1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "trace.h" 40 #include "x86.h" 41 #include "cpuid.h" 42 #include "hyperv.h" 43 44 #ifndef CONFIG_X86_64 45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 46 #else 47 #define mod_64(x, y) ((x) % (y)) 48 #endif 49 50 #define PRId64 "d" 51 #define PRIx64 "llx" 52 #define PRIu64 "u" 53 #define PRIo64 "o" 54 55 /* 14 is the version for Xeon and Pentium 8.4.8*/ 56 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 57 #define LAPIC_MMIO_LENGTH (1 << 12) 58 /* followed define is not in apicdef.h */ 59 #define APIC_SHORT_MASK 0xc0000 60 #define APIC_DEST_NOSHORT 0x0 61 #define APIC_DEST_MASK 0x800 62 #define MAX_APIC_VECTOR 256 63 #define APIC_VECTORS_PER_REG 32 64 65 #define APIC_BROADCAST 0xFF 66 #define X2APIC_BROADCAST 0xFFFFFFFFul 67 68 #define LAPIC_TIMER_ADVANCE_ADJUST_DONE 100 69 #define LAPIC_TIMER_ADVANCE_ADJUST_INIT 1000 70 /* step-by-step approximation to mitigate fluctuation */ 71 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 72 73 static inline int apic_test_vector(int vec, void *bitmap) 74 { 75 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 76 } 77 78 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 79 { 80 struct kvm_lapic *apic = vcpu->arch.apic; 81 82 return apic_test_vector(vector, apic->regs + APIC_ISR) || 83 apic_test_vector(vector, apic->regs + APIC_IRR); 84 } 85 86 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 87 { 88 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 89 } 90 91 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 92 { 93 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 94 } 95 96 struct static_key_deferred apic_hw_disabled __read_mostly; 97 struct static_key_deferred apic_sw_disabled __read_mostly; 98 99 static inline int apic_enabled(struct kvm_lapic *apic) 100 { 101 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 102 } 103 104 #define LVT_MASK \ 105 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 106 107 #define LINT_MASK \ 108 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 109 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 110 111 static inline u8 kvm_xapic_id(struct kvm_lapic *apic) 112 { 113 return kvm_lapic_get_reg(apic, APIC_ID) >> 24; 114 } 115 116 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 117 { 118 return apic->vcpu->vcpu_id; 119 } 120 121 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 122 { 123 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 124 } 125 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt); 126 127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 130 } 131 132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 134 switch (map->mode) { 135 case KVM_APIC_MODE_X2APIC: { 136 u32 offset = (dest_id >> 16) * 16; 137 u32 max_apic_id = map->max_apic_id; 138 139 if (offset <= max_apic_id) { 140 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 141 142 offset = array_index_nospec(offset, map->max_apic_id + 1); 143 *cluster = &map->phys_map[offset]; 144 *mask = dest_id & (0xffff >> (16 - cluster_size)); 145 } else { 146 *mask = 0; 147 } 148 149 return true; 150 } 151 case KVM_APIC_MODE_XAPIC_FLAT: 152 *cluster = map->xapic_flat_map; 153 *mask = dest_id & 0xff; 154 return true; 155 case KVM_APIC_MODE_XAPIC_CLUSTER: 156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 157 *mask = dest_id & 0xf; 158 return true; 159 default: 160 /* Not optimized. */ 161 return false; 162 } 163 } 164 165 static void kvm_apic_map_free(struct rcu_head *rcu) 166 { 167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 168 169 kvfree(map); 170 } 171 172 static void recalculate_apic_map(struct kvm *kvm) 173 { 174 struct kvm_apic_map *new, *old = NULL; 175 struct kvm_vcpu *vcpu; 176 int i; 177 u32 max_id = 255; /* enough space for any xAPIC ID */ 178 179 mutex_lock(&kvm->arch.apic_map_lock); 180 181 kvm_for_each_vcpu(i, vcpu, kvm) 182 if (kvm_apic_present(vcpu)) 183 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 184 185 new = kvzalloc(sizeof(struct kvm_apic_map) + 186 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 187 GFP_KERNEL_ACCOUNT); 188 189 if (!new) 190 goto out; 191 192 new->max_apic_id = max_id; 193 194 kvm_for_each_vcpu(i, vcpu, kvm) { 195 struct kvm_lapic *apic = vcpu->arch.apic; 196 struct kvm_lapic **cluster; 197 u16 mask; 198 u32 ldr; 199 u8 xapic_id; 200 u32 x2apic_id; 201 202 if (!kvm_apic_present(vcpu)) 203 continue; 204 205 xapic_id = kvm_xapic_id(apic); 206 x2apic_id = kvm_x2apic_id(apic); 207 208 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 209 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 210 x2apic_id <= new->max_apic_id) 211 new->phys_map[x2apic_id] = apic; 212 /* 213 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 214 * prevent them from masking VCPUs with APIC ID <= 0xff. 215 */ 216 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 217 new->phys_map[xapic_id] = apic; 218 219 if (!kvm_apic_sw_enabled(apic)) 220 continue; 221 222 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 223 224 if (apic_x2apic_mode(apic)) { 225 new->mode |= KVM_APIC_MODE_X2APIC; 226 } else if (ldr) { 227 ldr = GET_APIC_LOGICAL_ID(ldr); 228 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 229 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 230 else 231 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 232 } 233 234 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 235 continue; 236 237 if (mask) 238 cluster[ffs(mask) - 1] = apic; 239 } 240 out: 241 old = rcu_dereference_protected(kvm->arch.apic_map, 242 lockdep_is_held(&kvm->arch.apic_map_lock)); 243 rcu_assign_pointer(kvm->arch.apic_map, new); 244 mutex_unlock(&kvm->arch.apic_map_lock); 245 246 if (old) 247 call_rcu(&old->rcu, kvm_apic_map_free); 248 249 kvm_make_scan_ioapic_request(kvm); 250 } 251 252 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 253 { 254 bool enabled = val & APIC_SPIV_APIC_ENABLED; 255 256 kvm_lapic_set_reg(apic, APIC_SPIV, val); 257 258 if (enabled != apic->sw_enabled) { 259 apic->sw_enabled = enabled; 260 if (enabled) 261 static_key_slow_dec_deferred(&apic_sw_disabled); 262 else 263 static_key_slow_inc(&apic_sw_disabled.key); 264 265 recalculate_apic_map(apic->vcpu->kvm); 266 } 267 } 268 269 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 270 { 271 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 272 recalculate_apic_map(apic->vcpu->kvm); 273 } 274 275 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 276 { 277 kvm_lapic_set_reg(apic, APIC_LDR, id); 278 recalculate_apic_map(apic->vcpu->kvm); 279 } 280 281 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 282 { 283 return ((id >> 4) << 16) | (1 << (id & 0xf)); 284 } 285 286 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 287 { 288 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 289 290 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 291 292 kvm_lapic_set_reg(apic, APIC_ID, id); 293 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 294 recalculate_apic_map(apic->vcpu->kvm); 295 } 296 297 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 298 { 299 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 300 } 301 302 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type) 303 { 304 return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK; 305 } 306 307 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 308 { 309 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 310 } 311 312 static inline int apic_lvtt_period(struct kvm_lapic *apic) 313 { 314 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 315 } 316 317 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 318 { 319 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 320 } 321 322 static inline int apic_lvt_nmi_mode(u32 lvt_val) 323 { 324 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 325 } 326 327 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 328 { 329 struct kvm_lapic *apic = vcpu->arch.apic; 330 struct kvm_cpuid_entry2 *feat; 331 u32 v = APIC_VERSION; 332 333 if (!lapic_in_kernel(vcpu)) 334 return; 335 336 /* 337 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 338 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 339 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 340 * version first and level-triggered interrupts never get EOIed in 341 * IOAPIC. 342 */ 343 feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); 344 if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) && 345 !ioapic_in_kernel(vcpu->kvm)) 346 v |= APIC_LVR_DIRECTED_EOI; 347 kvm_lapic_set_reg(apic, APIC_LVR, v); 348 } 349 350 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 351 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 352 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 353 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 354 LINT_MASK, LINT_MASK, /* LVT0-1 */ 355 LVT_MASK /* LVTERR */ 356 }; 357 358 static int find_highest_vector(void *bitmap) 359 { 360 int vec; 361 u32 *reg; 362 363 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 364 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 365 reg = bitmap + REG_POS(vec); 366 if (*reg) 367 return __fls(*reg) + vec; 368 } 369 370 return -1; 371 } 372 373 static u8 count_vectors(void *bitmap) 374 { 375 int vec; 376 u32 *reg; 377 u8 count = 0; 378 379 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 380 reg = bitmap + REG_POS(vec); 381 count += hweight32(*reg); 382 } 383 384 return count; 385 } 386 387 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 388 { 389 u32 i, vec; 390 u32 pir_val, irr_val, prev_irr_val; 391 int max_updated_irr; 392 393 max_updated_irr = -1; 394 *max_irr = -1; 395 396 for (i = vec = 0; i <= 7; i++, vec += 32) { 397 pir_val = READ_ONCE(pir[i]); 398 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 399 if (pir_val) { 400 prev_irr_val = irr_val; 401 irr_val |= xchg(&pir[i], 0); 402 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 403 if (prev_irr_val != irr_val) { 404 max_updated_irr = 405 __fls(irr_val ^ prev_irr_val) + vec; 406 } 407 } 408 if (irr_val) 409 *max_irr = __fls(irr_val) + vec; 410 } 411 412 return ((max_updated_irr != -1) && 413 (max_updated_irr == *max_irr)); 414 } 415 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 416 417 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 418 { 419 struct kvm_lapic *apic = vcpu->arch.apic; 420 421 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 422 } 423 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 424 425 static inline int apic_search_irr(struct kvm_lapic *apic) 426 { 427 return find_highest_vector(apic->regs + APIC_IRR); 428 } 429 430 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 431 { 432 int result; 433 434 /* 435 * Note that irr_pending is just a hint. It will be always 436 * true with virtual interrupt delivery enabled. 437 */ 438 if (!apic->irr_pending) 439 return -1; 440 441 result = apic_search_irr(apic); 442 ASSERT(result == -1 || result >= 16); 443 444 return result; 445 } 446 447 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 448 { 449 struct kvm_vcpu *vcpu; 450 451 vcpu = apic->vcpu; 452 453 if (unlikely(vcpu->arch.apicv_active)) { 454 /* need to update RVI */ 455 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 456 kvm_x86_ops->hwapic_irr_update(vcpu, 457 apic_find_highest_irr(apic)); 458 } else { 459 apic->irr_pending = false; 460 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 461 if (apic_search_irr(apic) != -1) 462 apic->irr_pending = true; 463 } 464 } 465 466 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 467 { 468 struct kvm_vcpu *vcpu; 469 470 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 471 return; 472 473 vcpu = apic->vcpu; 474 475 /* 476 * With APIC virtualization enabled, all caching is disabled 477 * because the processor can modify ISR under the hood. Instead 478 * just set SVI. 479 */ 480 if (unlikely(vcpu->arch.apicv_active)) 481 kvm_x86_ops->hwapic_isr_update(vcpu, vec); 482 else { 483 ++apic->isr_count; 484 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 485 /* 486 * ISR (in service register) bit is set when injecting an interrupt. 487 * The highest vector is injected. Thus the latest bit set matches 488 * the highest bit in ISR. 489 */ 490 apic->highest_isr_cache = vec; 491 } 492 } 493 494 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 495 { 496 int result; 497 498 /* 499 * Note that isr_count is always 1, and highest_isr_cache 500 * is always -1, with APIC virtualization enabled. 501 */ 502 if (!apic->isr_count) 503 return -1; 504 if (likely(apic->highest_isr_cache != -1)) 505 return apic->highest_isr_cache; 506 507 result = find_highest_vector(apic->regs + APIC_ISR); 508 ASSERT(result == -1 || result >= 16); 509 510 return result; 511 } 512 513 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 514 { 515 struct kvm_vcpu *vcpu; 516 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 517 return; 518 519 vcpu = apic->vcpu; 520 521 /* 522 * We do get here for APIC virtualization enabled if the guest 523 * uses the Hyper-V APIC enlightenment. In this case we may need 524 * to trigger a new interrupt delivery by writing the SVI field; 525 * on the other hand isr_count and highest_isr_cache are unused 526 * and must be left alone. 527 */ 528 if (unlikely(vcpu->arch.apicv_active)) 529 kvm_x86_ops->hwapic_isr_update(vcpu, 530 apic_find_highest_isr(apic)); 531 else { 532 --apic->isr_count; 533 BUG_ON(apic->isr_count < 0); 534 apic->highest_isr_cache = -1; 535 } 536 } 537 538 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 539 { 540 /* This may race with setting of irr in __apic_accept_irq() and 541 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 542 * will cause vmexit immediately and the value will be recalculated 543 * on the next vmentry. 544 */ 545 return apic_find_highest_irr(vcpu->arch.apic); 546 } 547 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 548 549 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 550 int vector, int level, int trig_mode, 551 struct dest_map *dest_map); 552 553 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 554 struct dest_map *dest_map) 555 { 556 struct kvm_lapic *apic = vcpu->arch.apic; 557 558 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 559 irq->level, irq->trig_mode, dest_map); 560 } 561 562 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 563 unsigned long ipi_bitmap_high, u32 min, 564 unsigned long icr, int op_64_bit) 565 { 566 int i; 567 struct kvm_apic_map *map; 568 struct kvm_vcpu *vcpu; 569 struct kvm_lapic_irq irq = {0}; 570 int cluster_size = op_64_bit ? 64 : 32; 571 int count = 0; 572 573 irq.vector = icr & APIC_VECTOR_MASK; 574 irq.delivery_mode = icr & APIC_MODE_MASK; 575 irq.level = (icr & APIC_INT_ASSERT) != 0; 576 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 577 578 if (icr & APIC_DEST_MASK) 579 return -KVM_EINVAL; 580 if (icr & APIC_SHORT_MASK) 581 return -KVM_EINVAL; 582 583 rcu_read_lock(); 584 map = rcu_dereference(kvm->arch.apic_map); 585 586 if (unlikely(!map)) { 587 count = -EOPNOTSUPP; 588 goto out; 589 } 590 591 if (min > map->max_apic_id) 592 goto out; 593 /* Bits above cluster_size are masked in the caller. */ 594 for_each_set_bit(i, &ipi_bitmap_low, 595 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 596 if (map->phys_map[min + i]) { 597 vcpu = map->phys_map[min + i]->vcpu; 598 count += kvm_apic_set_irq(vcpu, &irq, NULL); 599 } 600 } 601 602 min += cluster_size; 603 604 if (min > map->max_apic_id) 605 goto out; 606 607 for_each_set_bit(i, &ipi_bitmap_high, 608 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 609 if (map->phys_map[min + i]) { 610 vcpu = map->phys_map[min + i]->vcpu; 611 count += kvm_apic_set_irq(vcpu, &irq, NULL); 612 } 613 } 614 615 out: 616 rcu_read_unlock(); 617 return count; 618 } 619 620 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 621 { 622 623 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 624 sizeof(val)); 625 } 626 627 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 628 { 629 630 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 631 sizeof(*val)); 632 } 633 634 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 635 { 636 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 637 } 638 639 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 640 { 641 u8 val; 642 if (pv_eoi_get_user(vcpu, &val) < 0) 643 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 644 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 645 return val & 0x1; 646 } 647 648 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 649 { 650 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 651 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 652 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 653 return; 654 } 655 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 656 } 657 658 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 659 { 660 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 661 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 662 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 663 return; 664 } 665 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 666 } 667 668 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 669 { 670 int highest_irr; 671 if (apic->vcpu->arch.apicv_active) 672 highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu); 673 else 674 highest_irr = apic_find_highest_irr(apic); 675 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 676 return -1; 677 return highest_irr; 678 } 679 680 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 681 { 682 u32 tpr, isrv, ppr, old_ppr; 683 int isr; 684 685 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 686 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 687 isr = apic_find_highest_isr(apic); 688 isrv = (isr != -1) ? isr : 0; 689 690 if ((tpr & 0xf0) >= (isrv & 0xf0)) 691 ppr = tpr & 0xff; 692 else 693 ppr = isrv & 0xf0; 694 695 *new_ppr = ppr; 696 if (old_ppr != ppr) 697 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 698 699 return ppr < old_ppr; 700 } 701 702 static void apic_update_ppr(struct kvm_lapic *apic) 703 { 704 u32 ppr; 705 706 if (__apic_update_ppr(apic, &ppr) && 707 apic_has_interrupt_for_ppr(apic, ppr) != -1) 708 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 709 } 710 711 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 712 { 713 apic_update_ppr(vcpu->arch.apic); 714 } 715 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 716 717 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 718 { 719 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 720 apic_update_ppr(apic); 721 } 722 723 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 724 { 725 return mda == (apic_x2apic_mode(apic) ? 726 X2APIC_BROADCAST : APIC_BROADCAST); 727 } 728 729 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 730 { 731 if (kvm_apic_broadcast(apic, mda)) 732 return true; 733 734 if (apic_x2apic_mode(apic)) 735 return mda == kvm_x2apic_id(apic); 736 737 /* 738 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 739 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 740 * this allows unique addressing of VCPUs with APIC ID over 0xff. 741 * The 0xff condition is needed because writeable xAPIC ID. 742 */ 743 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 744 return true; 745 746 return mda == kvm_xapic_id(apic); 747 } 748 749 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 750 { 751 u32 logical_id; 752 753 if (kvm_apic_broadcast(apic, mda)) 754 return true; 755 756 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 757 758 if (apic_x2apic_mode(apic)) 759 return ((logical_id >> 16) == (mda >> 16)) 760 && (logical_id & mda & 0xffff) != 0; 761 762 logical_id = GET_APIC_LOGICAL_ID(logical_id); 763 764 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 765 case APIC_DFR_FLAT: 766 return (logical_id & mda) != 0; 767 case APIC_DFR_CLUSTER: 768 return ((logical_id >> 4) == (mda >> 4)) 769 && (logical_id & mda & 0xf) != 0; 770 default: 771 return false; 772 } 773 } 774 775 /* The KVM local APIC implementation has two quirks: 776 * 777 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 778 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 779 * KVM doesn't do that aliasing. 780 * 781 * - in-kernel IOAPIC messages have to be delivered directly to 782 * x2APIC, because the kernel does not support interrupt remapping. 783 * In order to support broadcast without interrupt remapping, x2APIC 784 * rewrites the destination of non-IPI messages from APIC_BROADCAST 785 * to X2APIC_BROADCAST. 786 * 787 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 788 * important when userspace wants to use x2APIC-format MSIs, because 789 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 790 */ 791 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 792 struct kvm_lapic *source, struct kvm_lapic *target) 793 { 794 bool ipi = source != NULL; 795 796 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 797 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 798 return X2APIC_BROADCAST; 799 800 return dest_id; 801 } 802 803 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 804 int short_hand, unsigned int dest, int dest_mode) 805 { 806 struct kvm_lapic *target = vcpu->arch.apic; 807 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 808 809 ASSERT(target); 810 switch (short_hand) { 811 case APIC_DEST_NOSHORT: 812 if (dest_mode == APIC_DEST_PHYSICAL) 813 return kvm_apic_match_physical_addr(target, mda); 814 else 815 return kvm_apic_match_logical_addr(target, mda); 816 case APIC_DEST_SELF: 817 return target == source; 818 case APIC_DEST_ALLINC: 819 return true; 820 case APIC_DEST_ALLBUT: 821 return target != source; 822 default: 823 return false; 824 } 825 } 826 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 827 828 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 829 const unsigned long *bitmap, u32 bitmap_size) 830 { 831 u32 mod; 832 int i, idx = -1; 833 834 mod = vector % dest_vcpus; 835 836 for (i = 0; i <= mod; i++) { 837 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 838 BUG_ON(idx == bitmap_size); 839 } 840 841 return idx; 842 } 843 844 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 845 { 846 if (!kvm->arch.disabled_lapic_found) { 847 kvm->arch.disabled_lapic_found = true; 848 printk(KERN_INFO 849 "Disabled LAPIC found during irq injection\n"); 850 } 851 } 852 853 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 854 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 855 { 856 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 857 if ((irq->dest_id == APIC_BROADCAST && 858 map->mode != KVM_APIC_MODE_X2APIC)) 859 return true; 860 if (irq->dest_id == X2APIC_BROADCAST) 861 return true; 862 } else { 863 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 864 if (irq->dest_id == (x2apic_ipi ? 865 X2APIC_BROADCAST : APIC_BROADCAST)) 866 return true; 867 } 868 869 return false; 870 } 871 872 /* Return true if the interrupt can be handled by using *bitmap as index mask 873 * for valid destinations in *dst array. 874 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 875 * Note: we may have zero kvm_lapic destinations when we return true, which 876 * means that the interrupt should be dropped. In this case, *bitmap would be 877 * zero and *dst undefined. 878 */ 879 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 880 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 881 struct kvm_apic_map *map, struct kvm_lapic ***dst, 882 unsigned long *bitmap) 883 { 884 int i, lowest; 885 886 if (irq->shorthand == APIC_DEST_SELF && src) { 887 *dst = src; 888 *bitmap = 1; 889 return true; 890 } else if (irq->shorthand) 891 return false; 892 893 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 894 return false; 895 896 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 897 if (irq->dest_id > map->max_apic_id) { 898 *bitmap = 0; 899 } else { 900 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 901 *dst = &map->phys_map[dest_id]; 902 *bitmap = 1; 903 } 904 return true; 905 } 906 907 *bitmap = 0; 908 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 909 (u16 *)bitmap)) 910 return false; 911 912 if (!kvm_lowest_prio_delivery(irq)) 913 return true; 914 915 if (!kvm_vector_hashing_enabled()) { 916 lowest = -1; 917 for_each_set_bit(i, bitmap, 16) { 918 if (!(*dst)[i]) 919 continue; 920 if (lowest < 0) 921 lowest = i; 922 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 923 (*dst)[lowest]->vcpu) < 0) 924 lowest = i; 925 } 926 } else { 927 if (!*bitmap) 928 return true; 929 930 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 931 bitmap, 16); 932 933 if (!(*dst)[lowest]) { 934 kvm_apic_disabled_lapic_found(kvm); 935 *bitmap = 0; 936 return true; 937 } 938 } 939 940 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 941 942 return true; 943 } 944 945 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 946 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 947 { 948 struct kvm_apic_map *map; 949 unsigned long bitmap; 950 struct kvm_lapic **dst = NULL; 951 int i; 952 bool ret; 953 954 *r = -1; 955 956 if (irq->shorthand == APIC_DEST_SELF) { 957 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 958 return true; 959 } 960 961 rcu_read_lock(); 962 map = rcu_dereference(kvm->arch.apic_map); 963 964 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 965 if (ret) { 966 *r = 0; 967 for_each_set_bit(i, &bitmap, 16) { 968 if (!dst[i]) 969 continue; 970 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 971 } 972 } 973 974 rcu_read_unlock(); 975 return ret; 976 } 977 978 /* 979 * This routine tries to handler interrupts in posted mode, here is how 980 * it deals with different cases: 981 * - For single-destination interrupts, handle it in posted mode 982 * - Else if vector hashing is enabled and it is a lowest-priority 983 * interrupt, handle it in posted mode and use the following mechanism 984 * to find the destinaiton vCPU. 985 * 1. For lowest-priority interrupts, store all the possible 986 * destination vCPUs in an array. 987 * 2. Use "guest vector % max number of destination vCPUs" to find 988 * the right destination vCPU in the array for the lowest-priority 989 * interrupt. 990 * - Otherwise, use remapped mode to inject the interrupt. 991 */ 992 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 993 struct kvm_vcpu **dest_vcpu) 994 { 995 struct kvm_apic_map *map; 996 unsigned long bitmap; 997 struct kvm_lapic **dst = NULL; 998 bool ret = false; 999 1000 if (irq->shorthand) 1001 return false; 1002 1003 rcu_read_lock(); 1004 map = rcu_dereference(kvm->arch.apic_map); 1005 1006 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1007 hweight16(bitmap) == 1) { 1008 unsigned long i = find_first_bit(&bitmap, 16); 1009 1010 if (dst[i]) { 1011 *dest_vcpu = dst[i]->vcpu; 1012 ret = true; 1013 } 1014 } 1015 1016 rcu_read_unlock(); 1017 return ret; 1018 } 1019 1020 /* 1021 * Add a pending IRQ into lapic. 1022 * Return 1 if successfully added and 0 if discarded. 1023 */ 1024 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1025 int vector, int level, int trig_mode, 1026 struct dest_map *dest_map) 1027 { 1028 int result = 0; 1029 struct kvm_vcpu *vcpu = apic->vcpu; 1030 1031 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1032 trig_mode, vector); 1033 switch (delivery_mode) { 1034 case APIC_DM_LOWEST: 1035 vcpu->arch.apic_arb_prio++; 1036 /* fall through */ 1037 case APIC_DM_FIXED: 1038 if (unlikely(trig_mode && !level)) 1039 break; 1040 1041 /* FIXME add logic for vcpu on reset */ 1042 if (unlikely(!apic_enabled(apic))) 1043 break; 1044 1045 result = 1; 1046 1047 if (dest_map) { 1048 __set_bit(vcpu->vcpu_id, dest_map->map); 1049 dest_map->vectors[vcpu->vcpu_id] = vector; 1050 } 1051 1052 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1053 if (trig_mode) 1054 kvm_lapic_set_vector(vector, 1055 apic->regs + APIC_TMR); 1056 else 1057 kvm_lapic_clear_vector(vector, 1058 apic->regs + APIC_TMR); 1059 } 1060 1061 if (vcpu->arch.apicv_active) 1062 kvm_x86_ops->deliver_posted_interrupt(vcpu, vector); 1063 else { 1064 kvm_lapic_set_irr(vector, apic); 1065 1066 kvm_make_request(KVM_REQ_EVENT, vcpu); 1067 kvm_vcpu_kick(vcpu); 1068 } 1069 break; 1070 1071 case APIC_DM_REMRD: 1072 result = 1; 1073 vcpu->arch.pv.pv_unhalted = 1; 1074 kvm_make_request(KVM_REQ_EVENT, vcpu); 1075 kvm_vcpu_kick(vcpu); 1076 break; 1077 1078 case APIC_DM_SMI: 1079 result = 1; 1080 kvm_make_request(KVM_REQ_SMI, vcpu); 1081 kvm_vcpu_kick(vcpu); 1082 break; 1083 1084 case APIC_DM_NMI: 1085 result = 1; 1086 kvm_inject_nmi(vcpu); 1087 kvm_vcpu_kick(vcpu); 1088 break; 1089 1090 case APIC_DM_INIT: 1091 if (!trig_mode || level) { 1092 result = 1; 1093 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1094 apic->pending_events = (1UL << KVM_APIC_INIT); 1095 /* make sure pending_events is visible before sending 1096 * the request */ 1097 smp_wmb(); 1098 kvm_make_request(KVM_REQ_EVENT, vcpu); 1099 kvm_vcpu_kick(vcpu); 1100 } 1101 break; 1102 1103 case APIC_DM_STARTUP: 1104 result = 1; 1105 apic->sipi_vector = vector; 1106 /* make sure sipi_vector is visible for the receiver */ 1107 smp_wmb(); 1108 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1109 kvm_make_request(KVM_REQ_EVENT, vcpu); 1110 kvm_vcpu_kick(vcpu); 1111 break; 1112 1113 case APIC_DM_EXTINT: 1114 /* 1115 * Should only be called by kvm_apic_local_deliver() with LVT0, 1116 * before NMI watchdog was enabled. Already handled by 1117 * kvm_apic_accept_pic_intr(). 1118 */ 1119 break; 1120 1121 default: 1122 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1123 delivery_mode); 1124 break; 1125 } 1126 return result; 1127 } 1128 1129 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1130 { 1131 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1132 } 1133 1134 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1135 { 1136 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1137 } 1138 1139 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1140 { 1141 int trigger_mode; 1142 1143 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1144 if (!kvm_ioapic_handles_vector(apic, vector)) 1145 return; 1146 1147 /* Request a KVM exit to inform the userspace IOAPIC. */ 1148 if (irqchip_split(apic->vcpu->kvm)) { 1149 apic->vcpu->arch.pending_ioapic_eoi = vector; 1150 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1151 return; 1152 } 1153 1154 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1155 trigger_mode = IOAPIC_LEVEL_TRIG; 1156 else 1157 trigger_mode = IOAPIC_EDGE_TRIG; 1158 1159 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1160 } 1161 1162 static int apic_set_eoi(struct kvm_lapic *apic) 1163 { 1164 int vector = apic_find_highest_isr(apic); 1165 1166 trace_kvm_eoi(apic, vector); 1167 1168 /* 1169 * Not every write EOI will has corresponding ISR, 1170 * one example is when Kernel check timer on setup_IO_APIC 1171 */ 1172 if (vector == -1) 1173 return vector; 1174 1175 apic_clear_isr(vector, apic); 1176 apic_update_ppr(apic); 1177 1178 if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap)) 1179 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1180 1181 kvm_ioapic_send_eoi(apic, vector); 1182 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1183 return vector; 1184 } 1185 1186 /* 1187 * this interface assumes a trap-like exit, which has already finished 1188 * desired side effect including vISR and vPPR update. 1189 */ 1190 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1191 { 1192 struct kvm_lapic *apic = vcpu->arch.apic; 1193 1194 trace_kvm_eoi(apic, vector); 1195 1196 kvm_ioapic_send_eoi(apic, vector); 1197 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1198 } 1199 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1200 1201 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1202 { 1203 struct kvm_lapic_irq irq; 1204 1205 irq.vector = icr_low & APIC_VECTOR_MASK; 1206 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1207 irq.dest_mode = icr_low & APIC_DEST_MASK; 1208 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1209 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1210 irq.shorthand = icr_low & APIC_SHORT_MASK; 1211 irq.msi_redir_hint = false; 1212 if (apic_x2apic_mode(apic)) 1213 irq.dest_id = icr_high; 1214 else 1215 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1216 1217 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1218 1219 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1220 } 1221 1222 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1223 { 1224 ktime_t remaining, now; 1225 s64 ns; 1226 u32 tmcct; 1227 1228 ASSERT(apic != NULL); 1229 1230 /* if initial count is 0, current count should also be 0 */ 1231 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1232 apic->lapic_timer.period == 0) 1233 return 0; 1234 1235 now = ktime_get(); 1236 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1237 if (ktime_to_ns(remaining) < 0) 1238 remaining = 0; 1239 1240 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1241 tmcct = div64_u64(ns, 1242 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1243 1244 return tmcct; 1245 } 1246 1247 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1248 { 1249 struct kvm_vcpu *vcpu = apic->vcpu; 1250 struct kvm_run *run = vcpu->run; 1251 1252 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1253 run->tpr_access.rip = kvm_rip_read(vcpu); 1254 run->tpr_access.is_write = write; 1255 } 1256 1257 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1258 { 1259 if (apic->vcpu->arch.tpr_access_reporting) 1260 __report_tpr_access(apic, write); 1261 } 1262 1263 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1264 { 1265 u32 val = 0; 1266 1267 if (offset >= LAPIC_MMIO_LENGTH) 1268 return 0; 1269 1270 switch (offset) { 1271 case APIC_ARBPRI: 1272 break; 1273 1274 case APIC_TMCCT: /* Timer CCR */ 1275 if (apic_lvtt_tscdeadline(apic)) 1276 return 0; 1277 1278 val = apic_get_tmcct(apic); 1279 break; 1280 case APIC_PROCPRI: 1281 apic_update_ppr(apic); 1282 val = kvm_lapic_get_reg(apic, offset); 1283 break; 1284 case APIC_TASKPRI: 1285 report_tpr_access(apic, false); 1286 /* fall thru */ 1287 default: 1288 val = kvm_lapic_get_reg(apic, offset); 1289 break; 1290 } 1291 1292 return val; 1293 } 1294 1295 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1296 { 1297 return container_of(dev, struct kvm_lapic, dev); 1298 } 1299 1300 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1301 #define APIC_REGS_MASK(first, count) \ 1302 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1303 1304 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1305 void *data) 1306 { 1307 unsigned char alignment = offset & 0xf; 1308 u32 result; 1309 /* this bitmask has a bit cleared for each reserved register */ 1310 u64 valid_reg_mask = 1311 APIC_REG_MASK(APIC_ID) | 1312 APIC_REG_MASK(APIC_LVR) | 1313 APIC_REG_MASK(APIC_TASKPRI) | 1314 APIC_REG_MASK(APIC_PROCPRI) | 1315 APIC_REG_MASK(APIC_LDR) | 1316 APIC_REG_MASK(APIC_DFR) | 1317 APIC_REG_MASK(APIC_SPIV) | 1318 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1319 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1320 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1321 APIC_REG_MASK(APIC_ESR) | 1322 APIC_REG_MASK(APIC_ICR) | 1323 APIC_REG_MASK(APIC_ICR2) | 1324 APIC_REG_MASK(APIC_LVTT) | 1325 APIC_REG_MASK(APIC_LVTTHMR) | 1326 APIC_REG_MASK(APIC_LVTPC) | 1327 APIC_REG_MASK(APIC_LVT0) | 1328 APIC_REG_MASK(APIC_LVT1) | 1329 APIC_REG_MASK(APIC_LVTERR) | 1330 APIC_REG_MASK(APIC_TMICT) | 1331 APIC_REG_MASK(APIC_TMCCT) | 1332 APIC_REG_MASK(APIC_TDCR); 1333 1334 /* ARBPRI is not valid on x2APIC */ 1335 if (!apic_x2apic_mode(apic)) 1336 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1337 1338 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1339 return 1; 1340 1341 result = __apic_read(apic, offset & ~0xf); 1342 1343 trace_kvm_apic_read(offset, result); 1344 1345 switch (len) { 1346 case 1: 1347 case 2: 1348 case 4: 1349 memcpy(data, (char *)&result + alignment, len); 1350 break; 1351 default: 1352 printk(KERN_ERR "Local APIC read with len = %x, " 1353 "should be 1,2, or 4 instead\n", len); 1354 break; 1355 } 1356 return 0; 1357 } 1358 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1359 1360 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1361 { 1362 return addr >= apic->base_address && 1363 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1364 } 1365 1366 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1367 gpa_t address, int len, void *data) 1368 { 1369 struct kvm_lapic *apic = to_lapic(this); 1370 u32 offset = address - apic->base_address; 1371 1372 if (!apic_mmio_in_range(apic, address)) 1373 return -EOPNOTSUPP; 1374 1375 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1376 if (!kvm_check_has_quirk(vcpu->kvm, 1377 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1378 return -EOPNOTSUPP; 1379 1380 memset(data, 0xff, len); 1381 return 0; 1382 } 1383 1384 kvm_lapic_reg_read(apic, offset, len, data); 1385 1386 return 0; 1387 } 1388 1389 static void update_divide_count(struct kvm_lapic *apic) 1390 { 1391 u32 tmp1, tmp2, tdcr; 1392 1393 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1394 tmp1 = tdcr & 0xf; 1395 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1396 apic->divide_count = 0x1 << (tmp2 & 0x7); 1397 } 1398 1399 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1400 { 1401 /* 1402 * Do not allow the guest to program periodic timers with small 1403 * interval, since the hrtimers are not throttled by the host 1404 * scheduler. 1405 */ 1406 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1407 s64 min_period = min_timer_period_us * 1000LL; 1408 1409 if (apic->lapic_timer.period < min_period) { 1410 pr_info_ratelimited( 1411 "kvm: vcpu %i: requested %lld ns " 1412 "lapic timer period limited to %lld ns\n", 1413 apic->vcpu->vcpu_id, 1414 apic->lapic_timer.period, min_period); 1415 apic->lapic_timer.period = min_period; 1416 } 1417 } 1418 } 1419 1420 static void apic_update_lvtt(struct kvm_lapic *apic) 1421 { 1422 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1423 apic->lapic_timer.timer_mode_mask; 1424 1425 if (apic->lapic_timer.timer_mode != timer_mode) { 1426 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1427 APIC_LVT_TIMER_TSCDEADLINE)) { 1428 hrtimer_cancel(&apic->lapic_timer.timer); 1429 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1430 apic->lapic_timer.period = 0; 1431 apic->lapic_timer.tscdeadline = 0; 1432 } 1433 apic->lapic_timer.timer_mode = timer_mode; 1434 limit_periodic_timer_frequency(apic); 1435 } 1436 } 1437 1438 /* 1439 * On APICv, this test will cause a busy wait 1440 * during a higher-priority task. 1441 */ 1442 1443 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1444 { 1445 struct kvm_lapic *apic = vcpu->arch.apic; 1446 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1447 1448 if (kvm_apic_hw_enabled(apic)) { 1449 int vec = reg & APIC_VECTOR_MASK; 1450 void *bitmap = apic->regs + APIC_ISR; 1451 1452 if (vcpu->arch.apicv_active) 1453 bitmap = apic->regs + APIC_IRR; 1454 1455 if (apic_test_vector(vec, bitmap)) 1456 return true; 1457 } 1458 return false; 1459 } 1460 1461 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1462 { 1463 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1464 1465 /* 1466 * If the guest TSC is running at a different ratio than the host, then 1467 * convert the delay to nanoseconds to achieve an accurate delay. Note 1468 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1469 * always for VMX enabled hardware. 1470 */ 1471 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1472 __delay(min(guest_cycles, 1473 nsec_to_cycles(vcpu, timer_advance_ns))); 1474 } else { 1475 u64 delay_ns = guest_cycles * 1000000ULL; 1476 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1477 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1478 } 1479 } 1480 1481 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1482 s64 advance_expire_delta) 1483 { 1484 struct kvm_lapic *apic = vcpu->arch.apic; 1485 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1486 u64 ns; 1487 1488 /* too early */ 1489 if (advance_expire_delta < 0) { 1490 ns = -advance_expire_delta * 1000000ULL; 1491 do_div(ns, vcpu->arch.virtual_tsc_khz); 1492 timer_advance_ns -= min((u32)ns, 1493 timer_advance_ns / LAPIC_TIMER_ADVANCE_ADJUST_STEP); 1494 } else { 1495 /* too late */ 1496 ns = advance_expire_delta * 1000000ULL; 1497 do_div(ns, vcpu->arch.virtual_tsc_khz); 1498 timer_advance_ns += min((u32)ns, 1499 timer_advance_ns / LAPIC_TIMER_ADVANCE_ADJUST_STEP); 1500 } 1501 1502 if (abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_DONE) 1503 apic->lapic_timer.timer_advance_adjust_done = true; 1504 if (unlikely(timer_advance_ns > 5000)) { 1505 timer_advance_ns = LAPIC_TIMER_ADVANCE_ADJUST_INIT; 1506 apic->lapic_timer.timer_advance_adjust_done = false; 1507 } 1508 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1509 } 1510 1511 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1512 { 1513 struct kvm_lapic *apic = vcpu->arch.apic; 1514 u64 guest_tsc, tsc_deadline; 1515 1516 if (apic->lapic_timer.expired_tscdeadline == 0) 1517 return; 1518 1519 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1520 apic->lapic_timer.expired_tscdeadline = 0; 1521 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1522 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1523 1524 if (guest_tsc < tsc_deadline) 1525 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1526 1527 if (unlikely(!apic->lapic_timer.timer_advance_adjust_done)) 1528 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1529 } 1530 1531 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1532 { 1533 if (lapic_timer_int_injected(vcpu)) 1534 __kvm_wait_lapic_expire(vcpu); 1535 } 1536 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1537 1538 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1539 { 1540 struct kvm_timer *ktimer = &apic->lapic_timer; 1541 1542 kvm_apic_local_deliver(apic, APIC_LVTT); 1543 if (apic_lvtt_tscdeadline(apic)) 1544 ktimer->tscdeadline = 0; 1545 if (apic_lvtt_oneshot(apic)) { 1546 ktimer->tscdeadline = 0; 1547 ktimer->target_expiration = 0; 1548 } 1549 } 1550 1551 static void apic_timer_expired(struct kvm_lapic *apic) 1552 { 1553 struct kvm_vcpu *vcpu = apic->vcpu; 1554 struct kvm_timer *ktimer = &apic->lapic_timer; 1555 1556 if (atomic_read(&apic->lapic_timer.pending)) 1557 return; 1558 1559 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1560 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1561 1562 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1563 if (apic->lapic_timer.timer_advance_ns) 1564 __kvm_wait_lapic_expire(vcpu); 1565 kvm_apic_inject_pending_timer_irqs(apic); 1566 return; 1567 } 1568 1569 atomic_inc(&apic->lapic_timer.pending); 1570 kvm_set_pending_timer(vcpu); 1571 } 1572 1573 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1574 { 1575 struct kvm_timer *ktimer = &apic->lapic_timer; 1576 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1577 u64 ns = 0; 1578 ktime_t expire; 1579 struct kvm_vcpu *vcpu = apic->vcpu; 1580 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1581 unsigned long flags; 1582 ktime_t now; 1583 1584 if (unlikely(!tscdeadline || !this_tsc_khz)) 1585 return; 1586 1587 local_irq_save(flags); 1588 1589 now = ktime_get(); 1590 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1591 1592 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1593 do_div(ns, this_tsc_khz); 1594 1595 if (likely(tscdeadline > guest_tsc) && 1596 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1597 expire = ktime_add_ns(now, ns); 1598 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1599 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1600 } else 1601 apic_timer_expired(apic); 1602 1603 local_irq_restore(flags); 1604 } 1605 1606 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1607 { 1608 ktime_t now, remaining; 1609 u64 ns_remaining_old, ns_remaining_new; 1610 1611 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1612 * APIC_BUS_CYCLE_NS * apic->divide_count; 1613 limit_periodic_timer_frequency(apic); 1614 1615 now = ktime_get(); 1616 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1617 if (ktime_to_ns(remaining) < 0) 1618 remaining = 0; 1619 1620 ns_remaining_old = ktime_to_ns(remaining); 1621 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1622 apic->divide_count, old_divisor); 1623 1624 apic->lapic_timer.tscdeadline += 1625 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1626 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1627 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1628 } 1629 1630 static bool set_target_expiration(struct kvm_lapic *apic) 1631 { 1632 ktime_t now; 1633 u64 tscl = rdtsc(); 1634 1635 now = ktime_get(); 1636 apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT) 1637 * APIC_BUS_CYCLE_NS * apic->divide_count; 1638 1639 if (!apic->lapic_timer.period) { 1640 apic->lapic_timer.tscdeadline = 0; 1641 return false; 1642 } 1643 1644 limit_periodic_timer_frequency(apic); 1645 1646 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1647 nsec_to_cycles(apic->vcpu, apic->lapic_timer.period); 1648 apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period); 1649 1650 return true; 1651 } 1652 1653 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1654 { 1655 ktime_t now = ktime_get(); 1656 u64 tscl = rdtsc(); 1657 ktime_t delta; 1658 1659 /* 1660 * Synchronize both deadlines to the same time source or 1661 * differences in the periods (caused by differences in the 1662 * underlying clocks or numerical approximation errors) will 1663 * cause the two to drift apart over time as the errors 1664 * accumulate. 1665 */ 1666 apic->lapic_timer.target_expiration = 1667 ktime_add_ns(apic->lapic_timer.target_expiration, 1668 apic->lapic_timer.period); 1669 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1670 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1671 nsec_to_cycles(apic->vcpu, delta); 1672 } 1673 1674 static void start_sw_period(struct kvm_lapic *apic) 1675 { 1676 if (!apic->lapic_timer.period) 1677 return; 1678 1679 if (ktime_after(ktime_get(), 1680 apic->lapic_timer.target_expiration)) { 1681 apic_timer_expired(apic); 1682 1683 if (apic_lvtt_oneshot(apic)) 1684 return; 1685 1686 advance_periodic_target_expiration(apic); 1687 } 1688 1689 hrtimer_start(&apic->lapic_timer.timer, 1690 apic->lapic_timer.target_expiration, 1691 HRTIMER_MODE_ABS); 1692 } 1693 1694 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1695 { 1696 if (!lapic_in_kernel(vcpu)) 1697 return false; 1698 1699 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1700 } 1701 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1702 1703 static void cancel_hv_timer(struct kvm_lapic *apic) 1704 { 1705 WARN_ON(preemptible()); 1706 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1707 kvm_x86_ops->cancel_hv_timer(apic->vcpu); 1708 apic->lapic_timer.hv_timer_in_use = false; 1709 } 1710 1711 static bool start_hv_timer(struct kvm_lapic *apic) 1712 { 1713 struct kvm_timer *ktimer = &apic->lapic_timer; 1714 struct kvm_vcpu *vcpu = apic->vcpu; 1715 bool expired; 1716 1717 WARN_ON(preemptible()); 1718 if (!kvm_x86_ops->set_hv_timer) 1719 return false; 1720 1721 if (!ktimer->tscdeadline) 1722 return false; 1723 1724 if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired)) 1725 return false; 1726 1727 ktimer->hv_timer_in_use = true; 1728 hrtimer_cancel(&ktimer->timer); 1729 1730 /* 1731 * To simplify handling the periodic timer, leave the hv timer running 1732 * even if the deadline timer has expired, i.e. rely on the resulting 1733 * VM-Exit to recompute the periodic timer's target expiration. 1734 */ 1735 if (!apic_lvtt_period(apic)) { 1736 /* 1737 * Cancel the hv timer if the sw timer fired while the hv timer 1738 * was being programmed, or if the hv timer itself expired. 1739 */ 1740 if (atomic_read(&ktimer->pending)) { 1741 cancel_hv_timer(apic); 1742 } else if (expired) { 1743 apic_timer_expired(apic); 1744 cancel_hv_timer(apic); 1745 } 1746 } 1747 1748 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1749 1750 return true; 1751 } 1752 1753 static void start_sw_timer(struct kvm_lapic *apic) 1754 { 1755 struct kvm_timer *ktimer = &apic->lapic_timer; 1756 1757 WARN_ON(preemptible()); 1758 if (apic->lapic_timer.hv_timer_in_use) 1759 cancel_hv_timer(apic); 1760 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1761 return; 1762 1763 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1764 start_sw_period(apic); 1765 else if (apic_lvtt_tscdeadline(apic)) 1766 start_sw_tscdeadline(apic); 1767 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1768 } 1769 1770 static void restart_apic_timer(struct kvm_lapic *apic) 1771 { 1772 preempt_disable(); 1773 1774 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1775 goto out; 1776 1777 if (!start_hv_timer(apic)) 1778 start_sw_timer(apic); 1779 out: 1780 preempt_enable(); 1781 } 1782 1783 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1784 { 1785 struct kvm_lapic *apic = vcpu->arch.apic; 1786 1787 preempt_disable(); 1788 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1789 if (!apic->lapic_timer.hv_timer_in_use) 1790 goto out; 1791 WARN_ON(swait_active(&vcpu->wq)); 1792 cancel_hv_timer(apic); 1793 apic_timer_expired(apic); 1794 1795 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1796 advance_periodic_target_expiration(apic); 1797 restart_apic_timer(apic); 1798 } 1799 out: 1800 preempt_enable(); 1801 } 1802 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1803 1804 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1805 { 1806 restart_apic_timer(vcpu->arch.apic); 1807 } 1808 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1809 1810 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1811 { 1812 struct kvm_lapic *apic = vcpu->arch.apic; 1813 1814 preempt_disable(); 1815 /* Possibly the TSC deadline timer is not enabled yet */ 1816 if (apic->lapic_timer.hv_timer_in_use) 1817 start_sw_timer(apic); 1818 preempt_enable(); 1819 } 1820 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1821 1822 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1823 { 1824 struct kvm_lapic *apic = vcpu->arch.apic; 1825 1826 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1827 restart_apic_timer(apic); 1828 } 1829 1830 static void start_apic_timer(struct kvm_lapic *apic) 1831 { 1832 atomic_set(&apic->lapic_timer.pending, 0); 1833 1834 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1835 && !set_target_expiration(apic)) 1836 return; 1837 1838 restart_apic_timer(apic); 1839 } 1840 1841 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1842 { 1843 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1844 1845 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1846 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1847 if (lvt0_in_nmi_mode) { 1848 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1849 } else 1850 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1851 } 1852 } 1853 1854 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1855 { 1856 int ret = 0; 1857 1858 trace_kvm_apic_write(reg, val); 1859 1860 switch (reg) { 1861 case APIC_ID: /* Local APIC ID */ 1862 if (!apic_x2apic_mode(apic)) 1863 kvm_apic_set_xapic_id(apic, val >> 24); 1864 else 1865 ret = 1; 1866 break; 1867 1868 case APIC_TASKPRI: 1869 report_tpr_access(apic, true); 1870 apic_set_tpr(apic, val & 0xff); 1871 break; 1872 1873 case APIC_EOI: 1874 apic_set_eoi(apic); 1875 break; 1876 1877 case APIC_LDR: 1878 if (!apic_x2apic_mode(apic)) 1879 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 1880 else 1881 ret = 1; 1882 break; 1883 1884 case APIC_DFR: 1885 if (!apic_x2apic_mode(apic)) { 1886 kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); 1887 recalculate_apic_map(apic->vcpu->kvm); 1888 } else 1889 ret = 1; 1890 break; 1891 1892 case APIC_SPIV: { 1893 u32 mask = 0x3ff; 1894 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 1895 mask |= APIC_SPIV_DIRECTED_EOI; 1896 apic_set_spiv(apic, val & mask); 1897 if (!(val & APIC_SPIV_APIC_ENABLED)) { 1898 int i; 1899 u32 lvt_val; 1900 1901 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 1902 lvt_val = kvm_lapic_get_reg(apic, 1903 APIC_LVTT + 0x10 * i); 1904 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 1905 lvt_val | APIC_LVT_MASKED); 1906 } 1907 apic_update_lvtt(apic); 1908 atomic_set(&apic->lapic_timer.pending, 0); 1909 1910 } 1911 break; 1912 } 1913 case APIC_ICR: 1914 /* No delay here, so we always clear the pending bit */ 1915 val &= ~(1 << 12); 1916 apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 1917 kvm_lapic_set_reg(apic, APIC_ICR, val); 1918 break; 1919 1920 case APIC_ICR2: 1921 if (!apic_x2apic_mode(apic)) 1922 val &= 0xff000000; 1923 kvm_lapic_set_reg(apic, APIC_ICR2, val); 1924 break; 1925 1926 case APIC_LVT0: 1927 apic_manage_nmi_watchdog(apic, val); 1928 /* fall through */ 1929 case APIC_LVTTHMR: 1930 case APIC_LVTPC: 1931 case APIC_LVT1: 1932 case APIC_LVTERR: 1933 /* TODO: Check vector */ 1934 if (!kvm_apic_sw_enabled(apic)) 1935 val |= APIC_LVT_MASKED; 1936 1937 val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4]; 1938 kvm_lapic_set_reg(apic, reg, val); 1939 1940 break; 1941 1942 case APIC_LVTT: 1943 if (!kvm_apic_sw_enabled(apic)) 1944 val |= APIC_LVT_MASKED; 1945 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 1946 kvm_lapic_set_reg(apic, APIC_LVTT, val); 1947 apic_update_lvtt(apic); 1948 break; 1949 1950 case APIC_TMICT: 1951 if (apic_lvtt_tscdeadline(apic)) 1952 break; 1953 1954 hrtimer_cancel(&apic->lapic_timer.timer); 1955 kvm_lapic_set_reg(apic, APIC_TMICT, val); 1956 start_apic_timer(apic); 1957 break; 1958 1959 case APIC_TDCR: { 1960 uint32_t old_divisor = apic->divide_count; 1961 1962 kvm_lapic_set_reg(apic, APIC_TDCR, val); 1963 update_divide_count(apic); 1964 if (apic->divide_count != old_divisor && 1965 apic->lapic_timer.period) { 1966 hrtimer_cancel(&apic->lapic_timer.timer); 1967 update_target_expiration(apic, old_divisor); 1968 restart_apic_timer(apic); 1969 } 1970 break; 1971 } 1972 case APIC_ESR: 1973 if (apic_x2apic_mode(apic) && val != 0) 1974 ret = 1; 1975 break; 1976 1977 case APIC_SELF_IPI: 1978 if (apic_x2apic_mode(apic)) { 1979 kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); 1980 } else 1981 ret = 1; 1982 break; 1983 default: 1984 ret = 1; 1985 break; 1986 } 1987 1988 return ret; 1989 } 1990 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 1991 1992 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1993 gpa_t address, int len, const void *data) 1994 { 1995 struct kvm_lapic *apic = to_lapic(this); 1996 unsigned int offset = address - apic->base_address; 1997 u32 val; 1998 1999 if (!apic_mmio_in_range(apic, address)) 2000 return -EOPNOTSUPP; 2001 2002 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2003 if (!kvm_check_has_quirk(vcpu->kvm, 2004 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2005 return -EOPNOTSUPP; 2006 2007 return 0; 2008 } 2009 2010 /* 2011 * APIC register must be aligned on 128-bits boundary. 2012 * 32/64/128 bits registers must be accessed thru 32 bits. 2013 * Refer SDM 8.4.1 2014 */ 2015 if (len != 4 || (offset & 0xf)) 2016 return 0; 2017 2018 val = *(u32*)data; 2019 2020 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2021 2022 return 0; 2023 } 2024 2025 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2026 { 2027 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2028 } 2029 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2030 2031 /* emulate APIC access in a trap manner */ 2032 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2033 { 2034 u32 val = 0; 2035 2036 /* hw has done the conditional check and inst decode */ 2037 offset &= 0xff0; 2038 2039 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2040 2041 /* TODO: optimize to just emulate side effect w/o one more write */ 2042 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2043 } 2044 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2045 2046 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2047 { 2048 struct kvm_lapic *apic = vcpu->arch.apic; 2049 2050 if (!vcpu->arch.apic) 2051 return; 2052 2053 hrtimer_cancel(&apic->lapic_timer.timer); 2054 2055 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2056 static_key_slow_dec_deferred(&apic_hw_disabled); 2057 2058 if (!apic->sw_enabled) 2059 static_key_slow_dec_deferred(&apic_sw_disabled); 2060 2061 if (apic->regs) 2062 free_page((unsigned long)apic->regs); 2063 2064 kfree(apic); 2065 } 2066 2067 /* 2068 *---------------------------------------------------------------------- 2069 * LAPIC interface 2070 *---------------------------------------------------------------------- 2071 */ 2072 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2073 { 2074 struct kvm_lapic *apic = vcpu->arch.apic; 2075 2076 if (!lapic_in_kernel(vcpu) || 2077 !apic_lvtt_tscdeadline(apic)) 2078 return 0; 2079 2080 return apic->lapic_timer.tscdeadline; 2081 } 2082 2083 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2084 { 2085 struct kvm_lapic *apic = vcpu->arch.apic; 2086 2087 if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) || 2088 apic_lvtt_period(apic)) 2089 return; 2090 2091 hrtimer_cancel(&apic->lapic_timer.timer); 2092 apic->lapic_timer.tscdeadline = data; 2093 start_apic_timer(apic); 2094 } 2095 2096 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2097 { 2098 struct kvm_lapic *apic = vcpu->arch.apic; 2099 2100 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2101 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2102 } 2103 2104 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2105 { 2106 u64 tpr; 2107 2108 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2109 2110 return (tpr & 0xf0) >> 4; 2111 } 2112 2113 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2114 { 2115 u64 old_value = vcpu->arch.apic_base; 2116 struct kvm_lapic *apic = vcpu->arch.apic; 2117 2118 if (!apic) 2119 value |= MSR_IA32_APICBASE_BSP; 2120 2121 vcpu->arch.apic_base = value; 2122 2123 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2124 kvm_update_cpuid(vcpu); 2125 2126 if (!apic) 2127 return; 2128 2129 /* update jump label if enable bit changes */ 2130 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2131 if (value & MSR_IA32_APICBASE_ENABLE) { 2132 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2133 static_key_slow_dec_deferred(&apic_hw_disabled); 2134 } else { 2135 static_key_slow_inc(&apic_hw_disabled.key); 2136 recalculate_apic_map(vcpu->kvm); 2137 } 2138 } 2139 2140 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2141 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2142 2143 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2144 kvm_x86_ops->set_virtual_apic_mode(vcpu); 2145 2146 apic->base_address = apic->vcpu->arch.apic_base & 2147 MSR_IA32_APICBASE_BASE; 2148 2149 if ((value & MSR_IA32_APICBASE_ENABLE) && 2150 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2151 pr_warn_once("APIC base relocation is unsupported by KVM"); 2152 } 2153 2154 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2155 { 2156 struct kvm_lapic *apic = vcpu->arch.apic; 2157 int i; 2158 2159 if (!apic) 2160 return; 2161 2162 /* Stop the timer in case it's a reset to an active apic */ 2163 hrtimer_cancel(&apic->lapic_timer.timer); 2164 2165 if (!init_event) { 2166 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2167 MSR_IA32_APICBASE_ENABLE); 2168 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2169 } 2170 kvm_apic_set_version(apic->vcpu); 2171 2172 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2173 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2174 apic_update_lvtt(apic); 2175 if (kvm_vcpu_is_reset_bsp(vcpu) && 2176 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2177 kvm_lapic_set_reg(apic, APIC_LVT0, 2178 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2179 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2180 2181 kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU); 2182 apic_set_spiv(apic, 0xff); 2183 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2184 if (!apic_x2apic_mode(apic)) 2185 kvm_apic_set_ldr(apic, 0); 2186 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2187 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2188 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2189 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2190 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2191 for (i = 0; i < 8; i++) { 2192 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2193 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2194 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2195 } 2196 apic->irr_pending = vcpu->arch.apicv_active; 2197 apic->isr_count = vcpu->arch.apicv_active ? 1 : 0; 2198 apic->highest_isr_cache = -1; 2199 update_divide_count(apic); 2200 atomic_set(&apic->lapic_timer.pending, 0); 2201 if (kvm_vcpu_is_bsp(vcpu)) 2202 kvm_lapic_set_base(vcpu, 2203 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2204 vcpu->arch.pv_eoi.msr_val = 0; 2205 apic_update_ppr(apic); 2206 if (vcpu->arch.apicv_active) { 2207 kvm_x86_ops->apicv_post_state_restore(vcpu); 2208 kvm_x86_ops->hwapic_irr_update(vcpu, -1); 2209 kvm_x86_ops->hwapic_isr_update(vcpu, -1); 2210 } 2211 2212 vcpu->arch.apic_arb_prio = 0; 2213 vcpu->arch.apic_attention = 0; 2214 } 2215 2216 /* 2217 *---------------------------------------------------------------------- 2218 * timer interface 2219 *---------------------------------------------------------------------- 2220 */ 2221 2222 static bool lapic_is_periodic(struct kvm_lapic *apic) 2223 { 2224 return apic_lvtt_period(apic); 2225 } 2226 2227 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2228 { 2229 struct kvm_lapic *apic = vcpu->arch.apic; 2230 2231 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2232 return atomic_read(&apic->lapic_timer.pending); 2233 2234 return 0; 2235 } 2236 2237 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2238 { 2239 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2240 int vector, mode, trig_mode; 2241 2242 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2243 vector = reg & APIC_VECTOR_MASK; 2244 mode = reg & APIC_MODE_MASK; 2245 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2246 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2247 NULL); 2248 } 2249 return 0; 2250 } 2251 2252 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2253 { 2254 struct kvm_lapic *apic = vcpu->arch.apic; 2255 2256 if (apic) 2257 kvm_apic_local_deliver(apic, APIC_LVT0); 2258 } 2259 2260 static const struct kvm_io_device_ops apic_mmio_ops = { 2261 .read = apic_mmio_read, 2262 .write = apic_mmio_write, 2263 }; 2264 2265 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2266 { 2267 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2268 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2269 2270 apic_timer_expired(apic); 2271 2272 if (lapic_is_periodic(apic)) { 2273 advance_periodic_target_expiration(apic); 2274 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2275 return HRTIMER_RESTART; 2276 } else 2277 return HRTIMER_NORESTART; 2278 } 2279 2280 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2281 { 2282 struct kvm_lapic *apic; 2283 2284 ASSERT(vcpu != NULL); 2285 2286 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2287 if (!apic) 2288 goto nomem; 2289 2290 vcpu->arch.apic = apic; 2291 2292 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2293 if (!apic->regs) { 2294 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2295 vcpu->vcpu_id); 2296 goto nomem_free_apic; 2297 } 2298 apic->vcpu = vcpu; 2299 2300 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2301 HRTIMER_MODE_ABS_HARD); 2302 apic->lapic_timer.timer.function = apic_timer_fn; 2303 if (timer_advance_ns == -1) { 2304 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_ADJUST_INIT; 2305 apic->lapic_timer.timer_advance_adjust_done = false; 2306 } else { 2307 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2308 apic->lapic_timer.timer_advance_adjust_done = true; 2309 } 2310 2311 2312 /* 2313 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2314 * thinking that APIC state has changed. 2315 */ 2316 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2317 static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2318 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2319 2320 return 0; 2321 nomem_free_apic: 2322 kfree(apic); 2323 vcpu->arch.apic = NULL; 2324 nomem: 2325 return -ENOMEM; 2326 } 2327 2328 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2329 { 2330 struct kvm_lapic *apic = vcpu->arch.apic; 2331 u32 ppr; 2332 2333 if (!kvm_apic_hw_enabled(apic)) 2334 return -1; 2335 2336 __apic_update_ppr(apic, &ppr); 2337 return apic_has_interrupt_for_ppr(apic, ppr); 2338 } 2339 2340 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2341 { 2342 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2343 int r = 0; 2344 2345 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2346 r = 1; 2347 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2348 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2349 r = 1; 2350 return r; 2351 } 2352 2353 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2354 { 2355 struct kvm_lapic *apic = vcpu->arch.apic; 2356 2357 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2358 kvm_apic_inject_pending_timer_irqs(apic); 2359 atomic_set(&apic->lapic_timer.pending, 0); 2360 } 2361 } 2362 2363 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2364 { 2365 int vector = kvm_apic_has_interrupt(vcpu); 2366 struct kvm_lapic *apic = vcpu->arch.apic; 2367 u32 ppr; 2368 2369 if (vector == -1) 2370 return -1; 2371 2372 /* 2373 * We get here even with APIC virtualization enabled, if doing 2374 * nested virtualization and L1 runs with the "acknowledge interrupt 2375 * on exit" mode. Then we cannot inject the interrupt via RVI, 2376 * because the process would deliver it through the IDT. 2377 */ 2378 2379 apic_clear_irr(vector, apic); 2380 if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { 2381 /* 2382 * For auto-EOI interrupts, there might be another pending 2383 * interrupt above PPR, so check whether to raise another 2384 * KVM_REQ_EVENT. 2385 */ 2386 apic_update_ppr(apic); 2387 } else { 2388 /* 2389 * For normal interrupts, PPR has been raised and there cannot 2390 * be a higher-priority pending interrupt---except if there was 2391 * a concurrent interrupt injection, but that would have 2392 * triggered KVM_REQ_EVENT already. 2393 */ 2394 apic_set_isr(vector, apic); 2395 __apic_update_ppr(apic, &ppr); 2396 } 2397 2398 return vector; 2399 } 2400 2401 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2402 struct kvm_lapic_state *s, bool set) 2403 { 2404 if (apic_x2apic_mode(vcpu->arch.apic)) { 2405 u32 *id = (u32 *)(s->regs + APIC_ID); 2406 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2407 2408 if (vcpu->kvm->arch.x2apic_format) { 2409 if (*id != vcpu->vcpu_id) 2410 return -EINVAL; 2411 } else { 2412 if (set) 2413 *id >>= 24; 2414 else 2415 *id <<= 24; 2416 } 2417 2418 /* In x2APIC mode, the LDR is fixed and based on the id */ 2419 if (set) 2420 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2421 } 2422 2423 return 0; 2424 } 2425 2426 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2427 { 2428 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2429 return kvm_apic_state_fixup(vcpu, s, false); 2430 } 2431 2432 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2433 { 2434 struct kvm_lapic *apic = vcpu->arch.apic; 2435 int r; 2436 2437 2438 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2439 /* set SPIV separately to get count of SW disabled APICs right */ 2440 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2441 2442 r = kvm_apic_state_fixup(vcpu, s, true); 2443 if (r) 2444 return r; 2445 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2446 2447 recalculate_apic_map(vcpu->kvm); 2448 kvm_apic_set_version(vcpu); 2449 2450 apic_update_ppr(apic); 2451 hrtimer_cancel(&apic->lapic_timer.timer); 2452 apic_update_lvtt(apic); 2453 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2454 update_divide_count(apic); 2455 start_apic_timer(apic); 2456 apic->irr_pending = true; 2457 apic->isr_count = vcpu->arch.apicv_active ? 2458 1 : count_vectors(apic->regs + APIC_ISR); 2459 apic->highest_isr_cache = -1; 2460 if (vcpu->arch.apicv_active) { 2461 kvm_x86_ops->apicv_post_state_restore(vcpu); 2462 kvm_x86_ops->hwapic_irr_update(vcpu, 2463 apic_find_highest_irr(apic)); 2464 kvm_x86_ops->hwapic_isr_update(vcpu, 2465 apic_find_highest_isr(apic)); 2466 } 2467 kvm_make_request(KVM_REQ_EVENT, vcpu); 2468 if (ioapic_in_kernel(vcpu->kvm)) 2469 kvm_rtc_eoi_tracking_restore_one(vcpu); 2470 2471 vcpu->arch.apic_arb_prio = 0; 2472 2473 return 0; 2474 } 2475 2476 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2477 { 2478 struct hrtimer *timer; 2479 2480 if (!lapic_in_kernel(vcpu) || 2481 kvm_can_post_timer_interrupt(vcpu)) 2482 return; 2483 2484 timer = &vcpu->arch.apic->lapic_timer.timer; 2485 if (hrtimer_cancel(timer)) 2486 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2487 } 2488 2489 /* 2490 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2491 * 2492 * Detect whether guest triggered PV EOI since the 2493 * last entry. If yes, set EOI on guests's behalf. 2494 * Clear PV EOI in guest memory in any case. 2495 */ 2496 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2497 struct kvm_lapic *apic) 2498 { 2499 bool pending; 2500 int vector; 2501 /* 2502 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2503 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2504 * 2505 * KVM_APIC_PV_EOI_PENDING is unset: 2506 * -> host disabled PV EOI. 2507 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2508 * -> host enabled PV EOI, guest did not execute EOI yet. 2509 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2510 * -> host enabled PV EOI, guest executed EOI. 2511 */ 2512 BUG_ON(!pv_eoi_enabled(vcpu)); 2513 pending = pv_eoi_get_pending(vcpu); 2514 /* 2515 * Clear pending bit in any case: it will be set again on vmentry. 2516 * While this might not be ideal from performance point of view, 2517 * this makes sure pv eoi is only enabled when we know it's safe. 2518 */ 2519 pv_eoi_clr_pending(vcpu); 2520 if (pending) 2521 return; 2522 vector = apic_set_eoi(apic); 2523 trace_kvm_pv_eoi(apic, vector); 2524 } 2525 2526 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2527 { 2528 u32 data; 2529 2530 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2531 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2532 2533 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2534 return; 2535 2536 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2537 sizeof(u32))) 2538 return; 2539 2540 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2541 } 2542 2543 /* 2544 * apic_sync_pv_eoi_to_guest - called before vmentry 2545 * 2546 * Detect whether it's safe to enable PV EOI and 2547 * if yes do so. 2548 */ 2549 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2550 struct kvm_lapic *apic) 2551 { 2552 if (!pv_eoi_enabled(vcpu) || 2553 /* IRR set or many bits in ISR: could be nested. */ 2554 apic->irr_pending || 2555 /* Cache not set: could be safe but we don't bother. */ 2556 apic->highest_isr_cache == -1 || 2557 /* Need EOI to update ioapic. */ 2558 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2559 /* 2560 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2561 * so we need not do anything here. 2562 */ 2563 return; 2564 } 2565 2566 pv_eoi_set_pending(apic->vcpu); 2567 } 2568 2569 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2570 { 2571 u32 data, tpr; 2572 int max_irr, max_isr; 2573 struct kvm_lapic *apic = vcpu->arch.apic; 2574 2575 apic_sync_pv_eoi_to_guest(vcpu, apic); 2576 2577 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2578 return; 2579 2580 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2581 max_irr = apic_find_highest_irr(apic); 2582 if (max_irr < 0) 2583 max_irr = 0; 2584 max_isr = apic_find_highest_isr(apic); 2585 if (max_isr < 0) 2586 max_isr = 0; 2587 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2588 2589 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2590 sizeof(u32)); 2591 } 2592 2593 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2594 { 2595 if (vapic_addr) { 2596 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2597 &vcpu->arch.apic->vapic_cache, 2598 vapic_addr, sizeof(u32))) 2599 return -EINVAL; 2600 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2601 } else { 2602 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2603 } 2604 2605 vcpu->arch.apic->vapic_addr = vapic_addr; 2606 return 0; 2607 } 2608 2609 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2610 { 2611 struct kvm_lapic *apic = vcpu->arch.apic; 2612 u32 reg = (msr - APIC_BASE_MSR) << 4; 2613 2614 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2615 return 1; 2616 2617 if (reg == APIC_ICR2) 2618 return 1; 2619 2620 /* if this is ICR write vector before command */ 2621 if (reg == APIC_ICR) 2622 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2623 return kvm_lapic_reg_write(apic, reg, (u32)data); 2624 } 2625 2626 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2627 { 2628 struct kvm_lapic *apic = vcpu->arch.apic; 2629 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2630 2631 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2632 return 1; 2633 2634 if (reg == APIC_DFR || reg == APIC_ICR2) 2635 return 1; 2636 2637 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2638 return 1; 2639 if (reg == APIC_ICR) 2640 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2641 2642 *data = (((u64)high) << 32) | low; 2643 2644 return 0; 2645 } 2646 2647 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2648 { 2649 struct kvm_lapic *apic = vcpu->arch.apic; 2650 2651 if (!lapic_in_kernel(vcpu)) 2652 return 1; 2653 2654 /* if this is ICR write vector before command */ 2655 if (reg == APIC_ICR) 2656 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2657 return kvm_lapic_reg_write(apic, reg, (u32)data); 2658 } 2659 2660 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2661 { 2662 struct kvm_lapic *apic = vcpu->arch.apic; 2663 u32 low, high = 0; 2664 2665 if (!lapic_in_kernel(vcpu)) 2666 return 1; 2667 2668 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2669 return 1; 2670 if (reg == APIC_ICR) 2671 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2672 2673 *data = (((u64)high) << 32) | low; 2674 2675 return 0; 2676 } 2677 2678 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2679 { 2680 u64 addr = data & ~KVM_MSR_ENABLED; 2681 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2682 unsigned long new_len; 2683 2684 if (!IS_ALIGNED(addr, 4)) 2685 return 1; 2686 2687 vcpu->arch.pv_eoi.msr_val = data; 2688 if (!pv_eoi_enabled(vcpu)) 2689 return 0; 2690 2691 if (addr == ghc->gpa && len <= ghc->len) 2692 new_len = ghc->len; 2693 else 2694 new_len = len; 2695 2696 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2697 } 2698 2699 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2700 { 2701 struct kvm_lapic *apic = vcpu->arch.apic; 2702 u8 sipi_vector; 2703 unsigned long pe; 2704 2705 if (!lapic_in_kernel(vcpu) || !apic->pending_events) 2706 return; 2707 2708 /* 2709 * INITs are latched while CPU is in specific states 2710 * (SMM, VMX non-root mode, SVM with GIF=0). 2711 * Because a CPU cannot be in these states immediately 2712 * after it has processed an INIT signal (and thus in 2713 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2714 * and leave the INIT pending. 2715 */ 2716 if (is_smm(vcpu) || kvm_x86_ops->apic_init_signal_blocked(vcpu)) { 2717 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2718 if (test_bit(KVM_APIC_SIPI, &apic->pending_events)) 2719 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2720 return; 2721 } 2722 2723 pe = xchg(&apic->pending_events, 0); 2724 if (test_bit(KVM_APIC_INIT, &pe)) { 2725 kvm_vcpu_reset(vcpu, true); 2726 if (kvm_vcpu_is_bsp(apic->vcpu)) 2727 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2728 else 2729 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2730 } 2731 if (test_bit(KVM_APIC_SIPI, &pe) && 2732 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2733 /* evaluate pending_events before reading the vector */ 2734 smp_rmb(); 2735 sipi_vector = apic->sipi_vector; 2736 kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2737 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2738 } 2739 } 2740 2741 void kvm_lapic_init(void) 2742 { 2743 /* do not patch jump label more than once per second */ 2744 jump_label_rate_limit(&apic_hw_disabled, HZ); 2745 jump_label_rate_limit(&apic_sw_disabled, HZ); 2746 } 2747 2748 void kvm_lapic_exit(void) 2749 { 2750 static_key_deferred_flush(&apic_hw_disabled); 2751 static_key_deferred_flush(&apic_sw_disabled); 2752 } 2753