIC ID even if the target
255 	 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
256 	 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
257 	 * and collide).
258 	 *
259 	 * Honor the architectural (and KVM's non-optimized) behavior if
260 	 * userspace has not enabled 32-bit x2APIC IDs.  Each APIC is supposed
261 	 * to process messages independently.  If multiple vCPUs have the same
262 	 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
263 	 * manually modified its xAPIC IDs, events targeting that ID are
264 	 * supposed to be recognized by all vCPUs with said ID.
265 	 */
266 	if (vcpu->kvm->arch.x2apic_format) {
267 		/* See also kvm_apic_match_physical_addr(). */
268 		if (apic_x2apic_mode(apic) || x2apic_id > 0xff)
269 			new->phys_map[x2apic_id] = apic;
270 
271 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
272 			new->phys_map[xapic_id] = apic;
273 	} else {
274 		/*
275 		 * Disable the optimized map if the physical APIC ID is already
276 		 * mapped, i.e. is aliased to multiple vCPUs.  The optimized
277 		 * map requires a strict 1:1 mapping between IDs and vCPUs.
278 		 */
279 		if (apic_x2apic_mode(apic))
280 			physical_id = x2apic_id;
281 		else
282 			physical_id = xapic_id;
283 
284 		if (new->phys_map[physical_id])
285 			return -EINVAL;
286 
287 		new->phys_map[physical_id] = apic;
288 	}
289 
290 	return 0;
291 }
292 
293 static void kvm_recalculate_logical_map(struct kvm_apic_map *new,
294 					struct kvm_vcpu *vcpu)
295 {
296 	struct kvm_lapic *apic = vcpu->arch.apic;
297 	enum kvm_apic_logical_mode logical_mode;
298 	struct kvm_lapic **cluster;
299 	u16 mask;
300 	u32 ldr;
301 
302 	if (new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
303 		return;
304 
305 	if (!kvm_apic_sw_enabled(apic))
306 		return;
307 
308 	ldr = kvm_lapic_get_reg(apic, APIC_LDR);
309 	if (!ldr)
310 		return;
311 
312 	if (apic_x2apic_mode(apic)) {
313 		logical_mode = KVM_APIC_MODE_X2APIC;
314 	} else {
315 		ldr = GET_APIC_LOGICAL_ID(ldr);
316 		if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
317 			logical_mode = KVM_APIC_MODE_XAPIC_FLAT;
318 		else
319 			logical_mode = KVM_APIC_MODE_XAPIC_CLUSTER;
320 	}
321 
322 	/*
323 	 * To optimize logical mode delivery, all software-enabled APICs must
324 	 * be configured for the same mode.
325 	 */
326 	if (new->logical_mode == KVM_APIC_MODE_SW_DISABLED) {
327 		new->logical_mode = logical_mode;
328 	} else if (new->logical_mode != logical_mode) {
329 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
330 		return;
331 	}
332 
333 	/*
334 	 * In x2APIC mode, the LDR is read-only and derived directly from the
335 	 * x2APIC ID, thus is guaranteed to be addressable.  KVM reuses
336 	 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
337 	 * reversing the LDR calculation to get cluster of APICs, i.e. no
338 	 * additional work is required.
339 	 */
340 	if (apic_x2apic_mode(apic)) {
341 		WARN_ON_ONCE(ldr != kvm_apic_calc_x2apic_ldr(kvm_x2apic_id(apic)));
342 		return;
343 	}
344 
345 	if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr,
346 							&cluster, &mask))) {
347 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
348 		return;
349 	}
350 
351 	if (!mask)
352 		return;
353 
354 	ldr = ffs(mask) - 1;
355 	if (!is_power_of_2(mask) || cluster[ldr])
356 		new->logical_mode = KVM_APIC_MODE_MAP_DISABLED;
357 	else
358 		cluster[ldr] = apic;
359 }
360 
361 /*
362  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
363  *
364  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
365  * apic_map_lock_held.
366  */
367 enum {
368 	CLEAN,
369 	UPDATE_IN_PROGRESS,
370 	DIRTY
371 };
372 
373 void kvm_recalculate_apic_map(struct kvm *kvm)
374 {
375 	struct kvm_apic_map *new, *old = NULL;
376 	struct kvm_vcpu *vcpu;
377 	unsigned long i;
378 	u32 max_id = 255; /* enough space for any xAPIC ID */
379 	bool xapic_id_mismatch = false;
380 
381 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
382 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
383 		return;
384 
385 	WARN_ONCE(!irqchip_in_kernel(kvm),
386 		  "Dirty APIC map without an in-kernel local APIC");
387 
388 	mutex_lock(&kvm->arch.apic_map_lock);
389 	/*
390 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
391 	 * (if clean) or the APIC registers (if dirty).
392 	 */
393 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
394 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
395 		/* Someone else has updated the map. */
396 		mutex_unlock(&kvm->arch.apic_map_lock);
397 		return;
398 	}
399 
400 	kvm_for_each_vcpu(i, vcpu, kvm)
401 		if (kvm_apic_present(vcpu))
402 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
403 
404 	new = kvzalloc(sizeof(struct kvm_apic_map) +
405 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
406 			   GFP_KERNEL_ACCOUNT);
407 
408 	if (!new)
409 		goto out;
410 
411 	new->max_apic_id = max_id;
412 	new->logical_mode = KVM_APIC_MODE_SW_DISABLED;
413 
414 	kvm_for_each_vcpu(i, vcpu, kvm) {
415 		if (!kvm_apic_present(vcpu))
416 			continue;
417 
418 		if (kvm_recalculate_phys_map(new, vcpu, &xapic_id_mismatch)) {
419 			kvfree(new);
420 			new = NULL;
421 			goto out;
422 		}
423 
424 		kvm_recalculate_logical_map(new, vcpu);
425 	}
426 out:
427 	/*
428 	 * The optimized map is effectively KVM's internal version of APICv,
429 	 * and all unwanted aliasing that results in disabling the optimized
430 	 * map also applies to APICv.
431 	 */
432 	if (!new)
433 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
434 	else
435 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED);
436 
437 	if (!new || new->logical_mode == KVM_APIC_MODE_MAP_DISABLED)
438 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
439 	else
440 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED);
441 
442 	if (xapic_id_mismatch)
443 		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
444 	else
445 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_APIC_ID_MODIFIED);
446 
447 	old = rcu_dereference_protected(kvm->arch.apic_map,
448 			lockdep_is_held(&kvm->arch.apic_map_lock));
449 	rcu_assign_pointer(kvm->arch.apic_map, new);
450 	/*
451 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
452 	 * If another update has come in, leave it DIRTY.
453 	 */
454 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
455 			       UPDATE_IN_PROGRESS, CLEAN);
456 	mutex_unlock(&kvm->arch.apic_map_lock);
457 
458 	if (old)
459 		call_rcu(&old->rcu, kvm_apic_map_free);
460 
461 	kvm_make_scan_ioapic_request(kvm);
462 }
463 
464 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
465 {
466 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
467 
468 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
469 
470 	if (enabled != apic->sw_enabled) {
471 		apic->sw_enabled = enabled;
472 		if (enabled)
473 			static_branch_slow_dec_deferred(&apic_sw_disabled);
474 		else
475 			static_branch_inc(&apic_sw_disabled.key);
476 
477 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
478 	}
479 
480 	/* Check if there are APF page ready requests pending */
481 	if (enabled)
482 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
483 }
484 
485 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
486 {
487 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
488 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
489 }
490 
491 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
492 {
493 	kvm_lapic_set_reg(apic, APIC_LDR, id);
494 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
495 }
496 
497 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
498 {
499 	kvm_lapic_set_reg(apic, APIC_DFR, val);
500 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
501 }
502 
503 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
504 {
505 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
506 
507 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
508 
509 	kvm_lapic_set_reg(apic, APIC_ID, id);
510 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
511 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
512 }
513 
514 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
515 {
516 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
517 }
518 
519 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
520 {
521 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
522 }
523 
524 static inline int apic_lvtt_period(struct kvm_lapic *apic)
525 {
526 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
527 }
528 
529 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
530 {
531 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
532 }
533 
534 static inline int apic_lvt_nmi_mode(u32 lvt_val)
535 {
536 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
537 }
538 
539 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic *apic, int lvt_index)
540 {
541 	return apic->nr_lvt_entries > lvt_index;
542 }
543 
544 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu *vcpu)
545 {
546 	return KVM_APIC_MAX_NR_LVT_ENTRIES - !(vcpu->arch.mcg_cap & MCG_CMCI_P);
547 }
548 
549 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
550 {
551 	struct kvm_lapic *apic = vcpu->arch.apic;
552 	u32 v = 0;
553 
554 	if (!lapic_in_kernel(vcpu))
555 		return;
556 
557 	v = APIC_VERSION | ((apic->nr_lvt_entries - 1) << 16);
558 
559 	/*
560 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
561 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
562 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
563 	 * version first and level-triggered interrupts never get EOIed in
564 	 * IOAPIC.
565 	 */
566 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
567 	    !ioapic_in_kernel(vcpu->kvm))
568 		v |= APIC_LVR_DIRECTED_EOI;
569 	kvm_lapic_set_reg(apic, APIC_LVR, v);
570 }
571 
572 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu *vcpu)
573 {
574 	int nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
575 	struct kvm_lapic *apic = vcpu->arch.apic;
576 	int i;
577 
578 	if (!lapic_in_kernel(vcpu) || nr_lvt_entries == apic->nr_lvt_entries)
579 		return;
580 
581 	/* Initialize/mask any "new" LVT entries. */
582 	for (i = apic->nr_lvt_entries; i < nr_lvt_entries; i++)
583 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
584 
585 	apic->nr_lvt_entries = nr_lvt_entries;
586 
587 	/* The number of LVT entries is reflected in the version register. */
588 	kvm_apic_set_version(vcpu);
589 }
590 
591 static const unsigned int apic_lvt_mask[KVM_APIC_MAX_NR_LVT_ENTRIES] = {
592 	[LVT_TIMER] = LVT_MASK,      /* timer mode mask added at runtime */
593 	[LVT_THERMAL_MONITOR] = LVT_MASK | APIC_MODE_MASK,
594 	[LVT_PERFORMANCE_COUNTER] = LVT_MASK | APIC_MODE_MASK,
595 	[LVT_LINT0] = LINT_MASK,
596 	[LVT_LINT1] = LINT_MASK,
597 	[LVT_ERROR] = LVT_MASK,
598 	[LVT_CMCI] = LVT_MASK | APIC_MODE_MASK
599 };
600 
601 static int find_highest_vector(void *bitmap)
602 {
603 	int vec;
604 	u32 *reg;
605 
606 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
607 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
608 		reg = bitmap + REG_POS(vec);
609 		if (*reg)
610 			return __fls(*reg) + vec;
611 	}
612 
613 	return -1;
614 }
615 
616 static u8 count_vectors(void *bitmap)
617 {
618 	int vec;
619 	u32 *reg;
620 	u8 count = 0;
621 
622 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
623 		reg = bitmap + REG_POS(vec);
624 		count += hweight32(*reg);
625 	}
626 
627 	return count;
628 }
629 
630 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
631 {
632 	u32 i, vec;
633 	u32 pir_val, irr_val, prev_irr_val;
634 	int max_updated_irr;
635 
636 	max_updated_irr = -1;
637 	*max_irr = -1;
638 
639 	for (i = vec = 0; i <= 7; i++, vec += 32) {
640 		u32 *p_irr = (u32 *)(regs + APIC_IRR + i * 0x10);
641 
642 		irr_val = *p_irr;
643 		pir_val = READ_ONCE(pir[i]);
644 
645 		if (pir_val) {
646 			pir_val = xchg(&pir[i], 0);
647 
648 			prev_irr_val = irr_val;
649 			do {
650 				irr_val = prev_irr_val | pir_val;
651 			} while (prev_irr_val != irr_val &&
652 				 !try_cmpxchg(p_irr, &prev_irr_val, irr_val));
653 
654 			if (prev_irr_val != irr_val)
655 				max_updated_irr = __fls(irr_val ^ prev_irr_val) + vec;
656 		}
657 		if (irr_val)
658 			*max_irr = __fls(irr_val) + vec;
659 	}
660 
661 	return ((max_updated_irr != -1) &&
662 		(max_updated_irr == *max_irr));
663 }
664 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
665 
666 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
667 {
668 	struct kvm_lapic *apic = vcpu->arch.apic;
669 	bool irr_updated = __kvm_apic_update_irr(pir, apic->regs, max_irr);
670 
671 	if (unlikely(!apic->apicv_active && irr_updated))
672 		apic->irr_pending = true;
673 	return irr_updated;
674 }
675 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
676 
677 static inline int apic_search_irr(struct kvm_lapic *apic)
678 {
679 	return find_highest_vector(apic->regs + APIC_IRR);
680 }
681 
682 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
683 {
684 	int result;
685 
686 	/*
687 	 * Note that irr_pending is just a hint. It will be always
688 	 * true with virtual interrupt delivery enabled.
689 	 */
690 	if (!apic->irr_pending)
691 		return -1;
692 
693 	result = apic_search_irr(apic);
694 	ASSERT(result == -1 || result >= 16);
695 
696 	return result;
697 }
698 
699 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
700 {
701 	if (unlikely(apic->apicv_active)) {
702 		/* need to update RVI */
703 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
704 		static_call_cond(kvm_x86_hwapic_irr_update)(apic->vcpu,
705 							    apic_find_highest_irr(apic));
706 	} else {
707 		apic->irr_pending = false;
708 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
709 		if (apic_search_irr(apic) != -1)
710 			apic->irr_pending = true;
711 	}
712 }
713 
714 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
715 {
716 	apic_clear_irr(vec, vcpu->arch.apic);
717 }
718 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
719 
720 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
721 {
722 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
723 		return;
724 
725 	/*
726 	 * With APIC virtualization enabled, all caching is disabled
727 	 * because the processor can modify ISR under the hood.  Instead
728 	 * just set SVI.
729 	 */
730 	if (unlikely(apic->apicv_active))
731 		static_call_cond(kvm_x86_hwapic_isr_update)(vec);
732 	else {
733 		++apic->isr_count;
734 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
735 		/*
736 		 * ISR (in service register) bit is set when injecting an interrupt.
737 		 * The highest vector is injected. Thus the latest bit set matches
738 		 * the highest bit in ISR.
739 		 */
740 		apic->highest_isr_cache = vec;
741 	}
742 }
743 
744 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
745 {
746 	int result;
747 
748 	/*
749 	 * Note that isr_count is always 1, and highest_isr_cache
750 	 * is always -1, with APIC virtualization enabled.
751 	 */
752 	if (!apic->isr_count)
753 		return -1;
754 	if (likely(apic->highest_isr_cache != -1))
755 		return apic->highest_isr_cache;
756 
757 	result = find_highest_vector(apic->regs + APIC_ISR);
758 	ASSERT(result == -1 || result >= 16);
759 
760 	return result;
761 }
762 
763 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
764 {
765 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
766 		return;
767 
768 	/*
769 	 * We do get here for APIC virtualization enabled if the guest
770 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
771 	 * to trigger a new interrupt delivery by writing the SVI field;
772 	 * on the other hand isr_count and highest_isr_cache are unused
773 	 * and must be left alone.
774 	 */
775 	if (unlikely(apic->apicv_active))
776 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
777 	else {
778 		--apic->isr_count;
779 		BUG_ON(apic->isr_count < 0);
780 		apic->highest_isr_cache = -1;
781 	}
782 }
783 
784 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
785 {
786 	/* This may race with setting of irr in __apic_accept_irq() and
787 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
788 	 * will cause vmexit immediately and the value will be recalculated
789 	 * on the next vmentry.
790 	 */
791 	return apic_find_highest_irr(vcpu->arch.apic);
792 }
793 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
794 
795 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
796 			     int vector, int level, int trig_mode,
797 			     struct dest_map *dest_map);
798 
799 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
800 		     struct dest_map *dest_map)
801 {
802 	struct kvm_lapic *apic = vcpu->arch.apic;
803 
804 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
805 			irq->level, irq->trig_mode, dest_map);
806 }
807 
808 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
809 			 struct kvm_lapic_irq *irq, u32 min)
810 {
811 	int i, count = 0;
812 	struct kvm_vcpu *vcpu;
813 
814 	if (min > map->max_apic_id)
815 		return 0;
816 
817 	for_each_set_bit(i, ipi_bitmap,
818 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
819 		if (map->phys_map[min + i]) {
820 			vcpu = map->phys_map[min + i]->vcpu;
821 			count += kvm_apic_set_irq(vcpu, irq, NULL);
822 		}
823 	}
824 
825 	return count;
826 }
827 
828 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
829 		    unsigned long ipi_bitmap_high, u32 min,
830 		    unsigned long icr, int op_64_bit)
831 {
832 	struct kvm_apic_map *map;
833 	struct kvm_lapic_irq irq = {0};
834 	int cluster_size = op_64_bit ? 64 : 32;
835 	int count;
836 
837 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
838 		return -KVM_EINVAL;
839 
840 	irq.vector = icr & APIC_VECTOR_MASK;
841 	irq.delivery_mode = icr & APIC_MODE_MASK;
842 	irq.level = (icr & APIC_INT_ASSERT) != 0;
843 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
844 
845 	rcu_read_lock();
846 	map = rcu_dereference(kvm->arch.apic_map);
847 
848 	count = -EOPNOTSUPP;
849 	if (likely(map)) {
850 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
851 		min += cluster_size;
852 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
853 	}
854 
855 	rcu_read_unlock();
856 	return count;
857 }
858 
859 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
860 {
861 
862 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
863 				      sizeof(val));
864 }
865 
866 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
867 {
868 
869 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
870 				      sizeof(*val));
871 }
872 
873 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
874 {
875 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
876 }
877 
878 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
879 {
880 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
881 		return;
882 
883 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
884 }
885 
886 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
887 {
888 	u8 val;
889 
890 	if (pv_eoi_get_user(vcpu, &val) < 0)
891 		return false;
892 
893 	val &= KVM_PV_EOI_ENABLED;
894 
895 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
896 		return false;
897 
898 	/*
899 	 * Clear pending bit in any case: it will be set again on vmentry.
900 	 * While this might not be ideal from performance point of view,
901 	 * this makes sure pv eoi is only enabled when we know it's safe.
902 	 */
903 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
904 
905 	return val;
906 }
907 
908 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
909 {
910 	int highest_irr;
911 	if (kvm_x86_ops.sync_pir_to_irr)
912 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
913 	else
914 		highest_irr = apic_find_highest_irr(apic);
915 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
916 		return -1;
917 	return highest_irr;
918 }
919 
920 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
921 {
922 	u32 tpr, isrv, ppr, old_ppr;
923 	int isr;
924 
925 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
926 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
927 	isr = apic_find_highest_isr(apic);
928 	isrv = (isr != -1) ? isr : 0;
929 
930 	if ((tpr & 0xf0) >= (isrv & 0xf0))
931 		ppr = tpr & 0xff;
932 	else
933 		ppr = isrv & 0xf0;
934 
935 	*new_ppr = ppr;
936 	if (old_ppr != ppr)
937 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
938 
939 	return ppr < old_ppr;
940 }
941 
942 static void apic_update_ppr(struct kvm_lapic *apic)
943 {
944 	u32 ppr;
945 
946 	if (__apic_update_ppr(apic, &ppr) &&
947 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
948 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
949 }
950 
951 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
952 {
953 	apic_update_ppr(vcpu->arch.apic);
954 }
955 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
956 
957 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
958 {
959 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
960 	apic_update_ppr(apic);
961 }
962 
963 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
964 {
965 	return mda == (apic_x2apic_mode(apic) ?
966 			X2APIC_BROADCAST : APIC_BROADCAST);
967 }
968 
969 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
970 {
971 	if (kvm_apic_broadcast(apic, mda))
972 		return true;
973 
974 	/*
975 	 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
976 	 * were in x2APIC mode if the target APIC ID can't be encoded as an
977 	 * xAPIC ID.  This allows unique addressing of hotplugged vCPUs (which
978 	 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
979 	 * mode.  Match the x2APIC ID if and only if the target APIC ID can't
980 	 * be encoded in xAPIC to avoid spurious matches against a vCPU that
981 	 * changed its (addressable) xAPIC ID (which is writable).
982 	 */
983 	if (apic_x2apic_mode(apic) || mda > 0xff)
984 		return mda == kvm_x2apic_id(apic);
985 
986 	return mda == kvm_xapic_id(apic);
987 }
988 
989 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
990 {
991 	u32 logical_id;
992 
993 	if (kvm_apic_broadcast(apic, mda))
994 		return true;
995 
996 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
997 
998 	if (apic_x2apic_mode(apic))
999 		return ((logical_id >> 16) == (mda >> 16))
1000 		       && (logical_id & mda & 0xffff) != 0;
1001 
1002 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
1003 
1004 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
1005 	case APIC_DFR_FLAT:
1006 		return (logical_id & mda) != 0;
1007 	case APIC_DFR_CLUSTER:
1008 		return ((logical_id >> 4) == (mda >> 4))
1009 		       && (logical_id & mda & 0xf) != 0;
1010 	default:
1011 		return false;
1012 	}
1013 }
1014 
1015 /* The KVM local APIC implementation has two quirks:
1016  *
1017  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1018  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1019  *    KVM doesn't do that aliasing.
1020  *
1021  *  - in-kernel IOAPIC messages have to be delivered directly to
1022  *    x2APIC, because the kernel does not support interrupt remapping.
1023  *    In order to support broadcast without interrupt remapping, x2APIC
1024  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
1025  *    to X2APIC_BROADCAST.
1026  *
1027  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
1028  * important when userspace wants to use x2APIC-format MSIs, because
1029  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1030  */
1031 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
1032 		struct kvm_lapic *source, struct kvm_lapic *target)
1033 {
1034 	bool ipi = source != NULL;
1035 
1036 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
1037 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
1038 		return X2APIC_BROADCAST;
1039 
1040 	return dest_id;
1041 }
1042 
1043 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1044 			   int shorthand, unsigned int dest, int dest_mode)
1045 {
1046 	struct kvm_lapic *target = vcpu->arch.apic;
1047 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
1048 
1049 	ASSERT(target);
1050 	switch (shorthand) {
1051 	case APIC_DEST_NOSHORT:
1052 		if (dest_mode == APIC_DEST_PHYSICAL)
1053 			return kvm_apic_match_physical_addr(target, mda);
1054 		else
1055 			return kvm_apic_match_logical_addr(target, mda);
1056 	case APIC_DEST_SELF:
1057 		return target == source;
1058 	case APIC_DEST_ALLINC:
1059 		return true;
1060 	case APIC_DEST_ALLBUT:
1061 		return target != source;
1062 	default:
1063 		return false;
1064 	}
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
1067 
1068 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
1069 		       const unsigned long *bitmap, u32 bitmap_size)
1070 {
1071 	u32 mod;
1072 	int i, idx = -1;
1073 
1074 	mod = vector % dest_vcpus;
1075 
1076 	for (i = 0; i <= mod; i++) {
1077 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
1078 		BUG_ON(idx == bitmap_size);
1079 	}
1080 
1081 	return idx;
1082 }
1083 
1084 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
1085 {
1086 	if (!kvm->arch.disabled_lapic_found) {
1087 		kvm->arch.disabled_lapic_found = true;
1088 		pr_info("Disabled LAPIC found during irq injection\n");
1089 	}
1090 }
1091 
1092 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
1093 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
1094 {
1095 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
1096 		if ((irq->dest_id == APIC_BROADCAST &&
1097 		     map->logical_mode != KVM_APIC_MODE_X2APIC))
1098 			return true;
1099 		if (irq->dest_id == X2APIC_BROADCAST)
1100 			return true;
1101 	} else {
1102 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
1103 		if (irq->dest_id == (x2apic_ipi ?
1104 		                     X2APIC_BROADCAST : APIC_BROADCAST))
1105 			return true;
1106 	}
1107 
1108 	return false;
1109 }
1110 
1111 /* Return true if the interrupt can be handled by using *bitmap as index mask
1112  * for valid destinations in *dst array.
1113  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1114  * Note: we may have zero kvm_lapic destinations when we return true, which
1115  * means that the interrupt should be dropped.  In this case, *bitmap would be
1116  * zero and *dst undefined.
1117  */
1118 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
1119 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
1120 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
1121 		unsigned long *bitmap)
1122 {
1123 	int i, lowest;
1124 
1125 	if (irq->shorthand == APIC_DEST_SELF && src) {
1126 		*dst = src;
1127 		*bitmap = 1;
1128 		return true;
1129 	} else if (irq->shorthand)
1130 		return false;
1131 
1132 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
1133 		return false;
1134 
1135 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
1136 		if (irq->dest_id > map->max_apic_id) {
1137 			*bitmap = 0;
1138 		} else {
1139 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
1140 			*dst = &map->phys_map[dest_id];
1141 			*bitmap = 1;
1142 		}
1143 		return true;
1144 	}
1145 
1146 	*bitmap = 0;
1147 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
1148 				(u16 *)bitmap))
1149 		return false;
1150 
1151 	if (!kvm_lowest_prio_delivery(irq))
1152 		return true;
1153 
1154 	if (!kvm_vector_hashing_enabled()) {
1155 		lowest = -1;
1156 		for_each_set_bit(i, bitmap, 16) {
1157 			if (!(*dst)[i])
1158 				continue;
1159 			if (lowest < 0)
1160 				lowest = i;
1161 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
1162 						(*dst)[lowest]->vcpu) < 0)
1163 				lowest = i;
1164 		}
1165 	} else {
1166 		if (!*bitmap)
1167 			return true;
1168 
1169 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
1170 				bitmap, 16);
1171 
1172 		if (!(*dst)[lowest]) {
1173 			kvm_apic_disabled_lapic_found(kvm);
1174 			*bitmap = 0;
1175 			return true;
1176 		}
1177 	}
1178 
1179 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
1180 
1181 	return true;
1182 }
1183 
1184 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
1185 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
1186 {
1187 	struct kvm_apic_map *map;
1188 	unsigned long bitmap;
1189 	struct kvm_lapic **dst = NULL;
1190 	int i;
1191 	bool ret;
1192 
1193 	*r = -1;
1194 
1195 	if (irq->shorthand == APIC_DEST_SELF) {
1196 		if (KVM_BUG_ON(!src, kvm)) {
1197 			*r = 0;
1198 			return true;
1199 		}
1200 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
1201 		return true;
1202 	}
1203 
1204 	rcu_read_lock();
1205 	map = rcu_dereference(kvm->arch.apic_map);
1206 
1207 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1208 	if (ret) {
1209 		*r = 0;
1210 		for_each_set_bit(i, &bitmap, 16) {
1211 			if (!dst[i])
1212 				continue;
1213 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1214 		}
1215 	}
1216 
1217 	rcu_read_unlock();
1218 	return ret;
1219 }
1220 
1221 /*
1222  * This routine tries to handle interrupts in posted mode, here is how
1223  * it deals with different cases:
1224  * - For single-destination interrupts, handle it in posted mode
1225  * - Else if vector hashing is enabled and it is a lowest-priority
1226  *   interrupt, handle it in posted mode and use the following mechanism
1227  *   to find the destination vCPU.
1228  *	1. For lowest-priority interrupts, store all the possible
1229  *	   destination vCPUs in an array.
1230  *	2. Use "guest vector % max number of destination vCPUs" to find
1231  *	   the right destination vCPU in the array for the lowest-priority
1232  *	   interrupt.
1233  * - Otherwise, use remapped mode to inject the interrupt.
1234  */
1235 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1236 			struct kvm_vcpu **dest_vcpu)
1237 {
1238 	struct kvm_apic_map *map;
1239 	unsigned long bitmap;
1240 	struct kvm_lapic **dst = NULL;
1241 	bool ret = false;
1242 
1243 	if (irq->shorthand)
1244 		return false;
1245 
1246 	rcu_read_lock();
1247 	map = rcu_dereference(kvm->arch.apic_map);
1248 
1249 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1250 			hweight16(bitmap) == 1) {
1251 		unsigned long i = find_first_bit(&bitmap, 16);
1252 
1253 		if (dst[i]) {
1254 			*dest_vcpu = dst[i]->vcpu;
1255 			ret = true;
1256 		}
1257 	}
1258 
1259 	rcu_read_unlock();
1260 	return ret;
1261 }
1262 
1263 /*
1264  * Add a pending IRQ into lapic.
1265  * Return 1 if successfully added and 0 if discarded.
1266  */
1267 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1268 			     int vector, int level, int trig_mode,
1269 			     struct dest_map *dest_map)
1270 {
1271 	int result = 0;
1272 	struct kvm_vcpu *vcpu = apic->vcpu;
1273 
1274 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1275 				  trig_mode, vector);
1276 	switch (delivery_mode) {
1277 	case APIC_DM_LOWEST:
1278 		vcpu->arch.apic_arb_prio++;
1279 		fallthrough;
1280 	case APIC_DM_FIXED:
1281 		if (unlikely(trig_mode && !level))
1282 			break;
1283 
1284 		/* FIXME add logic for vcpu on reset */
1285 		if (unlikely(!apic_enabled(apic)))
1286 			break;
1287 
1288 		result = 1;
1289 
1290 		if (dest_map) {
1291 			__set_bit(vcpu->vcpu_id, dest_map->map);
1292 			dest_map->vectors[vcpu->vcpu_id] = vector;
1293 		}
1294 
1295 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1296 			if (trig_mode)
1297 				kvm_lapic_set_vector(vector,
1298 						     apic->regs + APIC_TMR);
1299 			else
1300 				kvm_lapic_clear_vector(vector,
1301 						       apic->regs + APIC_TMR);
1302 		}
1303 
1304 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1305 						       trig_mode, vector);
1306 		break;
1307 
1308 	case APIC_DM_REMRD:
1309 		result = 1;
1310 		vcpu->arch.pv.pv_unhalted = 1;
1311 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1312 		kvm_vcpu_kick(vcpu);
1313 		break;
1314 
1315 	case APIC_DM_SMI:
1316 		if (!kvm_inject_smi(vcpu)) {
1317 			kvm_vcpu_kick(vcpu);
1318 			result = 1;
1319 		}
1320 		break;
1321 
1322 	case APIC_DM_NMI:
1323 		result = 1;
1324 		kvm_inject_nmi(vcpu);
1325 		kvm_vcpu_kick(vcpu);
1326 		break;
1327 
1328 	case APIC_DM_INIT:
1329 		if (!trig_mode || level) {
1330 			result = 1;
1331 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1332 			apic->pending_events = (1UL << KVM_APIC_INIT);
1333 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1334 			kvm_vcpu_kick(vcpu);
1335 		}
1336 		break;
1337 
1338 	case APIC_DM_STARTUP:
1339 		result = 1;
1340 		apic->sipi_vector = vector;
1341 		/* make sure sipi_vector is visible for the receiver */
1342 		smp_wmb();
1343 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1344 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1345 		kvm_vcpu_kick(vcpu);
1346 		break;
1347 
1348 	case APIC_DM_EXTINT:
1349 		/*
1350 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1351 		 * before NMI watchdog was enabled. Already handled by
1352 		 * kvm_apic_accept_pic_intr().
1353 		 */
1354 		break;
1355 
1356 	default:
1357 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1358 		       delivery_mode);
1359 		break;
1360 	}
1361 	return result;
1362 }
1363 
1364 /*
1365  * This routine identifies the destination vcpus mask meant to receive the
1366  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1367  * out the destination vcpus array and set the bitmap or it traverses to
1368  * each available vcpu to identify the same.
1369  */
1370 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1371 			      unsigned long *vcpu_bitmap)
1372 {
1373 	struct kvm_lapic **dest_vcpu = NULL;
1374 	struct kvm_lapic *src = NULL;
1375 	struct kvm_apic_map *map;
1376 	struct kvm_vcpu *vcpu;
1377 	unsigned long bitmap, i;
1378 	int vcpu_idx;
1379 	bool ret;
1380 
1381 	rcu_read_lock();
1382 	map = rcu_dereference(kvm->arch.apic_map);
1383 
1384 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1385 					  &bitmap);
1386 	if (ret) {
1387 		for_each_set_bit(i, &bitmap, 16) {
1388 			if (!dest_vcpu[i])
1389 				continue;
1390 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1391 			__set_bit(vcpu_idx, vcpu_bitmap);
1392 		}
1393 	} else {
1394 		kvm_for_each_vcpu(i, vcpu, kvm) {
1395 			if (!kvm_apic_present(vcpu))
1396 				continue;
1397 			if (!kvm_apic_match_dest(vcpu, NULL,
1398 						 irq->shorthand,
1399 						 irq->dest_id,
1400 						 irq->dest_mode))
1401 				continue;
1402 			__set_bit(i, vcpu_bitmap);
1403 		}
1404 	}
1405 	rcu_read_unlock();
1406 }
1407 
1408 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1409 {
1410 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1411 }
1412 
1413 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1414 {
1415 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1416 }
1417 
1418 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1419 {
1420 	int trigger_mode;
1421 
1422 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1423 	if (!kvm_ioapic_handles_vector(apic, vector))
1424 		return;
1425 
1426 	/* Request a KVM exit to inform the userspace IOAPIC. */
1427 	if (irqchip_split(apic->vcpu->kvm)) {
1428 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1429 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1430 		return;
1431 	}
1432 
1433 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1434 		trigger_mode = IOAPIC_LEVEL_TRIG;
1435 	else
1436 		trigger_mode = IOAPIC_EDGE_TRIG;
1437 
1438 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1439 }
1440 
1441 static int apic_set_eoi(struct kvm_lapic *apic)
1442 {
1443 	int vector = apic_find_highest_isr(apic);
1444 
1445 	trace_kvm_eoi(apic, vector);
1446 
1447 	/*
1448 	 * Not every write EOI will has corresponding ISR,
1449 	 * one example is when Kernel check timer on setup_IO_APIC
1450 	 */
1451 	if (vector == -1)
1452 		return vector;
1453 
1454 	apic_clear_isr(vector, apic);
1455 	apic_update_ppr(apic);
1456 
1457 	if (to_hv_vcpu(apic->vcpu) &&
1458 	    test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1459 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1460 
1461 	kvm_ioapic_send_eoi(apic, vector);
1462 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1463 	return vector;
1464 }
1465 
1466 /*
1467  * this interface assumes a trap-like exit, which has already finished
1468  * desired side effect including vISR and vPPR update.
1469  */
1470 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1471 {
1472 	struct kvm_lapic *apic = vcpu->arch.apic;
1473 
1474 	trace_kvm_eoi(apic, vector);
1475 
1476 	kvm_ioapic_send_eoi(apic, vector);
1477 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1478 }
1479 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1480 
1481 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1482 {
1483 	struct kvm_lapic_irq irq;
1484 
1485 	/* KVM has no delay and should always clear the BUSY/PENDING flag. */
1486 	WARN_ON_ONCE(icr_low & APIC_ICR_BUSY);
1487 
1488 	irq.vector = icr_low & APIC_VECTOR_MASK;
1489 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1490 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1491 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1492 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1493 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1494 	irq.msi_redir_hint = false;
1495 	if (apic_x2apic_mode(apic))
1496 		irq.dest_id = icr_high;
1497 	else
1498 		irq.dest_id = GET_XAPIC_DEST_FIELD(icr_high);
1499 
1500 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1501 
1502 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi);
1505 
1506 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1507 {
1508 	ktime_t remaining, now;
1509 	s64 ns;
1510 
1511 	ASSERT(apic != NULL);
1512 
1513 	/* if initial count is 0, current count should also be 0 */
1514 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1515 		apic->lapic_timer.period == 0)
1516 		return 0;
1517 
1518 	now = ktime_get();
1519 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1520 	if (ktime_to_ns(remaining) < 0)
1521 		remaining = 0;
1522 
1523 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1524 	return div64_u64(ns, (APIC_BUS_CYCLE_NS * apic->divide_count));
1525 }
1526 
1527 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1528 {
1529 	struct kvm_vcpu *vcpu = apic->vcpu;
1530 	struct kvm_run *run = vcpu->run;
1531 
1532 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1533 	run->tpr_access.rip = kvm_rip_read(vcpu);
1534 	run->tpr_access.is_write = write;
1535 }
1536 
1537 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1538 {
1539 	if (apic->vcpu->arch.tpr_access_reporting)
1540 		__report_tpr_access(apic, write);
1541 }
1542 
1543 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1544 {
1545 	u32 val = 0;
1546 
1547 	if (offset >= LAPIC_MMIO_LENGTH)
1548 		return 0;
1549 
1550 	switch (offset) {
1551 	case APIC_ARBPRI:
1552 		break;
1553 
1554 	case APIC_TMCCT:	/* Timer CCR */
1555 		if (apic_lvtt_tscdeadline(apic))
1556 			return 0;
1557 
1558 		val = apic_get_tmcct(apic);
1559 		break;
1560 	case APIC_PROCPRI:
1561 		apic_update_ppr(apic);
1562 		val = kvm_lapic_get_reg(apic, offset);
1563 		break;
1564 	case APIC_TASKPRI:
1565 		report_tpr_access(apic, false);
1566 		fallthrough;
1567 	default:
1568 		val = kvm_lapic_get_reg(apic, offset);
1569 		break;
1570 	}
1571 
1572 	return val;
1573 }
1574 
1575 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1576 {
1577 	return container_of(dev, struct kvm_lapic, dev);
1578 }
1579 
1580 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1581 #define APIC_REGS_MASK(first, count) \
1582 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1583 
1584 u64 kvm_lapic_readable_reg_mask(struct kvm_lapic *apic)
1585 {
1586 	/* Leave bits '0' for reserved and write-only registers. */
1587 	u64 valid_reg_mask =
1588 		APIC_REG_MASK(APIC_ID) |
1589 		APIC_REG_MASK(APIC_LVR) |
1590 		APIC_REG_MASK(APIC_TASKPRI) |
1591 		APIC_REG_MASK(APIC_PROCPRI) |
1592 		APIC_REG_MASK(APIC_LDR) |
1593 		APIC_REG_MASK(APIC_SPIV) |
1594 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1595 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1596 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1597 		APIC_REG_MASK(APIC_ESR) |
1598 		APIC_REG_MASK(APIC_ICR) |
1599 		APIC_REG_MASK(APIC_LVTT) |
1600 		APIC_REG_MASK(APIC_LVTTHMR) |
1601 		APIC_REG_MASK(APIC_LVTPC) |
1602 		APIC_REG_MASK(APIC_LVT0) |
1603 		APIC_REG_MASK(APIC_LVT1) |
1604 		APIC_REG_MASK(APIC_LVTERR) |
1605 		APIC_REG_MASK(APIC_TMICT) |
1606 		APIC_REG_MASK(APIC_TMCCT) |
1607 		APIC_REG_MASK(APIC_TDCR);
1608 
1609 	if (kvm_lapic_lvt_supported(apic, LVT_CMCI))
1610 		valid_reg_mask |= APIC_REG_MASK(APIC_LVTCMCI);
1611 
1612 	/* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1613 	if (!apic_x2apic_mode(apic))
1614 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) |
1615 				  APIC_REG_MASK(APIC_DFR) |
1616 				  APIC_REG_MASK(APIC_ICR2);
1617 
1618 	return valid_reg_mask;
1619 }
1620 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask);
1621 
1622 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1623 			      void *data)
1624 {
1625 	unsigned char alignment = offset & 0xf;
1626 	u32 result;
1627 
1628 	/*
1629 	 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1630 	 * x2APIC and needs to be manually handled by the caller.
1631 	 */
1632 	WARN_ON_ONCE(apic_x2apic_mode(apic) && offset == APIC_ICR);
1633 
1634 	if (alignment + len > 4)
1635 		return 1;
1636 
1637 	if (offset > 0x3f0 ||
1638 	    !(kvm_lapic_readable_reg_mask(apic) & APIC_REG_MASK(offset)))
1639 		return 1;
1640 
1641 	result = __apic_read(apic, offset & ~0xf);
1642 
1643 	trace_kvm_apic_read(offset, result);
1644 
1645 	switch (len) {
1646 	case 1:
1647 	case 2:
1648 	case 4:
1649 		memcpy(data, (char *)&result + alignment, len);
1650 		break;
1651 	default:
1652 		printk(KERN_ERR "Local APIC read with len = %x, "
1653 		       "should be 1,2, or 4 instead\n", len);
1654 		break;
1655 	}
1656 	return 0;
1657 }
1658 
1659 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1660 {
1661 	return addr >= apic->base_address &&
1662 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1663 }
1664 
1665 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1666 			   gpa_t address, int len, void *data)
1667 {
1668 	struct kvm_lapic *apic = to_lapic(this);
1669 	u32 offset = address - apic->base_address;
1670 
1671 	if (!apic_mmio_in_range(apic, address))
1672 		return -EOPNOTSUPP;
1673 
1674 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1675 		if (!kvm_check_has_quirk(vcpu->kvm,
1676 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1677 			return -EOPNOTSUPP;
1678 
1679 		memset(data, 0xff, len);
1680 		return 0;
1681 	}
1682 
1683 	kvm_lapic_reg_read(apic, offset, len, data);
1684 
1685 	return 0;
1686 }
1687 
1688 static void update_divide_count(struct kvm_lapic *apic)
1689 {
1690 	u32 tmp1, tmp2, tdcr;
1691 
1692 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1693 	tmp1 = tdcr & 0xf;
1694 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1695 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1696 }
1697 
1698 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1699 {
1700 	/*
1701 	 * Do not allow the guest to program periodic timers with small
1702 	 * interval, since the hrtimers are not throttled by the host
1703 	 * scheduler.
1704 	 */
1705 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1706 		s64 min_period = min_timer_period_us * 1000LL;
1707 
1708 		if (apic->lapic_timer.period < min_period) {
1709 			pr_info_ratelimited(
1710 			    "vcpu %i: requested %lld ns "
1711 			    "lapic timer period limited to %lld ns\n",
1712 			    apic->vcpu->vcpu_id,
1713 			    apic->lapic_timer.period, min_period);
1714 			apic->lapic_timer.period = min_period;
1715 		}
1716 	}
1717 }
1718 
1719 static void cancel_hv_timer(struct kvm_lapic *apic);
1720 
1721 static void cancel_apic_timer(struct kvm_lapic *apic)
1722 {
1723 	hrtimer_cancel(&apic->lapic_timer.timer);
1724 	preempt_disable();
1725 	if (apic->lapic_timer.hv_timer_in_use)
1726 		cancel_hv_timer(apic);
1727 	preempt_enable();
1728 	atomic_set(&apic->lapic_timer.pending, 0);
1729 }
1730 
1731 static void apic_update_lvtt(struct kvm_lapic *apic)
1732 {
1733 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1734 			apic->lapic_timer.timer_mode_mask;
1735 
1736 	if (apic->lapic_timer.timer_mode != timer_mode) {
1737 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1738 				APIC_LVT_TIMER_TSCDEADLINE)) {
1739 			cancel_apic_timer(apic);
1740 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1741 			apic->lapic_timer.period = 0;
1742 			apic->lapic_timer.tscdeadline = 0;
1743 		}
1744 		apic->lapic_timer.timer_mode = timer_mode;
1745 		limit_periodic_timer_frequency(apic);
1746 	}
1747 }
1748 
1749 /*
1750  * On APICv, this test will cause a busy wait
1751  * during a higher-priority task.
1752  */
1753 
1754 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1755 {
1756 	struct kvm_lapic *apic = vcpu->arch.apic;
1757 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1758 
1759 	if (kvm_apic_hw_enabled(apic)) {
1760 		int vec = reg & APIC_VECTOR_MASK;
1761 		void *bitmap = apic->regs + APIC_ISR;
1762 
1763 		if (apic->apicv_active)
1764 			bitmap = apic->regs + APIC_IRR;
1765 
1766 		if (apic_test_vector(vec, bitmap))
1767 			return true;
1768 	}
1769 	return false;
1770 }
1771 
1772 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1773 {
1774 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1775 
1776 	/*
1777 	 * If the guest TSC is running at a different ratio than the host, then
1778 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1779 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1780 	 * always for VMX enabled hardware.
1781 	 */
1782 	if (vcpu->arch.tsc_scaling_ratio == kvm_caps.default_tsc_scaling_ratio) {
1783 		__delay(min(guest_cycles,
1784 			nsec_to_cycles(vcpu, timer_advance_ns)));
1785 	} else {
1786 		u64 delay_ns = guest_cycles * 1000000ULL;
1787 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1788 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1789 	}
1790 }
1791 
1792 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1793 					      s64 advance_expire_delta)
1794 {
1795 	struct kvm_lapic *apic = vcpu->arch.apic;
1796 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1797 	u64 ns;
1798 
1799 	/* Do not adjust for tiny fluctuations or large random spikes. */
1800 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1801 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1802 		return;
1803 
1804 	/* too early */
1805 	if (advance_expire_delta < 0) {
1806 		ns = -advance_expire_delta * 1000000ULL;
1807 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1808 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1809 	} else {
1810 	/* too late */
1811 		ns = advance_expire_delta * 1000000ULL;
1812 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1813 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1814 	}
1815 
1816 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1817 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1818 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1819 }
1820 
1821 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1822 {
1823 	struct kvm_lapic *apic = vcpu->arch.apic;
1824 	u64 guest_tsc, tsc_deadline;
1825 
1826 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1827 	apic->lapic_timer.expired_tscdeadline = 0;
1828 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1829 	trace_kvm_wait_lapic_expire(vcpu->vcpu_id, guest_tsc - tsc_deadline);
1830 
1831 	if (lapic_timer_advance_dynamic) {
1832 		adjust_lapic_timer_advance(vcpu, guest_tsc - tsc_deadline);
1833 		/*
1834 		 * If the timer fired early, reread the TSC to account for the
1835 		 * overhead of the above adjustment to avoid waiting longer
1836 		 * than is necessary.
1837 		 */
1838 		if (guest_tsc < tsc_deadline)
1839 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1840 	}
1841 
1842 	if (guest_tsc < tsc_deadline)
1843 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1844 }
1845 
1846 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1847 {
1848 	if (lapic_in_kernel(vcpu) &&
1849 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1850 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1851 	    lapic_timer_int_injected(vcpu))
1852 		__kvm_wait_lapic_expire(vcpu);
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1855 
1856 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1857 {
1858 	struct kvm_timer *ktimer = &apic->lapic_timer;
1859 
1860 	kvm_apic_local_deliver(apic, APIC_LVTT);
1861 	if (apic_lvtt_tscdeadline(apic)) {
1862 		ktimer->tscdeadline = 0;
1863 	} else if (apic_lvtt_oneshot(apic)) {
1864 		ktimer->tscdeadline = 0;
1865 		ktimer->target_expiration = 0;
1866 	}
1867 }
1868 
1869 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1870 {
1871 	struct kvm_vcpu *vcpu = apic->vcpu;
1872 	struct kvm_timer *ktimer = &apic->lapic_timer;
1873 
1874 	if (atomic_read(&apic->lapic_timer.pending))
1875 		return;
1876 
1877 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1878 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1879 
1880 	if (!from_timer_fn && apic->apicv_active) {
1881 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1882 		kvm_apic_inject_pending_timer_irqs(apic);
1883 		return;
1884 	}
1885 
1886 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1887 		/*
1888 		 * Ensure the guest's timer has truly expired before posting an
1889 		 * interrupt.  Open code the relevant checks to avoid querying
1890 		 * lapic_timer_int_injected(), which will be false since the
1891 		 * interrupt isn't yet injected.  Waiting until after injecting
1892 		 * is not an option since that won't help a posted interrupt.
1893 		 */
1894 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1895 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1896 			__kvm_wait_lapic_expire(vcpu);
1897 		kvm_apic_inject_pending_timer_irqs(apic);
1898 		return;
1899 	}
1900 
1901 	atomic_inc(&apic->lapic_timer.pending);
1902 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1903 	if (from_timer_fn)
1904 		kvm_vcpu_kick(vcpu);
1905 }
1906 
1907 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1908 {
1909 	struct kvm_timer *ktimer = &apic->lapic_timer;
1910 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1911 	u64 ns = 0;
1912 	ktime_t expire;
1913 	struct kvm_vcpu *vcpu = apic->vcpu;
1914 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1915 	unsigned long flags;
1916 	ktime_t now;
1917 
1918 	if (unlikely(!tscdeadline || !this_tsc_khz))
1919 		return;
1920 
1921 	local_irq_save(flags);
1922 
1923 	now = ktime_get();
1924 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1925 
1926 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1927 	do_div(ns, this_tsc_khz);
1928 
1929 	if (likely(tscdeadline > guest_tsc) &&
1930 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1931 		expire = ktime_add_ns(now, ns);
1932 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1933 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1934 	} else
1935 		apic_timer_expired(apic, false);
1936 
1937 	local_irq_restore(flags);
1938 }
1939 
1940 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1941 {
1942 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1943 }
1944 
1945 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1946 {
1947 	ktime_t now, remaining;
1948 	u64 ns_remaining_old, ns_remaining_new;
1949 
1950 	apic->lapic_timer.period =
1951 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1952 	limit_periodic_timer_frequency(apic);
1953 
1954 	now = ktime_get();
1955 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1956 	if (ktime_to_ns(remaining) < 0)
1957 		remaining = 0;
1958 
1959 	ns_remaining_old = ktime_to_ns(remaining);
1960 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1961 	                                   apic->divide_count, old_divisor);
1962 
1963 	apic->lapic_timer.tscdeadline +=
1964 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1965 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1966 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1967 }
1968 
1969 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1970 {
1971 	ktime_t now;
1972 	u64 tscl = rdtsc();
1973 	s64 deadline;
1974 
1975 	now = ktime_get();
1976 	apic->lapic_timer.period =
1977 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1978 
1979 	if (!apic->lapic_timer.period) {
1980 		apic->lapic_timer.tscdeadline = 0;
1981 		return false;
1982 	}
1983 
1984 	limit_periodic_timer_frequency(apic);
1985 	deadline = apic->lapic_timer.period;
1986 
1987 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1988 		if (unlikely(count_reg != APIC_TMICT)) {
1989 			deadline = tmict_to_ns(apic,
1990 				     kvm_lapic_get_reg(apic, count_reg));
1991 			if (unlikely(deadline <= 0)) {
1992 				if (apic_lvtt_period(apic))
1993 					deadline = apic->lapic_timer.period;
1994 				else
1995 					deadline = 0;
1996 			}
1997 			else if (unlikely(deadline > apic->lapic_timer.period)) {
1998 				pr_info_ratelimited(
1999 				    "vcpu %i: requested lapic timer restore with "
2000 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2001 				    "Using initial count to start timer.\n",
2002 				    apic->vcpu->vcpu_id,
2003 				    count_reg,
2004 				    kvm_lapic_get_reg(apic, count_reg),
2005 				    deadline, apic->lapic_timer.period);
2006 				kvm_lapic_set_reg(apic, count_reg, 0);
2007 				deadline = apic->lapic_timer.period;
2008 			}
2009 		}
2010 	}
2011 
2012 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2013 		nsec_to_cycles(apic->vcpu, deadline);
2014 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
2015 
2016 	return true;
2017 }
2018 
2019 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
2020 {
2021 	ktime_t now = ktime_get();
2022 	u64 tscl = rdtsc();
2023 	ktime_t delta;
2024 
2025 	/*
2026 	 * Synchronize both deadlines to the same time source or
2027 	 * differences in the periods (caused by differences in the
2028 	 * underlying clocks or numerical approximation errors) will
2029 	 * cause the two to drift apart over time as the errors
2030 	 * accumulate.
2031 	 */
2032 	apic->lapic_timer.target_expiration =
2033 		ktime_add_ns(apic->lapic_timer.target_expiration,
2034 				apic->lapic_timer.period);
2035 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
2036 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
2037 		nsec_to_cycles(apic->vcpu, delta);
2038 }
2039 
2040 static void start_sw_period(struct kvm_lapic *apic)
2041 {
2042 	if (!apic->lapic_timer.period)
2043 		return;
2044 
2045 	if (ktime_after(ktime_get(),
2046 			apic->lapic_timer.target_expiration)) {
2047 		apic_timer_expired(apic, false);
2048 
2049 		if (apic_lvtt_oneshot(apic))
2050 			return;
2051 
2052 		advance_periodic_target_expiration(apic);
2053 	}
2054 
2055 	hrtimer_start(&apic->lapic_timer.timer,
2056 		apic->lapic_timer.target_expiration,
2057 		HRTIMER_MODE_ABS_HARD);
2058 }
2059 
2060 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
2061 {
2062 	if (!lapic_in_kernel(vcpu))
2063 		return false;
2064 
2065 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
2066 }
2067 
2068 static void cancel_hv_timer(struct kvm_lapic *apic)
2069 {
2070 	WARN_ON(preemptible());
2071 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2072 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
2073 	apic->lapic_timer.hv_timer_in_use = false;
2074 }
2075 
2076 static bool start_hv_timer(struct kvm_lapic *apic)
2077 {
2078 	struct kvm_timer *ktimer = &apic->lapic_timer;
2079 	struct kvm_vcpu *vcpu = apic->vcpu;
2080 	bool expired;
2081 
2082 	WARN_ON(preemptible());
2083 	if (!kvm_can_use_hv_timer(vcpu))
2084 		return false;
2085 
2086 	if (!ktimer->tscdeadline)
2087 		return false;
2088 
2089 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
2090 		return false;
2091 
2092 	ktimer->hv_timer_in_use = true;
2093 	hrtimer_cancel(&ktimer->timer);
2094 
2095 	/*
2096 	 * To simplify handling the periodic timer, leave the hv timer running
2097 	 * even if the deadline timer has expired, i.e. rely on the resulting
2098 	 * VM-Exit to recompute the periodic timer's target expiration.
2099 	 */
2100 	if (!apic_lvtt_period(apic)) {
2101 		/*
2102 		 * Cancel the hv timer if the sw timer fired while the hv timer
2103 		 * was being programmed, or if the hv timer itself expired.
2104 		 */
2105 		if (atomic_read(&ktimer->pending)) {
2106 			cancel_hv_timer(apic);
2107 		} else if (expired) {
2108 			apic_timer_expired(apic, false);
2109 			cancel_hv_timer(apic);
2110 		}
2111 	}
2112 
2113 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
2114 
2115 	return true;
2116 }
2117 
2118 static void start_sw_timer(struct kvm_lapic *apic)
2119 {
2120 	struct kvm_timer *ktimer = &apic->lapic_timer;
2121 
2122 	WARN_ON(preemptible());
2123 	if (apic->lapic_timer.hv_timer_in_use)
2124 		cancel_hv_timer(apic);
2125 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
2126 		return;
2127 
2128 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2129 		start_sw_period(apic);
2130 	else if (apic_lvtt_tscdeadline(apic))
2131 		start_sw_tscdeadline(apic);
2132 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
2133 }
2134 
2135 static void restart_apic_timer(struct kvm_lapic *apic)
2136 {
2137 	preempt_disable();
2138 
2139 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
2140 		goto out;
2141 
2142 	if (!start_hv_timer(apic))
2143 		start_sw_timer(apic);
2144 out:
2145 	preempt_enable();
2146 }
2147 
2148 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
2149 {
2150 	struct kvm_lapic *apic = vcpu->arch.apic;
2151 
2152 	preempt_disable();
2153 	/* If the preempt notifier has already run, it also called apic_timer_expired */
2154 	if (!apic->lapic_timer.hv_timer_in_use)
2155 		goto out;
2156 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
2157 	apic_timer_expired(apic, false);
2158 	cancel_hv_timer(apic);
2159 
2160 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
2161 		advance_periodic_target_expiration(apic);
2162 		restart_apic_timer(apic);
2163 	}
2164 out:
2165 	preempt_enable();
2166 }
2167 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
2168 
2169 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
2170 {
2171 	restart_apic_timer(vcpu->arch.apic);
2172 }
2173 
2174 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
2175 {
2176 	struct kvm_lapic *apic = vcpu->arch.apic;
2177 
2178 	preempt_disable();
2179 	/* Possibly the TSC deadline timer is not enabled yet */
2180 	if (apic->lapic_timer.hv_timer_in_use)
2181 		start_sw_timer(apic);
2182 	preempt_enable();
2183 }
2184 
2185 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
2186 {
2187 	struct kvm_lapic *apic = vcpu->arch.apic;
2188 
2189 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
2190 	restart_apic_timer(apic);
2191 }
2192 
2193 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
2194 {
2195 	atomic_set(&apic->lapic_timer.pending, 0);
2196 
2197 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
2198 	    && !set_target_expiration(apic, count_reg))
2199 		return;
2200 
2201 	restart_apic_timer(apic);
2202 }
2203 
2204 static void start_apic_timer(struct kvm_lapic *apic)
2205 {
2206 	__start_apic_timer(apic, APIC_TMICT);
2207 }
2208 
2209 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
2210 {
2211 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
2212 
2213 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
2214 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
2215 		if (lvt0_in_nmi_mode) {
2216 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2217 		} else
2218 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
2219 	}
2220 }
2221 
2222 static int get_lvt_index(u32 reg)
2223 {
2224 	if (reg == APIC_LVTCMCI)
2225 		return LVT_CMCI;
2226 	if (reg < APIC_LVTT || reg > APIC_LVTERR)
2227 		return -1;
2228 	return array_index_nospec(
2229 			(reg - APIC_LVTT) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES);
2230 }
2231 
2232 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
2233 {
2234 	int ret = 0;
2235 
2236 	trace_kvm_apic_write(reg, val);
2237 
2238 	switch (reg) {
2239 	case APIC_ID:		/* Local APIC ID */
2240 		if (!apic_x2apic_mode(apic)) {
2241 			kvm_apic_set_xapic_id(apic, val >> 24);
2242 		} else {
2243 			ret = 1;
2244 		}
2245 		break;
2246 
2247 	case APIC_TASKPRI:
2248 		report_tpr_access(apic, true);
2249 		apic_set_tpr(apic, val & 0xff);
2250 		break;
2251 
2252 	case APIC_EOI:
2253 		apic_set_eoi(apic);
2254 		break;
2255 
2256 	case APIC_LDR:
2257 		if (!apic_x2apic_mode(apic))
2258 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2259 		else
2260 			ret = 1;
2261 		break;
2262 
2263 	case APIC_DFR:
2264 		if (!apic_x2apic_mode(apic))
2265 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2266 		else
2267 			ret = 1;
2268 		break;
2269 
2270 	case APIC_SPIV: {
2271 		u32 mask = 0x3ff;
2272 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2273 			mask |= APIC_SPIV_DIRECTED_EOI;
2274 		apic_set_spiv(apic, val & mask);
2275 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2276 			int i;
2277 
2278 			for (i = 0; i < apic->nr_lvt_entries; i++) {
2279 				kvm_lapic_set_reg(apic, APIC_LVTx(i),
2280 					kvm_lapic_get_reg(apic, APIC_LVTx(i)) | APIC_LVT_MASKED);
2281 			}
2282 			apic_update_lvtt(apic);
2283 			atomic_set(&apic->lapic_timer.pending, 0);
2284 
2285 		}
2286 		break;
2287 	}
2288 	case APIC_ICR:
2289 		WARN_ON_ONCE(apic_x2apic_mode(apic));
2290 
2291 		/* No delay here, so we always clear the pending bit */
2292 		val &= ~APIC_ICR_BUSY;
2293 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2294 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2295 		break;
2296 	case APIC_ICR2:
2297 		if (apic_x2apic_mode(apic))
2298 			ret = 1;
2299 		else
2300 			kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000);
2301 		break;
2302 
2303 	case APIC_LVT0:
2304 		apic_manage_nmi_watchdog(apic, val);
2305 		fallthrough;
2306 	case APIC_LVTTHMR:
2307 	case APIC_LVTPC:
2308 	case APIC_LVT1:
2309 	case APIC_LVTERR:
2310 	case APIC_LVTCMCI: {
2311 		u32 index = get_lvt_index(reg);
2312 		if (!kvm_lapic_lvt_supported(apic, index)) {
2313 			ret = 1;
2314 			break;
2315 		}
2316 		if (!kvm_apic_sw_enabled(apic))
2317 			val |= APIC_LVT_MASKED;
2318 		val &= apic_lvt_mask[index];
2319 		kvm_lapic_set_reg(apic, reg, val);
2320 		break;
2321 	}
2322 
2323 	case APIC_LVTT:
2324 		if (!kvm_apic_sw_enabled(apic))
2325 			val |= APIC_LVT_MASKED;
2326 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2327 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2328 		apic_update_lvtt(apic);
2329 		break;
2330 
2331 	case APIC_TMICT:
2332 		if (apic_lvtt_tscdeadline(apic))
2333 			break;
2334 
2335 		cancel_apic_timer(apic);
2336 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2337 		start_apic_timer(apic);
2338 		break;
2339 
2340 	case APIC_TDCR: {
2341 		uint32_t old_divisor = apic->divide_count;
2342 
2343 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2344 		update_divide_count(apic);
2345 		if (apic->divide_count != old_divisor &&
2346 				apic->lapic_timer.period) {
2347 			hrtimer_cancel(&apic->lapic_timer.timer);
2348 			update_target_expiration(apic, old_divisor);
2349 			restart_apic_timer(apic);
2350 		}
2351 		break;
2352 	}
2353 	case APIC_ESR:
2354 		if (apic_x2apic_mode(apic) && val != 0)
2355 			ret = 1;
2356 		break;
2357 
2358 	case APIC_SELF_IPI:
2359 		/*
2360 		 * Self-IPI exists only when x2APIC is enabled.  Bits 7:0 hold
2361 		 * the vector, everything else is reserved.
2362 		 */
2363 		if (!apic_x2apic_mode(apic) || (val & ~APIC_VECTOR_MASK))
2364 			ret = 1;
2365 		else
2366 			kvm_apic_send_ipi(apic, APIC_DEST_SELF | val, 0);
2367 		break;
2368 	default:
2369 		ret = 1;
2370 		break;
2371 	}
2372 
2373 	/*
2374 	 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2375 	 * was toggled, the APIC ID changed, etc...   The maps are marked dirty
2376 	 * on relevant changes, i.e. this is a nop for most writes.
2377 	 */
2378 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2379 
2380 	return ret;
2381 }
2382 
2383 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2384 			    gpa_t address, int len, const void *data)
2385 {
2386 	struct kvm_lapic *apic = to_lapic(this);
2387 	unsigned int offset = address - apic->base_address;
2388 	u32 val;
2389 
2390 	if (!apic_mmio_in_range(apic, address))
2391 		return -EOPNOTSUPP;
2392 
2393 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2394 		if (!kvm_check_has_quirk(vcpu->kvm,
2395 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2396 			return -EOPNOTSUPP;
2397 
2398 		return 0;
2399 	}
2400 
2401 	/*
2402 	 * APIC register must be aligned on 128-bits boundary.
2403 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2404 	 * Refer SDM 8.4.1
2405 	 */
2406 	if (len != 4 || (offset & 0xf))
2407 		return 0;
2408 
2409 	val = *(u32*)data;
2410 
2411 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2412 
2413 	return 0;
2414 }
2415 
2416 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2417 {
2418 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2419 }
2420 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2421 
2422 /* emulate APIC access in a trap manner */
2423 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2424 {
2425 	struct kvm_lapic *apic = vcpu->arch.apic;
2426 	u64 val;
2427 
2428 	/*
2429 	 * ICR is a single 64-bit register when x2APIC is enabled.  For legacy
2430 	 * xAPIC, ICR writes need to go down the common (slightly slower) path
2431 	 * to get the upper half from ICR2.
2432 	 */
2433 	if (apic_x2apic_mode(apic) && offset == APIC_ICR) {
2434 		val = kvm_lapic_get_reg64(apic, APIC_ICR);
2435 		kvm_apic_send_ipi(apic, (u32)val, (u32)(val >> 32));
2436 		trace_kvm_apic_write(APIC_ICR, val);
2437 	} else {
2438 		/* TODO: optimize to just emulate side effect w/o one more write */
2439 		val = kvm_lapic_get_reg(apic, offset);
2440 		kvm_lapic_reg_write(apic, offset, (u32)val);
2441 	}
2442 }
2443 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2444 
2445 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2446 {
2447 	struct kvm_lapic *apic = vcpu->arch.apic;
2448 
2449 	if (!vcpu->arch.apic)
2450 		return;
2451 
2452 	hrtimer_cancel(&apic->lapic_timer.timer);
2453 
2454 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2455 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2456 
2457 	if (!apic->sw_enabled)
2458 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2459 
2460 	if (apic->regs)
2461 		free_page((unsigned long)apic->regs);
2462 
2463 	kfree(apic);
2464 }
2465 
2466 /*
2467  *----------------------------------------------------------------------
2468  * LAPIC interface
2469  *----------------------------------------------------------------------
2470  */
2471 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2472 {
2473 	struct kvm_lapic *apic = vcpu->arch.apic;
2474 
2475 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2476 		return 0;
2477 
2478 	return apic->lapic_timer.tscdeadline;
2479 }
2480 
2481 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2482 {
2483 	struct kvm_lapic *apic = vcpu->arch.apic;
2484 
2485 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2486 		return;
2487 
2488 	hrtimer_cancel(&apic->lapic_timer.timer);
2489 	apic->lapic_timer.tscdeadline = data;
2490 	start_apic_timer(apic);
2491 }
2492 
2493 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2494 {
2495 	apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4);
2496 }
2497 
2498 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2499 {
2500 	u64 tpr;
2501 
2502 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2503 
2504 	return (tpr & 0xf0) >> 4;
2505 }
2506 
2507 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2508 {
2509 	u64 old_value = vcpu->arch.apic_base;
2510 	struct kvm_lapic *apic = vcpu->arch.apic;
2511 
2512 	vcpu->arch.apic_base = value;
2513 
2514 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2515 		kvm_update_cpuid_runtime(vcpu);
2516 
2517 	if (!apic)
2518 		return;
2519 
2520 	/* update jump label if enable bit changes */
2521 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2522 		if (value & MSR_IA32_APICBASE_ENABLE) {
2523 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2524 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2525 			/* Check if there are APF page ready requests pending */
2526 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2527 		} else {
2528 			static_branch_inc(&apic_hw_disabled.key);
2529 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2530 		}
2531 	}
2532 
2533 	if ((old_value ^ value) & X2APIC_ENABLE) {
2534 		if (value & X2APIC_ENABLE)
2535 			kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2536 		else if (value & MSR_IA32_APICBASE_ENABLE)
2537 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2538 	}
2539 
2540 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) {
2541 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
2542 		static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu);
2543 	}
2544 
2545 	apic->base_address = apic->vcpu->arch.apic_base &
2546 			     MSR_IA32_APICBASE_BASE;
2547 
2548 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2549 	     apic->base_address != APIC_DEFAULT_PHYS_BASE) {
2550 		kvm_set_apicv_inhibit(apic->vcpu->kvm,
2551 				      APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
2552 	}
2553 }
2554 
2555 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2556 {
2557 	struct kvm_lapic *apic = vcpu->arch.apic;
2558 
2559 	if (apic->apicv_active) {
2560 		/* irr_pending is always true when apicv is activated. */
2561 		apic->irr_pending = true;
2562 		apic->isr_count = 1;
2563 	} else {
2564 		/*
2565 		 * Don't clear irr_pending, searching the IRR can race with
2566 		 * updates from the CPU as APICv is still active from hardware's
2567 		 * perspective.  The flag will be cleared as appropriate when
2568 		 * KVM injects the interrupt.
2569 		 */
2570 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2571 	}
2572 	apic->highest_isr_cache = -1;
2573 }
2574 
2575 int kvm_alloc_apic_access_page(struct kvm *kvm)
2576 {
2577 	struct page *page;
2578 	void __user *hva;
2579 	int ret = 0;
2580 
2581 	mutex_lock(&kvm->slots_lock);
2582 	if (kvm->arch.apic_access_memslot_enabled ||
2583 	    kvm->arch.apic_access_memslot_inhibited)
2584 		goto out;
2585 
2586 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
2587 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
2588 	if (IS_ERR(hva)) {
2589 		ret = PTR_ERR(hva);
2590 		goto out;
2591 	}
2592 
2593 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
2594 	if (is_error_page(page)) {
2595 		ret = -EFAULT;
2596 		goto out;
2597 	}
2598 
2599 	/*
2600 	 * Do not pin the page in memory, so that memory hot-unplug
2601 	 * is able to migrate it.
2602 	 */
2603 	put_page(page);
2604 	kvm->arch.apic_access_memslot_enabled = true;
2605 out:
2606 	mutex_unlock(&kvm->slots_lock);
2607 	return ret;
2608 }
2609 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page);
2610 
2611 void kvm_inhibit_apic_access_page(struct kvm_vcpu *vcpu)
2612 {
2613 	struct kvm *kvm = vcpu->kvm;
2614 
2615 	if (!kvm->arch.apic_access_memslot_enabled)
2616 		return;
2617 
2618 	kvm_vcpu_srcu_read_unlock(vcpu);
2619 
2620 	mutex_lock(&kvm->slots_lock);
2621 
2622 	if (kvm->arch.apic_access_memslot_enabled) {
2623 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
2624 		/*
2625 		 * Clear "enabled" after the memslot is deleted so that a
2626 		 * different vCPU doesn't get a false negative when checking
2627 		 * the flag out of slots_lock.  No additional memory barrier is
2628 		 * needed as modifying memslots requires waiting other vCPUs to
2629 		 * drop SRCU (see above), and false positives are ok as the
2630 		 * flag is rechecked after acquiring slots_lock.
2631 		 */
2632 		kvm->arch.apic_access_memslot_enabled = false;
2633 
2634 		/*
2635 		 * Mark the memslot as inhibited to prevent reallocating the
2636 		 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2637 		 */
2638 		kvm->arch.apic_access_memslot_inhibited = true;
2639 	}
2640 
2641 	mutex_unlock(&kvm->slots_lock);
2642 
2643 	kvm_vcpu_srcu_read_lock(vcpu);
2644 }
2645 
2646 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2647 {
2648 	struct kvm_lapic *apic = vcpu->arch.apic;
2649 	u64 msr_val;
2650 	int i;
2651 
2652 	if (!init_event) {
2653 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2654 		if (kvm_vcpu_is_reset_bsp(vcpu))
2655 			msr_val |= MSR_IA32_APICBASE_BSP;
2656 		kvm_lapic_set_base(vcpu, msr_val);
2657 	}
2658 
2659 	if (!apic)
2660 		return;
2661 
2662 	/* Stop the timer in case it's a reset to an active apic */
2663 	hrtimer_cancel(&apic->lapic_timer.timer);
2664 
2665 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2666 	if (!init_event)
2667 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2668 	kvm_apic_set_version(apic->vcpu);
2669 
2670 	for (i = 0; i < apic->nr_lvt_entries; i++)
2671 		kvm_lapic_set_reg(apic, APIC_LVTx(i), APIC_LVT_MASKED);
2672 	apic_update_lvtt(apic);
2673 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2674 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2675 		kvm_lapic_set_reg(apic, APIC_LVT0,
2676 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2677 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2678 
2679 	kvm_apic_set_dfr(apic, 0xffffffffU);
2680 	apic_set_spiv(apic, 0xff);
2681 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2682 	if (!apic_x2apic_mode(apic))
2683 		kvm_apic_set_ldr(apic, 0);
2684 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2685 	if (!apic_x2apic_mode(apic)) {
2686 		kvm_lapic_set_reg(apic, APIC_ICR, 0);
2687 		kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2688 	} else {
2689 		kvm_lapic_set_reg64(apic, APIC_ICR, 0);
2690 	}
2691 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2692 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2693 	for (i = 0; i < 8; i++) {
2694 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2695 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2696 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2697 	}
2698 	kvm_apic_update_apicv(vcpu);
2699 	update_divide_count(apic);
2700 	atomic_set(&apic->lapic_timer.pending, 0);
2701 
2702 	vcpu->arch.pv_eoi.msr_val = 0;
2703 	apic_update_ppr(apic);
2704 	if (apic->apicv_active) {
2705 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2706 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1);
2707 		static_call_cond(kvm_x86_hwapic_isr_update)(-1);
2708 	}
2709 
2710 	vcpu->arch.apic_arb_prio = 0;
2711 	vcpu->arch.apic_attention = 0;
2712 
2713 	kvm_recalculate_apic_map(vcpu->kvm);
2714 }
2715 
2716 /*
2717  *----------------------------------------------------------------------
2718  * timer interface
2719  *----------------------------------------------------------------------
2720  */
2721 
2722 static bool lapic_is_periodic(struct kvm_lapic *apic)
2723 {
2724 	return apic_lvtt_period(apic);
2725 }
2726 
2727 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2728 {
2729 	struct kvm_lapic *apic = vcpu->arch.apic;
2730 
2731 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2732 		return atomic_read(&apic->lapic_timer.pending);
2733 
2734 	return 0;
2735 }
2736 
2737 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2738 {
2739 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2740 	int vector, mode, trig_mode;
2741 
2742 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2743 		vector = reg & APIC_VECTOR_MASK;
2744 		mode = reg & APIC_MODE_MASK;
2745 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2746 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2747 					NULL);
2748 	}
2749 	return 0;
2750 }
2751 
2752 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2753 {
2754 	struct kvm_lapic *apic = vcpu->arch.apic;
2755 
2756 	if (apic)
2757 		kvm_apic_local_deliver(apic, APIC_LVT0);
2758 }
2759 
2760 static const struct kvm_io_device_ops apic_mmio_ops = {
2761 	.read     = apic_mmio_read,
2762 	.write    = apic_mmio_write,
2763 };
2764 
2765 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2766 {
2767 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2768 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2769 
2770 	apic_timer_expired(apic, true);
2771 
2772 	if (lapic_is_periodic(apic)) {
2773 		advance_periodic_target_expiration(apic);
2774 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2775 		return HRTIMER_RESTART;
2776 	} else
2777 		return HRTIMER_NORESTART;
2778 }
2779 
2780 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2781 {
2782 	struct kvm_lapic *apic;
2783 
2784 	ASSERT(vcpu != NULL);
2785 
2786 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2787 	if (!apic)
2788 		goto nomem;
2789 
2790 	vcpu->arch.apic = apic;
2791 
2792 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2793 	if (!apic->regs) {
2794 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2795 		       vcpu->vcpu_id);
2796 		goto nomem_free_apic;
2797 	}
2798 	apic->vcpu = vcpu;
2799 
2800 	apic->nr_lvt_entries = kvm_apic_calc_nr_lvt_entries(vcpu);
2801 
2802 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2803 		     HRTIMER_MODE_ABS_HARD);
2804 	apic->lapic_timer.timer.function = apic_timer_fn;
2805 	if (timer_advance_ns == -1) {
2806 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2807 		lapic_timer_advance_dynamic = true;
2808 	} else {
2809 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2810 		lapic_timer_advance_dynamic = false;
2811 	}
2812 
2813 	/*
2814 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2815 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2816 	 */
2817 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2818 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2819 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2820 
2821 	return 0;
2822 nomem_free_apic:
2823 	kfree(apic);
2824 	vcpu->arch.apic = NULL;
2825 nomem:
2826 	return -ENOMEM;
2827 }
2828 
2829 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2830 {
2831 	struct kvm_lapic *apic = vcpu->arch.apic;
2832 	u32 ppr;
2833 
2834 	if (!kvm_apic_present(vcpu))
2835 		return -1;
2836 
2837 	__apic_update_ppr(apic, &ppr);
2838 	return apic_has_interrupt_for_ppr(apic, ppr);
2839 }
2840 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2841 
2842 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2843 {
2844 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2845 
2846 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2847 		return 1;
2848 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2849 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2850 		return 1;
2851 	return 0;
2852 }
2853 
2854 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2855 {
2856 	struct kvm_lapic *apic = vcpu->arch.apic;
2857 
2858 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2859 		kvm_apic_inject_pending_timer_irqs(apic);
2860 		atomic_set(&apic->lapic_timer.pending, 0);
2861 	}
2862 }
2863 
2864 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2865 {
2866 	int vector = kvm_apic_has_interrupt(vcpu);
2867 	struct kvm_lapic *apic = vcpu->arch.apic;
2868 	u32 ppr;
2869 
2870 	if (vector == -1)
2871 		return -1;
2872 
2873 	/*
2874 	 * We get here even with APIC virtualization enabled, if doing
2875 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2876 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2877 	 * because the process would deliver it through the IDT.
2878 	 */
2879 
2880 	apic_clear_irr(vector, apic);
2881 	if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2882 		/*
2883 		 * For auto-EOI interrupts, there might be another pending
2884 		 * interrupt above PPR, so check whether to raise another
2885 		 * KVM_REQ_EVENT.
2886 		 */
2887 		apic_update_ppr(apic);
2888 	} else {
2889 		/*
2890 		 * For normal interrupts, PPR has been raised and there cannot
2891 		 * be a higher-priority pending interrupt---except if there was
2892 		 * a concurrent interrupt injection, but that would have
2893 		 * triggered KVM_REQ_EVENT already.
2894 		 */
2895 		apic_set_isr(vector, apic);
2896 		__apic_update_ppr(apic, &ppr);
2897 	}
2898 
2899 	return vector;
2900 }
2901 
2902 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2903 		struct kvm_lapic_state *s, bool set)
2904 {
2905 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2906 		u32 *id = (u32 *)(s->regs + APIC_ID);
2907 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2908 		u64 icr;
2909 
2910 		if (vcpu->kvm->arch.x2apic_format) {
2911 			if (*id != vcpu->vcpu_id)
2912 				return -EINVAL;
2913 		} else {
2914 			if (set)
2915 				*id >>= 24;
2916 			else
2917 				*id <<= 24;
2918 		}
2919 
2920 		/*
2921 		 * In x2APIC mode, the LDR is fixed and based on the id.  And
2922 		 * ICR is internally a single 64-bit register, but needs to be
2923 		 * split to ICR+ICR2 in userspace for backwards compatibility.
2924 		 */
2925 		if (set) {
2926 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2927 
2928 			icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) |
2929 			      (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32;
2930 			__kvm_lapic_set_reg64(s->regs, APIC_ICR, icr);
2931 		} else {
2932 			icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR);
2933 			__kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32);
2934 		}
2935 	}
2936 
2937 	return 0;
2938 }
2939 
2940 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2941 {
2942 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2943 
2944 	/*
2945 	 * Get calculated timer current count for remaining timer period (if
2946 	 * any) and store it in the returned register set.
2947 	 */
2948 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2949 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2950 
2951 	return kvm_apic_state_fixup(vcpu, s, false);
2952 }
2953 
2954 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2955 {
2956 	struct kvm_lapic *apic = vcpu->arch.apic;
2957 	int r;
2958 
2959 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2960 	/* set SPIV separately to get count of SW disabled APICs right */
2961 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2962 
2963 	r = kvm_apic_state_fixup(vcpu, s, true);
2964 	if (r) {
2965 		kvm_recalculate_apic_map(vcpu->kvm);
2966 		return r;
2967 	}
2968 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2969 
2970 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2971 	kvm_recalculate_apic_map(vcpu->kvm);
2972 	kvm_apic_set_version(vcpu);
2973 
2974 	apic_update_ppr(apic);
2975 	cancel_apic_timer(apic);
2976 	apic->lapic_timer.expired_tscdeadline = 0;
2977 	apic_update_lvtt(apic);
2978 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2979 	update_divide_count(apic);
2980 	__start_apic_timer(apic, APIC_TMCCT);
2981 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
2982 	kvm_apic_update_apicv(vcpu);
2983 	if (apic->apicv_active) {
2984 		static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu);
2985 		static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic));
2986 		static_call_cond(kvm_x86_hwapic_isr_update)(apic_find_highest_isr(apic));
2987 	}
2988 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2989 	if (ioapic_in_kernel(vcpu->kvm))
2990 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2991 
2992 	vcpu->arch.apic_arb_prio = 0;
2993 
2994 	return 0;
2995 }
2996 
2997 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2998 {
2999 	struct hrtimer *timer;
3000 
3001 	if (!lapic_in_kernel(vcpu) ||
3002 		kvm_can_post_timer_interrupt(vcpu))
3003 		return;
3004 
3005 	timer = &vcpu->arch.apic->lapic_timer.timer;
3006 	if (hrtimer_cancel(timer))
3007 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
3008 }
3009 
3010 /*
3011  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3012  *
3013  * Detect whether guest triggered PV EOI since the
3014  * last entry. If yes, set EOI on guests's behalf.
3015  * Clear PV EOI in guest memory in any case.
3016  */
3017 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
3018 					struct kvm_lapic *apic)
3019 {
3020 	int vector;
3021 	/*
3022 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3023 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3024 	 *
3025 	 * KVM_APIC_PV_EOI_PENDING is unset:
3026 	 * 	-> host disabled PV EOI.
3027 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3028 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
3029 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3030 	 * 	-> host enabled PV EOI, guest executed EOI.
3031 	 */
3032 	BUG_ON(!pv_eoi_enabled(vcpu));
3033 
3034 	if (pv_eoi_test_and_clr_pending(vcpu))
3035 		return;
3036 	vector = apic_set_eoi(apic);
3037 	trace_kvm_pv_eoi(apic, vector);
3038 }
3039 
3040 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
3041 {
3042 	u32 data;
3043 
3044 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
3045 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
3046 
3047 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3048 		return;
3049 
3050 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3051 				  sizeof(u32)))
3052 		return;
3053 
3054 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
3055 }
3056 
3057 /*
3058  * apic_sync_pv_eoi_to_guest - called before vmentry
3059  *
3060  * Detect whether it's safe to enable PV EOI and
3061  * if yes do so.
3062  */
3063 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
3064 					struct kvm_lapic *apic)
3065 {
3066 	if (!pv_eoi_enabled(vcpu) ||
3067 	    /* IRR set or many bits in ISR: could be nested. */
3068 	    apic->irr_pending ||
3069 	    /* Cache not set: could be safe but we don't bother. */
3070 	    apic->highest_isr_cache == -1 ||
3071 	    /* Need EOI to update ioapic. */
3072 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
3073 		/*
3074 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3075 		 * so we need not do anything here.
3076 		 */
3077 		return;
3078 	}
3079 
3080 	pv_eoi_set_pending(apic->vcpu);
3081 }
3082 
3083 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
3084 {
3085 	u32 data, tpr;
3086 	int max_irr, max_isr;
3087 	struct kvm_lapic *apic = vcpu->arch.apic;
3088 
3089 	apic_sync_pv_eoi_to_guest(vcpu, apic);
3090 
3091 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
3092 		return;
3093 
3094 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
3095 	max_irr = apic_find_highest_irr(apic);
3096 	if (max_irr < 0)
3097 		max_irr = 0;
3098 	max_isr = apic_find_highest_isr(apic);
3099 	if (max_isr < 0)
3100 		max_isr = 0;
3101 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
3102 
3103 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
3104 				sizeof(u32));
3105 }
3106 
3107 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
3108 {
3109 	if (vapic_addr) {
3110 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
3111 					&vcpu->arch.apic->vapic_cache,
3112 					vapic_addr, sizeof(u32)))
3113 			return -EINVAL;
3114 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3115 	} else {
3116 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
3117 	}
3118 
3119 	vcpu->arch.apic->vapic_addr = vapic_addr;
3120 	return 0;
3121 }
3122 
3123 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data)
3124 {
3125 	data &= ~APIC_ICR_BUSY;
3126 
3127 	kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32));
3128 	kvm_lapic_set_reg64(apic, APIC_ICR, data);
3129 	trace_kvm_apic_write(APIC_ICR, data);
3130 	return 0;
3131 }
3132 
3133 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data)
3134 {
3135 	u32 low;
3136 
3137 	if (reg == APIC_ICR) {
3138 		*data = kvm_lapic_get_reg64(apic, APIC_ICR);
3139 		return 0;
3140 	}
3141 
3142 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
3143 		return 1;
3144 
3145 	*data = low;
3146 
3147 	return 0;
3148 }
3149 
3150 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data)
3151 {
3152 	/*
3153 	 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3154 	 * can be written as such, all other registers remain accessible only
3155 	 * through 32-bit reads/writes.
3156 	 */
3157 	if (reg == APIC_ICR)
3158 		return kvm_x2apic_icr_write(apic, data);
3159 
3160 	/* Bits 63:32 are reserved in all other registers. */
3161 	if (data >> 32)
3162 		return 1;
3163 
3164 	return kvm_lapic_reg_write(apic, reg, (u32)data);
3165 }
3166 
3167 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
3168 {
3169 	struct kvm_lapic *apic = vcpu->arch.apic;
3170 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3171 
3172 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3173 		return 1;
3174 
3175 	return kvm_lapic_msr_write(apic, reg, data);
3176 }
3177 
3178 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
3179 {
3180 	struct kvm_lapic *apic = vcpu->arch.apic;
3181 	u32 reg = (msr - APIC_BASE_MSR) << 4;
3182 
3183 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
3184 		return 1;
3185 
3186 	return kvm_lapic_msr_read(apic, reg, data);
3187 }
3188 
3189 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
3190 {
3191 	if (!lapic_in_kernel(vcpu))
3192 		return 1;
3193 
3194 	return kvm_lapic_msr_write(vcpu->arch.apic, reg, data);
3195 }
3196 
3197 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
3198 {
3199 	if (!lapic_in_kernel(vcpu))
3200 		return 1;
3201 
3202 	return kvm_lapic_msr_read(vcpu->arch.apic, reg, data);
3203 }
3204 
3205 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
3206 {
3207 	u64 addr = data & ~KVM_MSR_ENABLED;
3208 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
3209 	unsigned long new_len;
3210 	int ret;
3211 
3212 	if (!IS_ALIGNED(addr, 4))
3213 		return 1;
3214 
3215 	if (data & KVM_MSR_ENABLED) {
3216 		if (addr == ghc->gpa && len <= ghc->len)
3217 			new_len = ghc->len;
3218 		else
3219 			new_len = len;
3220 
3221 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
3222 		if (ret)
3223 			return ret;
3224 	}
3225 
3226 	vcpu->arch.pv_eoi.msr_val = data;
3227 
3228 	return 0;
3229 }
3230 
3231 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
3232 {
3233 	struct kvm_lapic *apic = vcpu->arch.apic;
3234 	u8 sipi_vector;
3235 	int r;
3236 
3237 	if (!kvm_apic_has_pending_init_or_sipi(vcpu))
3238 		return 0;
3239 
3240 	if (is_guest_mode(vcpu)) {
3241 		r = kvm_check_nested_events(vcpu);
3242 		if (r < 0)
3243 			return r == -EBUSY ? 0 : r;
3244 		/*
3245 		 * Continue processing INIT/SIPI even if a nested VM-Exit
3246 		 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3247 		 * are blocked as a result of transitioning to VMX root mode.
3248 		 */
3249 	}
3250 
3251 	/*
3252 	 * INITs are blocked while CPU is in specific states (SMM, VMX root
3253 	 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3254 	 * wait-for-SIPI (WFS).
3255 	 */
3256 	if (!kvm_apic_init_sipi_allowed(vcpu)) {
3257 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
3258 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3259 		return 0;
3260 	}
3261 
3262 	if (test_and_clear_bit(KVM_APIC_INIT, &apic->pending_events)) {
3263 		kvm_vcpu_reset(vcpu, true);
3264 		if (kvm_vcpu_is_bsp(apic->vcpu))
3265 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3266 		else
3267 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3268 	}
3269 	if (test_and_clear_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3270 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
3271 			/* evaluate pending_events before reading the vector */
3272 			smp_rmb();
3273 			sipi_vector = apic->sipi_vector;
3274 			static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector);
3275 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3276 		}
3277 	}
3278 	return 0;
3279 }
3280 
3281 void kvm_lapic_exit(void)
3282 {
3283 	static_key_deferred_flush(&apic_hw_disabled);
3284 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
3285 	static_key_deferred_flush(&apic_sw_disabled);
3286 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
3287 }
3288