1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline int apic_test_vector(int vec, void *bitmap) 72 { 73 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 74 } 75 76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 77 { 78 struct kvm_lapic *apic = vcpu->arch.apic; 79 80 return apic_test_vector(vector, apic->regs + APIC_ISR) || 81 apic_test_vector(vector, apic->regs + APIC_IRR); 82 } 83 84 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 85 { 86 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 87 } 88 89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 90 { 91 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 92 } 93 94 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 95 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 96 97 static inline int apic_enabled(struct kvm_lapic *apic) 98 { 99 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 100 } 101 102 #define LVT_MASK \ 103 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 104 105 #define LINT_MASK \ 106 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 107 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 108 109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 110 { 111 return apic->vcpu->vcpu_id; 112 } 113 114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 115 { 116 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 117 } 118 119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 120 { 121 return kvm_x86_ops.set_hv_timer 122 && !(kvm_mwait_in_guest(vcpu->kvm) || 123 kvm_can_post_timer_interrupt(vcpu)); 124 } 125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 126 127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 130 } 131 132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 134 switch (map->mode) { 135 case KVM_APIC_MODE_X2APIC: { 136 u32 offset = (dest_id >> 16) * 16; 137 u32 max_apic_id = map->max_apic_id; 138 139 if (offset <= max_apic_id) { 140 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 141 142 offset = array_index_nospec(offset, map->max_apic_id + 1); 143 *cluster = &map->phys_map[offset]; 144 *mask = dest_id & (0xffff >> (16 - cluster_size)); 145 } else { 146 *mask = 0; 147 } 148 149 return true; 150 } 151 case KVM_APIC_MODE_XAPIC_FLAT: 152 *cluster = map->xapic_flat_map; 153 *mask = dest_id & 0xff; 154 return true; 155 case KVM_APIC_MODE_XAPIC_CLUSTER: 156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 157 *mask = dest_id & 0xf; 158 return true; 159 default: 160 /* Not optimized. */ 161 return false; 162 } 163 } 164 165 static void kvm_apic_map_free(struct rcu_head *rcu) 166 { 167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 168 169 kvfree(map); 170 } 171 172 /* 173 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 174 * 175 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 176 * apic_map_lock_held. 177 */ 178 enum { 179 CLEAN, 180 UPDATE_IN_PROGRESS, 181 DIRTY 182 }; 183 184 void kvm_recalculate_apic_map(struct kvm *kvm) 185 { 186 struct kvm_apic_map *new, *old = NULL; 187 struct kvm_vcpu *vcpu; 188 int i; 189 u32 max_id = 255; /* enough space for any xAPIC ID */ 190 191 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 192 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 193 return; 194 195 mutex_lock(&kvm->arch.apic_map_lock); 196 /* 197 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 198 * (if clean) or the APIC registers (if dirty). 199 */ 200 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 201 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 202 /* Someone else has updated the map. */ 203 mutex_unlock(&kvm->arch.apic_map_lock); 204 return; 205 } 206 207 kvm_for_each_vcpu(i, vcpu, kvm) 208 if (kvm_apic_present(vcpu)) 209 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 210 211 new = kvzalloc(sizeof(struct kvm_apic_map) + 212 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 213 GFP_KERNEL_ACCOUNT); 214 215 if (!new) 216 goto out; 217 218 new->max_apic_id = max_id; 219 220 kvm_for_each_vcpu(i, vcpu, kvm) { 221 struct kvm_lapic *apic = vcpu->arch.apic; 222 struct kvm_lapic **cluster; 223 u16 mask; 224 u32 ldr; 225 u8 xapic_id; 226 u32 x2apic_id; 227 228 if (!kvm_apic_present(vcpu)) 229 continue; 230 231 xapic_id = kvm_xapic_id(apic); 232 x2apic_id = kvm_x2apic_id(apic); 233 234 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 235 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 236 x2apic_id <= new->max_apic_id) 237 new->phys_map[x2apic_id] = apic; 238 /* 239 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 240 * prevent them from masking VCPUs with APIC ID <= 0xff. 241 */ 242 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 243 new->phys_map[xapic_id] = apic; 244 245 if (!kvm_apic_sw_enabled(apic)) 246 continue; 247 248 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 249 250 if (apic_x2apic_mode(apic)) { 251 new->mode |= KVM_APIC_MODE_X2APIC; 252 } else if (ldr) { 253 ldr = GET_APIC_LOGICAL_ID(ldr); 254 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 255 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 256 else 257 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 258 } 259 260 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 261 continue; 262 263 if (mask) 264 cluster[ffs(mask) - 1] = apic; 265 } 266 out: 267 old = rcu_dereference_protected(kvm->arch.apic_map, 268 lockdep_is_held(&kvm->arch.apic_map_lock)); 269 rcu_assign_pointer(kvm->arch.apic_map, new); 270 /* 271 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 272 * If another update has come in, leave it DIRTY. 273 */ 274 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 275 UPDATE_IN_PROGRESS, CLEAN); 276 mutex_unlock(&kvm->arch.apic_map_lock); 277 278 if (old) 279 call_rcu(&old->rcu, kvm_apic_map_free); 280 281 kvm_make_scan_ioapic_request(kvm); 282 } 283 284 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 285 { 286 bool enabled = val & APIC_SPIV_APIC_ENABLED; 287 288 kvm_lapic_set_reg(apic, APIC_SPIV, val); 289 290 if (enabled != apic->sw_enabled) { 291 apic->sw_enabled = enabled; 292 if (enabled) 293 static_branch_slow_dec_deferred(&apic_sw_disabled); 294 else 295 static_branch_inc(&apic_sw_disabled.key); 296 297 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 298 } 299 } 300 301 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 302 { 303 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 304 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 305 } 306 307 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 308 { 309 kvm_lapic_set_reg(apic, APIC_LDR, id); 310 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 311 } 312 313 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 314 { 315 kvm_lapic_set_reg(apic, APIC_DFR, val); 316 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 317 } 318 319 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 320 { 321 return ((id >> 4) << 16) | (1 << (id & 0xf)); 322 } 323 324 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 325 { 326 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 327 328 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 329 330 kvm_lapic_set_reg(apic, APIC_ID, id); 331 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 332 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 333 } 334 335 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 336 { 337 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 338 } 339 340 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 341 { 342 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 343 } 344 345 static inline int apic_lvtt_period(struct kvm_lapic *apic) 346 { 347 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 348 } 349 350 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 351 { 352 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 353 } 354 355 static inline int apic_lvt_nmi_mode(u32 lvt_val) 356 { 357 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 358 } 359 360 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 361 { 362 struct kvm_lapic *apic = vcpu->arch.apic; 363 u32 v = APIC_VERSION; 364 365 if (!lapic_in_kernel(vcpu)) 366 return; 367 368 /* 369 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 370 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 371 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 372 * version first and level-triggered interrupts never get EOIed in 373 * IOAPIC. 374 */ 375 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 376 !ioapic_in_kernel(vcpu->kvm)) 377 v |= APIC_LVR_DIRECTED_EOI; 378 kvm_lapic_set_reg(apic, APIC_LVR, v); 379 } 380 381 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 382 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 383 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 384 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 385 LINT_MASK, LINT_MASK, /* LVT0-1 */ 386 LVT_MASK /* LVTERR */ 387 }; 388 389 static int find_highest_vector(void *bitmap) 390 { 391 int vec; 392 u32 *reg; 393 394 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 395 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 396 reg = bitmap + REG_POS(vec); 397 if (*reg) 398 return __fls(*reg) + vec; 399 } 400 401 return -1; 402 } 403 404 static u8 count_vectors(void *bitmap) 405 { 406 int vec; 407 u32 *reg; 408 u8 count = 0; 409 410 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 411 reg = bitmap + REG_POS(vec); 412 count += hweight32(*reg); 413 } 414 415 return count; 416 } 417 418 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 419 { 420 u32 i, vec; 421 u32 pir_val, irr_val, prev_irr_val; 422 int max_updated_irr; 423 424 max_updated_irr = -1; 425 *max_irr = -1; 426 427 for (i = vec = 0; i <= 7; i++, vec += 32) { 428 pir_val = READ_ONCE(pir[i]); 429 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 430 if (pir_val) { 431 prev_irr_val = irr_val; 432 irr_val |= xchg(&pir[i], 0); 433 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 434 if (prev_irr_val != irr_val) { 435 max_updated_irr = 436 __fls(irr_val ^ prev_irr_val) + vec; 437 } 438 } 439 if (irr_val) 440 *max_irr = __fls(irr_val) + vec; 441 } 442 443 return ((max_updated_irr != -1) && 444 (max_updated_irr == *max_irr)); 445 } 446 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 447 448 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 449 { 450 struct kvm_lapic *apic = vcpu->arch.apic; 451 452 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 453 } 454 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 455 456 static inline int apic_search_irr(struct kvm_lapic *apic) 457 { 458 return find_highest_vector(apic->regs + APIC_IRR); 459 } 460 461 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 462 { 463 int result; 464 465 /* 466 * Note that irr_pending is just a hint. It will be always 467 * true with virtual interrupt delivery enabled. 468 */ 469 if (!apic->irr_pending) 470 return -1; 471 472 result = apic_search_irr(apic); 473 ASSERT(result == -1 || result >= 16); 474 475 return result; 476 } 477 478 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 479 { 480 struct kvm_vcpu *vcpu; 481 482 vcpu = apic->vcpu; 483 484 if (unlikely(vcpu->arch.apicv_active)) { 485 /* need to update RVI */ 486 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 487 static_call(kvm_x86_hwapic_irr_update)(vcpu, 488 apic_find_highest_irr(apic)); 489 } else { 490 apic->irr_pending = false; 491 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 492 if (apic_search_irr(apic) != -1) 493 apic->irr_pending = true; 494 } 495 } 496 497 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 498 { 499 apic_clear_irr(vec, vcpu->arch.apic); 500 } 501 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 502 503 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 504 { 505 struct kvm_vcpu *vcpu; 506 507 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 508 return; 509 510 vcpu = apic->vcpu; 511 512 /* 513 * With APIC virtualization enabled, all caching is disabled 514 * because the processor can modify ISR under the hood. Instead 515 * just set SVI. 516 */ 517 if (unlikely(vcpu->arch.apicv_active)) 518 static_call(kvm_x86_hwapic_isr_update)(vcpu, vec); 519 else { 520 ++apic->isr_count; 521 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 522 /* 523 * ISR (in service register) bit is set when injecting an interrupt. 524 * The highest vector is injected. Thus the latest bit set matches 525 * the highest bit in ISR. 526 */ 527 apic->highest_isr_cache = vec; 528 } 529 } 530 531 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 532 { 533 int result; 534 535 /* 536 * Note that isr_count is always 1, and highest_isr_cache 537 * is always -1, with APIC virtualization enabled. 538 */ 539 if (!apic->isr_count) 540 return -1; 541 if (likely(apic->highest_isr_cache != -1)) 542 return apic->highest_isr_cache; 543 544 result = find_highest_vector(apic->regs + APIC_ISR); 545 ASSERT(result == -1 || result >= 16); 546 547 return result; 548 } 549 550 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 551 { 552 struct kvm_vcpu *vcpu; 553 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 554 return; 555 556 vcpu = apic->vcpu; 557 558 /* 559 * We do get here for APIC virtualization enabled if the guest 560 * uses the Hyper-V APIC enlightenment. In this case we may need 561 * to trigger a new interrupt delivery by writing the SVI field; 562 * on the other hand isr_count and highest_isr_cache are unused 563 * and must be left alone. 564 */ 565 if (unlikely(vcpu->arch.apicv_active)) 566 static_call(kvm_x86_hwapic_isr_update)(vcpu, 567 apic_find_highest_isr(apic)); 568 else { 569 --apic->isr_count; 570 BUG_ON(apic->isr_count < 0); 571 apic->highest_isr_cache = -1; 572 } 573 } 574 575 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 576 { 577 /* This may race with setting of irr in __apic_accept_irq() and 578 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 579 * will cause vmexit immediately and the value will be recalculated 580 * on the next vmentry. 581 */ 582 return apic_find_highest_irr(vcpu->arch.apic); 583 } 584 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 585 586 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 587 int vector, int level, int trig_mode, 588 struct dest_map *dest_map); 589 590 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 591 struct dest_map *dest_map) 592 { 593 struct kvm_lapic *apic = vcpu->arch.apic; 594 595 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 596 irq->level, irq->trig_mode, dest_map); 597 } 598 599 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 600 struct kvm_lapic_irq *irq, u32 min) 601 { 602 int i, count = 0; 603 struct kvm_vcpu *vcpu; 604 605 if (min > map->max_apic_id) 606 return 0; 607 608 for_each_set_bit(i, ipi_bitmap, 609 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 610 if (map->phys_map[min + i]) { 611 vcpu = map->phys_map[min + i]->vcpu; 612 count += kvm_apic_set_irq(vcpu, irq, NULL); 613 } 614 } 615 616 return count; 617 } 618 619 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 620 unsigned long ipi_bitmap_high, u32 min, 621 unsigned long icr, int op_64_bit) 622 { 623 struct kvm_apic_map *map; 624 struct kvm_lapic_irq irq = {0}; 625 int cluster_size = op_64_bit ? 64 : 32; 626 int count; 627 628 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 629 return -KVM_EINVAL; 630 631 irq.vector = icr & APIC_VECTOR_MASK; 632 irq.delivery_mode = icr & APIC_MODE_MASK; 633 irq.level = (icr & APIC_INT_ASSERT) != 0; 634 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 635 636 rcu_read_lock(); 637 map = rcu_dereference(kvm->arch.apic_map); 638 639 count = -EOPNOTSUPP; 640 if (likely(map)) { 641 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 642 min += cluster_size; 643 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 644 } 645 646 rcu_read_unlock(); 647 return count; 648 } 649 650 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 651 { 652 653 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 654 sizeof(val)); 655 } 656 657 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 658 { 659 660 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 661 sizeof(*val)); 662 } 663 664 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 665 { 666 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 667 } 668 669 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 670 { 671 u8 val; 672 if (pv_eoi_get_user(vcpu, &val) < 0) { 673 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 674 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 675 return false; 676 } 677 return val & KVM_PV_EOI_ENABLED; 678 } 679 680 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 681 { 682 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 683 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 684 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 685 return; 686 } 687 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 688 } 689 690 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 691 { 692 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 693 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 694 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 695 return; 696 } 697 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 698 } 699 700 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 701 { 702 int highest_irr; 703 if (apic->vcpu->arch.apicv_active) 704 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 705 else 706 highest_irr = apic_find_highest_irr(apic); 707 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 708 return -1; 709 return highest_irr; 710 } 711 712 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 713 { 714 u32 tpr, isrv, ppr, old_ppr; 715 int isr; 716 717 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 718 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 719 isr = apic_find_highest_isr(apic); 720 isrv = (isr != -1) ? isr : 0; 721 722 if ((tpr & 0xf0) >= (isrv & 0xf0)) 723 ppr = tpr & 0xff; 724 else 725 ppr = isrv & 0xf0; 726 727 *new_ppr = ppr; 728 if (old_ppr != ppr) 729 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 730 731 return ppr < old_ppr; 732 } 733 734 static void apic_update_ppr(struct kvm_lapic *apic) 735 { 736 u32 ppr; 737 738 if (__apic_update_ppr(apic, &ppr) && 739 apic_has_interrupt_for_ppr(apic, ppr) != -1) 740 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 741 } 742 743 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 744 { 745 apic_update_ppr(vcpu->arch.apic); 746 } 747 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 748 749 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 750 { 751 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 752 apic_update_ppr(apic); 753 } 754 755 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 756 { 757 return mda == (apic_x2apic_mode(apic) ? 758 X2APIC_BROADCAST : APIC_BROADCAST); 759 } 760 761 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 762 { 763 if (kvm_apic_broadcast(apic, mda)) 764 return true; 765 766 if (apic_x2apic_mode(apic)) 767 return mda == kvm_x2apic_id(apic); 768 769 /* 770 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 771 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 772 * this allows unique addressing of VCPUs with APIC ID over 0xff. 773 * The 0xff condition is needed because writeable xAPIC ID. 774 */ 775 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 776 return true; 777 778 return mda == kvm_xapic_id(apic); 779 } 780 781 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 782 { 783 u32 logical_id; 784 785 if (kvm_apic_broadcast(apic, mda)) 786 return true; 787 788 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 789 790 if (apic_x2apic_mode(apic)) 791 return ((logical_id >> 16) == (mda >> 16)) 792 && (logical_id & mda & 0xffff) != 0; 793 794 logical_id = GET_APIC_LOGICAL_ID(logical_id); 795 796 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 797 case APIC_DFR_FLAT: 798 return (logical_id & mda) != 0; 799 case APIC_DFR_CLUSTER: 800 return ((logical_id >> 4) == (mda >> 4)) 801 && (logical_id & mda & 0xf) != 0; 802 default: 803 return false; 804 } 805 } 806 807 /* The KVM local APIC implementation has two quirks: 808 * 809 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 810 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 811 * KVM doesn't do that aliasing. 812 * 813 * - in-kernel IOAPIC messages have to be delivered directly to 814 * x2APIC, because the kernel does not support interrupt remapping. 815 * In order to support broadcast without interrupt remapping, x2APIC 816 * rewrites the destination of non-IPI messages from APIC_BROADCAST 817 * to X2APIC_BROADCAST. 818 * 819 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 820 * important when userspace wants to use x2APIC-format MSIs, because 821 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 822 */ 823 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 824 struct kvm_lapic *source, struct kvm_lapic *target) 825 { 826 bool ipi = source != NULL; 827 828 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 829 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 830 return X2APIC_BROADCAST; 831 832 return dest_id; 833 } 834 835 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 836 int shorthand, unsigned int dest, int dest_mode) 837 { 838 struct kvm_lapic *target = vcpu->arch.apic; 839 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 840 841 ASSERT(target); 842 switch (shorthand) { 843 case APIC_DEST_NOSHORT: 844 if (dest_mode == APIC_DEST_PHYSICAL) 845 return kvm_apic_match_physical_addr(target, mda); 846 else 847 return kvm_apic_match_logical_addr(target, mda); 848 case APIC_DEST_SELF: 849 return target == source; 850 case APIC_DEST_ALLINC: 851 return true; 852 case APIC_DEST_ALLBUT: 853 return target != source; 854 default: 855 return false; 856 } 857 } 858 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 859 860 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 861 const unsigned long *bitmap, u32 bitmap_size) 862 { 863 u32 mod; 864 int i, idx = -1; 865 866 mod = vector % dest_vcpus; 867 868 for (i = 0; i <= mod; i++) { 869 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 870 BUG_ON(idx == bitmap_size); 871 } 872 873 return idx; 874 } 875 876 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 877 { 878 if (!kvm->arch.disabled_lapic_found) { 879 kvm->arch.disabled_lapic_found = true; 880 printk(KERN_INFO 881 "Disabled LAPIC found during irq injection\n"); 882 } 883 } 884 885 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 886 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 887 { 888 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 889 if ((irq->dest_id == APIC_BROADCAST && 890 map->mode != KVM_APIC_MODE_X2APIC)) 891 return true; 892 if (irq->dest_id == X2APIC_BROADCAST) 893 return true; 894 } else { 895 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 896 if (irq->dest_id == (x2apic_ipi ? 897 X2APIC_BROADCAST : APIC_BROADCAST)) 898 return true; 899 } 900 901 return false; 902 } 903 904 /* Return true if the interrupt can be handled by using *bitmap as index mask 905 * for valid destinations in *dst array. 906 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 907 * Note: we may have zero kvm_lapic destinations when we return true, which 908 * means that the interrupt should be dropped. In this case, *bitmap would be 909 * zero and *dst undefined. 910 */ 911 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 912 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 913 struct kvm_apic_map *map, struct kvm_lapic ***dst, 914 unsigned long *bitmap) 915 { 916 int i, lowest; 917 918 if (irq->shorthand == APIC_DEST_SELF && src) { 919 *dst = src; 920 *bitmap = 1; 921 return true; 922 } else if (irq->shorthand) 923 return false; 924 925 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 926 return false; 927 928 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 929 if (irq->dest_id > map->max_apic_id) { 930 *bitmap = 0; 931 } else { 932 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 933 *dst = &map->phys_map[dest_id]; 934 *bitmap = 1; 935 } 936 return true; 937 } 938 939 *bitmap = 0; 940 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 941 (u16 *)bitmap)) 942 return false; 943 944 if (!kvm_lowest_prio_delivery(irq)) 945 return true; 946 947 if (!kvm_vector_hashing_enabled()) { 948 lowest = -1; 949 for_each_set_bit(i, bitmap, 16) { 950 if (!(*dst)[i]) 951 continue; 952 if (lowest < 0) 953 lowest = i; 954 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 955 (*dst)[lowest]->vcpu) < 0) 956 lowest = i; 957 } 958 } else { 959 if (!*bitmap) 960 return true; 961 962 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 963 bitmap, 16); 964 965 if (!(*dst)[lowest]) { 966 kvm_apic_disabled_lapic_found(kvm); 967 *bitmap = 0; 968 return true; 969 } 970 } 971 972 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 973 974 return true; 975 } 976 977 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 978 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 979 { 980 struct kvm_apic_map *map; 981 unsigned long bitmap; 982 struct kvm_lapic **dst = NULL; 983 int i; 984 bool ret; 985 986 *r = -1; 987 988 if (irq->shorthand == APIC_DEST_SELF) { 989 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 990 return true; 991 } 992 993 rcu_read_lock(); 994 map = rcu_dereference(kvm->arch.apic_map); 995 996 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 997 if (ret) { 998 *r = 0; 999 for_each_set_bit(i, &bitmap, 16) { 1000 if (!dst[i]) 1001 continue; 1002 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1003 } 1004 } 1005 1006 rcu_read_unlock(); 1007 return ret; 1008 } 1009 1010 /* 1011 * This routine tries to handle interrupts in posted mode, here is how 1012 * it deals with different cases: 1013 * - For single-destination interrupts, handle it in posted mode 1014 * - Else if vector hashing is enabled and it is a lowest-priority 1015 * interrupt, handle it in posted mode and use the following mechanism 1016 * to find the destination vCPU. 1017 * 1. For lowest-priority interrupts, store all the possible 1018 * destination vCPUs in an array. 1019 * 2. Use "guest vector % max number of destination vCPUs" to find 1020 * the right destination vCPU in the array for the lowest-priority 1021 * interrupt. 1022 * - Otherwise, use remapped mode to inject the interrupt. 1023 */ 1024 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1025 struct kvm_vcpu **dest_vcpu) 1026 { 1027 struct kvm_apic_map *map; 1028 unsigned long bitmap; 1029 struct kvm_lapic **dst = NULL; 1030 bool ret = false; 1031 1032 if (irq->shorthand) 1033 return false; 1034 1035 rcu_read_lock(); 1036 map = rcu_dereference(kvm->arch.apic_map); 1037 1038 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1039 hweight16(bitmap) == 1) { 1040 unsigned long i = find_first_bit(&bitmap, 16); 1041 1042 if (dst[i]) { 1043 *dest_vcpu = dst[i]->vcpu; 1044 ret = true; 1045 } 1046 } 1047 1048 rcu_read_unlock(); 1049 return ret; 1050 } 1051 1052 /* 1053 * Add a pending IRQ into lapic. 1054 * Return 1 if successfully added and 0 if discarded. 1055 */ 1056 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1057 int vector, int level, int trig_mode, 1058 struct dest_map *dest_map) 1059 { 1060 int result = 0; 1061 struct kvm_vcpu *vcpu = apic->vcpu; 1062 1063 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1064 trig_mode, vector); 1065 switch (delivery_mode) { 1066 case APIC_DM_LOWEST: 1067 vcpu->arch.apic_arb_prio++; 1068 fallthrough; 1069 case APIC_DM_FIXED: 1070 if (unlikely(trig_mode && !level)) 1071 break; 1072 1073 /* FIXME add logic for vcpu on reset */ 1074 if (unlikely(!apic_enabled(apic))) 1075 break; 1076 1077 result = 1; 1078 1079 if (dest_map) { 1080 __set_bit(vcpu->vcpu_id, dest_map->map); 1081 dest_map->vectors[vcpu->vcpu_id] = vector; 1082 } 1083 1084 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1085 if (trig_mode) 1086 kvm_lapic_set_vector(vector, 1087 apic->regs + APIC_TMR); 1088 else 1089 kvm_lapic_clear_vector(vector, 1090 apic->regs + APIC_TMR); 1091 } 1092 1093 if (static_call(kvm_x86_deliver_posted_interrupt)(vcpu, vector)) { 1094 kvm_lapic_set_irr(vector, apic); 1095 kvm_make_request(KVM_REQ_EVENT, vcpu); 1096 kvm_vcpu_kick(vcpu); 1097 } 1098 break; 1099 1100 case APIC_DM_REMRD: 1101 result = 1; 1102 vcpu->arch.pv.pv_unhalted = 1; 1103 kvm_make_request(KVM_REQ_EVENT, vcpu); 1104 kvm_vcpu_kick(vcpu); 1105 break; 1106 1107 case APIC_DM_SMI: 1108 result = 1; 1109 kvm_make_request(KVM_REQ_SMI, vcpu); 1110 kvm_vcpu_kick(vcpu); 1111 break; 1112 1113 case APIC_DM_NMI: 1114 result = 1; 1115 kvm_inject_nmi(vcpu); 1116 kvm_vcpu_kick(vcpu); 1117 break; 1118 1119 case APIC_DM_INIT: 1120 if (!trig_mode || level) { 1121 result = 1; 1122 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1123 apic->pending_events = (1UL << KVM_APIC_INIT); 1124 kvm_make_request(KVM_REQ_EVENT, vcpu); 1125 kvm_vcpu_kick(vcpu); 1126 } 1127 break; 1128 1129 case APIC_DM_STARTUP: 1130 result = 1; 1131 apic->sipi_vector = vector; 1132 /* make sure sipi_vector is visible for the receiver */ 1133 smp_wmb(); 1134 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1135 kvm_make_request(KVM_REQ_EVENT, vcpu); 1136 kvm_vcpu_kick(vcpu); 1137 break; 1138 1139 case APIC_DM_EXTINT: 1140 /* 1141 * Should only be called by kvm_apic_local_deliver() with LVT0, 1142 * before NMI watchdog was enabled. Already handled by 1143 * kvm_apic_accept_pic_intr(). 1144 */ 1145 break; 1146 1147 default: 1148 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1149 delivery_mode); 1150 break; 1151 } 1152 return result; 1153 } 1154 1155 /* 1156 * This routine identifies the destination vcpus mask meant to receive the 1157 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1158 * out the destination vcpus array and set the bitmap or it traverses to 1159 * each available vcpu to identify the same. 1160 */ 1161 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1162 unsigned long *vcpu_bitmap) 1163 { 1164 struct kvm_lapic **dest_vcpu = NULL; 1165 struct kvm_lapic *src = NULL; 1166 struct kvm_apic_map *map; 1167 struct kvm_vcpu *vcpu; 1168 unsigned long bitmap; 1169 int i, vcpu_idx; 1170 bool ret; 1171 1172 rcu_read_lock(); 1173 map = rcu_dereference(kvm->arch.apic_map); 1174 1175 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1176 &bitmap); 1177 if (ret) { 1178 for_each_set_bit(i, &bitmap, 16) { 1179 if (!dest_vcpu[i]) 1180 continue; 1181 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1182 __set_bit(vcpu_idx, vcpu_bitmap); 1183 } 1184 } else { 1185 kvm_for_each_vcpu(i, vcpu, kvm) { 1186 if (!kvm_apic_present(vcpu)) 1187 continue; 1188 if (!kvm_apic_match_dest(vcpu, NULL, 1189 irq->shorthand, 1190 irq->dest_id, 1191 irq->dest_mode)) 1192 continue; 1193 __set_bit(i, vcpu_bitmap); 1194 } 1195 } 1196 rcu_read_unlock(); 1197 } 1198 1199 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1200 { 1201 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1202 } 1203 1204 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1205 { 1206 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1207 } 1208 1209 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1210 { 1211 int trigger_mode; 1212 1213 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1214 if (!kvm_ioapic_handles_vector(apic, vector)) 1215 return; 1216 1217 /* Request a KVM exit to inform the userspace IOAPIC. */ 1218 if (irqchip_split(apic->vcpu->kvm)) { 1219 apic->vcpu->arch.pending_ioapic_eoi = vector; 1220 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1221 return; 1222 } 1223 1224 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1225 trigger_mode = IOAPIC_LEVEL_TRIG; 1226 else 1227 trigger_mode = IOAPIC_EDGE_TRIG; 1228 1229 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1230 } 1231 1232 static int apic_set_eoi(struct kvm_lapic *apic) 1233 { 1234 int vector = apic_find_highest_isr(apic); 1235 1236 trace_kvm_eoi(apic, vector); 1237 1238 /* 1239 * Not every write EOI will has corresponding ISR, 1240 * one example is when Kernel check timer on setup_IO_APIC 1241 */ 1242 if (vector == -1) 1243 return vector; 1244 1245 apic_clear_isr(vector, apic); 1246 apic_update_ppr(apic); 1247 1248 if (to_hv_vcpu(apic->vcpu) && 1249 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1250 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1251 1252 kvm_ioapic_send_eoi(apic, vector); 1253 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1254 return vector; 1255 } 1256 1257 /* 1258 * this interface assumes a trap-like exit, which has already finished 1259 * desired side effect including vISR and vPPR update. 1260 */ 1261 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1262 { 1263 struct kvm_lapic *apic = vcpu->arch.apic; 1264 1265 trace_kvm_eoi(apic, vector); 1266 1267 kvm_ioapic_send_eoi(apic, vector); 1268 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1269 } 1270 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1271 1272 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1273 { 1274 struct kvm_lapic_irq irq; 1275 1276 irq.vector = icr_low & APIC_VECTOR_MASK; 1277 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1278 irq.dest_mode = icr_low & APIC_DEST_MASK; 1279 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1280 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1281 irq.shorthand = icr_low & APIC_SHORT_MASK; 1282 irq.msi_redir_hint = false; 1283 if (apic_x2apic_mode(apic)) 1284 irq.dest_id = icr_high; 1285 else 1286 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1287 1288 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1289 1290 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1291 } 1292 1293 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1294 { 1295 ktime_t remaining, now; 1296 s64 ns; 1297 u32 tmcct; 1298 1299 ASSERT(apic != NULL); 1300 1301 /* if initial count is 0, current count should also be 0 */ 1302 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1303 apic->lapic_timer.period == 0) 1304 return 0; 1305 1306 now = ktime_get(); 1307 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1308 if (ktime_to_ns(remaining) < 0) 1309 remaining = 0; 1310 1311 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1312 tmcct = div64_u64(ns, 1313 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1314 1315 return tmcct; 1316 } 1317 1318 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1319 { 1320 struct kvm_vcpu *vcpu = apic->vcpu; 1321 struct kvm_run *run = vcpu->run; 1322 1323 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1324 run->tpr_access.rip = kvm_rip_read(vcpu); 1325 run->tpr_access.is_write = write; 1326 } 1327 1328 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1329 { 1330 if (apic->vcpu->arch.tpr_access_reporting) 1331 __report_tpr_access(apic, write); 1332 } 1333 1334 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1335 { 1336 u32 val = 0; 1337 1338 if (offset >= LAPIC_MMIO_LENGTH) 1339 return 0; 1340 1341 switch (offset) { 1342 case APIC_ARBPRI: 1343 break; 1344 1345 case APIC_TMCCT: /* Timer CCR */ 1346 if (apic_lvtt_tscdeadline(apic)) 1347 return 0; 1348 1349 val = apic_get_tmcct(apic); 1350 break; 1351 case APIC_PROCPRI: 1352 apic_update_ppr(apic); 1353 val = kvm_lapic_get_reg(apic, offset); 1354 break; 1355 case APIC_TASKPRI: 1356 report_tpr_access(apic, false); 1357 fallthrough; 1358 default: 1359 val = kvm_lapic_get_reg(apic, offset); 1360 break; 1361 } 1362 1363 return val; 1364 } 1365 1366 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1367 { 1368 return container_of(dev, struct kvm_lapic, dev); 1369 } 1370 1371 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1372 #define APIC_REGS_MASK(first, count) \ 1373 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1374 1375 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1376 void *data) 1377 { 1378 unsigned char alignment = offset & 0xf; 1379 u32 result; 1380 /* this bitmask has a bit cleared for each reserved register */ 1381 u64 valid_reg_mask = 1382 APIC_REG_MASK(APIC_ID) | 1383 APIC_REG_MASK(APIC_LVR) | 1384 APIC_REG_MASK(APIC_TASKPRI) | 1385 APIC_REG_MASK(APIC_PROCPRI) | 1386 APIC_REG_MASK(APIC_LDR) | 1387 APIC_REG_MASK(APIC_DFR) | 1388 APIC_REG_MASK(APIC_SPIV) | 1389 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1390 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1391 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1392 APIC_REG_MASK(APIC_ESR) | 1393 APIC_REG_MASK(APIC_ICR) | 1394 APIC_REG_MASK(APIC_ICR2) | 1395 APIC_REG_MASK(APIC_LVTT) | 1396 APIC_REG_MASK(APIC_LVTTHMR) | 1397 APIC_REG_MASK(APIC_LVTPC) | 1398 APIC_REG_MASK(APIC_LVT0) | 1399 APIC_REG_MASK(APIC_LVT1) | 1400 APIC_REG_MASK(APIC_LVTERR) | 1401 APIC_REG_MASK(APIC_TMICT) | 1402 APIC_REG_MASK(APIC_TMCCT) | 1403 APIC_REG_MASK(APIC_TDCR); 1404 1405 /* ARBPRI is not valid on x2APIC */ 1406 if (!apic_x2apic_mode(apic)) 1407 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1408 1409 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1410 return 1; 1411 1412 result = __apic_read(apic, offset & ~0xf); 1413 1414 trace_kvm_apic_read(offset, result); 1415 1416 switch (len) { 1417 case 1: 1418 case 2: 1419 case 4: 1420 memcpy(data, (char *)&result + alignment, len); 1421 break; 1422 default: 1423 printk(KERN_ERR "Local APIC read with len = %x, " 1424 "should be 1,2, or 4 instead\n", len); 1425 break; 1426 } 1427 return 0; 1428 } 1429 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1430 1431 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1432 { 1433 return addr >= apic->base_address && 1434 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1435 } 1436 1437 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1438 gpa_t address, int len, void *data) 1439 { 1440 struct kvm_lapic *apic = to_lapic(this); 1441 u32 offset = address - apic->base_address; 1442 1443 if (!apic_mmio_in_range(apic, address)) 1444 return -EOPNOTSUPP; 1445 1446 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1447 if (!kvm_check_has_quirk(vcpu->kvm, 1448 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1449 return -EOPNOTSUPP; 1450 1451 memset(data, 0xff, len); 1452 return 0; 1453 } 1454 1455 kvm_lapic_reg_read(apic, offset, len, data); 1456 1457 return 0; 1458 } 1459 1460 static void update_divide_count(struct kvm_lapic *apic) 1461 { 1462 u32 tmp1, tmp2, tdcr; 1463 1464 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1465 tmp1 = tdcr & 0xf; 1466 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1467 apic->divide_count = 0x1 << (tmp2 & 0x7); 1468 } 1469 1470 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1471 { 1472 /* 1473 * Do not allow the guest to program periodic timers with small 1474 * interval, since the hrtimers are not throttled by the host 1475 * scheduler. 1476 */ 1477 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1478 s64 min_period = min_timer_period_us * 1000LL; 1479 1480 if (apic->lapic_timer.period < min_period) { 1481 pr_info_ratelimited( 1482 "kvm: vcpu %i: requested %lld ns " 1483 "lapic timer period limited to %lld ns\n", 1484 apic->vcpu->vcpu_id, 1485 apic->lapic_timer.period, min_period); 1486 apic->lapic_timer.period = min_period; 1487 } 1488 } 1489 } 1490 1491 static void cancel_hv_timer(struct kvm_lapic *apic); 1492 1493 static void apic_update_lvtt(struct kvm_lapic *apic) 1494 { 1495 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1496 apic->lapic_timer.timer_mode_mask; 1497 1498 if (apic->lapic_timer.timer_mode != timer_mode) { 1499 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1500 APIC_LVT_TIMER_TSCDEADLINE)) { 1501 hrtimer_cancel(&apic->lapic_timer.timer); 1502 preempt_disable(); 1503 if (apic->lapic_timer.hv_timer_in_use) 1504 cancel_hv_timer(apic); 1505 preempt_enable(); 1506 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1507 apic->lapic_timer.period = 0; 1508 apic->lapic_timer.tscdeadline = 0; 1509 } 1510 apic->lapic_timer.timer_mode = timer_mode; 1511 limit_periodic_timer_frequency(apic); 1512 } 1513 } 1514 1515 /* 1516 * On APICv, this test will cause a busy wait 1517 * during a higher-priority task. 1518 */ 1519 1520 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1521 { 1522 struct kvm_lapic *apic = vcpu->arch.apic; 1523 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1524 1525 if (kvm_apic_hw_enabled(apic)) { 1526 int vec = reg & APIC_VECTOR_MASK; 1527 void *bitmap = apic->regs + APIC_ISR; 1528 1529 if (vcpu->arch.apicv_active) 1530 bitmap = apic->regs + APIC_IRR; 1531 1532 if (apic_test_vector(vec, bitmap)) 1533 return true; 1534 } 1535 return false; 1536 } 1537 1538 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1539 { 1540 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1541 1542 /* 1543 * If the guest TSC is running at a different ratio than the host, then 1544 * convert the delay to nanoseconds to achieve an accurate delay. Note 1545 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1546 * always for VMX enabled hardware. 1547 */ 1548 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1549 __delay(min(guest_cycles, 1550 nsec_to_cycles(vcpu, timer_advance_ns))); 1551 } else { 1552 u64 delay_ns = guest_cycles * 1000000ULL; 1553 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1554 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1555 } 1556 } 1557 1558 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1559 s64 advance_expire_delta) 1560 { 1561 struct kvm_lapic *apic = vcpu->arch.apic; 1562 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1563 u64 ns; 1564 1565 /* Do not adjust for tiny fluctuations or large random spikes. */ 1566 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1567 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1568 return; 1569 1570 /* too early */ 1571 if (advance_expire_delta < 0) { 1572 ns = -advance_expire_delta * 1000000ULL; 1573 do_div(ns, vcpu->arch.virtual_tsc_khz); 1574 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1575 } else { 1576 /* too late */ 1577 ns = advance_expire_delta * 1000000ULL; 1578 do_div(ns, vcpu->arch.virtual_tsc_khz); 1579 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1580 } 1581 1582 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1583 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1584 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1585 } 1586 1587 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1588 { 1589 struct kvm_lapic *apic = vcpu->arch.apic; 1590 u64 guest_tsc, tsc_deadline; 1591 1592 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1593 apic->lapic_timer.expired_tscdeadline = 0; 1594 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1595 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1596 1597 if (guest_tsc < tsc_deadline) 1598 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1599 1600 if (lapic_timer_advance_dynamic) 1601 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1602 } 1603 1604 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1605 { 1606 if (lapic_in_kernel(vcpu) && 1607 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1608 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1609 lapic_timer_int_injected(vcpu)) 1610 __kvm_wait_lapic_expire(vcpu); 1611 } 1612 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1613 1614 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1615 { 1616 struct kvm_timer *ktimer = &apic->lapic_timer; 1617 1618 kvm_apic_local_deliver(apic, APIC_LVTT); 1619 if (apic_lvtt_tscdeadline(apic)) { 1620 ktimer->tscdeadline = 0; 1621 } else if (apic_lvtt_oneshot(apic)) { 1622 ktimer->tscdeadline = 0; 1623 ktimer->target_expiration = 0; 1624 } 1625 } 1626 1627 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1628 { 1629 struct kvm_vcpu *vcpu = apic->vcpu; 1630 struct kvm_timer *ktimer = &apic->lapic_timer; 1631 1632 if (atomic_read(&apic->lapic_timer.pending)) 1633 return; 1634 1635 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1636 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1637 1638 if (!from_timer_fn && vcpu->arch.apicv_active) { 1639 WARN_ON(kvm_get_running_vcpu() != vcpu); 1640 kvm_apic_inject_pending_timer_irqs(apic); 1641 return; 1642 } 1643 1644 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1645 /* 1646 * Ensure the guest's timer has truly expired before posting an 1647 * interrupt. Open code the relevant checks to avoid querying 1648 * lapic_timer_int_injected(), which will be false since the 1649 * interrupt isn't yet injected. Waiting until after injecting 1650 * is not an option since that won't help a posted interrupt. 1651 */ 1652 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1653 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1654 __kvm_wait_lapic_expire(vcpu); 1655 kvm_apic_inject_pending_timer_irqs(apic); 1656 return; 1657 } 1658 1659 atomic_inc(&apic->lapic_timer.pending); 1660 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1661 if (from_timer_fn) 1662 kvm_vcpu_kick(vcpu); 1663 } 1664 1665 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1666 { 1667 struct kvm_timer *ktimer = &apic->lapic_timer; 1668 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1669 u64 ns = 0; 1670 ktime_t expire; 1671 struct kvm_vcpu *vcpu = apic->vcpu; 1672 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1673 unsigned long flags; 1674 ktime_t now; 1675 1676 if (unlikely(!tscdeadline || !this_tsc_khz)) 1677 return; 1678 1679 local_irq_save(flags); 1680 1681 now = ktime_get(); 1682 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1683 1684 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1685 do_div(ns, this_tsc_khz); 1686 1687 if (likely(tscdeadline > guest_tsc) && 1688 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1689 expire = ktime_add_ns(now, ns); 1690 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1691 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1692 } else 1693 apic_timer_expired(apic, false); 1694 1695 local_irq_restore(flags); 1696 } 1697 1698 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1699 { 1700 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1701 } 1702 1703 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1704 { 1705 ktime_t now, remaining; 1706 u64 ns_remaining_old, ns_remaining_new; 1707 1708 apic->lapic_timer.period = 1709 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1710 limit_periodic_timer_frequency(apic); 1711 1712 now = ktime_get(); 1713 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1714 if (ktime_to_ns(remaining) < 0) 1715 remaining = 0; 1716 1717 ns_remaining_old = ktime_to_ns(remaining); 1718 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1719 apic->divide_count, old_divisor); 1720 1721 apic->lapic_timer.tscdeadline += 1722 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1723 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1724 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1725 } 1726 1727 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1728 { 1729 ktime_t now; 1730 u64 tscl = rdtsc(); 1731 s64 deadline; 1732 1733 now = ktime_get(); 1734 apic->lapic_timer.period = 1735 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1736 1737 if (!apic->lapic_timer.period) { 1738 apic->lapic_timer.tscdeadline = 0; 1739 return false; 1740 } 1741 1742 limit_periodic_timer_frequency(apic); 1743 deadline = apic->lapic_timer.period; 1744 1745 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1746 if (unlikely(count_reg != APIC_TMICT)) { 1747 deadline = tmict_to_ns(apic, 1748 kvm_lapic_get_reg(apic, count_reg)); 1749 if (unlikely(deadline <= 0)) 1750 deadline = apic->lapic_timer.period; 1751 else if (unlikely(deadline > apic->lapic_timer.period)) { 1752 pr_info_ratelimited( 1753 "kvm: vcpu %i: requested lapic timer restore with " 1754 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1755 "Using initial count to start timer.\n", 1756 apic->vcpu->vcpu_id, 1757 count_reg, 1758 kvm_lapic_get_reg(apic, count_reg), 1759 deadline, apic->lapic_timer.period); 1760 kvm_lapic_set_reg(apic, count_reg, 0); 1761 deadline = apic->lapic_timer.period; 1762 } 1763 } 1764 } 1765 1766 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1767 nsec_to_cycles(apic->vcpu, deadline); 1768 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1769 1770 return true; 1771 } 1772 1773 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1774 { 1775 ktime_t now = ktime_get(); 1776 u64 tscl = rdtsc(); 1777 ktime_t delta; 1778 1779 /* 1780 * Synchronize both deadlines to the same time source or 1781 * differences in the periods (caused by differences in the 1782 * underlying clocks or numerical approximation errors) will 1783 * cause the two to drift apart over time as the errors 1784 * accumulate. 1785 */ 1786 apic->lapic_timer.target_expiration = 1787 ktime_add_ns(apic->lapic_timer.target_expiration, 1788 apic->lapic_timer.period); 1789 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1790 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1791 nsec_to_cycles(apic->vcpu, delta); 1792 } 1793 1794 static void start_sw_period(struct kvm_lapic *apic) 1795 { 1796 if (!apic->lapic_timer.period) 1797 return; 1798 1799 if (ktime_after(ktime_get(), 1800 apic->lapic_timer.target_expiration)) { 1801 apic_timer_expired(apic, false); 1802 1803 if (apic_lvtt_oneshot(apic)) 1804 return; 1805 1806 advance_periodic_target_expiration(apic); 1807 } 1808 1809 hrtimer_start(&apic->lapic_timer.timer, 1810 apic->lapic_timer.target_expiration, 1811 HRTIMER_MODE_ABS_HARD); 1812 } 1813 1814 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1815 { 1816 if (!lapic_in_kernel(vcpu)) 1817 return false; 1818 1819 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1820 } 1821 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1822 1823 static void cancel_hv_timer(struct kvm_lapic *apic) 1824 { 1825 WARN_ON(preemptible()); 1826 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1827 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 1828 apic->lapic_timer.hv_timer_in_use = false; 1829 } 1830 1831 static bool start_hv_timer(struct kvm_lapic *apic) 1832 { 1833 struct kvm_timer *ktimer = &apic->lapic_timer; 1834 struct kvm_vcpu *vcpu = apic->vcpu; 1835 bool expired; 1836 1837 WARN_ON(preemptible()); 1838 if (!kvm_can_use_hv_timer(vcpu)) 1839 return false; 1840 1841 if (!ktimer->tscdeadline) 1842 return false; 1843 1844 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 1845 return false; 1846 1847 ktimer->hv_timer_in_use = true; 1848 hrtimer_cancel(&ktimer->timer); 1849 1850 /* 1851 * To simplify handling the periodic timer, leave the hv timer running 1852 * even if the deadline timer has expired, i.e. rely on the resulting 1853 * VM-Exit to recompute the periodic timer's target expiration. 1854 */ 1855 if (!apic_lvtt_period(apic)) { 1856 /* 1857 * Cancel the hv timer if the sw timer fired while the hv timer 1858 * was being programmed, or if the hv timer itself expired. 1859 */ 1860 if (atomic_read(&ktimer->pending)) { 1861 cancel_hv_timer(apic); 1862 } else if (expired) { 1863 apic_timer_expired(apic, false); 1864 cancel_hv_timer(apic); 1865 } 1866 } 1867 1868 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1869 1870 return true; 1871 } 1872 1873 static void start_sw_timer(struct kvm_lapic *apic) 1874 { 1875 struct kvm_timer *ktimer = &apic->lapic_timer; 1876 1877 WARN_ON(preemptible()); 1878 if (apic->lapic_timer.hv_timer_in_use) 1879 cancel_hv_timer(apic); 1880 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1881 return; 1882 1883 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1884 start_sw_period(apic); 1885 else if (apic_lvtt_tscdeadline(apic)) 1886 start_sw_tscdeadline(apic); 1887 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1888 } 1889 1890 static void restart_apic_timer(struct kvm_lapic *apic) 1891 { 1892 preempt_disable(); 1893 1894 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1895 goto out; 1896 1897 if (!start_hv_timer(apic)) 1898 start_sw_timer(apic); 1899 out: 1900 preempt_enable(); 1901 } 1902 1903 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1904 { 1905 struct kvm_lapic *apic = vcpu->arch.apic; 1906 1907 preempt_disable(); 1908 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1909 if (!apic->lapic_timer.hv_timer_in_use) 1910 goto out; 1911 WARN_ON(rcuwait_active(&vcpu->wait)); 1912 cancel_hv_timer(apic); 1913 apic_timer_expired(apic, false); 1914 1915 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1916 advance_periodic_target_expiration(apic); 1917 restart_apic_timer(apic); 1918 } 1919 out: 1920 preempt_enable(); 1921 } 1922 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1923 1924 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1925 { 1926 restart_apic_timer(vcpu->arch.apic); 1927 } 1928 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1929 1930 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1931 { 1932 struct kvm_lapic *apic = vcpu->arch.apic; 1933 1934 preempt_disable(); 1935 /* Possibly the TSC deadline timer is not enabled yet */ 1936 if (apic->lapic_timer.hv_timer_in_use) 1937 start_sw_timer(apic); 1938 preempt_enable(); 1939 } 1940 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1941 1942 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1943 { 1944 struct kvm_lapic *apic = vcpu->arch.apic; 1945 1946 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1947 restart_apic_timer(apic); 1948 } 1949 1950 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 1951 { 1952 atomic_set(&apic->lapic_timer.pending, 0); 1953 1954 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1955 && !set_target_expiration(apic, count_reg)) 1956 return; 1957 1958 restart_apic_timer(apic); 1959 } 1960 1961 static void start_apic_timer(struct kvm_lapic *apic) 1962 { 1963 __start_apic_timer(apic, APIC_TMICT); 1964 } 1965 1966 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1967 { 1968 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1969 1970 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1971 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1972 if (lvt0_in_nmi_mode) { 1973 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1974 } else 1975 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1976 } 1977 } 1978 1979 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1980 { 1981 int ret = 0; 1982 1983 trace_kvm_apic_write(reg, val); 1984 1985 switch (reg) { 1986 case APIC_ID: /* Local APIC ID */ 1987 if (!apic_x2apic_mode(apic)) 1988 kvm_apic_set_xapic_id(apic, val >> 24); 1989 else 1990 ret = 1; 1991 break; 1992 1993 case APIC_TASKPRI: 1994 report_tpr_access(apic, true); 1995 apic_set_tpr(apic, val & 0xff); 1996 break; 1997 1998 case APIC_EOI: 1999 apic_set_eoi(apic); 2000 break; 2001 2002 case APIC_LDR: 2003 if (!apic_x2apic_mode(apic)) 2004 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2005 else 2006 ret = 1; 2007 break; 2008 2009 case APIC_DFR: 2010 if (!apic_x2apic_mode(apic)) 2011 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2012 else 2013 ret = 1; 2014 break; 2015 2016 case APIC_SPIV: { 2017 u32 mask = 0x3ff; 2018 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2019 mask |= APIC_SPIV_DIRECTED_EOI; 2020 apic_set_spiv(apic, val & mask); 2021 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2022 int i; 2023 u32 lvt_val; 2024 2025 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2026 lvt_val = kvm_lapic_get_reg(apic, 2027 APIC_LVTT + 0x10 * i); 2028 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2029 lvt_val | APIC_LVT_MASKED); 2030 } 2031 apic_update_lvtt(apic); 2032 atomic_set(&apic->lapic_timer.pending, 0); 2033 2034 } 2035 break; 2036 } 2037 case APIC_ICR: 2038 /* No delay here, so we always clear the pending bit */ 2039 val &= ~(1 << 12); 2040 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2041 kvm_lapic_set_reg(apic, APIC_ICR, val); 2042 break; 2043 2044 case APIC_ICR2: 2045 if (!apic_x2apic_mode(apic)) 2046 val &= 0xff000000; 2047 kvm_lapic_set_reg(apic, APIC_ICR2, val); 2048 break; 2049 2050 case APIC_LVT0: 2051 apic_manage_nmi_watchdog(apic, val); 2052 fallthrough; 2053 case APIC_LVTTHMR: 2054 case APIC_LVTPC: 2055 case APIC_LVT1: 2056 case APIC_LVTERR: { 2057 /* TODO: Check vector */ 2058 size_t size; 2059 u32 index; 2060 2061 if (!kvm_apic_sw_enabled(apic)) 2062 val |= APIC_LVT_MASKED; 2063 size = ARRAY_SIZE(apic_lvt_mask); 2064 index = array_index_nospec( 2065 (reg - APIC_LVTT) >> 4, size); 2066 val &= apic_lvt_mask[index]; 2067 kvm_lapic_set_reg(apic, reg, val); 2068 break; 2069 } 2070 2071 case APIC_LVTT: 2072 if (!kvm_apic_sw_enabled(apic)) 2073 val |= APIC_LVT_MASKED; 2074 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2075 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2076 apic_update_lvtt(apic); 2077 break; 2078 2079 case APIC_TMICT: 2080 if (apic_lvtt_tscdeadline(apic)) 2081 break; 2082 2083 hrtimer_cancel(&apic->lapic_timer.timer); 2084 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2085 start_apic_timer(apic); 2086 break; 2087 2088 case APIC_TDCR: { 2089 uint32_t old_divisor = apic->divide_count; 2090 2091 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2092 update_divide_count(apic); 2093 if (apic->divide_count != old_divisor && 2094 apic->lapic_timer.period) { 2095 hrtimer_cancel(&apic->lapic_timer.timer); 2096 update_target_expiration(apic, old_divisor); 2097 restart_apic_timer(apic); 2098 } 2099 break; 2100 } 2101 case APIC_ESR: 2102 if (apic_x2apic_mode(apic) && val != 0) 2103 ret = 1; 2104 break; 2105 2106 case APIC_SELF_IPI: 2107 if (apic_x2apic_mode(apic)) { 2108 kvm_lapic_reg_write(apic, APIC_ICR, 2109 APIC_DEST_SELF | (val & APIC_VECTOR_MASK)); 2110 } else 2111 ret = 1; 2112 break; 2113 default: 2114 ret = 1; 2115 break; 2116 } 2117 2118 kvm_recalculate_apic_map(apic->vcpu->kvm); 2119 2120 return ret; 2121 } 2122 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2123 2124 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2125 gpa_t address, int len, const void *data) 2126 { 2127 struct kvm_lapic *apic = to_lapic(this); 2128 unsigned int offset = address - apic->base_address; 2129 u32 val; 2130 2131 if (!apic_mmio_in_range(apic, address)) 2132 return -EOPNOTSUPP; 2133 2134 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2135 if (!kvm_check_has_quirk(vcpu->kvm, 2136 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2137 return -EOPNOTSUPP; 2138 2139 return 0; 2140 } 2141 2142 /* 2143 * APIC register must be aligned on 128-bits boundary. 2144 * 32/64/128 bits registers must be accessed thru 32 bits. 2145 * Refer SDM 8.4.1 2146 */ 2147 if (len != 4 || (offset & 0xf)) 2148 return 0; 2149 2150 val = *(u32*)data; 2151 2152 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2153 2154 return 0; 2155 } 2156 2157 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2158 { 2159 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2160 } 2161 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2162 2163 /* emulate APIC access in a trap manner */ 2164 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2165 { 2166 u32 val = 0; 2167 2168 /* hw has done the conditional check and inst decode */ 2169 offset &= 0xff0; 2170 2171 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2172 2173 /* TODO: optimize to just emulate side effect w/o one more write */ 2174 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2175 } 2176 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2177 2178 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2179 { 2180 struct kvm_lapic *apic = vcpu->arch.apic; 2181 2182 if (!vcpu->arch.apic) 2183 return; 2184 2185 hrtimer_cancel(&apic->lapic_timer.timer); 2186 2187 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2188 static_branch_slow_dec_deferred(&apic_hw_disabled); 2189 2190 if (!apic->sw_enabled) 2191 static_branch_slow_dec_deferred(&apic_sw_disabled); 2192 2193 if (apic->regs) 2194 free_page((unsigned long)apic->regs); 2195 2196 kfree(apic); 2197 } 2198 2199 /* 2200 *---------------------------------------------------------------------- 2201 * LAPIC interface 2202 *---------------------------------------------------------------------- 2203 */ 2204 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2205 { 2206 struct kvm_lapic *apic = vcpu->arch.apic; 2207 2208 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2209 return 0; 2210 2211 return apic->lapic_timer.tscdeadline; 2212 } 2213 2214 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2215 { 2216 struct kvm_lapic *apic = vcpu->arch.apic; 2217 2218 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2219 return; 2220 2221 hrtimer_cancel(&apic->lapic_timer.timer); 2222 apic->lapic_timer.tscdeadline = data; 2223 start_apic_timer(apic); 2224 } 2225 2226 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2227 { 2228 struct kvm_lapic *apic = vcpu->arch.apic; 2229 2230 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2231 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2232 } 2233 2234 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2235 { 2236 u64 tpr; 2237 2238 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2239 2240 return (tpr & 0xf0) >> 4; 2241 } 2242 2243 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2244 { 2245 u64 old_value = vcpu->arch.apic_base; 2246 struct kvm_lapic *apic = vcpu->arch.apic; 2247 2248 if (!apic) 2249 value |= MSR_IA32_APICBASE_BSP; 2250 2251 vcpu->arch.apic_base = value; 2252 2253 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2254 kvm_update_cpuid_runtime(vcpu); 2255 2256 if (!apic) 2257 return; 2258 2259 /* update jump label if enable bit changes */ 2260 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2261 if (value & MSR_IA32_APICBASE_ENABLE) { 2262 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2263 static_branch_slow_dec_deferred(&apic_hw_disabled); 2264 } else { 2265 static_branch_inc(&apic_hw_disabled.key); 2266 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2267 } 2268 } 2269 2270 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2271 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2272 2273 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2274 static_call(kvm_x86_set_virtual_apic_mode)(vcpu); 2275 2276 apic->base_address = apic->vcpu->arch.apic_base & 2277 MSR_IA32_APICBASE_BASE; 2278 2279 if ((value & MSR_IA32_APICBASE_ENABLE) && 2280 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2281 pr_warn_once("APIC base relocation is unsupported by KVM"); 2282 } 2283 2284 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2285 { 2286 struct kvm_lapic *apic = vcpu->arch.apic; 2287 2288 if (vcpu->arch.apicv_active) { 2289 /* irr_pending is always true when apicv is activated. */ 2290 apic->irr_pending = true; 2291 apic->isr_count = 1; 2292 } else { 2293 apic->irr_pending = (apic_search_irr(apic) != -1); 2294 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2295 } 2296 } 2297 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2298 2299 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2300 { 2301 struct kvm_lapic *apic = vcpu->arch.apic; 2302 int i; 2303 2304 if (!apic) 2305 return; 2306 2307 /* Stop the timer in case it's a reset to an active apic */ 2308 hrtimer_cancel(&apic->lapic_timer.timer); 2309 2310 if (!init_event) { 2311 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2312 MSR_IA32_APICBASE_ENABLE); 2313 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2314 } 2315 kvm_apic_set_version(apic->vcpu); 2316 2317 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2318 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2319 apic_update_lvtt(apic); 2320 if (kvm_vcpu_is_reset_bsp(vcpu) && 2321 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2322 kvm_lapic_set_reg(apic, APIC_LVT0, 2323 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2324 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2325 2326 kvm_apic_set_dfr(apic, 0xffffffffU); 2327 apic_set_spiv(apic, 0xff); 2328 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2329 if (!apic_x2apic_mode(apic)) 2330 kvm_apic_set_ldr(apic, 0); 2331 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2332 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2333 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2334 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2335 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2336 for (i = 0; i < 8; i++) { 2337 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2338 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2339 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2340 } 2341 kvm_apic_update_apicv(vcpu); 2342 apic->highest_isr_cache = -1; 2343 update_divide_count(apic); 2344 atomic_set(&apic->lapic_timer.pending, 0); 2345 if (kvm_vcpu_is_bsp(vcpu)) 2346 kvm_lapic_set_base(vcpu, 2347 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2348 vcpu->arch.pv_eoi.msr_val = 0; 2349 apic_update_ppr(apic); 2350 if (vcpu->arch.apicv_active) { 2351 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2352 static_call(kvm_x86_hwapic_irr_update)(vcpu, -1); 2353 static_call(kvm_x86_hwapic_isr_update)(vcpu, -1); 2354 } 2355 2356 vcpu->arch.apic_arb_prio = 0; 2357 vcpu->arch.apic_attention = 0; 2358 2359 kvm_recalculate_apic_map(vcpu->kvm); 2360 } 2361 2362 /* 2363 *---------------------------------------------------------------------- 2364 * timer interface 2365 *---------------------------------------------------------------------- 2366 */ 2367 2368 static bool lapic_is_periodic(struct kvm_lapic *apic) 2369 { 2370 return apic_lvtt_period(apic); 2371 } 2372 2373 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2374 { 2375 struct kvm_lapic *apic = vcpu->arch.apic; 2376 2377 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2378 return atomic_read(&apic->lapic_timer.pending); 2379 2380 return 0; 2381 } 2382 2383 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2384 { 2385 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2386 int vector, mode, trig_mode; 2387 2388 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2389 vector = reg & APIC_VECTOR_MASK; 2390 mode = reg & APIC_MODE_MASK; 2391 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2392 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2393 NULL); 2394 } 2395 return 0; 2396 } 2397 2398 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2399 { 2400 struct kvm_lapic *apic = vcpu->arch.apic; 2401 2402 if (apic) 2403 kvm_apic_local_deliver(apic, APIC_LVT0); 2404 } 2405 2406 static const struct kvm_io_device_ops apic_mmio_ops = { 2407 .read = apic_mmio_read, 2408 .write = apic_mmio_write, 2409 }; 2410 2411 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2412 { 2413 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2414 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2415 2416 apic_timer_expired(apic, true); 2417 2418 if (lapic_is_periodic(apic)) { 2419 advance_periodic_target_expiration(apic); 2420 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2421 return HRTIMER_RESTART; 2422 } else 2423 return HRTIMER_NORESTART; 2424 } 2425 2426 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2427 { 2428 struct kvm_lapic *apic; 2429 2430 ASSERT(vcpu != NULL); 2431 2432 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2433 if (!apic) 2434 goto nomem; 2435 2436 vcpu->arch.apic = apic; 2437 2438 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2439 if (!apic->regs) { 2440 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2441 vcpu->vcpu_id); 2442 goto nomem_free_apic; 2443 } 2444 apic->vcpu = vcpu; 2445 2446 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2447 HRTIMER_MODE_ABS_HARD); 2448 apic->lapic_timer.timer.function = apic_timer_fn; 2449 if (timer_advance_ns == -1) { 2450 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2451 lapic_timer_advance_dynamic = true; 2452 } else { 2453 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2454 lapic_timer_advance_dynamic = false; 2455 } 2456 2457 /* 2458 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2459 * thinking that APIC state has changed. 2460 */ 2461 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2462 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2463 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2464 2465 return 0; 2466 nomem_free_apic: 2467 kfree(apic); 2468 vcpu->arch.apic = NULL; 2469 nomem: 2470 return -ENOMEM; 2471 } 2472 2473 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2474 { 2475 struct kvm_lapic *apic = vcpu->arch.apic; 2476 u32 ppr; 2477 2478 if (!kvm_apic_present(vcpu)) 2479 return -1; 2480 2481 __apic_update_ppr(apic, &ppr); 2482 return apic_has_interrupt_for_ppr(apic, ppr); 2483 } 2484 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2485 2486 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2487 { 2488 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2489 2490 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2491 return 1; 2492 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2493 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2494 return 1; 2495 return 0; 2496 } 2497 2498 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2499 { 2500 struct kvm_lapic *apic = vcpu->arch.apic; 2501 2502 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2503 kvm_apic_inject_pending_timer_irqs(apic); 2504 atomic_set(&apic->lapic_timer.pending, 0); 2505 } 2506 } 2507 2508 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2509 { 2510 int vector = kvm_apic_has_interrupt(vcpu); 2511 struct kvm_lapic *apic = vcpu->arch.apic; 2512 u32 ppr; 2513 2514 if (vector == -1) 2515 return -1; 2516 2517 /* 2518 * We get here even with APIC virtualization enabled, if doing 2519 * nested virtualization and L1 runs with the "acknowledge interrupt 2520 * on exit" mode. Then we cannot inject the interrupt via RVI, 2521 * because the process would deliver it through the IDT. 2522 */ 2523 2524 apic_clear_irr(vector, apic); 2525 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2526 /* 2527 * For auto-EOI interrupts, there might be another pending 2528 * interrupt above PPR, so check whether to raise another 2529 * KVM_REQ_EVENT. 2530 */ 2531 apic_update_ppr(apic); 2532 } else { 2533 /* 2534 * For normal interrupts, PPR has been raised and there cannot 2535 * be a higher-priority pending interrupt---except if there was 2536 * a concurrent interrupt injection, but that would have 2537 * triggered KVM_REQ_EVENT already. 2538 */ 2539 apic_set_isr(vector, apic); 2540 __apic_update_ppr(apic, &ppr); 2541 } 2542 2543 return vector; 2544 } 2545 2546 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2547 struct kvm_lapic_state *s, bool set) 2548 { 2549 if (apic_x2apic_mode(vcpu->arch.apic)) { 2550 u32 *id = (u32 *)(s->regs + APIC_ID); 2551 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2552 2553 if (vcpu->kvm->arch.x2apic_format) { 2554 if (*id != vcpu->vcpu_id) 2555 return -EINVAL; 2556 } else { 2557 if (set) 2558 *id >>= 24; 2559 else 2560 *id <<= 24; 2561 } 2562 2563 /* In x2APIC mode, the LDR is fixed and based on the id */ 2564 if (set) 2565 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2566 } 2567 2568 return 0; 2569 } 2570 2571 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2572 { 2573 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2574 2575 /* 2576 * Get calculated timer current count for remaining timer period (if 2577 * any) and store it in the returned register set. 2578 */ 2579 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2580 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2581 2582 return kvm_apic_state_fixup(vcpu, s, false); 2583 } 2584 2585 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2586 { 2587 struct kvm_lapic *apic = vcpu->arch.apic; 2588 int r; 2589 2590 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2591 /* set SPIV separately to get count of SW disabled APICs right */ 2592 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2593 2594 r = kvm_apic_state_fixup(vcpu, s, true); 2595 if (r) { 2596 kvm_recalculate_apic_map(vcpu->kvm); 2597 return r; 2598 } 2599 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2600 2601 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2602 kvm_recalculate_apic_map(vcpu->kvm); 2603 kvm_apic_set_version(vcpu); 2604 2605 apic_update_ppr(apic); 2606 hrtimer_cancel(&apic->lapic_timer.timer); 2607 apic->lapic_timer.expired_tscdeadline = 0; 2608 apic_update_lvtt(apic); 2609 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2610 update_divide_count(apic); 2611 __start_apic_timer(apic, APIC_TMCCT); 2612 kvm_apic_update_apicv(vcpu); 2613 apic->highest_isr_cache = -1; 2614 if (vcpu->arch.apicv_active) { 2615 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2616 static_call(kvm_x86_hwapic_irr_update)(vcpu, 2617 apic_find_highest_irr(apic)); 2618 static_call(kvm_x86_hwapic_isr_update)(vcpu, 2619 apic_find_highest_isr(apic)); 2620 } 2621 kvm_make_request(KVM_REQ_EVENT, vcpu); 2622 if (ioapic_in_kernel(vcpu->kvm)) 2623 kvm_rtc_eoi_tracking_restore_one(vcpu); 2624 2625 vcpu->arch.apic_arb_prio = 0; 2626 2627 return 0; 2628 } 2629 2630 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2631 { 2632 struct hrtimer *timer; 2633 2634 if (!lapic_in_kernel(vcpu) || 2635 kvm_can_post_timer_interrupt(vcpu)) 2636 return; 2637 2638 timer = &vcpu->arch.apic->lapic_timer.timer; 2639 if (hrtimer_cancel(timer)) 2640 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2641 } 2642 2643 /* 2644 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2645 * 2646 * Detect whether guest triggered PV EOI since the 2647 * last entry. If yes, set EOI on guests's behalf. 2648 * Clear PV EOI in guest memory in any case. 2649 */ 2650 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2651 struct kvm_lapic *apic) 2652 { 2653 bool pending; 2654 int vector; 2655 /* 2656 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2657 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2658 * 2659 * KVM_APIC_PV_EOI_PENDING is unset: 2660 * -> host disabled PV EOI. 2661 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2662 * -> host enabled PV EOI, guest did not execute EOI yet. 2663 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2664 * -> host enabled PV EOI, guest executed EOI. 2665 */ 2666 BUG_ON(!pv_eoi_enabled(vcpu)); 2667 pending = pv_eoi_get_pending(vcpu); 2668 /* 2669 * Clear pending bit in any case: it will be set again on vmentry. 2670 * While this might not be ideal from performance point of view, 2671 * this makes sure pv eoi is only enabled when we know it's safe. 2672 */ 2673 pv_eoi_clr_pending(vcpu); 2674 if (pending) 2675 return; 2676 vector = apic_set_eoi(apic); 2677 trace_kvm_pv_eoi(apic, vector); 2678 } 2679 2680 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2681 { 2682 u32 data; 2683 2684 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2685 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2686 2687 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2688 return; 2689 2690 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2691 sizeof(u32))) 2692 return; 2693 2694 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2695 } 2696 2697 /* 2698 * apic_sync_pv_eoi_to_guest - called before vmentry 2699 * 2700 * Detect whether it's safe to enable PV EOI and 2701 * if yes do so. 2702 */ 2703 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2704 struct kvm_lapic *apic) 2705 { 2706 if (!pv_eoi_enabled(vcpu) || 2707 /* IRR set or many bits in ISR: could be nested. */ 2708 apic->irr_pending || 2709 /* Cache not set: could be safe but we don't bother. */ 2710 apic->highest_isr_cache == -1 || 2711 /* Need EOI to update ioapic. */ 2712 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2713 /* 2714 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2715 * so we need not do anything here. 2716 */ 2717 return; 2718 } 2719 2720 pv_eoi_set_pending(apic->vcpu); 2721 } 2722 2723 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2724 { 2725 u32 data, tpr; 2726 int max_irr, max_isr; 2727 struct kvm_lapic *apic = vcpu->arch.apic; 2728 2729 apic_sync_pv_eoi_to_guest(vcpu, apic); 2730 2731 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2732 return; 2733 2734 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2735 max_irr = apic_find_highest_irr(apic); 2736 if (max_irr < 0) 2737 max_irr = 0; 2738 max_isr = apic_find_highest_isr(apic); 2739 if (max_isr < 0) 2740 max_isr = 0; 2741 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2742 2743 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2744 sizeof(u32)); 2745 } 2746 2747 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2748 { 2749 if (vapic_addr) { 2750 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2751 &vcpu->arch.apic->vapic_cache, 2752 vapic_addr, sizeof(u32))) 2753 return -EINVAL; 2754 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2755 } else { 2756 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2757 } 2758 2759 vcpu->arch.apic->vapic_addr = vapic_addr; 2760 return 0; 2761 } 2762 2763 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2764 { 2765 struct kvm_lapic *apic = vcpu->arch.apic; 2766 u32 reg = (msr - APIC_BASE_MSR) << 4; 2767 2768 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2769 return 1; 2770 2771 if (reg == APIC_ICR2) 2772 return 1; 2773 2774 /* if this is ICR write vector before command */ 2775 if (reg == APIC_ICR) 2776 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2777 return kvm_lapic_reg_write(apic, reg, (u32)data); 2778 } 2779 2780 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2781 { 2782 struct kvm_lapic *apic = vcpu->arch.apic; 2783 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2784 2785 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2786 return 1; 2787 2788 if (reg == APIC_DFR || reg == APIC_ICR2) 2789 return 1; 2790 2791 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2792 return 1; 2793 if (reg == APIC_ICR) 2794 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2795 2796 *data = (((u64)high) << 32) | low; 2797 2798 return 0; 2799 } 2800 2801 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2802 { 2803 struct kvm_lapic *apic = vcpu->arch.apic; 2804 2805 if (!lapic_in_kernel(vcpu)) 2806 return 1; 2807 2808 /* if this is ICR write vector before command */ 2809 if (reg == APIC_ICR) 2810 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2811 return kvm_lapic_reg_write(apic, reg, (u32)data); 2812 } 2813 2814 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2815 { 2816 struct kvm_lapic *apic = vcpu->arch.apic; 2817 u32 low, high = 0; 2818 2819 if (!lapic_in_kernel(vcpu)) 2820 return 1; 2821 2822 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2823 return 1; 2824 if (reg == APIC_ICR) 2825 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2826 2827 *data = (((u64)high) << 32) | low; 2828 2829 return 0; 2830 } 2831 2832 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2833 { 2834 u64 addr = data & ~KVM_MSR_ENABLED; 2835 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2836 unsigned long new_len; 2837 2838 if (!IS_ALIGNED(addr, 4)) 2839 return 1; 2840 2841 vcpu->arch.pv_eoi.msr_val = data; 2842 if (!pv_eoi_enabled(vcpu)) 2843 return 0; 2844 2845 if (addr == ghc->gpa && len <= ghc->len) 2846 new_len = ghc->len; 2847 else 2848 new_len = len; 2849 2850 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2851 } 2852 2853 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2854 { 2855 struct kvm_lapic *apic = vcpu->arch.apic; 2856 u8 sipi_vector; 2857 int r; 2858 unsigned long pe; 2859 2860 if (!lapic_in_kernel(vcpu)) 2861 return; 2862 2863 /* 2864 * Read pending events before calling the check_events 2865 * callback. 2866 */ 2867 pe = smp_load_acquire(&apic->pending_events); 2868 if (!pe) 2869 return; 2870 2871 if (is_guest_mode(vcpu)) { 2872 r = kvm_x86_ops.nested_ops->check_events(vcpu); 2873 if (r < 0) 2874 return; 2875 /* 2876 * If an event has happened and caused a vmexit, 2877 * we know INITs are latched and therefore 2878 * we will not incorrectly deliver an APIC 2879 * event instead of a vmexit. 2880 */ 2881 } 2882 2883 /* 2884 * INITs are latched while CPU is in specific states 2885 * (SMM, VMX root mode, SVM with GIF=0). 2886 * Because a CPU cannot be in these states immediately 2887 * after it has processed an INIT signal (and thus in 2888 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2889 * and leave the INIT pending. 2890 */ 2891 if (kvm_vcpu_latch_init(vcpu)) { 2892 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2893 if (test_bit(KVM_APIC_SIPI, &pe)) 2894 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2895 return; 2896 } 2897 2898 if (test_bit(KVM_APIC_INIT, &pe)) { 2899 clear_bit(KVM_APIC_INIT, &apic->pending_events); 2900 kvm_vcpu_reset(vcpu, true); 2901 if (kvm_vcpu_is_bsp(apic->vcpu)) 2902 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2903 else 2904 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2905 } 2906 if (test_bit(KVM_APIC_SIPI, &pe)) { 2907 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2908 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2909 /* evaluate pending_events before reading the vector */ 2910 smp_rmb(); 2911 sipi_vector = apic->sipi_vector; 2912 kvm_x86_ops.vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2913 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2914 } 2915 } 2916 } 2917 2918 void kvm_lapic_exit(void) 2919 { 2920 static_key_deferred_flush(&apic_hw_disabled); 2921 static_key_deferred_flush(&apic_sw_disabled); 2922 } 2923