1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline int apic_test_vector(int vec, void *bitmap) 72 { 73 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 74 } 75 76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 77 { 78 struct kvm_lapic *apic = vcpu->arch.apic; 79 80 return apic_test_vector(vector, apic->regs + APIC_ISR) || 81 apic_test_vector(vector, apic->regs + APIC_IRR); 82 } 83 84 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 85 { 86 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 87 } 88 89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 90 { 91 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 92 } 93 94 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 95 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 96 97 static inline int apic_enabled(struct kvm_lapic *apic) 98 { 99 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 100 } 101 102 #define LVT_MASK \ 103 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 104 105 #define LINT_MASK \ 106 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 107 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 108 109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 110 { 111 return apic->vcpu->vcpu_id; 112 } 113 114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 115 { 116 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 117 } 118 119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 120 { 121 return kvm_x86_ops.set_hv_timer 122 && !(kvm_mwait_in_guest(vcpu->kvm) || 123 kvm_can_post_timer_interrupt(vcpu)); 124 } 125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 126 127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 130 } 131 132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 134 switch (map->mode) { 135 case KVM_APIC_MODE_X2APIC: { 136 u32 offset = (dest_id >> 16) * 16; 137 u32 max_apic_id = map->max_apic_id; 138 139 if (offset <= max_apic_id) { 140 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 141 142 offset = array_index_nospec(offset, map->max_apic_id + 1); 143 *cluster = &map->phys_map[offset]; 144 *mask = dest_id & (0xffff >> (16 - cluster_size)); 145 } else { 146 *mask = 0; 147 } 148 149 return true; 150 } 151 case KVM_APIC_MODE_XAPIC_FLAT: 152 *cluster = map->xapic_flat_map; 153 *mask = dest_id & 0xff; 154 return true; 155 case KVM_APIC_MODE_XAPIC_CLUSTER: 156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 157 *mask = dest_id & 0xf; 158 return true; 159 default: 160 /* Not optimized. */ 161 return false; 162 } 163 } 164 165 static void kvm_apic_map_free(struct rcu_head *rcu) 166 { 167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 168 169 kvfree(map); 170 } 171 172 /* 173 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 174 * 175 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 176 * apic_map_lock_held. 177 */ 178 enum { 179 CLEAN, 180 UPDATE_IN_PROGRESS, 181 DIRTY 182 }; 183 184 void kvm_recalculate_apic_map(struct kvm *kvm) 185 { 186 struct kvm_apic_map *new, *old = NULL; 187 struct kvm_vcpu *vcpu; 188 int i; 189 u32 max_id = 255; /* enough space for any xAPIC ID */ 190 191 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 192 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 193 return; 194 195 mutex_lock(&kvm->arch.apic_map_lock); 196 /* 197 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 198 * (if clean) or the APIC registers (if dirty). 199 */ 200 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 201 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 202 /* Someone else has updated the map. */ 203 mutex_unlock(&kvm->arch.apic_map_lock); 204 return; 205 } 206 207 kvm_for_each_vcpu(i, vcpu, kvm) 208 if (kvm_apic_present(vcpu)) 209 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 210 211 new = kvzalloc(sizeof(struct kvm_apic_map) + 212 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 213 GFP_KERNEL_ACCOUNT); 214 215 if (!new) 216 goto out; 217 218 new->max_apic_id = max_id; 219 220 kvm_for_each_vcpu(i, vcpu, kvm) { 221 struct kvm_lapic *apic = vcpu->arch.apic; 222 struct kvm_lapic **cluster; 223 u16 mask; 224 u32 ldr; 225 u8 xapic_id; 226 u32 x2apic_id; 227 228 if (!kvm_apic_present(vcpu)) 229 continue; 230 231 xapic_id = kvm_xapic_id(apic); 232 x2apic_id = kvm_x2apic_id(apic); 233 234 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 235 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 236 x2apic_id <= new->max_apic_id) 237 new->phys_map[x2apic_id] = apic; 238 /* 239 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 240 * prevent them from masking VCPUs with APIC ID <= 0xff. 241 */ 242 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 243 new->phys_map[xapic_id] = apic; 244 245 if (!kvm_apic_sw_enabled(apic)) 246 continue; 247 248 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 249 250 if (apic_x2apic_mode(apic)) { 251 new->mode |= KVM_APIC_MODE_X2APIC; 252 } else if (ldr) { 253 ldr = GET_APIC_LOGICAL_ID(ldr); 254 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 255 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 256 else 257 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 258 } 259 260 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 261 continue; 262 263 if (mask) 264 cluster[ffs(mask) - 1] = apic; 265 } 266 out: 267 old = rcu_dereference_protected(kvm->arch.apic_map, 268 lockdep_is_held(&kvm->arch.apic_map_lock)); 269 rcu_assign_pointer(kvm->arch.apic_map, new); 270 /* 271 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 272 * If another update has come in, leave it DIRTY. 273 */ 274 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 275 UPDATE_IN_PROGRESS, CLEAN); 276 mutex_unlock(&kvm->arch.apic_map_lock); 277 278 if (old) 279 call_rcu(&old->rcu, kvm_apic_map_free); 280 281 kvm_make_scan_ioapic_request(kvm); 282 } 283 284 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 285 { 286 bool enabled = val & APIC_SPIV_APIC_ENABLED; 287 288 kvm_lapic_set_reg(apic, APIC_SPIV, val); 289 290 if (enabled != apic->sw_enabled) { 291 apic->sw_enabled = enabled; 292 if (enabled) 293 static_branch_slow_dec_deferred(&apic_sw_disabled); 294 else 295 static_branch_inc(&apic_sw_disabled.key); 296 297 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 298 } 299 300 /* Check if there are APF page ready requests pending */ 301 if (enabled) 302 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 303 } 304 305 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 306 { 307 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 308 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 309 } 310 311 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 312 { 313 kvm_lapic_set_reg(apic, APIC_LDR, id); 314 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 315 } 316 317 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 318 { 319 kvm_lapic_set_reg(apic, APIC_DFR, val); 320 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 321 } 322 323 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 324 { 325 return ((id >> 4) << 16) | (1 << (id & 0xf)); 326 } 327 328 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 329 { 330 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 331 332 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 333 334 kvm_lapic_set_reg(apic, APIC_ID, id); 335 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 336 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 337 } 338 339 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 340 { 341 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 342 } 343 344 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 345 { 346 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 347 } 348 349 static inline int apic_lvtt_period(struct kvm_lapic *apic) 350 { 351 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 352 } 353 354 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 355 { 356 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 357 } 358 359 static inline int apic_lvt_nmi_mode(u32 lvt_val) 360 { 361 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 362 } 363 364 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 365 { 366 struct kvm_lapic *apic = vcpu->arch.apic; 367 u32 v = APIC_VERSION; 368 369 if (!lapic_in_kernel(vcpu)) 370 return; 371 372 /* 373 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 374 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 375 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 376 * version first and level-triggered interrupts never get EOIed in 377 * IOAPIC. 378 */ 379 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 380 !ioapic_in_kernel(vcpu->kvm)) 381 v |= APIC_LVR_DIRECTED_EOI; 382 kvm_lapic_set_reg(apic, APIC_LVR, v); 383 } 384 385 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 386 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 387 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 388 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 389 LINT_MASK, LINT_MASK, /* LVT0-1 */ 390 LVT_MASK /* LVTERR */ 391 }; 392 393 static int find_highest_vector(void *bitmap) 394 { 395 int vec; 396 u32 *reg; 397 398 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 399 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 400 reg = bitmap + REG_POS(vec); 401 if (*reg) 402 return __fls(*reg) + vec; 403 } 404 405 return -1; 406 } 407 408 static u8 count_vectors(void *bitmap) 409 { 410 int vec; 411 u32 *reg; 412 u8 count = 0; 413 414 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 415 reg = bitmap + REG_POS(vec); 416 count += hweight32(*reg); 417 } 418 419 return count; 420 } 421 422 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 423 { 424 u32 i, vec; 425 u32 pir_val, irr_val, prev_irr_val; 426 int max_updated_irr; 427 428 max_updated_irr = -1; 429 *max_irr = -1; 430 431 for (i = vec = 0; i <= 7; i++, vec += 32) { 432 pir_val = READ_ONCE(pir[i]); 433 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 434 if (pir_val) { 435 prev_irr_val = irr_val; 436 irr_val |= xchg(&pir[i], 0); 437 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 438 if (prev_irr_val != irr_val) { 439 max_updated_irr = 440 __fls(irr_val ^ prev_irr_val) + vec; 441 } 442 } 443 if (irr_val) 444 *max_irr = __fls(irr_val) + vec; 445 } 446 447 return ((max_updated_irr != -1) && 448 (max_updated_irr == *max_irr)); 449 } 450 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 451 452 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 453 { 454 struct kvm_lapic *apic = vcpu->arch.apic; 455 456 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 457 } 458 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 459 460 static inline int apic_search_irr(struct kvm_lapic *apic) 461 { 462 return find_highest_vector(apic->regs + APIC_IRR); 463 } 464 465 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 466 { 467 int result; 468 469 /* 470 * Note that irr_pending is just a hint. It will be always 471 * true with virtual interrupt delivery enabled. 472 */ 473 if (!apic->irr_pending) 474 return -1; 475 476 result = apic_search_irr(apic); 477 ASSERT(result == -1 || result >= 16); 478 479 return result; 480 } 481 482 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 483 { 484 struct kvm_vcpu *vcpu; 485 486 vcpu = apic->vcpu; 487 488 if (unlikely(vcpu->arch.apicv_active)) { 489 /* need to update RVI */ 490 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 491 static_call(kvm_x86_hwapic_irr_update)(vcpu, 492 apic_find_highest_irr(apic)); 493 } else { 494 apic->irr_pending = false; 495 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 496 if (apic_search_irr(apic) != -1) 497 apic->irr_pending = true; 498 } 499 } 500 501 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 502 { 503 apic_clear_irr(vec, vcpu->arch.apic); 504 } 505 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 506 507 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 508 { 509 struct kvm_vcpu *vcpu; 510 511 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 512 return; 513 514 vcpu = apic->vcpu; 515 516 /* 517 * With APIC virtualization enabled, all caching is disabled 518 * because the processor can modify ISR under the hood. Instead 519 * just set SVI. 520 */ 521 if (unlikely(vcpu->arch.apicv_active)) 522 static_call(kvm_x86_hwapic_isr_update)(vcpu, vec); 523 else { 524 ++apic->isr_count; 525 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 526 /* 527 * ISR (in service register) bit is set when injecting an interrupt. 528 * The highest vector is injected. Thus the latest bit set matches 529 * the highest bit in ISR. 530 */ 531 apic->highest_isr_cache = vec; 532 } 533 } 534 535 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 536 { 537 int result; 538 539 /* 540 * Note that isr_count is always 1, and highest_isr_cache 541 * is always -1, with APIC virtualization enabled. 542 */ 543 if (!apic->isr_count) 544 return -1; 545 if (likely(apic->highest_isr_cache != -1)) 546 return apic->highest_isr_cache; 547 548 result = find_highest_vector(apic->regs + APIC_ISR); 549 ASSERT(result == -1 || result >= 16); 550 551 return result; 552 } 553 554 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 555 { 556 struct kvm_vcpu *vcpu; 557 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 558 return; 559 560 vcpu = apic->vcpu; 561 562 /* 563 * We do get here for APIC virtualization enabled if the guest 564 * uses the Hyper-V APIC enlightenment. In this case we may need 565 * to trigger a new interrupt delivery by writing the SVI field; 566 * on the other hand isr_count and highest_isr_cache are unused 567 * and must be left alone. 568 */ 569 if (unlikely(vcpu->arch.apicv_active)) 570 static_call(kvm_x86_hwapic_isr_update)(vcpu, 571 apic_find_highest_isr(apic)); 572 else { 573 --apic->isr_count; 574 BUG_ON(apic->isr_count < 0); 575 apic->highest_isr_cache = -1; 576 } 577 } 578 579 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 580 { 581 /* This may race with setting of irr in __apic_accept_irq() and 582 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 583 * will cause vmexit immediately and the value will be recalculated 584 * on the next vmentry. 585 */ 586 return apic_find_highest_irr(vcpu->arch.apic); 587 } 588 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 589 590 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 591 int vector, int level, int trig_mode, 592 struct dest_map *dest_map); 593 594 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 595 struct dest_map *dest_map) 596 { 597 struct kvm_lapic *apic = vcpu->arch.apic; 598 599 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 600 irq->level, irq->trig_mode, dest_map); 601 } 602 603 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 604 struct kvm_lapic_irq *irq, u32 min) 605 { 606 int i, count = 0; 607 struct kvm_vcpu *vcpu; 608 609 if (min > map->max_apic_id) 610 return 0; 611 612 for_each_set_bit(i, ipi_bitmap, 613 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 614 if (map->phys_map[min + i]) { 615 vcpu = map->phys_map[min + i]->vcpu; 616 count += kvm_apic_set_irq(vcpu, irq, NULL); 617 } 618 } 619 620 return count; 621 } 622 623 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 624 unsigned long ipi_bitmap_high, u32 min, 625 unsigned long icr, int op_64_bit) 626 { 627 struct kvm_apic_map *map; 628 struct kvm_lapic_irq irq = {0}; 629 int cluster_size = op_64_bit ? 64 : 32; 630 int count; 631 632 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 633 return -KVM_EINVAL; 634 635 irq.vector = icr & APIC_VECTOR_MASK; 636 irq.delivery_mode = icr & APIC_MODE_MASK; 637 irq.level = (icr & APIC_INT_ASSERT) != 0; 638 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 639 640 rcu_read_lock(); 641 map = rcu_dereference(kvm->arch.apic_map); 642 643 count = -EOPNOTSUPP; 644 if (likely(map)) { 645 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 646 min += cluster_size; 647 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 648 } 649 650 rcu_read_unlock(); 651 return count; 652 } 653 654 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 655 { 656 657 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 658 sizeof(val)); 659 } 660 661 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 662 { 663 664 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 665 sizeof(*val)); 666 } 667 668 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 669 { 670 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 671 } 672 673 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 674 { 675 u8 val; 676 if (pv_eoi_get_user(vcpu, &val) < 0) { 677 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 678 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 679 return false; 680 } 681 return val & KVM_PV_EOI_ENABLED; 682 } 683 684 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 685 { 686 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 687 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 688 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 689 return; 690 } 691 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 692 } 693 694 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 695 { 696 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 697 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 698 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 699 return; 700 } 701 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 702 } 703 704 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 705 { 706 int highest_irr; 707 if (apic->vcpu->arch.apicv_active) 708 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 709 else 710 highest_irr = apic_find_highest_irr(apic); 711 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 712 return -1; 713 return highest_irr; 714 } 715 716 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 717 { 718 u32 tpr, isrv, ppr, old_ppr; 719 int isr; 720 721 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 722 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 723 isr = apic_find_highest_isr(apic); 724 isrv = (isr != -1) ? isr : 0; 725 726 if ((tpr & 0xf0) >= (isrv & 0xf0)) 727 ppr = tpr & 0xff; 728 else 729 ppr = isrv & 0xf0; 730 731 *new_ppr = ppr; 732 if (old_ppr != ppr) 733 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 734 735 return ppr < old_ppr; 736 } 737 738 static void apic_update_ppr(struct kvm_lapic *apic) 739 { 740 u32 ppr; 741 742 if (__apic_update_ppr(apic, &ppr) && 743 apic_has_interrupt_for_ppr(apic, ppr) != -1) 744 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 745 } 746 747 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 748 { 749 apic_update_ppr(vcpu->arch.apic); 750 } 751 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 752 753 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 754 { 755 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 756 apic_update_ppr(apic); 757 } 758 759 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 760 { 761 return mda == (apic_x2apic_mode(apic) ? 762 X2APIC_BROADCAST : APIC_BROADCAST); 763 } 764 765 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 766 { 767 if (kvm_apic_broadcast(apic, mda)) 768 return true; 769 770 if (apic_x2apic_mode(apic)) 771 return mda == kvm_x2apic_id(apic); 772 773 /* 774 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 775 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 776 * this allows unique addressing of VCPUs with APIC ID over 0xff. 777 * The 0xff condition is needed because writeable xAPIC ID. 778 */ 779 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 780 return true; 781 782 return mda == kvm_xapic_id(apic); 783 } 784 785 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 786 { 787 u32 logical_id; 788 789 if (kvm_apic_broadcast(apic, mda)) 790 return true; 791 792 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 793 794 if (apic_x2apic_mode(apic)) 795 return ((logical_id >> 16) == (mda >> 16)) 796 && (logical_id & mda & 0xffff) != 0; 797 798 logical_id = GET_APIC_LOGICAL_ID(logical_id); 799 800 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 801 case APIC_DFR_FLAT: 802 return (logical_id & mda) != 0; 803 case APIC_DFR_CLUSTER: 804 return ((logical_id >> 4) == (mda >> 4)) 805 && (logical_id & mda & 0xf) != 0; 806 default: 807 return false; 808 } 809 } 810 811 /* The KVM local APIC implementation has two quirks: 812 * 813 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 814 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 815 * KVM doesn't do that aliasing. 816 * 817 * - in-kernel IOAPIC messages have to be delivered directly to 818 * x2APIC, because the kernel does not support interrupt remapping. 819 * In order to support broadcast without interrupt remapping, x2APIC 820 * rewrites the destination of non-IPI messages from APIC_BROADCAST 821 * to X2APIC_BROADCAST. 822 * 823 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 824 * important when userspace wants to use x2APIC-format MSIs, because 825 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 826 */ 827 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 828 struct kvm_lapic *source, struct kvm_lapic *target) 829 { 830 bool ipi = source != NULL; 831 832 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 833 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 834 return X2APIC_BROADCAST; 835 836 return dest_id; 837 } 838 839 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 840 int shorthand, unsigned int dest, int dest_mode) 841 { 842 struct kvm_lapic *target = vcpu->arch.apic; 843 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 844 845 ASSERT(target); 846 switch (shorthand) { 847 case APIC_DEST_NOSHORT: 848 if (dest_mode == APIC_DEST_PHYSICAL) 849 return kvm_apic_match_physical_addr(target, mda); 850 else 851 return kvm_apic_match_logical_addr(target, mda); 852 case APIC_DEST_SELF: 853 return target == source; 854 case APIC_DEST_ALLINC: 855 return true; 856 case APIC_DEST_ALLBUT: 857 return target != source; 858 default: 859 return false; 860 } 861 } 862 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 863 864 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 865 const unsigned long *bitmap, u32 bitmap_size) 866 { 867 u32 mod; 868 int i, idx = -1; 869 870 mod = vector % dest_vcpus; 871 872 for (i = 0; i <= mod; i++) { 873 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 874 BUG_ON(idx == bitmap_size); 875 } 876 877 return idx; 878 } 879 880 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 881 { 882 if (!kvm->arch.disabled_lapic_found) { 883 kvm->arch.disabled_lapic_found = true; 884 printk(KERN_INFO 885 "Disabled LAPIC found during irq injection\n"); 886 } 887 } 888 889 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 890 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 891 { 892 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 893 if ((irq->dest_id == APIC_BROADCAST && 894 map->mode != KVM_APIC_MODE_X2APIC)) 895 return true; 896 if (irq->dest_id == X2APIC_BROADCAST) 897 return true; 898 } else { 899 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 900 if (irq->dest_id == (x2apic_ipi ? 901 X2APIC_BROADCAST : APIC_BROADCAST)) 902 return true; 903 } 904 905 return false; 906 } 907 908 /* Return true if the interrupt can be handled by using *bitmap as index mask 909 * for valid destinations in *dst array. 910 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 911 * Note: we may have zero kvm_lapic destinations when we return true, which 912 * means that the interrupt should be dropped. In this case, *bitmap would be 913 * zero and *dst undefined. 914 */ 915 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 916 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 917 struct kvm_apic_map *map, struct kvm_lapic ***dst, 918 unsigned long *bitmap) 919 { 920 int i, lowest; 921 922 if (irq->shorthand == APIC_DEST_SELF && src) { 923 *dst = src; 924 *bitmap = 1; 925 return true; 926 } else if (irq->shorthand) 927 return false; 928 929 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 930 return false; 931 932 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 933 if (irq->dest_id > map->max_apic_id) { 934 *bitmap = 0; 935 } else { 936 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 937 *dst = &map->phys_map[dest_id]; 938 *bitmap = 1; 939 } 940 return true; 941 } 942 943 *bitmap = 0; 944 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 945 (u16 *)bitmap)) 946 return false; 947 948 if (!kvm_lowest_prio_delivery(irq)) 949 return true; 950 951 if (!kvm_vector_hashing_enabled()) { 952 lowest = -1; 953 for_each_set_bit(i, bitmap, 16) { 954 if (!(*dst)[i]) 955 continue; 956 if (lowest < 0) 957 lowest = i; 958 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 959 (*dst)[lowest]->vcpu) < 0) 960 lowest = i; 961 } 962 } else { 963 if (!*bitmap) 964 return true; 965 966 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 967 bitmap, 16); 968 969 if (!(*dst)[lowest]) { 970 kvm_apic_disabled_lapic_found(kvm); 971 *bitmap = 0; 972 return true; 973 } 974 } 975 976 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 977 978 return true; 979 } 980 981 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 982 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 983 { 984 struct kvm_apic_map *map; 985 unsigned long bitmap; 986 struct kvm_lapic **dst = NULL; 987 int i; 988 bool ret; 989 990 *r = -1; 991 992 if (irq->shorthand == APIC_DEST_SELF) { 993 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 994 return true; 995 } 996 997 rcu_read_lock(); 998 map = rcu_dereference(kvm->arch.apic_map); 999 1000 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1001 if (ret) { 1002 *r = 0; 1003 for_each_set_bit(i, &bitmap, 16) { 1004 if (!dst[i]) 1005 continue; 1006 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1007 } 1008 } 1009 1010 rcu_read_unlock(); 1011 return ret; 1012 } 1013 1014 /* 1015 * This routine tries to handle interrupts in posted mode, here is how 1016 * it deals with different cases: 1017 * - For single-destination interrupts, handle it in posted mode 1018 * - Else if vector hashing is enabled and it is a lowest-priority 1019 * interrupt, handle it in posted mode and use the following mechanism 1020 * to find the destination vCPU. 1021 * 1. For lowest-priority interrupts, store all the possible 1022 * destination vCPUs in an array. 1023 * 2. Use "guest vector % max number of destination vCPUs" to find 1024 * the right destination vCPU in the array for the lowest-priority 1025 * interrupt. 1026 * - Otherwise, use remapped mode to inject the interrupt. 1027 */ 1028 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1029 struct kvm_vcpu **dest_vcpu) 1030 { 1031 struct kvm_apic_map *map; 1032 unsigned long bitmap; 1033 struct kvm_lapic **dst = NULL; 1034 bool ret = false; 1035 1036 if (irq->shorthand) 1037 return false; 1038 1039 rcu_read_lock(); 1040 map = rcu_dereference(kvm->arch.apic_map); 1041 1042 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1043 hweight16(bitmap) == 1) { 1044 unsigned long i = find_first_bit(&bitmap, 16); 1045 1046 if (dst[i]) { 1047 *dest_vcpu = dst[i]->vcpu; 1048 ret = true; 1049 } 1050 } 1051 1052 rcu_read_unlock(); 1053 return ret; 1054 } 1055 1056 /* 1057 * Add a pending IRQ into lapic. 1058 * Return 1 if successfully added and 0 if discarded. 1059 */ 1060 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1061 int vector, int level, int trig_mode, 1062 struct dest_map *dest_map) 1063 { 1064 int result = 0; 1065 struct kvm_vcpu *vcpu = apic->vcpu; 1066 1067 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1068 trig_mode, vector); 1069 switch (delivery_mode) { 1070 case APIC_DM_LOWEST: 1071 vcpu->arch.apic_arb_prio++; 1072 fallthrough; 1073 case APIC_DM_FIXED: 1074 if (unlikely(trig_mode && !level)) 1075 break; 1076 1077 /* FIXME add logic for vcpu on reset */ 1078 if (unlikely(!apic_enabled(apic))) 1079 break; 1080 1081 result = 1; 1082 1083 if (dest_map) { 1084 __set_bit(vcpu->vcpu_id, dest_map->map); 1085 dest_map->vectors[vcpu->vcpu_id] = vector; 1086 } 1087 1088 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1089 if (trig_mode) 1090 kvm_lapic_set_vector(vector, 1091 apic->regs + APIC_TMR); 1092 else 1093 kvm_lapic_clear_vector(vector, 1094 apic->regs + APIC_TMR); 1095 } 1096 1097 if (static_call(kvm_x86_deliver_posted_interrupt)(vcpu, vector)) { 1098 kvm_lapic_set_irr(vector, apic); 1099 kvm_make_request(KVM_REQ_EVENT, vcpu); 1100 kvm_vcpu_kick(vcpu); 1101 } 1102 break; 1103 1104 case APIC_DM_REMRD: 1105 result = 1; 1106 vcpu->arch.pv.pv_unhalted = 1; 1107 kvm_make_request(KVM_REQ_EVENT, vcpu); 1108 kvm_vcpu_kick(vcpu); 1109 break; 1110 1111 case APIC_DM_SMI: 1112 result = 1; 1113 kvm_make_request(KVM_REQ_SMI, vcpu); 1114 kvm_vcpu_kick(vcpu); 1115 break; 1116 1117 case APIC_DM_NMI: 1118 result = 1; 1119 kvm_inject_nmi(vcpu); 1120 kvm_vcpu_kick(vcpu); 1121 break; 1122 1123 case APIC_DM_INIT: 1124 if (!trig_mode || level) { 1125 result = 1; 1126 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1127 apic->pending_events = (1UL << KVM_APIC_INIT); 1128 kvm_make_request(KVM_REQ_EVENT, vcpu); 1129 kvm_vcpu_kick(vcpu); 1130 } 1131 break; 1132 1133 case APIC_DM_STARTUP: 1134 result = 1; 1135 apic->sipi_vector = vector; 1136 /* make sure sipi_vector is visible for the receiver */ 1137 smp_wmb(); 1138 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1139 kvm_make_request(KVM_REQ_EVENT, vcpu); 1140 kvm_vcpu_kick(vcpu); 1141 break; 1142 1143 case APIC_DM_EXTINT: 1144 /* 1145 * Should only be called by kvm_apic_local_deliver() with LVT0, 1146 * before NMI watchdog was enabled. Already handled by 1147 * kvm_apic_accept_pic_intr(). 1148 */ 1149 break; 1150 1151 default: 1152 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1153 delivery_mode); 1154 break; 1155 } 1156 return result; 1157 } 1158 1159 /* 1160 * This routine identifies the destination vcpus mask meant to receive the 1161 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1162 * out the destination vcpus array and set the bitmap or it traverses to 1163 * each available vcpu to identify the same. 1164 */ 1165 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1166 unsigned long *vcpu_bitmap) 1167 { 1168 struct kvm_lapic **dest_vcpu = NULL; 1169 struct kvm_lapic *src = NULL; 1170 struct kvm_apic_map *map; 1171 struct kvm_vcpu *vcpu; 1172 unsigned long bitmap; 1173 int i, vcpu_idx; 1174 bool ret; 1175 1176 rcu_read_lock(); 1177 map = rcu_dereference(kvm->arch.apic_map); 1178 1179 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1180 &bitmap); 1181 if (ret) { 1182 for_each_set_bit(i, &bitmap, 16) { 1183 if (!dest_vcpu[i]) 1184 continue; 1185 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1186 __set_bit(vcpu_idx, vcpu_bitmap); 1187 } 1188 } else { 1189 kvm_for_each_vcpu(i, vcpu, kvm) { 1190 if (!kvm_apic_present(vcpu)) 1191 continue; 1192 if (!kvm_apic_match_dest(vcpu, NULL, 1193 irq->shorthand, 1194 irq->dest_id, 1195 irq->dest_mode)) 1196 continue; 1197 __set_bit(i, vcpu_bitmap); 1198 } 1199 } 1200 rcu_read_unlock(); 1201 } 1202 1203 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1204 { 1205 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1206 } 1207 1208 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1209 { 1210 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1211 } 1212 1213 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1214 { 1215 int trigger_mode; 1216 1217 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1218 if (!kvm_ioapic_handles_vector(apic, vector)) 1219 return; 1220 1221 /* Request a KVM exit to inform the userspace IOAPIC. */ 1222 if (irqchip_split(apic->vcpu->kvm)) { 1223 apic->vcpu->arch.pending_ioapic_eoi = vector; 1224 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1225 return; 1226 } 1227 1228 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1229 trigger_mode = IOAPIC_LEVEL_TRIG; 1230 else 1231 trigger_mode = IOAPIC_EDGE_TRIG; 1232 1233 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1234 } 1235 1236 static int apic_set_eoi(struct kvm_lapic *apic) 1237 { 1238 int vector = apic_find_highest_isr(apic); 1239 1240 trace_kvm_eoi(apic, vector); 1241 1242 /* 1243 * Not every write EOI will has corresponding ISR, 1244 * one example is when Kernel check timer on setup_IO_APIC 1245 */ 1246 if (vector == -1) 1247 return vector; 1248 1249 apic_clear_isr(vector, apic); 1250 apic_update_ppr(apic); 1251 1252 if (to_hv_vcpu(apic->vcpu) && 1253 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1254 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1255 1256 kvm_ioapic_send_eoi(apic, vector); 1257 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1258 return vector; 1259 } 1260 1261 /* 1262 * this interface assumes a trap-like exit, which has already finished 1263 * desired side effect including vISR and vPPR update. 1264 */ 1265 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1266 { 1267 struct kvm_lapic *apic = vcpu->arch.apic; 1268 1269 trace_kvm_eoi(apic, vector); 1270 1271 kvm_ioapic_send_eoi(apic, vector); 1272 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1273 } 1274 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1275 1276 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1277 { 1278 struct kvm_lapic_irq irq; 1279 1280 irq.vector = icr_low & APIC_VECTOR_MASK; 1281 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1282 irq.dest_mode = icr_low & APIC_DEST_MASK; 1283 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1284 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1285 irq.shorthand = icr_low & APIC_SHORT_MASK; 1286 irq.msi_redir_hint = false; 1287 if (apic_x2apic_mode(apic)) 1288 irq.dest_id = icr_high; 1289 else 1290 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1291 1292 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1293 1294 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1295 } 1296 1297 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1298 { 1299 ktime_t remaining, now; 1300 s64 ns; 1301 u32 tmcct; 1302 1303 ASSERT(apic != NULL); 1304 1305 /* if initial count is 0, current count should also be 0 */ 1306 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1307 apic->lapic_timer.period == 0) 1308 return 0; 1309 1310 now = ktime_get(); 1311 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1312 if (ktime_to_ns(remaining) < 0) 1313 remaining = 0; 1314 1315 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1316 tmcct = div64_u64(ns, 1317 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1318 1319 return tmcct; 1320 } 1321 1322 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1323 { 1324 struct kvm_vcpu *vcpu = apic->vcpu; 1325 struct kvm_run *run = vcpu->run; 1326 1327 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1328 run->tpr_access.rip = kvm_rip_read(vcpu); 1329 run->tpr_access.is_write = write; 1330 } 1331 1332 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1333 { 1334 if (apic->vcpu->arch.tpr_access_reporting) 1335 __report_tpr_access(apic, write); 1336 } 1337 1338 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1339 { 1340 u32 val = 0; 1341 1342 if (offset >= LAPIC_MMIO_LENGTH) 1343 return 0; 1344 1345 switch (offset) { 1346 case APIC_ARBPRI: 1347 break; 1348 1349 case APIC_TMCCT: /* Timer CCR */ 1350 if (apic_lvtt_tscdeadline(apic)) 1351 return 0; 1352 1353 val = apic_get_tmcct(apic); 1354 break; 1355 case APIC_PROCPRI: 1356 apic_update_ppr(apic); 1357 val = kvm_lapic_get_reg(apic, offset); 1358 break; 1359 case APIC_TASKPRI: 1360 report_tpr_access(apic, false); 1361 fallthrough; 1362 default: 1363 val = kvm_lapic_get_reg(apic, offset); 1364 break; 1365 } 1366 1367 return val; 1368 } 1369 1370 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1371 { 1372 return container_of(dev, struct kvm_lapic, dev); 1373 } 1374 1375 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1376 #define APIC_REGS_MASK(first, count) \ 1377 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1378 1379 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1380 void *data) 1381 { 1382 unsigned char alignment = offset & 0xf; 1383 u32 result; 1384 /* this bitmask has a bit cleared for each reserved register */ 1385 u64 valid_reg_mask = 1386 APIC_REG_MASK(APIC_ID) | 1387 APIC_REG_MASK(APIC_LVR) | 1388 APIC_REG_MASK(APIC_TASKPRI) | 1389 APIC_REG_MASK(APIC_PROCPRI) | 1390 APIC_REG_MASK(APIC_LDR) | 1391 APIC_REG_MASK(APIC_DFR) | 1392 APIC_REG_MASK(APIC_SPIV) | 1393 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1394 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1395 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1396 APIC_REG_MASK(APIC_ESR) | 1397 APIC_REG_MASK(APIC_ICR) | 1398 APIC_REG_MASK(APIC_ICR2) | 1399 APIC_REG_MASK(APIC_LVTT) | 1400 APIC_REG_MASK(APIC_LVTTHMR) | 1401 APIC_REG_MASK(APIC_LVTPC) | 1402 APIC_REG_MASK(APIC_LVT0) | 1403 APIC_REG_MASK(APIC_LVT1) | 1404 APIC_REG_MASK(APIC_LVTERR) | 1405 APIC_REG_MASK(APIC_TMICT) | 1406 APIC_REG_MASK(APIC_TMCCT) | 1407 APIC_REG_MASK(APIC_TDCR); 1408 1409 /* ARBPRI is not valid on x2APIC */ 1410 if (!apic_x2apic_mode(apic)) 1411 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1412 1413 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1414 return 1; 1415 1416 result = __apic_read(apic, offset & ~0xf); 1417 1418 trace_kvm_apic_read(offset, result); 1419 1420 switch (len) { 1421 case 1: 1422 case 2: 1423 case 4: 1424 memcpy(data, (char *)&result + alignment, len); 1425 break; 1426 default: 1427 printk(KERN_ERR "Local APIC read with len = %x, " 1428 "should be 1,2, or 4 instead\n", len); 1429 break; 1430 } 1431 return 0; 1432 } 1433 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1434 1435 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1436 { 1437 return addr >= apic->base_address && 1438 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1439 } 1440 1441 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1442 gpa_t address, int len, void *data) 1443 { 1444 struct kvm_lapic *apic = to_lapic(this); 1445 u32 offset = address - apic->base_address; 1446 1447 if (!apic_mmio_in_range(apic, address)) 1448 return -EOPNOTSUPP; 1449 1450 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1451 if (!kvm_check_has_quirk(vcpu->kvm, 1452 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1453 return -EOPNOTSUPP; 1454 1455 memset(data, 0xff, len); 1456 return 0; 1457 } 1458 1459 kvm_lapic_reg_read(apic, offset, len, data); 1460 1461 return 0; 1462 } 1463 1464 static void update_divide_count(struct kvm_lapic *apic) 1465 { 1466 u32 tmp1, tmp2, tdcr; 1467 1468 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1469 tmp1 = tdcr & 0xf; 1470 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1471 apic->divide_count = 0x1 << (tmp2 & 0x7); 1472 } 1473 1474 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1475 { 1476 /* 1477 * Do not allow the guest to program periodic timers with small 1478 * interval, since the hrtimers are not throttled by the host 1479 * scheduler. 1480 */ 1481 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1482 s64 min_period = min_timer_period_us * 1000LL; 1483 1484 if (apic->lapic_timer.period < min_period) { 1485 pr_info_ratelimited( 1486 "kvm: vcpu %i: requested %lld ns " 1487 "lapic timer period limited to %lld ns\n", 1488 apic->vcpu->vcpu_id, 1489 apic->lapic_timer.period, min_period); 1490 apic->lapic_timer.period = min_period; 1491 } 1492 } 1493 } 1494 1495 static void cancel_hv_timer(struct kvm_lapic *apic); 1496 1497 static void apic_update_lvtt(struct kvm_lapic *apic) 1498 { 1499 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1500 apic->lapic_timer.timer_mode_mask; 1501 1502 if (apic->lapic_timer.timer_mode != timer_mode) { 1503 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1504 APIC_LVT_TIMER_TSCDEADLINE)) { 1505 hrtimer_cancel(&apic->lapic_timer.timer); 1506 preempt_disable(); 1507 if (apic->lapic_timer.hv_timer_in_use) 1508 cancel_hv_timer(apic); 1509 preempt_enable(); 1510 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1511 apic->lapic_timer.period = 0; 1512 apic->lapic_timer.tscdeadline = 0; 1513 } 1514 apic->lapic_timer.timer_mode = timer_mode; 1515 limit_periodic_timer_frequency(apic); 1516 } 1517 } 1518 1519 /* 1520 * On APICv, this test will cause a busy wait 1521 * during a higher-priority task. 1522 */ 1523 1524 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1525 { 1526 struct kvm_lapic *apic = vcpu->arch.apic; 1527 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1528 1529 if (kvm_apic_hw_enabled(apic)) { 1530 int vec = reg & APIC_VECTOR_MASK; 1531 void *bitmap = apic->regs + APIC_ISR; 1532 1533 if (vcpu->arch.apicv_active) 1534 bitmap = apic->regs + APIC_IRR; 1535 1536 if (apic_test_vector(vec, bitmap)) 1537 return true; 1538 } 1539 return false; 1540 } 1541 1542 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1543 { 1544 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1545 1546 /* 1547 * If the guest TSC is running at a different ratio than the host, then 1548 * convert the delay to nanoseconds to achieve an accurate delay. Note 1549 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1550 * always for VMX enabled hardware. 1551 */ 1552 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1553 __delay(min(guest_cycles, 1554 nsec_to_cycles(vcpu, timer_advance_ns))); 1555 } else { 1556 u64 delay_ns = guest_cycles * 1000000ULL; 1557 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1558 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1559 } 1560 } 1561 1562 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1563 s64 advance_expire_delta) 1564 { 1565 struct kvm_lapic *apic = vcpu->arch.apic; 1566 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1567 u64 ns; 1568 1569 /* Do not adjust for tiny fluctuations or large random spikes. */ 1570 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1571 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1572 return; 1573 1574 /* too early */ 1575 if (advance_expire_delta < 0) { 1576 ns = -advance_expire_delta * 1000000ULL; 1577 do_div(ns, vcpu->arch.virtual_tsc_khz); 1578 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1579 } else { 1580 /* too late */ 1581 ns = advance_expire_delta * 1000000ULL; 1582 do_div(ns, vcpu->arch.virtual_tsc_khz); 1583 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1584 } 1585 1586 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1587 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1588 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1589 } 1590 1591 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1592 { 1593 struct kvm_lapic *apic = vcpu->arch.apic; 1594 u64 guest_tsc, tsc_deadline; 1595 1596 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1597 apic->lapic_timer.expired_tscdeadline = 0; 1598 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1599 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1600 1601 if (lapic_timer_advance_dynamic) { 1602 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1603 /* 1604 * If the timer fired early, reread the TSC to account for the 1605 * overhead of the above adjustment to avoid waiting longer 1606 * than is necessary. 1607 */ 1608 if (guest_tsc < tsc_deadline) 1609 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1610 } 1611 1612 if (guest_tsc < tsc_deadline) 1613 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1614 } 1615 1616 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1617 { 1618 if (lapic_in_kernel(vcpu) && 1619 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1620 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1621 lapic_timer_int_injected(vcpu)) 1622 __kvm_wait_lapic_expire(vcpu); 1623 } 1624 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1625 1626 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1627 { 1628 struct kvm_timer *ktimer = &apic->lapic_timer; 1629 1630 kvm_apic_local_deliver(apic, APIC_LVTT); 1631 if (apic_lvtt_tscdeadline(apic)) { 1632 ktimer->tscdeadline = 0; 1633 } else if (apic_lvtt_oneshot(apic)) { 1634 ktimer->tscdeadline = 0; 1635 ktimer->target_expiration = 0; 1636 } 1637 } 1638 1639 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1640 { 1641 struct kvm_vcpu *vcpu = apic->vcpu; 1642 struct kvm_timer *ktimer = &apic->lapic_timer; 1643 1644 if (atomic_read(&apic->lapic_timer.pending)) 1645 return; 1646 1647 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1648 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1649 1650 if (!from_timer_fn && vcpu->arch.apicv_active) { 1651 WARN_ON(kvm_get_running_vcpu() != vcpu); 1652 kvm_apic_inject_pending_timer_irqs(apic); 1653 return; 1654 } 1655 1656 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1657 /* 1658 * Ensure the guest's timer has truly expired before posting an 1659 * interrupt. Open code the relevant checks to avoid querying 1660 * lapic_timer_int_injected(), which will be false since the 1661 * interrupt isn't yet injected. Waiting until after injecting 1662 * is not an option since that won't help a posted interrupt. 1663 */ 1664 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1665 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1666 __kvm_wait_lapic_expire(vcpu); 1667 kvm_apic_inject_pending_timer_irqs(apic); 1668 return; 1669 } 1670 1671 atomic_inc(&apic->lapic_timer.pending); 1672 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1673 if (from_timer_fn) 1674 kvm_vcpu_kick(vcpu); 1675 } 1676 1677 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1678 { 1679 struct kvm_timer *ktimer = &apic->lapic_timer; 1680 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1681 u64 ns = 0; 1682 ktime_t expire; 1683 struct kvm_vcpu *vcpu = apic->vcpu; 1684 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1685 unsigned long flags; 1686 ktime_t now; 1687 1688 if (unlikely(!tscdeadline || !this_tsc_khz)) 1689 return; 1690 1691 local_irq_save(flags); 1692 1693 now = ktime_get(); 1694 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1695 1696 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1697 do_div(ns, this_tsc_khz); 1698 1699 if (likely(tscdeadline > guest_tsc) && 1700 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1701 expire = ktime_add_ns(now, ns); 1702 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1703 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1704 } else 1705 apic_timer_expired(apic, false); 1706 1707 local_irq_restore(flags); 1708 } 1709 1710 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1711 { 1712 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1713 } 1714 1715 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1716 { 1717 ktime_t now, remaining; 1718 u64 ns_remaining_old, ns_remaining_new; 1719 1720 apic->lapic_timer.period = 1721 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1722 limit_periodic_timer_frequency(apic); 1723 1724 now = ktime_get(); 1725 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1726 if (ktime_to_ns(remaining) < 0) 1727 remaining = 0; 1728 1729 ns_remaining_old = ktime_to_ns(remaining); 1730 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1731 apic->divide_count, old_divisor); 1732 1733 apic->lapic_timer.tscdeadline += 1734 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1735 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1736 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1737 } 1738 1739 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1740 { 1741 ktime_t now; 1742 u64 tscl = rdtsc(); 1743 s64 deadline; 1744 1745 now = ktime_get(); 1746 apic->lapic_timer.period = 1747 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1748 1749 if (!apic->lapic_timer.period) { 1750 apic->lapic_timer.tscdeadline = 0; 1751 return false; 1752 } 1753 1754 limit_periodic_timer_frequency(apic); 1755 deadline = apic->lapic_timer.period; 1756 1757 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1758 if (unlikely(count_reg != APIC_TMICT)) { 1759 deadline = tmict_to_ns(apic, 1760 kvm_lapic_get_reg(apic, count_reg)); 1761 if (unlikely(deadline <= 0)) 1762 deadline = apic->lapic_timer.period; 1763 else if (unlikely(deadline > apic->lapic_timer.period)) { 1764 pr_info_ratelimited( 1765 "kvm: vcpu %i: requested lapic timer restore with " 1766 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1767 "Using initial count to start timer.\n", 1768 apic->vcpu->vcpu_id, 1769 count_reg, 1770 kvm_lapic_get_reg(apic, count_reg), 1771 deadline, apic->lapic_timer.period); 1772 kvm_lapic_set_reg(apic, count_reg, 0); 1773 deadline = apic->lapic_timer.period; 1774 } 1775 } 1776 } 1777 1778 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1779 nsec_to_cycles(apic->vcpu, deadline); 1780 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1781 1782 return true; 1783 } 1784 1785 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1786 { 1787 ktime_t now = ktime_get(); 1788 u64 tscl = rdtsc(); 1789 ktime_t delta; 1790 1791 /* 1792 * Synchronize both deadlines to the same time source or 1793 * differences in the periods (caused by differences in the 1794 * underlying clocks or numerical approximation errors) will 1795 * cause the two to drift apart over time as the errors 1796 * accumulate. 1797 */ 1798 apic->lapic_timer.target_expiration = 1799 ktime_add_ns(apic->lapic_timer.target_expiration, 1800 apic->lapic_timer.period); 1801 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1802 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1803 nsec_to_cycles(apic->vcpu, delta); 1804 } 1805 1806 static void start_sw_period(struct kvm_lapic *apic) 1807 { 1808 if (!apic->lapic_timer.period) 1809 return; 1810 1811 if (ktime_after(ktime_get(), 1812 apic->lapic_timer.target_expiration)) { 1813 apic_timer_expired(apic, false); 1814 1815 if (apic_lvtt_oneshot(apic)) 1816 return; 1817 1818 advance_periodic_target_expiration(apic); 1819 } 1820 1821 hrtimer_start(&apic->lapic_timer.timer, 1822 apic->lapic_timer.target_expiration, 1823 HRTIMER_MODE_ABS_HARD); 1824 } 1825 1826 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1827 { 1828 if (!lapic_in_kernel(vcpu)) 1829 return false; 1830 1831 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1832 } 1833 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1834 1835 static void cancel_hv_timer(struct kvm_lapic *apic) 1836 { 1837 WARN_ON(preemptible()); 1838 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1839 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 1840 apic->lapic_timer.hv_timer_in_use = false; 1841 } 1842 1843 static bool start_hv_timer(struct kvm_lapic *apic) 1844 { 1845 struct kvm_timer *ktimer = &apic->lapic_timer; 1846 struct kvm_vcpu *vcpu = apic->vcpu; 1847 bool expired; 1848 1849 WARN_ON(preemptible()); 1850 if (!kvm_can_use_hv_timer(vcpu)) 1851 return false; 1852 1853 if (!ktimer->tscdeadline) 1854 return false; 1855 1856 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 1857 return false; 1858 1859 ktimer->hv_timer_in_use = true; 1860 hrtimer_cancel(&ktimer->timer); 1861 1862 /* 1863 * To simplify handling the periodic timer, leave the hv timer running 1864 * even if the deadline timer has expired, i.e. rely on the resulting 1865 * VM-Exit to recompute the periodic timer's target expiration. 1866 */ 1867 if (!apic_lvtt_period(apic)) { 1868 /* 1869 * Cancel the hv timer if the sw timer fired while the hv timer 1870 * was being programmed, or if the hv timer itself expired. 1871 */ 1872 if (atomic_read(&ktimer->pending)) { 1873 cancel_hv_timer(apic); 1874 } else if (expired) { 1875 apic_timer_expired(apic, false); 1876 cancel_hv_timer(apic); 1877 } 1878 } 1879 1880 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1881 1882 return true; 1883 } 1884 1885 static void start_sw_timer(struct kvm_lapic *apic) 1886 { 1887 struct kvm_timer *ktimer = &apic->lapic_timer; 1888 1889 WARN_ON(preemptible()); 1890 if (apic->lapic_timer.hv_timer_in_use) 1891 cancel_hv_timer(apic); 1892 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1893 return; 1894 1895 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1896 start_sw_period(apic); 1897 else if (apic_lvtt_tscdeadline(apic)) 1898 start_sw_tscdeadline(apic); 1899 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1900 } 1901 1902 static void restart_apic_timer(struct kvm_lapic *apic) 1903 { 1904 preempt_disable(); 1905 1906 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1907 goto out; 1908 1909 if (!start_hv_timer(apic)) 1910 start_sw_timer(apic); 1911 out: 1912 preempt_enable(); 1913 } 1914 1915 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1916 { 1917 struct kvm_lapic *apic = vcpu->arch.apic; 1918 1919 preempt_disable(); 1920 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1921 if (!apic->lapic_timer.hv_timer_in_use) 1922 goto out; 1923 WARN_ON(rcuwait_active(&vcpu->wait)); 1924 apic_timer_expired(apic, false); 1925 cancel_hv_timer(apic); 1926 1927 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1928 advance_periodic_target_expiration(apic); 1929 restart_apic_timer(apic); 1930 } 1931 out: 1932 preempt_enable(); 1933 } 1934 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1935 1936 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1937 { 1938 restart_apic_timer(vcpu->arch.apic); 1939 } 1940 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1941 1942 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1943 { 1944 struct kvm_lapic *apic = vcpu->arch.apic; 1945 1946 preempt_disable(); 1947 /* Possibly the TSC deadline timer is not enabled yet */ 1948 if (apic->lapic_timer.hv_timer_in_use) 1949 start_sw_timer(apic); 1950 preempt_enable(); 1951 } 1952 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1953 1954 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1955 { 1956 struct kvm_lapic *apic = vcpu->arch.apic; 1957 1958 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1959 restart_apic_timer(apic); 1960 } 1961 1962 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 1963 { 1964 atomic_set(&apic->lapic_timer.pending, 0); 1965 1966 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1967 && !set_target_expiration(apic, count_reg)) 1968 return; 1969 1970 restart_apic_timer(apic); 1971 } 1972 1973 static void start_apic_timer(struct kvm_lapic *apic) 1974 { 1975 __start_apic_timer(apic, APIC_TMICT); 1976 } 1977 1978 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1979 { 1980 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1981 1982 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1983 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1984 if (lvt0_in_nmi_mode) { 1985 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1986 } else 1987 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1988 } 1989 } 1990 1991 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 1992 { 1993 int ret = 0; 1994 1995 trace_kvm_apic_write(reg, val); 1996 1997 switch (reg) { 1998 case APIC_ID: /* Local APIC ID */ 1999 if (!apic_x2apic_mode(apic)) 2000 kvm_apic_set_xapic_id(apic, val >> 24); 2001 else 2002 ret = 1; 2003 break; 2004 2005 case APIC_TASKPRI: 2006 report_tpr_access(apic, true); 2007 apic_set_tpr(apic, val & 0xff); 2008 break; 2009 2010 case APIC_EOI: 2011 apic_set_eoi(apic); 2012 break; 2013 2014 case APIC_LDR: 2015 if (!apic_x2apic_mode(apic)) 2016 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2017 else 2018 ret = 1; 2019 break; 2020 2021 case APIC_DFR: 2022 if (!apic_x2apic_mode(apic)) 2023 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2024 else 2025 ret = 1; 2026 break; 2027 2028 case APIC_SPIV: { 2029 u32 mask = 0x3ff; 2030 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2031 mask |= APIC_SPIV_DIRECTED_EOI; 2032 apic_set_spiv(apic, val & mask); 2033 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2034 int i; 2035 u32 lvt_val; 2036 2037 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2038 lvt_val = kvm_lapic_get_reg(apic, 2039 APIC_LVTT + 0x10 * i); 2040 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2041 lvt_val | APIC_LVT_MASKED); 2042 } 2043 apic_update_lvtt(apic); 2044 atomic_set(&apic->lapic_timer.pending, 0); 2045 2046 } 2047 break; 2048 } 2049 case APIC_ICR: 2050 /* No delay here, so we always clear the pending bit */ 2051 val &= ~(1 << 12); 2052 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2053 kvm_lapic_set_reg(apic, APIC_ICR, val); 2054 break; 2055 2056 case APIC_ICR2: 2057 if (!apic_x2apic_mode(apic)) 2058 val &= 0xff000000; 2059 kvm_lapic_set_reg(apic, APIC_ICR2, val); 2060 break; 2061 2062 case APIC_LVT0: 2063 apic_manage_nmi_watchdog(apic, val); 2064 fallthrough; 2065 case APIC_LVTTHMR: 2066 case APIC_LVTPC: 2067 case APIC_LVT1: 2068 case APIC_LVTERR: { 2069 /* TODO: Check vector */ 2070 size_t size; 2071 u32 index; 2072 2073 if (!kvm_apic_sw_enabled(apic)) 2074 val |= APIC_LVT_MASKED; 2075 size = ARRAY_SIZE(apic_lvt_mask); 2076 index = array_index_nospec( 2077 (reg - APIC_LVTT) >> 4, size); 2078 val &= apic_lvt_mask[index]; 2079 kvm_lapic_set_reg(apic, reg, val); 2080 break; 2081 } 2082 2083 case APIC_LVTT: 2084 if (!kvm_apic_sw_enabled(apic)) 2085 val |= APIC_LVT_MASKED; 2086 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2087 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2088 apic_update_lvtt(apic); 2089 break; 2090 2091 case APIC_TMICT: 2092 if (apic_lvtt_tscdeadline(apic)) 2093 break; 2094 2095 hrtimer_cancel(&apic->lapic_timer.timer); 2096 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2097 start_apic_timer(apic); 2098 break; 2099 2100 case APIC_TDCR: { 2101 uint32_t old_divisor = apic->divide_count; 2102 2103 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2104 update_divide_count(apic); 2105 if (apic->divide_count != old_divisor && 2106 apic->lapic_timer.period) { 2107 hrtimer_cancel(&apic->lapic_timer.timer); 2108 update_target_expiration(apic, old_divisor); 2109 restart_apic_timer(apic); 2110 } 2111 break; 2112 } 2113 case APIC_ESR: 2114 if (apic_x2apic_mode(apic) && val != 0) 2115 ret = 1; 2116 break; 2117 2118 case APIC_SELF_IPI: 2119 if (apic_x2apic_mode(apic)) { 2120 kvm_lapic_reg_write(apic, APIC_ICR, 2121 APIC_DEST_SELF | (val & APIC_VECTOR_MASK)); 2122 } else 2123 ret = 1; 2124 break; 2125 default: 2126 ret = 1; 2127 break; 2128 } 2129 2130 kvm_recalculate_apic_map(apic->vcpu->kvm); 2131 2132 return ret; 2133 } 2134 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2135 2136 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2137 gpa_t address, int len, const void *data) 2138 { 2139 struct kvm_lapic *apic = to_lapic(this); 2140 unsigned int offset = address - apic->base_address; 2141 u32 val; 2142 2143 if (!apic_mmio_in_range(apic, address)) 2144 return -EOPNOTSUPP; 2145 2146 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2147 if (!kvm_check_has_quirk(vcpu->kvm, 2148 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2149 return -EOPNOTSUPP; 2150 2151 return 0; 2152 } 2153 2154 /* 2155 * APIC register must be aligned on 128-bits boundary. 2156 * 32/64/128 bits registers must be accessed thru 32 bits. 2157 * Refer SDM 8.4.1 2158 */ 2159 if (len != 4 || (offset & 0xf)) 2160 return 0; 2161 2162 val = *(u32*)data; 2163 2164 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2165 2166 return 0; 2167 } 2168 2169 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2170 { 2171 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2172 } 2173 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2174 2175 /* emulate APIC access in a trap manner */ 2176 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2177 { 2178 u32 val = 0; 2179 2180 /* hw has done the conditional check and inst decode */ 2181 offset &= 0xff0; 2182 2183 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2184 2185 /* TODO: optimize to just emulate side effect w/o one more write */ 2186 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2187 } 2188 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2189 2190 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2191 { 2192 struct kvm_lapic *apic = vcpu->arch.apic; 2193 2194 if (!vcpu->arch.apic) 2195 return; 2196 2197 hrtimer_cancel(&apic->lapic_timer.timer); 2198 2199 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2200 static_branch_slow_dec_deferred(&apic_hw_disabled); 2201 2202 if (!apic->sw_enabled) 2203 static_branch_slow_dec_deferred(&apic_sw_disabled); 2204 2205 if (apic->regs) 2206 free_page((unsigned long)apic->regs); 2207 2208 kfree(apic); 2209 } 2210 2211 /* 2212 *---------------------------------------------------------------------- 2213 * LAPIC interface 2214 *---------------------------------------------------------------------- 2215 */ 2216 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2217 { 2218 struct kvm_lapic *apic = vcpu->arch.apic; 2219 2220 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2221 return 0; 2222 2223 return apic->lapic_timer.tscdeadline; 2224 } 2225 2226 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2227 { 2228 struct kvm_lapic *apic = vcpu->arch.apic; 2229 2230 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2231 return; 2232 2233 hrtimer_cancel(&apic->lapic_timer.timer); 2234 apic->lapic_timer.tscdeadline = data; 2235 start_apic_timer(apic); 2236 } 2237 2238 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2239 { 2240 struct kvm_lapic *apic = vcpu->arch.apic; 2241 2242 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2243 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2244 } 2245 2246 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2247 { 2248 u64 tpr; 2249 2250 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2251 2252 return (tpr & 0xf0) >> 4; 2253 } 2254 2255 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2256 { 2257 u64 old_value = vcpu->arch.apic_base; 2258 struct kvm_lapic *apic = vcpu->arch.apic; 2259 2260 if (!apic) 2261 value |= MSR_IA32_APICBASE_BSP; 2262 2263 vcpu->arch.apic_base = value; 2264 2265 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2266 kvm_update_cpuid_runtime(vcpu); 2267 2268 if (!apic) 2269 return; 2270 2271 /* update jump label if enable bit changes */ 2272 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2273 if (value & MSR_IA32_APICBASE_ENABLE) { 2274 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2275 static_branch_slow_dec_deferred(&apic_hw_disabled); 2276 /* Check if there are APF page ready requests pending */ 2277 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2278 } else { 2279 static_branch_inc(&apic_hw_disabled.key); 2280 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2281 } 2282 } 2283 2284 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2285 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2286 2287 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2288 static_call(kvm_x86_set_virtual_apic_mode)(vcpu); 2289 2290 apic->base_address = apic->vcpu->arch.apic_base & 2291 MSR_IA32_APICBASE_BASE; 2292 2293 if ((value & MSR_IA32_APICBASE_ENABLE) && 2294 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2295 pr_warn_once("APIC base relocation is unsupported by KVM"); 2296 } 2297 2298 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2299 { 2300 struct kvm_lapic *apic = vcpu->arch.apic; 2301 2302 if (vcpu->arch.apicv_active) { 2303 /* irr_pending is always true when apicv is activated. */ 2304 apic->irr_pending = true; 2305 apic->isr_count = 1; 2306 } else { 2307 apic->irr_pending = (apic_search_irr(apic) != -1); 2308 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2309 } 2310 } 2311 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2312 2313 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2314 { 2315 struct kvm_lapic *apic = vcpu->arch.apic; 2316 int i; 2317 2318 if (!apic) 2319 return; 2320 2321 /* Stop the timer in case it's a reset to an active apic */ 2322 hrtimer_cancel(&apic->lapic_timer.timer); 2323 2324 if (!init_event) { 2325 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2326 MSR_IA32_APICBASE_ENABLE); 2327 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2328 } 2329 kvm_apic_set_version(apic->vcpu); 2330 2331 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2332 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2333 apic_update_lvtt(apic); 2334 if (kvm_vcpu_is_reset_bsp(vcpu) && 2335 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2336 kvm_lapic_set_reg(apic, APIC_LVT0, 2337 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2338 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2339 2340 kvm_apic_set_dfr(apic, 0xffffffffU); 2341 apic_set_spiv(apic, 0xff); 2342 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2343 if (!apic_x2apic_mode(apic)) 2344 kvm_apic_set_ldr(apic, 0); 2345 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2346 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2347 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2348 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2349 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2350 for (i = 0; i < 8; i++) { 2351 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2352 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2353 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2354 } 2355 kvm_apic_update_apicv(vcpu); 2356 apic->highest_isr_cache = -1; 2357 update_divide_count(apic); 2358 atomic_set(&apic->lapic_timer.pending, 0); 2359 if (kvm_vcpu_is_bsp(vcpu)) 2360 kvm_lapic_set_base(vcpu, 2361 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2362 vcpu->arch.pv_eoi.msr_val = 0; 2363 apic_update_ppr(apic); 2364 if (vcpu->arch.apicv_active) { 2365 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2366 static_call(kvm_x86_hwapic_irr_update)(vcpu, -1); 2367 static_call(kvm_x86_hwapic_isr_update)(vcpu, -1); 2368 } 2369 2370 vcpu->arch.apic_arb_prio = 0; 2371 vcpu->arch.apic_attention = 0; 2372 2373 kvm_recalculate_apic_map(vcpu->kvm); 2374 } 2375 2376 /* 2377 *---------------------------------------------------------------------- 2378 * timer interface 2379 *---------------------------------------------------------------------- 2380 */ 2381 2382 static bool lapic_is_periodic(struct kvm_lapic *apic) 2383 { 2384 return apic_lvtt_period(apic); 2385 } 2386 2387 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2388 { 2389 struct kvm_lapic *apic = vcpu->arch.apic; 2390 2391 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2392 return atomic_read(&apic->lapic_timer.pending); 2393 2394 return 0; 2395 } 2396 2397 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2398 { 2399 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2400 int vector, mode, trig_mode; 2401 2402 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2403 vector = reg & APIC_VECTOR_MASK; 2404 mode = reg & APIC_MODE_MASK; 2405 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2406 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2407 NULL); 2408 } 2409 return 0; 2410 } 2411 2412 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2413 { 2414 struct kvm_lapic *apic = vcpu->arch.apic; 2415 2416 if (apic) 2417 kvm_apic_local_deliver(apic, APIC_LVT0); 2418 } 2419 2420 static const struct kvm_io_device_ops apic_mmio_ops = { 2421 .read = apic_mmio_read, 2422 .write = apic_mmio_write, 2423 }; 2424 2425 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2426 { 2427 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2428 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2429 2430 apic_timer_expired(apic, true); 2431 2432 if (lapic_is_periodic(apic)) { 2433 advance_periodic_target_expiration(apic); 2434 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2435 return HRTIMER_RESTART; 2436 } else 2437 return HRTIMER_NORESTART; 2438 } 2439 2440 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2441 { 2442 struct kvm_lapic *apic; 2443 2444 ASSERT(vcpu != NULL); 2445 2446 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2447 if (!apic) 2448 goto nomem; 2449 2450 vcpu->arch.apic = apic; 2451 2452 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2453 if (!apic->regs) { 2454 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2455 vcpu->vcpu_id); 2456 goto nomem_free_apic; 2457 } 2458 apic->vcpu = vcpu; 2459 2460 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2461 HRTIMER_MODE_ABS_HARD); 2462 apic->lapic_timer.timer.function = apic_timer_fn; 2463 if (timer_advance_ns == -1) { 2464 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2465 lapic_timer_advance_dynamic = true; 2466 } else { 2467 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2468 lapic_timer_advance_dynamic = false; 2469 } 2470 2471 /* 2472 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2473 * thinking that APIC state has changed. 2474 */ 2475 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2476 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2477 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2478 2479 return 0; 2480 nomem_free_apic: 2481 kfree(apic); 2482 vcpu->arch.apic = NULL; 2483 nomem: 2484 return -ENOMEM; 2485 } 2486 2487 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2488 { 2489 struct kvm_lapic *apic = vcpu->arch.apic; 2490 u32 ppr; 2491 2492 if (!kvm_apic_present(vcpu)) 2493 return -1; 2494 2495 __apic_update_ppr(apic, &ppr); 2496 return apic_has_interrupt_for_ppr(apic, ppr); 2497 } 2498 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2499 2500 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2501 { 2502 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2503 2504 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2505 return 1; 2506 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2507 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2508 return 1; 2509 return 0; 2510 } 2511 2512 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2513 { 2514 struct kvm_lapic *apic = vcpu->arch.apic; 2515 2516 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2517 kvm_apic_inject_pending_timer_irqs(apic); 2518 atomic_set(&apic->lapic_timer.pending, 0); 2519 } 2520 } 2521 2522 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2523 { 2524 int vector = kvm_apic_has_interrupt(vcpu); 2525 struct kvm_lapic *apic = vcpu->arch.apic; 2526 u32 ppr; 2527 2528 if (vector == -1) 2529 return -1; 2530 2531 /* 2532 * We get here even with APIC virtualization enabled, if doing 2533 * nested virtualization and L1 runs with the "acknowledge interrupt 2534 * on exit" mode. Then we cannot inject the interrupt via RVI, 2535 * because the process would deliver it through the IDT. 2536 */ 2537 2538 apic_clear_irr(vector, apic); 2539 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2540 /* 2541 * For auto-EOI interrupts, there might be another pending 2542 * interrupt above PPR, so check whether to raise another 2543 * KVM_REQ_EVENT. 2544 */ 2545 apic_update_ppr(apic); 2546 } else { 2547 /* 2548 * For normal interrupts, PPR has been raised and there cannot 2549 * be a higher-priority pending interrupt---except if there was 2550 * a concurrent interrupt injection, but that would have 2551 * triggered KVM_REQ_EVENT already. 2552 */ 2553 apic_set_isr(vector, apic); 2554 __apic_update_ppr(apic, &ppr); 2555 } 2556 2557 return vector; 2558 } 2559 2560 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2561 struct kvm_lapic_state *s, bool set) 2562 { 2563 if (apic_x2apic_mode(vcpu->arch.apic)) { 2564 u32 *id = (u32 *)(s->regs + APIC_ID); 2565 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2566 2567 if (vcpu->kvm->arch.x2apic_format) { 2568 if (*id != vcpu->vcpu_id) 2569 return -EINVAL; 2570 } else { 2571 if (set) 2572 *id >>= 24; 2573 else 2574 *id <<= 24; 2575 } 2576 2577 /* In x2APIC mode, the LDR is fixed and based on the id */ 2578 if (set) 2579 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2580 } 2581 2582 return 0; 2583 } 2584 2585 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2586 { 2587 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2588 2589 /* 2590 * Get calculated timer current count for remaining timer period (if 2591 * any) and store it in the returned register set. 2592 */ 2593 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2594 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2595 2596 return kvm_apic_state_fixup(vcpu, s, false); 2597 } 2598 2599 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2600 { 2601 struct kvm_lapic *apic = vcpu->arch.apic; 2602 int r; 2603 2604 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2605 /* set SPIV separately to get count of SW disabled APICs right */ 2606 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2607 2608 r = kvm_apic_state_fixup(vcpu, s, true); 2609 if (r) { 2610 kvm_recalculate_apic_map(vcpu->kvm); 2611 return r; 2612 } 2613 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2614 2615 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2616 kvm_recalculate_apic_map(vcpu->kvm); 2617 kvm_apic_set_version(vcpu); 2618 2619 apic_update_ppr(apic); 2620 hrtimer_cancel(&apic->lapic_timer.timer); 2621 apic->lapic_timer.expired_tscdeadline = 0; 2622 apic_update_lvtt(apic); 2623 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2624 update_divide_count(apic); 2625 __start_apic_timer(apic, APIC_TMCCT); 2626 kvm_apic_update_apicv(vcpu); 2627 apic->highest_isr_cache = -1; 2628 if (vcpu->arch.apicv_active) { 2629 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2630 static_call(kvm_x86_hwapic_irr_update)(vcpu, 2631 apic_find_highest_irr(apic)); 2632 static_call(kvm_x86_hwapic_isr_update)(vcpu, 2633 apic_find_highest_isr(apic)); 2634 } 2635 kvm_make_request(KVM_REQ_EVENT, vcpu); 2636 if (ioapic_in_kernel(vcpu->kvm)) 2637 kvm_rtc_eoi_tracking_restore_one(vcpu); 2638 2639 vcpu->arch.apic_arb_prio = 0; 2640 2641 return 0; 2642 } 2643 2644 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2645 { 2646 struct hrtimer *timer; 2647 2648 if (!lapic_in_kernel(vcpu) || 2649 kvm_can_post_timer_interrupt(vcpu)) 2650 return; 2651 2652 timer = &vcpu->arch.apic->lapic_timer.timer; 2653 if (hrtimer_cancel(timer)) 2654 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2655 } 2656 2657 /* 2658 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2659 * 2660 * Detect whether guest triggered PV EOI since the 2661 * last entry. If yes, set EOI on guests's behalf. 2662 * Clear PV EOI in guest memory in any case. 2663 */ 2664 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2665 struct kvm_lapic *apic) 2666 { 2667 bool pending; 2668 int vector; 2669 /* 2670 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2671 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2672 * 2673 * KVM_APIC_PV_EOI_PENDING is unset: 2674 * -> host disabled PV EOI. 2675 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2676 * -> host enabled PV EOI, guest did not execute EOI yet. 2677 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2678 * -> host enabled PV EOI, guest executed EOI. 2679 */ 2680 BUG_ON(!pv_eoi_enabled(vcpu)); 2681 pending = pv_eoi_get_pending(vcpu); 2682 /* 2683 * Clear pending bit in any case: it will be set again on vmentry. 2684 * While this might not be ideal from performance point of view, 2685 * this makes sure pv eoi is only enabled when we know it's safe. 2686 */ 2687 pv_eoi_clr_pending(vcpu); 2688 if (pending) 2689 return; 2690 vector = apic_set_eoi(apic); 2691 trace_kvm_pv_eoi(apic, vector); 2692 } 2693 2694 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2695 { 2696 u32 data; 2697 2698 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2699 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2700 2701 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2702 return; 2703 2704 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2705 sizeof(u32))) 2706 return; 2707 2708 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2709 } 2710 2711 /* 2712 * apic_sync_pv_eoi_to_guest - called before vmentry 2713 * 2714 * Detect whether it's safe to enable PV EOI and 2715 * if yes do so. 2716 */ 2717 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2718 struct kvm_lapic *apic) 2719 { 2720 if (!pv_eoi_enabled(vcpu) || 2721 /* IRR set or many bits in ISR: could be nested. */ 2722 apic->irr_pending || 2723 /* Cache not set: could be safe but we don't bother. */ 2724 apic->highest_isr_cache == -1 || 2725 /* Need EOI to update ioapic. */ 2726 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2727 /* 2728 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2729 * so we need not do anything here. 2730 */ 2731 return; 2732 } 2733 2734 pv_eoi_set_pending(apic->vcpu); 2735 } 2736 2737 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2738 { 2739 u32 data, tpr; 2740 int max_irr, max_isr; 2741 struct kvm_lapic *apic = vcpu->arch.apic; 2742 2743 apic_sync_pv_eoi_to_guest(vcpu, apic); 2744 2745 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2746 return; 2747 2748 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2749 max_irr = apic_find_highest_irr(apic); 2750 if (max_irr < 0) 2751 max_irr = 0; 2752 max_isr = apic_find_highest_isr(apic); 2753 if (max_isr < 0) 2754 max_isr = 0; 2755 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2756 2757 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2758 sizeof(u32)); 2759 } 2760 2761 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2762 { 2763 if (vapic_addr) { 2764 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2765 &vcpu->arch.apic->vapic_cache, 2766 vapic_addr, sizeof(u32))) 2767 return -EINVAL; 2768 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2769 } else { 2770 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2771 } 2772 2773 vcpu->arch.apic->vapic_addr = vapic_addr; 2774 return 0; 2775 } 2776 2777 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2778 { 2779 struct kvm_lapic *apic = vcpu->arch.apic; 2780 u32 reg = (msr - APIC_BASE_MSR) << 4; 2781 2782 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2783 return 1; 2784 2785 if (reg == APIC_ICR2) 2786 return 1; 2787 2788 /* if this is ICR write vector before command */ 2789 if (reg == APIC_ICR) 2790 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2791 return kvm_lapic_reg_write(apic, reg, (u32)data); 2792 } 2793 2794 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2795 { 2796 struct kvm_lapic *apic = vcpu->arch.apic; 2797 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2798 2799 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2800 return 1; 2801 2802 if (reg == APIC_DFR || reg == APIC_ICR2) 2803 return 1; 2804 2805 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2806 return 1; 2807 if (reg == APIC_ICR) 2808 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2809 2810 *data = (((u64)high) << 32) | low; 2811 2812 return 0; 2813 } 2814 2815 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2816 { 2817 struct kvm_lapic *apic = vcpu->arch.apic; 2818 2819 if (!lapic_in_kernel(vcpu)) 2820 return 1; 2821 2822 /* if this is ICR write vector before command */ 2823 if (reg == APIC_ICR) 2824 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2825 return kvm_lapic_reg_write(apic, reg, (u32)data); 2826 } 2827 2828 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2829 { 2830 struct kvm_lapic *apic = vcpu->arch.apic; 2831 u32 low, high = 0; 2832 2833 if (!lapic_in_kernel(vcpu)) 2834 return 1; 2835 2836 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2837 return 1; 2838 if (reg == APIC_ICR) 2839 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2840 2841 *data = (((u64)high) << 32) | low; 2842 2843 return 0; 2844 } 2845 2846 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2847 { 2848 u64 addr = data & ~KVM_MSR_ENABLED; 2849 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2850 unsigned long new_len; 2851 2852 if (!IS_ALIGNED(addr, 4)) 2853 return 1; 2854 2855 vcpu->arch.pv_eoi.msr_val = data; 2856 if (!pv_eoi_enabled(vcpu)) 2857 return 0; 2858 2859 if (addr == ghc->gpa && len <= ghc->len) 2860 new_len = ghc->len; 2861 else 2862 new_len = len; 2863 2864 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2865 } 2866 2867 void kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2868 { 2869 struct kvm_lapic *apic = vcpu->arch.apic; 2870 u8 sipi_vector; 2871 int r; 2872 unsigned long pe; 2873 2874 if (!lapic_in_kernel(vcpu)) 2875 return; 2876 2877 /* 2878 * Read pending events before calling the check_events 2879 * callback. 2880 */ 2881 pe = smp_load_acquire(&apic->pending_events); 2882 if (!pe) 2883 return; 2884 2885 if (is_guest_mode(vcpu)) { 2886 r = kvm_check_nested_events(vcpu); 2887 if (r < 0) 2888 return; 2889 /* 2890 * If an event has happened and caused a vmexit, 2891 * we know INITs are latched and therefore 2892 * we will not incorrectly deliver an APIC 2893 * event instead of a vmexit. 2894 */ 2895 } 2896 2897 /* 2898 * INITs are latched while CPU is in specific states 2899 * (SMM, VMX root mode, SVM with GIF=0). 2900 * Because a CPU cannot be in these states immediately 2901 * after it has processed an INIT signal (and thus in 2902 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2903 * and leave the INIT pending. 2904 */ 2905 if (kvm_vcpu_latch_init(vcpu)) { 2906 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2907 if (test_bit(KVM_APIC_SIPI, &pe)) 2908 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2909 return; 2910 } 2911 2912 if (test_bit(KVM_APIC_INIT, &pe)) { 2913 clear_bit(KVM_APIC_INIT, &apic->pending_events); 2914 kvm_vcpu_reset(vcpu, true); 2915 if (kvm_vcpu_is_bsp(apic->vcpu)) 2916 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2917 else 2918 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2919 } 2920 if (test_bit(KVM_APIC_SIPI, &pe)) { 2921 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2922 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2923 /* evaluate pending_events before reading the vector */ 2924 smp_rmb(); 2925 sipi_vector = apic->sipi_vector; 2926 kvm_x86_ops.vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2927 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2928 } 2929 } 2930 } 2931 2932 void kvm_lapic_exit(void) 2933 { 2934 static_key_deferred_flush(&apic_hw_disabled); 2935 static_key_deferred_flush(&apic_sw_disabled); 2936 } 2937