xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision 4a0a1436)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "ioapic.h"
40 #include "trace.h"
41 #include "x86.h"
42 #include "cpuid.h"
43 #include "hyperv.h"
44 
45 #ifndef CONFIG_X86_64
46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
47 #else
48 #define mod_64(x, y) ((x) % (y))
49 #endif
50 
51 #define PRId64 "d"
52 #define PRIx64 "llx"
53 #define PRIu64 "u"
54 #define PRIo64 "o"
55 
56 /* 14 is the version for Xeon and Pentium 8.4.8*/
57 #define APIC_VERSION			(0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
58 #define LAPIC_MMIO_LENGTH		(1 << 12)
59 /* followed define is not in apicdef.h */
60 #define MAX_APIC_VECTOR			256
61 #define APIC_VECTORS_PER_REG		32
62 
63 static bool lapic_timer_advance_dynamic __read_mostly;
64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
66 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
67 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
68 /* step-by-step approximation to mitigate fluctuation */
69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
70 
71 static inline int apic_test_vector(int vec, void *bitmap)
72 {
73 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
74 }
75 
76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
77 {
78 	struct kvm_lapic *apic = vcpu->arch.apic;
79 
80 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
81 		apic_test_vector(vector, apic->regs + APIC_IRR);
82 }
83 
84 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
85 {
86 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
87 }
88 
89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
90 {
91 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
92 }
93 
94 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
95 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
96 
97 static inline int apic_enabled(struct kvm_lapic *apic)
98 {
99 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
100 }
101 
102 #define LVT_MASK	\
103 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
104 
105 #define LINT_MASK	\
106 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
107 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
108 
109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
110 {
111 	return apic->vcpu->vcpu_id;
112 }
113 
114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
115 {
116 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
117 }
118 
119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
120 {
121 	return kvm_x86_ops.set_hv_timer
122 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
123 		    kvm_can_post_timer_interrupt(vcpu));
124 }
125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer);
126 
127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
128 {
129 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
130 }
131 
132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
133 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
134 	switch (map->mode) {
135 	case KVM_APIC_MODE_X2APIC: {
136 		u32 offset = (dest_id >> 16) * 16;
137 		u32 max_apic_id = map->max_apic_id;
138 
139 		if (offset <= max_apic_id) {
140 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
141 
142 			offset = array_index_nospec(offset, map->max_apic_id + 1);
143 			*cluster = &map->phys_map[offset];
144 			*mask = dest_id & (0xffff >> (16 - cluster_size));
145 		} else {
146 			*mask = 0;
147 		}
148 
149 		return true;
150 		}
151 	case KVM_APIC_MODE_XAPIC_FLAT:
152 		*cluster = map->xapic_flat_map;
153 		*mask = dest_id & 0xff;
154 		return true;
155 	case KVM_APIC_MODE_XAPIC_CLUSTER:
156 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
157 		*mask = dest_id & 0xf;
158 		return true;
159 	default:
160 		/* Not optimized. */
161 		return false;
162 	}
163 }
164 
165 static void kvm_apic_map_free(struct rcu_head *rcu)
166 {
167 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
168 
169 	kvfree(map);
170 }
171 
172 /*
173  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
174  *
175  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
176  * apic_map_lock_held.
177  */
178 enum {
179 	CLEAN,
180 	UPDATE_IN_PROGRESS,
181 	DIRTY
182 };
183 
184 void kvm_recalculate_apic_map(struct kvm *kvm)
185 {
186 	struct kvm_apic_map *new, *old = NULL;
187 	struct kvm_vcpu *vcpu;
188 	unsigned long i;
189 	u32 max_id = 255; /* enough space for any xAPIC ID */
190 
191 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
192 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
193 		return;
194 
195 	WARN_ONCE(!irqchip_in_kernel(kvm),
196 		  "Dirty APIC map without an in-kernel local APIC");
197 
198 	mutex_lock(&kvm->arch.apic_map_lock);
199 	/*
200 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
201 	 * (if clean) or the APIC registers (if dirty).
202 	 */
203 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
204 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
205 		/* Someone else has updated the map. */
206 		mutex_unlock(&kvm->arch.apic_map_lock);
207 		return;
208 	}
209 
210 	kvm_for_each_vcpu(i, vcpu, kvm)
211 		if (kvm_apic_present(vcpu))
212 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
213 
214 	new = kvzalloc(sizeof(struct kvm_apic_map) +
215 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
216 			   GFP_KERNEL_ACCOUNT);
217 
218 	if (!new)
219 		goto out;
220 
221 	new->max_apic_id = max_id;
222 
223 	kvm_for_each_vcpu(i, vcpu, kvm) {
224 		struct kvm_lapic *apic = vcpu->arch.apic;
225 		struct kvm_lapic **cluster;
226 		u16 mask;
227 		u32 ldr;
228 		u8 xapic_id;
229 		u32 x2apic_id;
230 
231 		if (!kvm_apic_present(vcpu))
232 			continue;
233 
234 		xapic_id = kvm_xapic_id(apic);
235 		x2apic_id = kvm_x2apic_id(apic);
236 
237 		/* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
238 		if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
239 				x2apic_id <= new->max_apic_id)
240 			new->phys_map[x2apic_id] = apic;
241 		/*
242 		 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
243 		 * prevent them from masking VCPUs with APIC ID <= 0xff.
244 		 */
245 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
246 			new->phys_map[xapic_id] = apic;
247 
248 		if (!kvm_apic_sw_enabled(apic))
249 			continue;
250 
251 		ldr = kvm_lapic_get_reg(apic, APIC_LDR);
252 
253 		if (apic_x2apic_mode(apic)) {
254 			new->mode |= KVM_APIC_MODE_X2APIC;
255 		} else if (ldr) {
256 			ldr = GET_APIC_LOGICAL_ID(ldr);
257 			if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
258 				new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
259 			else
260 				new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
261 		}
262 
263 		if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
264 			continue;
265 
266 		if (mask)
267 			cluster[ffs(mask) - 1] = apic;
268 	}
269 out:
270 	old = rcu_dereference_protected(kvm->arch.apic_map,
271 			lockdep_is_held(&kvm->arch.apic_map_lock));
272 	rcu_assign_pointer(kvm->arch.apic_map, new);
273 	/*
274 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
275 	 * If another update has come in, leave it DIRTY.
276 	 */
277 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
278 			       UPDATE_IN_PROGRESS, CLEAN);
279 	mutex_unlock(&kvm->arch.apic_map_lock);
280 
281 	if (old)
282 		call_rcu(&old->rcu, kvm_apic_map_free);
283 
284 	kvm_make_scan_ioapic_request(kvm);
285 }
286 
287 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
288 {
289 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
290 
291 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
292 
293 	if (enabled != apic->sw_enabled) {
294 		apic->sw_enabled = enabled;
295 		if (enabled)
296 			static_branch_slow_dec_deferred(&apic_sw_disabled);
297 		else
298 			static_branch_inc(&apic_sw_disabled.key);
299 
300 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
301 	}
302 
303 	/* Check if there are APF page ready requests pending */
304 	if (enabled)
305 		kvm_make_request(KVM_REQ_APF_READY, apic->vcpu);
306 }
307 
308 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
309 {
310 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
311 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
312 }
313 
314 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
315 {
316 	kvm_lapic_set_reg(apic, APIC_LDR, id);
317 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
318 }
319 
320 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
321 {
322 	kvm_lapic_set_reg(apic, APIC_DFR, val);
323 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
324 }
325 
326 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
327 {
328 	return ((id >> 4) << 16) | (1 << (id & 0xf));
329 }
330 
331 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
332 {
333 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
334 
335 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
336 
337 	kvm_lapic_set_reg(apic, APIC_ID, id);
338 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
339 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
340 }
341 
342 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
343 {
344 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
345 }
346 
347 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
348 {
349 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
350 }
351 
352 static inline int apic_lvtt_period(struct kvm_lapic *apic)
353 {
354 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
355 }
356 
357 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
358 {
359 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
360 }
361 
362 static inline int apic_lvt_nmi_mode(u32 lvt_val)
363 {
364 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
365 }
366 
367 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
368 {
369 	struct kvm_lapic *apic = vcpu->arch.apic;
370 	u32 v = APIC_VERSION;
371 
372 	if (!lapic_in_kernel(vcpu))
373 		return;
374 
375 	/*
376 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
377 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
378 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
379 	 * version first and level-triggered interrupts never get EOIed in
380 	 * IOAPIC.
381 	 */
382 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
383 	    !ioapic_in_kernel(vcpu->kvm))
384 		v |= APIC_LVR_DIRECTED_EOI;
385 	kvm_lapic_set_reg(apic, APIC_LVR, v);
386 }
387 
388 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
389 	LVT_MASK ,      /* part LVTT mask, timer mode mask added at runtime */
390 	LVT_MASK | APIC_MODE_MASK,	/* LVTTHMR */
391 	LVT_MASK | APIC_MODE_MASK,	/* LVTPC */
392 	LINT_MASK, LINT_MASK,	/* LVT0-1 */
393 	LVT_MASK		/* LVTERR */
394 };
395 
396 static int find_highest_vector(void *bitmap)
397 {
398 	int vec;
399 	u32 *reg;
400 
401 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
402 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
403 		reg = bitmap + REG_POS(vec);
404 		if (*reg)
405 			return __fls(*reg) + vec;
406 	}
407 
408 	return -1;
409 }
410 
411 static u8 count_vectors(void *bitmap)
412 {
413 	int vec;
414 	u32 *reg;
415 	u8 count = 0;
416 
417 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
418 		reg = bitmap + REG_POS(vec);
419 		count += hweight32(*reg);
420 	}
421 
422 	return count;
423 }
424 
425 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
426 {
427 	u32 i, vec;
428 	u32 pir_val, irr_val, prev_irr_val;
429 	int max_updated_irr;
430 
431 	max_updated_irr = -1;
432 	*max_irr = -1;
433 
434 	for (i = vec = 0; i <= 7; i++, vec += 32) {
435 		pir_val = READ_ONCE(pir[i]);
436 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
437 		if (pir_val) {
438 			prev_irr_val = irr_val;
439 			irr_val |= xchg(&pir[i], 0);
440 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
441 			if (prev_irr_val != irr_val) {
442 				max_updated_irr =
443 					__fls(irr_val ^ prev_irr_val) + vec;
444 			}
445 		}
446 		if (irr_val)
447 			*max_irr = __fls(irr_val) + vec;
448 	}
449 
450 	return ((max_updated_irr != -1) &&
451 		(max_updated_irr == *max_irr));
452 }
453 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
454 
455 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
456 {
457 	struct kvm_lapic *apic = vcpu->arch.apic;
458 
459 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
460 }
461 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
462 
463 static inline int apic_search_irr(struct kvm_lapic *apic)
464 {
465 	return find_highest_vector(apic->regs + APIC_IRR);
466 }
467 
468 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
469 {
470 	int result;
471 
472 	/*
473 	 * Note that irr_pending is just a hint. It will be always
474 	 * true with virtual interrupt delivery enabled.
475 	 */
476 	if (!apic->irr_pending)
477 		return -1;
478 
479 	result = apic_search_irr(apic);
480 	ASSERT(result == -1 || result >= 16);
481 
482 	return result;
483 }
484 
485 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
486 {
487 	struct kvm_vcpu *vcpu;
488 
489 	vcpu = apic->vcpu;
490 
491 	if (unlikely(vcpu->arch.apicv_active)) {
492 		/* need to update RVI */
493 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
494 		static_call(kvm_x86_hwapic_irr_update)(vcpu,
495 				apic_find_highest_irr(apic));
496 	} else {
497 		apic->irr_pending = false;
498 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
499 		if (apic_search_irr(apic) != -1)
500 			apic->irr_pending = true;
501 	}
502 }
503 
504 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
505 {
506 	apic_clear_irr(vec, vcpu->arch.apic);
507 }
508 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
509 
510 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
511 {
512 	struct kvm_vcpu *vcpu;
513 
514 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
515 		return;
516 
517 	vcpu = apic->vcpu;
518 
519 	/*
520 	 * With APIC virtualization enabled, all caching is disabled
521 	 * because the processor can modify ISR under the hood.  Instead
522 	 * just set SVI.
523 	 */
524 	if (unlikely(vcpu->arch.apicv_active))
525 		static_call(kvm_x86_hwapic_isr_update)(vcpu, vec);
526 	else {
527 		++apic->isr_count;
528 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
529 		/*
530 		 * ISR (in service register) bit is set when injecting an interrupt.
531 		 * The highest vector is injected. Thus the latest bit set matches
532 		 * the highest bit in ISR.
533 		 */
534 		apic->highest_isr_cache = vec;
535 	}
536 }
537 
538 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
539 {
540 	int result;
541 
542 	/*
543 	 * Note that isr_count is always 1, and highest_isr_cache
544 	 * is always -1, with APIC virtualization enabled.
545 	 */
546 	if (!apic->isr_count)
547 		return -1;
548 	if (likely(apic->highest_isr_cache != -1))
549 		return apic->highest_isr_cache;
550 
551 	result = find_highest_vector(apic->regs + APIC_ISR);
552 	ASSERT(result == -1 || result >= 16);
553 
554 	return result;
555 }
556 
557 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
558 {
559 	struct kvm_vcpu *vcpu;
560 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
561 		return;
562 
563 	vcpu = apic->vcpu;
564 
565 	/*
566 	 * We do get here for APIC virtualization enabled if the guest
567 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
568 	 * to trigger a new interrupt delivery by writing the SVI field;
569 	 * on the other hand isr_count and highest_isr_cache are unused
570 	 * and must be left alone.
571 	 */
572 	if (unlikely(vcpu->arch.apicv_active))
573 		static_call(kvm_x86_hwapic_isr_update)(vcpu,
574 						apic_find_highest_isr(apic));
575 	else {
576 		--apic->isr_count;
577 		BUG_ON(apic->isr_count < 0);
578 		apic->highest_isr_cache = -1;
579 	}
580 }
581 
582 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
583 {
584 	/* This may race with setting of irr in __apic_accept_irq() and
585 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
586 	 * will cause vmexit immediately and the value will be recalculated
587 	 * on the next vmentry.
588 	 */
589 	return apic_find_highest_irr(vcpu->arch.apic);
590 }
591 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
592 
593 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
594 			     int vector, int level, int trig_mode,
595 			     struct dest_map *dest_map);
596 
597 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
598 		     struct dest_map *dest_map)
599 {
600 	struct kvm_lapic *apic = vcpu->arch.apic;
601 
602 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
603 			irq->level, irq->trig_mode, dest_map);
604 }
605 
606 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
607 			 struct kvm_lapic_irq *irq, u32 min)
608 {
609 	int i, count = 0;
610 	struct kvm_vcpu *vcpu;
611 
612 	if (min > map->max_apic_id)
613 		return 0;
614 
615 	for_each_set_bit(i, ipi_bitmap,
616 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
617 		if (map->phys_map[min + i]) {
618 			vcpu = map->phys_map[min + i]->vcpu;
619 			count += kvm_apic_set_irq(vcpu, irq, NULL);
620 		}
621 	}
622 
623 	return count;
624 }
625 
626 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
627 		    unsigned long ipi_bitmap_high, u32 min,
628 		    unsigned long icr, int op_64_bit)
629 {
630 	struct kvm_apic_map *map;
631 	struct kvm_lapic_irq irq = {0};
632 	int cluster_size = op_64_bit ? 64 : 32;
633 	int count;
634 
635 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
636 		return -KVM_EINVAL;
637 
638 	irq.vector = icr & APIC_VECTOR_MASK;
639 	irq.delivery_mode = icr & APIC_MODE_MASK;
640 	irq.level = (icr & APIC_INT_ASSERT) != 0;
641 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
642 
643 	rcu_read_lock();
644 	map = rcu_dereference(kvm->arch.apic_map);
645 
646 	count = -EOPNOTSUPP;
647 	if (likely(map)) {
648 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
649 		min += cluster_size;
650 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
651 	}
652 
653 	rcu_read_unlock();
654 	return count;
655 }
656 
657 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
658 {
659 
660 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
661 				      sizeof(val));
662 }
663 
664 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
665 {
666 
667 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
668 				      sizeof(*val));
669 }
670 
671 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
672 {
673 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
674 }
675 
676 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
677 {
678 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0)
679 		return;
680 
681 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
682 }
683 
684 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu)
685 {
686 	u8 val;
687 
688 	if (pv_eoi_get_user(vcpu, &val) < 0)
689 		return false;
690 
691 	val &= KVM_PV_EOI_ENABLED;
692 
693 	if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0)
694 		return false;
695 
696 	/*
697 	 * Clear pending bit in any case: it will be set again on vmentry.
698 	 * While this might not be ideal from performance point of view,
699 	 * this makes sure pv eoi is only enabled when we know it's safe.
700 	 */
701 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
702 
703 	return val;
704 }
705 
706 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
707 {
708 	int highest_irr;
709 	if (kvm_x86_ops.sync_pir_to_irr)
710 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
711 	else
712 		highest_irr = apic_find_highest_irr(apic);
713 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
714 		return -1;
715 	return highest_irr;
716 }
717 
718 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
719 {
720 	u32 tpr, isrv, ppr, old_ppr;
721 	int isr;
722 
723 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
724 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
725 	isr = apic_find_highest_isr(apic);
726 	isrv = (isr != -1) ? isr : 0;
727 
728 	if ((tpr & 0xf0) >= (isrv & 0xf0))
729 		ppr = tpr & 0xff;
730 	else
731 		ppr = isrv & 0xf0;
732 
733 	*new_ppr = ppr;
734 	if (old_ppr != ppr)
735 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
736 
737 	return ppr < old_ppr;
738 }
739 
740 static void apic_update_ppr(struct kvm_lapic *apic)
741 {
742 	u32 ppr;
743 
744 	if (__apic_update_ppr(apic, &ppr) &&
745 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
746 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
747 }
748 
749 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
750 {
751 	apic_update_ppr(vcpu->arch.apic);
752 }
753 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
754 
755 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
756 {
757 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
758 	apic_update_ppr(apic);
759 }
760 
761 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
762 {
763 	return mda == (apic_x2apic_mode(apic) ?
764 			X2APIC_BROADCAST : APIC_BROADCAST);
765 }
766 
767 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
768 {
769 	if (kvm_apic_broadcast(apic, mda))
770 		return true;
771 
772 	if (apic_x2apic_mode(apic))
773 		return mda == kvm_x2apic_id(apic);
774 
775 	/*
776 	 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
777 	 * it were in x2APIC mode.  Hotplugged VCPUs start in xAPIC mode and
778 	 * this allows unique addressing of VCPUs with APIC ID over 0xff.
779 	 * The 0xff condition is needed because writeable xAPIC ID.
780 	 */
781 	if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
782 		return true;
783 
784 	return mda == kvm_xapic_id(apic);
785 }
786 
787 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
788 {
789 	u32 logical_id;
790 
791 	if (kvm_apic_broadcast(apic, mda))
792 		return true;
793 
794 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
795 
796 	if (apic_x2apic_mode(apic))
797 		return ((logical_id >> 16) == (mda >> 16))
798 		       && (logical_id & mda & 0xffff) != 0;
799 
800 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
801 
802 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
803 	case APIC_DFR_FLAT:
804 		return (logical_id & mda) != 0;
805 	case APIC_DFR_CLUSTER:
806 		return ((logical_id >> 4) == (mda >> 4))
807 		       && (logical_id & mda & 0xf) != 0;
808 	default:
809 		return false;
810 	}
811 }
812 
813 /* The KVM local APIC implementation has two quirks:
814  *
815  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
816  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
817  *    KVM doesn't do that aliasing.
818  *
819  *  - in-kernel IOAPIC messages have to be delivered directly to
820  *    x2APIC, because the kernel does not support interrupt remapping.
821  *    In order to support broadcast without interrupt remapping, x2APIC
822  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
823  *    to X2APIC_BROADCAST.
824  *
825  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
826  * important when userspace wants to use x2APIC-format MSIs, because
827  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
828  */
829 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
830 		struct kvm_lapic *source, struct kvm_lapic *target)
831 {
832 	bool ipi = source != NULL;
833 
834 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
835 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
836 		return X2APIC_BROADCAST;
837 
838 	return dest_id;
839 }
840 
841 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
842 			   int shorthand, unsigned int dest, int dest_mode)
843 {
844 	struct kvm_lapic *target = vcpu->arch.apic;
845 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
846 
847 	ASSERT(target);
848 	switch (shorthand) {
849 	case APIC_DEST_NOSHORT:
850 		if (dest_mode == APIC_DEST_PHYSICAL)
851 			return kvm_apic_match_physical_addr(target, mda);
852 		else
853 			return kvm_apic_match_logical_addr(target, mda);
854 	case APIC_DEST_SELF:
855 		return target == source;
856 	case APIC_DEST_ALLINC:
857 		return true;
858 	case APIC_DEST_ALLBUT:
859 		return target != source;
860 	default:
861 		return false;
862 	}
863 }
864 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
865 
866 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
867 		       const unsigned long *bitmap, u32 bitmap_size)
868 {
869 	u32 mod;
870 	int i, idx = -1;
871 
872 	mod = vector % dest_vcpus;
873 
874 	for (i = 0; i <= mod; i++) {
875 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
876 		BUG_ON(idx == bitmap_size);
877 	}
878 
879 	return idx;
880 }
881 
882 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
883 {
884 	if (!kvm->arch.disabled_lapic_found) {
885 		kvm->arch.disabled_lapic_found = true;
886 		printk(KERN_INFO
887 		       "Disabled LAPIC found during irq injection\n");
888 	}
889 }
890 
891 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
892 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
893 {
894 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
895 		if ((irq->dest_id == APIC_BROADCAST &&
896 				map->mode != KVM_APIC_MODE_X2APIC))
897 			return true;
898 		if (irq->dest_id == X2APIC_BROADCAST)
899 			return true;
900 	} else {
901 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
902 		if (irq->dest_id == (x2apic_ipi ?
903 		                     X2APIC_BROADCAST : APIC_BROADCAST))
904 			return true;
905 	}
906 
907 	return false;
908 }
909 
910 /* Return true if the interrupt can be handled by using *bitmap as index mask
911  * for valid destinations in *dst array.
912  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
913  * Note: we may have zero kvm_lapic destinations when we return true, which
914  * means that the interrupt should be dropped.  In this case, *bitmap would be
915  * zero and *dst undefined.
916  */
917 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
918 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
919 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
920 		unsigned long *bitmap)
921 {
922 	int i, lowest;
923 
924 	if (irq->shorthand == APIC_DEST_SELF && src) {
925 		*dst = src;
926 		*bitmap = 1;
927 		return true;
928 	} else if (irq->shorthand)
929 		return false;
930 
931 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
932 		return false;
933 
934 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
935 		if (irq->dest_id > map->max_apic_id) {
936 			*bitmap = 0;
937 		} else {
938 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
939 			*dst = &map->phys_map[dest_id];
940 			*bitmap = 1;
941 		}
942 		return true;
943 	}
944 
945 	*bitmap = 0;
946 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
947 				(u16 *)bitmap))
948 		return false;
949 
950 	if (!kvm_lowest_prio_delivery(irq))
951 		return true;
952 
953 	if (!kvm_vector_hashing_enabled()) {
954 		lowest = -1;
955 		for_each_set_bit(i, bitmap, 16) {
956 			if (!(*dst)[i])
957 				continue;
958 			if (lowest < 0)
959 				lowest = i;
960 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
961 						(*dst)[lowest]->vcpu) < 0)
962 				lowest = i;
963 		}
964 	} else {
965 		if (!*bitmap)
966 			return true;
967 
968 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
969 				bitmap, 16);
970 
971 		if (!(*dst)[lowest]) {
972 			kvm_apic_disabled_lapic_found(kvm);
973 			*bitmap = 0;
974 			return true;
975 		}
976 	}
977 
978 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
979 
980 	return true;
981 }
982 
983 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
984 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
985 {
986 	struct kvm_apic_map *map;
987 	unsigned long bitmap;
988 	struct kvm_lapic **dst = NULL;
989 	int i;
990 	bool ret;
991 
992 	*r = -1;
993 
994 	if (irq->shorthand == APIC_DEST_SELF) {
995 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
996 		return true;
997 	}
998 
999 	rcu_read_lock();
1000 	map = rcu_dereference(kvm->arch.apic_map);
1001 
1002 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
1003 	if (ret) {
1004 		*r = 0;
1005 		for_each_set_bit(i, &bitmap, 16) {
1006 			if (!dst[i])
1007 				continue;
1008 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1009 		}
1010 	}
1011 
1012 	rcu_read_unlock();
1013 	return ret;
1014 }
1015 
1016 /*
1017  * This routine tries to handle interrupts in posted mode, here is how
1018  * it deals with different cases:
1019  * - For single-destination interrupts, handle it in posted mode
1020  * - Else if vector hashing is enabled and it is a lowest-priority
1021  *   interrupt, handle it in posted mode and use the following mechanism
1022  *   to find the destination vCPU.
1023  *	1. For lowest-priority interrupts, store all the possible
1024  *	   destination vCPUs in an array.
1025  *	2. Use "guest vector % max number of destination vCPUs" to find
1026  *	   the right destination vCPU in the array for the lowest-priority
1027  *	   interrupt.
1028  * - Otherwise, use remapped mode to inject the interrupt.
1029  */
1030 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1031 			struct kvm_vcpu **dest_vcpu)
1032 {
1033 	struct kvm_apic_map *map;
1034 	unsigned long bitmap;
1035 	struct kvm_lapic **dst = NULL;
1036 	bool ret = false;
1037 
1038 	if (irq->shorthand)
1039 		return false;
1040 
1041 	rcu_read_lock();
1042 	map = rcu_dereference(kvm->arch.apic_map);
1043 
1044 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1045 			hweight16(bitmap) == 1) {
1046 		unsigned long i = find_first_bit(&bitmap, 16);
1047 
1048 		if (dst[i]) {
1049 			*dest_vcpu = dst[i]->vcpu;
1050 			ret = true;
1051 		}
1052 	}
1053 
1054 	rcu_read_unlock();
1055 	return ret;
1056 }
1057 
1058 /*
1059  * Add a pending IRQ into lapic.
1060  * Return 1 if successfully added and 0 if discarded.
1061  */
1062 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1063 			     int vector, int level, int trig_mode,
1064 			     struct dest_map *dest_map)
1065 {
1066 	int result = 0;
1067 	struct kvm_vcpu *vcpu = apic->vcpu;
1068 
1069 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1070 				  trig_mode, vector);
1071 	switch (delivery_mode) {
1072 	case APIC_DM_LOWEST:
1073 		vcpu->arch.apic_arb_prio++;
1074 		fallthrough;
1075 	case APIC_DM_FIXED:
1076 		if (unlikely(trig_mode && !level))
1077 			break;
1078 
1079 		/* FIXME add logic for vcpu on reset */
1080 		if (unlikely(!apic_enabled(apic)))
1081 			break;
1082 
1083 		result = 1;
1084 
1085 		if (dest_map) {
1086 			__set_bit(vcpu->vcpu_id, dest_map->map);
1087 			dest_map->vectors[vcpu->vcpu_id] = vector;
1088 		}
1089 
1090 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1091 			if (trig_mode)
1092 				kvm_lapic_set_vector(vector,
1093 						     apic->regs + APIC_TMR);
1094 			else
1095 				kvm_lapic_clear_vector(vector,
1096 						       apic->regs + APIC_TMR);
1097 		}
1098 
1099 		static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode,
1100 						       trig_mode, vector);
1101 		break;
1102 
1103 	case APIC_DM_REMRD:
1104 		result = 1;
1105 		vcpu->arch.pv.pv_unhalted = 1;
1106 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1107 		kvm_vcpu_kick(vcpu);
1108 		break;
1109 
1110 	case APIC_DM_SMI:
1111 		result = 1;
1112 		kvm_make_request(KVM_REQ_SMI, vcpu);
1113 		kvm_vcpu_kick(vcpu);
1114 		break;
1115 
1116 	case APIC_DM_NMI:
1117 		result = 1;
1118 		kvm_inject_nmi(vcpu);
1119 		kvm_vcpu_kick(vcpu);
1120 		break;
1121 
1122 	case APIC_DM_INIT:
1123 		if (!trig_mode || level) {
1124 			result = 1;
1125 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1126 			apic->pending_events = (1UL << KVM_APIC_INIT);
1127 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1128 			kvm_vcpu_kick(vcpu);
1129 		}
1130 		break;
1131 
1132 	case APIC_DM_STARTUP:
1133 		result = 1;
1134 		apic->sipi_vector = vector;
1135 		/* make sure sipi_vector is visible for the receiver */
1136 		smp_wmb();
1137 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1138 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1139 		kvm_vcpu_kick(vcpu);
1140 		break;
1141 
1142 	case APIC_DM_EXTINT:
1143 		/*
1144 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1145 		 * before NMI watchdog was enabled. Already handled by
1146 		 * kvm_apic_accept_pic_intr().
1147 		 */
1148 		break;
1149 
1150 	default:
1151 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1152 		       delivery_mode);
1153 		break;
1154 	}
1155 	return result;
1156 }
1157 
1158 /*
1159  * This routine identifies the destination vcpus mask meant to receive the
1160  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1161  * out the destination vcpus array and set the bitmap or it traverses to
1162  * each available vcpu to identify the same.
1163  */
1164 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1165 			      unsigned long *vcpu_bitmap)
1166 {
1167 	struct kvm_lapic **dest_vcpu = NULL;
1168 	struct kvm_lapic *src = NULL;
1169 	struct kvm_apic_map *map;
1170 	struct kvm_vcpu *vcpu;
1171 	unsigned long bitmap, i;
1172 	int vcpu_idx;
1173 	bool ret;
1174 
1175 	rcu_read_lock();
1176 	map = rcu_dereference(kvm->arch.apic_map);
1177 
1178 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1179 					  &bitmap);
1180 	if (ret) {
1181 		for_each_set_bit(i, &bitmap, 16) {
1182 			if (!dest_vcpu[i])
1183 				continue;
1184 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1185 			__set_bit(vcpu_idx, vcpu_bitmap);
1186 		}
1187 	} else {
1188 		kvm_for_each_vcpu(i, vcpu, kvm) {
1189 			if (!kvm_apic_present(vcpu))
1190 				continue;
1191 			if (!kvm_apic_match_dest(vcpu, NULL,
1192 						 irq->shorthand,
1193 						 irq->dest_id,
1194 						 irq->dest_mode))
1195 				continue;
1196 			__set_bit(i, vcpu_bitmap);
1197 		}
1198 	}
1199 	rcu_read_unlock();
1200 }
1201 
1202 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1203 {
1204 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1205 }
1206 
1207 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1208 {
1209 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1210 }
1211 
1212 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1213 {
1214 	int trigger_mode;
1215 
1216 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1217 	if (!kvm_ioapic_handles_vector(apic, vector))
1218 		return;
1219 
1220 	/* Request a KVM exit to inform the userspace IOAPIC. */
1221 	if (irqchip_split(apic->vcpu->kvm)) {
1222 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1223 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1224 		return;
1225 	}
1226 
1227 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1228 		trigger_mode = IOAPIC_LEVEL_TRIG;
1229 	else
1230 		trigger_mode = IOAPIC_EDGE_TRIG;
1231 
1232 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1233 }
1234 
1235 static int apic_set_eoi(struct kvm_lapic *apic)
1236 {
1237 	int vector = apic_find_highest_isr(apic);
1238 
1239 	trace_kvm_eoi(apic, vector);
1240 
1241 	/*
1242 	 * Not every write EOI will has corresponding ISR,
1243 	 * one example is when Kernel check timer on setup_IO_APIC
1244 	 */
1245 	if (vector == -1)
1246 		return vector;
1247 
1248 	apic_clear_isr(vector, apic);
1249 	apic_update_ppr(apic);
1250 
1251 	if (to_hv_vcpu(apic->vcpu) &&
1252 	    test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1253 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1254 
1255 	kvm_ioapic_send_eoi(apic, vector);
1256 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1257 	return vector;
1258 }
1259 
1260 /*
1261  * this interface assumes a trap-like exit, which has already finished
1262  * desired side effect including vISR and vPPR update.
1263  */
1264 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1265 {
1266 	struct kvm_lapic *apic = vcpu->arch.apic;
1267 
1268 	trace_kvm_eoi(apic, vector);
1269 
1270 	kvm_ioapic_send_eoi(apic, vector);
1271 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1272 }
1273 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1274 
1275 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1276 {
1277 	struct kvm_lapic_irq irq;
1278 
1279 	irq.vector = icr_low & APIC_VECTOR_MASK;
1280 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1281 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1282 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1283 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1284 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1285 	irq.msi_redir_hint = false;
1286 	if (apic_x2apic_mode(apic))
1287 		irq.dest_id = icr_high;
1288 	else
1289 		irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1290 
1291 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1292 
1293 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1294 }
1295 
1296 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1297 {
1298 	ktime_t remaining, now;
1299 	s64 ns;
1300 	u32 tmcct;
1301 
1302 	ASSERT(apic != NULL);
1303 
1304 	/* if initial count is 0, current count should also be 0 */
1305 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1306 		apic->lapic_timer.period == 0)
1307 		return 0;
1308 
1309 	now = ktime_get();
1310 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1311 	if (ktime_to_ns(remaining) < 0)
1312 		remaining = 0;
1313 
1314 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1315 	tmcct = div64_u64(ns,
1316 			 (APIC_BUS_CYCLE_NS * apic->divide_count));
1317 
1318 	return tmcct;
1319 }
1320 
1321 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1322 {
1323 	struct kvm_vcpu *vcpu = apic->vcpu;
1324 	struct kvm_run *run = vcpu->run;
1325 
1326 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1327 	run->tpr_access.rip = kvm_rip_read(vcpu);
1328 	run->tpr_access.is_write = write;
1329 }
1330 
1331 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1332 {
1333 	if (apic->vcpu->arch.tpr_access_reporting)
1334 		__report_tpr_access(apic, write);
1335 }
1336 
1337 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1338 {
1339 	u32 val = 0;
1340 
1341 	if (offset >= LAPIC_MMIO_LENGTH)
1342 		return 0;
1343 
1344 	switch (offset) {
1345 	case APIC_ARBPRI:
1346 		break;
1347 
1348 	case APIC_TMCCT:	/* Timer CCR */
1349 		if (apic_lvtt_tscdeadline(apic))
1350 			return 0;
1351 
1352 		val = apic_get_tmcct(apic);
1353 		break;
1354 	case APIC_PROCPRI:
1355 		apic_update_ppr(apic);
1356 		val = kvm_lapic_get_reg(apic, offset);
1357 		break;
1358 	case APIC_TASKPRI:
1359 		report_tpr_access(apic, false);
1360 		fallthrough;
1361 	default:
1362 		val = kvm_lapic_get_reg(apic, offset);
1363 		break;
1364 	}
1365 
1366 	return val;
1367 }
1368 
1369 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1370 {
1371 	return container_of(dev, struct kvm_lapic, dev);
1372 }
1373 
1374 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1375 #define APIC_REGS_MASK(first, count) \
1376 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1377 
1378 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1379 		void *data)
1380 {
1381 	unsigned char alignment = offset & 0xf;
1382 	u32 result;
1383 	/* this bitmask has a bit cleared for each reserved register */
1384 	u64 valid_reg_mask =
1385 		APIC_REG_MASK(APIC_ID) |
1386 		APIC_REG_MASK(APIC_LVR) |
1387 		APIC_REG_MASK(APIC_TASKPRI) |
1388 		APIC_REG_MASK(APIC_PROCPRI) |
1389 		APIC_REG_MASK(APIC_LDR) |
1390 		APIC_REG_MASK(APIC_DFR) |
1391 		APIC_REG_MASK(APIC_SPIV) |
1392 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1393 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1394 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1395 		APIC_REG_MASK(APIC_ESR) |
1396 		APIC_REG_MASK(APIC_ICR) |
1397 		APIC_REG_MASK(APIC_ICR2) |
1398 		APIC_REG_MASK(APIC_LVTT) |
1399 		APIC_REG_MASK(APIC_LVTTHMR) |
1400 		APIC_REG_MASK(APIC_LVTPC) |
1401 		APIC_REG_MASK(APIC_LVT0) |
1402 		APIC_REG_MASK(APIC_LVT1) |
1403 		APIC_REG_MASK(APIC_LVTERR) |
1404 		APIC_REG_MASK(APIC_TMICT) |
1405 		APIC_REG_MASK(APIC_TMCCT) |
1406 		APIC_REG_MASK(APIC_TDCR);
1407 
1408 	/* ARBPRI is not valid on x2APIC */
1409 	if (!apic_x2apic_mode(apic))
1410 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1411 
1412 	if (alignment + len > 4)
1413 		return 1;
1414 
1415 	if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1416 		return 1;
1417 
1418 	result = __apic_read(apic, offset & ~0xf);
1419 
1420 	trace_kvm_apic_read(offset, result);
1421 
1422 	switch (len) {
1423 	case 1:
1424 	case 2:
1425 	case 4:
1426 		memcpy(data, (char *)&result + alignment, len);
1427 		break;
1428 	default:
1429 		printk(KERN_ERR "Local APIC read with len = %x, "
1430 		       "should be 1,2, or 4 instead\n", len);
1431 		break;
1432 	}
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1436 
1437 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1438 {
1439 	return addr >= apic->base_address &&
1440 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1441 }
1442 
1443 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1444 			   gpa_t address, int len, void *data)
1445 {
1446 	struct kvm_lapic *apic = to_lapic(this);
1447 	u32 offset = address - apic->base_address;
1448 
1449 	if (!apic_mmio_in_range(apic, address))
1450 		return -EOPNOTSUPP;
1451 
1452 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1453 		if (!kvm_check_has_quirk(vcpu->kvm,
1454 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1455 			return -EOPNOTSUPP;
1456 
1457 		memset(data, 0xff, len);
1458 		return 0;
1459 	}
1460 
1461 	kvm_lapic_reg_read(apic, offset, len, data);
1462 
1463 	return 0;
1464 }
1465 
1466 static void update_divide_count(struct kvm_lapic *apic)
1467 {
1468 	u32 tmp1, tmp2, tdcr;
1469 
1470 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1471 	tmp1 = tdcr & 0xf;
1472 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1473 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1474 }
1475 
1476 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1477 {
1478 	/*
1479 	 * Do not allow the guest to program periodic timers with small
1480 	 * interval, since the hrtimers are not throttled by the host
1481 	 * scheduler.
1482 	 */
1483 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1484 		s64 min_period = min_timer_period_us * 1000LL;
1485 
1486 		if (apic->lapic_timer.period < min_period) {
1487 			pr_info_ratelimited(
1488 			    "kvm: vcpu %i: requested %lld ns "
1489 			    "lapic timer period limited to %lld ns\n",
1490 			    apic->vcpu->vcpu_id,
1491 			    apic->lapic_timer.period, min_period);
1492 			apic->lapic_timer.period = min_period;
1493 		}
1494 	}
1495 }
1496 
1497 static void cancel_hv_timer(struct kvm_lapic *apic);
1498 
1499 static void cancel_apic_timer(struct kvm_lapic *apic)
1500 {
1501 	hrtimer_cancel(&apic->lapic_timer.timer);
1502 	preempt_disable();
1503 	if (apic->lapic_timer.hv_timer_in_use)
1504 		cancel_hv_timer(apic);
1505 	preempt_enable();
1506 }
1507 
1508 static void apic_update_lvtt(struct kvm_lapic *apic)
1509 {
1510 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1511 			apic->lapic_timer.timer_mode_mask;
1512 
1513 	if (apic->lapic_timer.timer_mode != timer_mode) {
1514 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1515 				APIC_LVT_TIMER_TSCDEADLINE)) {
1516 			cancel_apic_timer(apic);
1517 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1518 			apic->lapic_timer.period = 0;
1519 			apic->lapic_timer.tscdeadline = 0;
1520 		}
1521 		apic->lapic_timer.timer_mode = timer_mode;
1522 		limit_periodic_timer_frequency(apic);
1523 	}
1524 }
1525 
1526 /*
1527  * On APICv, this test will cause a busy wait
1528  * during a higher-priority task.
1529  */
1530 
1531 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1532 {
1533 	struct kvm_lapic *apic = vcpu->arch.apic;
1534 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1535 
1536 	if (kvm_apic_hw_enabled(apic)) {
1537 		int vec = reg & APIC_VECTOR_MASK;
1538 		void *bitmap = apic->regs + APIC_ISR;
1539 
1540 		if (vcpu->arch.apicv_active)
1541 			bitmap = apic->regs + APIC_IRR;
1542 
1543 		if (apic_test_vector(vec, bitmap))
1544 			return true;
1545 	}
1546 	return false;
1547 }
1548 
1549 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1550 {
1551 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1552 
1553 	/*
1554 	 * If the guest TSC is running at a different ratio than the host, then
1555 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1556 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1557 	 * always for VMX enabled hardware.
1558 	 */
1559 	if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1560 		__delay(min(guest_cycles,
1561 			nsec_to_cycles(vcpu, timer_advance_ns)));
1562 	} else {
1563 		u64 delay_ns = guest_cycles * 1000000ULL;
1564 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1565 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1566 	}
1567 }
1568 
1569 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1570 					      s64 advance_expire_delta)
1571 {
1572 	struct kvm_lapic *apic = vcpu->arch.apic;
1573 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1574 	u64 ns;
1575 
1576 	/* Do not adjust for tiny fluctuations or large random spikes. */
1577 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1578 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1579 		return;
1580 
1581 	/* too early */
1582 	if (advance_expire_delta < 0) {
1583 		ns = -advance_expire_delta * 1000000ULL;
1584 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1585 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1586 	} else {
1587 	/* too late */
1588 		ns = advance_expire_delta * 1000000ULL;
1589 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1590 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1591 	}
1592 
1593 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1594 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1595 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1596 }
1597 
1598 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1599 {
1600 	struct kvm_lapic *apic = vcpu->arch.apic;
1601 	u64 guest_tsc, tsc_deadline;
1602 
1603 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1604 	apic->lapic_timer.expired_tscdeadline = 0;
1605 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1606 	apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1607 
1608 	if (lapic_timer_advance_dynamic) {
1609 		adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1610 		/*
1611 		 * If the timer fired early, reread the TSC to account for the
1612 		 * overhead of the above adjustment to avoid waiting longer
1613 		 * than is necessary.
1614 		 */
1615 		if (guest_tsc < tsc_deadline)
1616 			guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1617 	}
1618 
1619 	if (guest_tsc < tsc_deadline)
1620 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1621 }
1622 
1623 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1624 {
1625 	if (lapic_in_kernel(vcpu) &&
1626 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1627 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1628 	    lapic_timer_int_injected(vcpu))
1629 		__kvm_wait_lapic_expire(vcpu);
1630 }
1631 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1632 
1633 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1634 {
1635 	struct kvm_timer *ktimer = &apic->lapic_timer;
1636 
1637 	kvm_apic_local_deliver(apic, APIC_LVTT);
1638 	if (apic_lvtt_tscdeadline(apic)) {
1639 		ktimer->tscdeadline = 0;
1640 	} else if (apic_lvtt_oneshot(apic)) {
1641 		ktimer->tscdeadline = 0;
1642 		ktimer->target_expiration = 0;
1643 	}
1644 }
1645 
1646 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1647 {
1648 	struct kvm_vcpu *vcpu = apic->vcpu;
1649 	struct kvm_timer *ktimer = &apic->lapic_timer;
1650 
1651 	if (atomic_read(&apic->lapic_timer.pending))
1652 		return;
1653 
1654 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1655 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1656 
1657 	if (!from_timer_fn && vcpu->arch.apicv_active) {
1658 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1659 		kvm_apic_inject_pending_timer_irqs(apic);
1660 		return;
1661 	}
1662 
1663 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1664 		/*
1665 		 * Ensure the guest's timer has truly expired before posting an
1666 		 * interrupt.  Open code the relevant checks to avoid querying
1667 		 * lapic_timer_int_injected(), which will be false since the
1668 		 * interrupt isn't yet injected.  Waiting until after injecting
1669 		 * is not an option since that won't help a posted interrupt.
1670 		 */
1671 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1672 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1673 			__kvm_wait_lapic_expire(vcpu);
1674 		kvm_apic_inject_pending_timer_irqs(apic);
1675 		return;
1676 	}
1677 
1678 	atomic_inc(&apic->lapic_timer.pending);
1679 	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1680 	if (from_timer_fn)
1681 		kvm_vcpu_kick(vcpu);
1682 }
1683 
1684 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1685 {
1686 	struct kvm_timer *ktimer = &apic->lapic_timer;
1687 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1688 	u64 ns = 0;
1689 	ktime_t expire;
1690 	struct kvm_vcpu *vcpu = apic->vcpu;
1691 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1692 	unsigned long flags;
1693 	ktime_t now;
1694 
1695 	if (unlikely(!tscdeadline || !this_tsc_khz))
1696 		return;
1697 
1698 	local_irq_save(flags);
1699 
1700 	now = ktime_get();
1701 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1702 
1703 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1704 	do_div(ns, this_tsc_khz);
1705 
1706 	if (likely(tscdeadline > guest_tsc) &&
1707 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1708 		expire = ktime_add_ns(now, ns);
1709 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1710 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1711 	} else
1712 		apic_timer_expired(apic, false);
1713 
1714 	local_irq_restore(flags);
1715 }
1716 
1717 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1718 {
1719 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1720 }
1721 
1722 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1723 {
1724 	ktime_t now, remaining;
1725 	u64 ns_remaining_old, ns_remaining_new;
1726 
1727 	apic->lapic_timer.period =
1728 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1729 	limit_periodic_timer_frequency(apic);
1730 
1731 	now = ktime_get();
1732 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1733 	if (ktime_to_ns(remaining) < 0)
1734 		remaining = 0;
1735 
1736 	ns_remaining_old = ktime_to_ns(remaining);
1737 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1738 	                                   apic->divide_count, old_divisor);
1739 
1740 	apic->lapic_timer.tscdeadline +=
1741 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1742 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1743 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1744 }
1745 
1746 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1747 {
1748 	ktime_t now;
1749 	u64 tscl = rdtsc();
1750 	s64 deadline;
1751 
1752 	now = ktime_get();
1753 	apic->lapic_timer.period =
1754 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1755 
1756 	if (!apic->lapic_timer.period) {
1757 		apic->lapic_timer.tscdeadline = 0;
1758 		return false;
1759 	}
1760 
1761 	limit_periodic_timer_frequency(apic);
1762 	deadline = apic->lapic_timer.period;
1763 
1764 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1765 		if (unlikely(count_reg != APIC_TMICT)) {
1766 			deadline = tmict_to_ns(apic,
1767 				     kvm_lapic_get_reg(apic, count_reg));
1768 			if (unlikely(deadline <= 0))
1769 				deadline = apic->lapic_timer.period;
1770 			else if (unlikely(deadline > apic->lapic_timer.period)) {
1771 				pr_info_ratelimited(
1772 				    "kvm: vcpu %i: requested lapic timer restore with "
1773 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
1774 				    "Using initial count to start timer.\n",
1775 				    apic->vcpu->vcpu_id,
1776 				    count_reg,
1777 				    kvm_lapic_get_reg(apic, count_reg),
1778 				    deadline, apic->lapic_timer.period);
1779 				kvm_lapic_set_reg(apic, count_reg, 0);
1780 				deadline = apic->lapic_timer.period;
1781 			}
1782 		}
1783 	}
1784 
1785 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1786 		nsec_to_cycles(apic->vcpu, deadline);
1787 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
1788 
1789 	return true;
1790 }
1791 
1792 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1793 {
1794 	ktime_t now = ktime_get();
1795 	u64 tscl = rdtsc();
1796 	ktime_t delta;
1797 
1798 	/*
1799 	 * Synchronize both deadlines to the same time source or
1800 	 * differences in the periods (caused by differences in the
1801 	 * underlying clocks or numerical approximation errors) will
1802 	 * cause the two to drift apart over time as the errors
1803 	 * accumulate.
1804 	 */
1805 	apic->lapic_timer.target_expiration =
1806 		ktime_add_ns(apic->lapic_timer.target_expiration,
1807 				apic->lapic_timer.period);
1808 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1809 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1810 		nsec_to_cycles(apic->vcpu, delta);
1811 }
1812 
1813 static void start_sw_period(struct kvm_lapic *apic)
1814 {
1815 	if (!apic->lapic_timer.period)
1816 		return;
1817 
1818 	if (ktime_after(ktime_get(),
1819 			apic->lapic_timer.target_expiration)) {
1820 		apic_timer_expired(apic, false);
1821 
1822 		if (apic_lvtt_oneshot(apic))
1823 			return;
1824 
1825 		advance_periodic_target_expiration(apic);
1826 	}
1827 
1828 	hrtimer_start(&apic->lapic_timer.timer,
1829 		apic->lapic_timer.target_expiration,
1830 		HRTIMER_MODE_ABS_HARD);
1831 }
1832 
1833 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1834 {
1835 	if (!lapic_in_kernel(vcpu))
1836 		return false;
1837 
1838 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1841 
1842 static void cancel_hv_timer(struct kvm_lapic *apic)
1843 {
1844 	WARN_ON(preemptible());
1845 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1846 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
1847 	apic->lapic_timer.hv_timer_in_use = false;
1848 }
1849 
1850 static bool start_hv_timer(struct kvm_lapic *apic)
1851 {
1852 	struct kvm_timer *ktimer = &apic->lapic_timer;
1853 	struct kvm_vcpu *vcpu = apic->vcpu;
1854 	bool expired;
1855 
1856 	WARN_ON(preemptible());
1857 	if (!kvm_can_use_hv_timer(vcpu))
1858 		return false;
1859 
1860 	if (!ktimer->tscdeadline)
1861 		return false;
1862 
1863 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
1864 		return false;
1865 
1866 	ktimer->hv_timer_in_use = true;
1867 	hrtimer_cancel(&ktimer->timer);
1868 
1869 	/*
1870 	 * To simplify handling the periodic timer, leave the hv timer running
1871 	 * even if the deadline timer has expired, i.e. rely on the resulting
1872 	 * VM-Exit to recompute the periodic timer's target expiration.
1873 	 */
1874 	if (!apic_lvtt_period(apic)) {
1875 		/*
1876 		 * Cancel the hv timer if the sw timer fired while the hv timer
1877 		 * was being programmed, or if the hv timer itself expired.
1878 		 */
1879 		if (atomic_read(&ktimer->pending)) {
1880 			cancel_hv_timer(apic);
1881 		} else if (expired) {
1882 			apic_timer_expired(apic, false);
1883 			cancel_hv_timer(apic);
1884 		}
1885 	}
1886 
1887 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1888 
1889 	return true;
1890 }
1891 
1892 static void start_sw_timer(struct kvm_lapic *apic)
1893 {
1894 	struct kvm_timer *ktimer = &apic->lapic_timer;
1895 
1896 	WARN_ON(preemptible());
1897 	if (apic->lapic_timer.hv_timer_in_use)
1898 		cancel_hv_timer(apic);
1899 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1900 		return;
1901 
1902 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1903 		start_sw_period(apic);
1904 	else if (apic_lvtt_tscdeadline(apic))
1905 		start_sw_tscdeadline(apic);
1906 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1907 }
1908 
1909 static void restart_apic_timer(struct kvm_lapic *apic)
1910 {
1911 	preempt_disable();
1912 
1913 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1914 		goto out;
1915 
1916 	if (!start_hv_timer(apic))
1917 		start_sw_timer(apic);
1918 out:
1919 	preempt_enable();
1920 }
1921 
1922 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1923 {
1924 	struct kvm_lapic *apic = vcpu->arch.apic;
1925 
1926 	preempt_disable();
1927 	/* If the preempt notifier has already run, it also called apic_timer_expired */
1928 	if (!apic->lapic_timer.hv_timer_in_use)
1929 		goto out;
1930 	WARN_ON(kvm_vcpu_is_blocking(vcpu));
1931 	apic_timer_expired(apic, false);
1932 	cancel_hv_timer(apic);
1933 
1934 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1935 		advance_periodic_target_expiration(apic);
1936 		restart_apic_timer(apic);
1937 	}
1938 out:
1939 	preempt_enable();
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1942 
1943 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1944 {
1945 	restart_apic_timer(vcpu->arch.apic);
1946 }
1947 
1948 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1949 {
1950 	struct kvm_lapic *apic = vcpu->arch.apic;
1951 
1952 	preempt_disable();
1953 	/* Possibly the TSC deadline timer is not enabled yet */
1954 	if (apic->lapic_timer.hv_timer_in_use)
1955 		start_sw_timer(apic);
1956 	preempt_enable();
1957 }
1958 
1959 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1960 {
1961 	struct kvm_lapic *apic = vcpu->arch.apic;
1962 
1963 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1964 	restart_apic_timer(apic);
1965 }
1966 
1967 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
1968 {
1969 	atomic_set(&apic->lapic_timer.pending, 0);
1970 
1971 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1972 	    && !set_target_expiration(apic, count_reg))
1973 		return;
1974 
1975 	restart_apic_timer(apic);
1976 }
1977 
1978 static void start_apic_timer(struct kvm_lapic *apic)
1979 {
1980 	__start_apic_timer(apic, APIC_TMICT);
1981 }
1982 
1983 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1984 {
1985 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1986 
1987 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1988 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1989 		if (lvt0_in_nmi_mode) {
1990 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1991 		} else
1992 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1993 	}
1994 }
1995 
1996 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1997 {
1998 	int ret = 0;
1999 
2000 	trace_kvm_apic_write(reg, val);
2001 
2002 	switch (reg) {
2003 	case APIC_ID:		/* Local APIC ID */
2004 		if (!apic_x2apic_mode(apic))
2005 			kvm_apic_set_xapic_id(apic, val >> 24);
2006 		else
2007 			ret = 1;
2008 		break;
2009 
2010 	case APIC_TASKPRI:
2011 		report_tpr_access(apic, true);
2012 		apic_set_tpr(apic, val & 0xff);
2013 		break;
2014 
2015 	case APIC_EOI:
2016 		apic_set_eoi(apic);
2017 		break;
2018 
2019 	case APIC_LDR:
2020 		if (!apic_x2apic_mode(apic))
2021 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2022 		else
2023 			ret = 1;
2024 		break;
2025 
2026 	case APIC_DFR:
2027 		if (!apic_x2apic_mode(apic))
2028 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2029 		else
2030 			ret = 1;
2031 		break;
2032 
2033 	case APIC_SPIV: {
2034 		u32 mask = 0x3ff;
2035 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2036 			mask |= APIC_SPIV_DIRECTED_EOI;
2037 		apic_set_spiv(apic, val & mask);
2038 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2039 			int i;
2040 			u32 lvt_val;
2041 
2042 			for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
2043 				lvt_val = kvm_lapic_get_reg(apic,
2044 						       APIC_LVTT + 0x10 * i);
2045 				kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
2046 					     lvt_val | APIC_LVT_MASKED);
2047 			}
2048 			apic_update_lvtt(apic);
2049 			atomic_set(&apic->lapic_timer.pending, 0);
2050 
2051 		}
2052 		break;
2053 	}
2054 	case APIC_ICR:
2055 		/* No delay here, so we always clear the pending bit */
2056 		val &= ~(1 << 12);
2057 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2058 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2059 		break;
2060 
2061 	case APIC_ICR2:
2062 		if (!apic_x2apic_mode(apic))
2063 			val &= 0xff000000;
2064 		kvm_lapic_set_reg(apic, APIC_ICR2, val);
2065 		break;
2066 
2067 	case APIC_LVT0:
2068 		apic_manage_nmi_watchdog(apic, val);
2069 		fallthrough;
2070 	case APIC_LVTTHMR:
2071 	case APIC_LVTPC:
2072 	case APIC_LVT1:
2073 	case APIC_LVTERR: {
2074 		/* TODO: Check vector */
2075 		size_t size;
2076 		u32 index;
2077 
2078 		if (!kvm_apic_sw_enabled(apic))
2079 			val |= APIC_LVT_MASKED;
2080 		size = ARRAY_SIZE(apic_lvt_mask);
2081 		index = array_index_nospec(
2082 				(reg - APIC_LVTT) >> 4, size);
2083 		val &= apic_lvt_mask[index];
2084 		kvm_lapic_set_reg(apic, reg, val);
2085 		break;
2086 	}
2087 
2088 	case APIC_LVTT:
2089 		if (!kvm_apic_sw_enabled(apic))
2090 			val |= APIC_LVT_MASKED;
2091 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2092 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2093 		apic_update_lvtt(apic);
2094 		break;
2095 
2096 	case APIC_TMICT:
2097 		if (apic_lvtt_tscdeadline(apic))
2098 			break;
2099 
2100 		cancel_apic_timer(apic);
2101 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2102 		start_apic_timer(apic);
2103 		break;
2104 
2105 	case APIC_TDCR: {
2106 		uint32_t old_divisor = apic->divide_count;
2107 
2108 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2109 		update_divide_count(apic);
2110 		if (apic->divide_count != old_divisor &&
2111 				apic->lapic_timer.period) {
2112 			hrtimer_cancel(&apic->lapic_timer.timer);
2113 			update_target_expiration(apic, old_divisor);
2114 			restart_apic_timer(apic);
2115 		}
2116 		break;
2117 	}
2118 	case APIC_ESR:
2119 		if (apic_x2apic_mode(apic) && val != 0)
2120 			ret = 1;
2121 		break;
2122 
2123 	case APIC_SELF_IPI:
2124 		if (apic_x2apic_mode(apic)) {
2125 			kvm_lapic_reg_write(apic, APIC_ICR,
2126 					    APIC_DEST_SELF | (val & APIC_VECTOR_MASK));
2127 		} else
2128 			ret = 1;
2129 		break;
2130 	default:
2131 		ret = 1;
2132 		break;
2133 	}
2134 
2135 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2136 
2137 	return ret;
2138 }
2139 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
2140 
2141 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2142 			    gpa_t address, int len, const void *data)
2143 {
2144 	struct kvm_lapic *apic = to_lapic(this);
2145 	unsigned int offset = address - apic->base_address;
2146 	u32 val;
2147 
2148 	if (!apic_mmio_in_range(apic, address))
2149 		return -EOPNOTSUPP;
2150 
2151 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2152 		if (!kvm_check_has_quirk(vcpu->kvm,
2153 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2154 			return -EOPNOTSUPP;
2155 
2156 		return 0;
2157 	}
2158 
2159 	/*
2160 	 * APIC register must be aligned on 128-bits boundary.
2161 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2162 	 * Refer SDM 8.4.1
2163 	 */
2164 	if (len != 4 || (offset & 0xf))
2165 		return 0;
2166 
2167 	val = *(u32*)data;
2168 
2169 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2170 
2171 	return 0;
2172 }
2173 
2174 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2175 {
2176 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2179 
2180 /* emulate APIC access in a trap manner */
2181 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2182 {
2183 	u32 val = 0;
2184 
2185 	/* hw has done the conditional check and inst decode */
2186 	offset &= 0xff0;
2187 
2188 	kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2189 
2190 	/* TODO: optimize to just emulate side effect w/o one more write */
2191 	kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2194 
2195 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2196 {
2197 	struct kvm_lapic *apic = vcpu->arch.apic;
2198 
2199 	if (!vcpu->arch.apic)
2200 		return;
2201 
2202 	hrtimer_cancel(&apic->lapic_timer.timer);
2203 
2204 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2205 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2206 
2207 	if (!apic->sw_enabled)
2208 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2209 
2210 	if (apic->regs)
2211 		free_page((unsigned long)apic->regs);
2212 
2213 	kfree(apic);
2214 }
2215 
2216 /*
2217  *----------------------------------------------------------------------
2218  * LAPIC interface
2219  *----------------------------------------------------------------------
2220  */
2221 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2222 {
2223 	struct kvm_lapic *apic = vcpu->arch.apic;
2224 
2225 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2226 		return 0;
2227 
2228 	return apic->lapic_timer.tscdeadline;
2229 }
2230 
2231 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2232 {
2233 	struct kvm_lapic *apic = vcpu->arch.apic;
2234 
2235 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2236 		return;
2237 
2238 	hrtimer_cancel(&apic->lapic_timer.timer);
2239 	apic->lapic_timer.tscdeadline = data;
2240 	start_apic_timer(apic);
2241 }
2242 
2243 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2244 {
2245 	struct kvm_lapic *apic = vcpu->arch.apic;
2246 
2247 	apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2248 		     | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2249 }
2250 
2251 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2252 {
2253 	u64 tpr;
2254 
2255 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2256 
2257 	return (tpr & 0xf0) >> 4;
2258 }
2259 
2260 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2261 {
2262 	u64 old_value = vcpu->arch.apic_base;
2263 	struct kvm_lapic *apic = vcpu->arch.apic;
2264 
2265 	vcpu->arch.apic_base = value;
2266 
2267 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2268 		kvm_update_cpuid_runtime(vcpu);
2269 
2270 	if (!apic)
2271 		return;
2272 
2273 	/* update jump label if enable bit changes */
2274 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2275 		if (value & MSR_IA32_APICBASE_ENABLE) {
2276 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2277 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2278 			/* Check if there are APF page ready requests pending */
2279 			kvm_make_request(KVM_REQ_APF_READY, vcpu);
2280 		} else {
2281 			static_branch_inc(&apic_hw_disabled.key);
2282 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2283 		}
2284 	}
2285 
2286 	if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2287 		kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2288 
2289 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2290 		static_call(kvm_x86_set_virtual_apic_mode)(vcpu);
2291 
2292 	apic->base_address = apic->vcpu->arch.apic_base &
2293 			     MSR_IA32_APICBASE_BASE;
2294 
2295 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2296 	     apic->base_address != APIC_DEFAULT_PHYS_BASE)
2297 		pr_warn_once("APIC base relocation is unsupported by KVM");
2298 }
2299 
2300 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2301 {
2302 	struct kvm_lapic *apic = vcpu->arch.apic;
2303 
2304 	if (vcpu->arch.apicv_active) {
2305 		/* irr_pending is always true when apicv is activated. */
2306 		apic->irr_pending = true;
2307 		apic->isr_count = 1;
2308 	} else {
2309 		apic->irr_pending = (apic_search_irr(apic) != -1);
2310 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2311 	}
2312 }
2313 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv);
2314 
2315 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2316 {
2317 	struct kvm_lapic *apic = vcpu->arch.apic;
2318 	u64 msr_val;
2319 	int i;
2320 
2321 	if (!init_event) {
2322 		msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
2323 		if (kvm_vcpu_is_reset_bsp(vcpu))
2324 			msr_val |= MSR_IA32_APICBASE_BSP;
2325 		kvm_lapic_set_base(vcpu, msr_val);
2326 	}
2327 
2328 	if (!apic)
2329 		return;
2330 
2331 	/* Stop the timer in case it's a reset to an active apic */
2332 	hrtimer_cancel(&apic->lapic_timer.timer);
2333 
2334 	/* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2335 	if (!init_event)
2336 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2337 	kvm_apic_set_version(apic->vcpu);
2338 
2339 	for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2340 		kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2341 	apic_update_lvtt(apic);
2342 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2343 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2344 		kvm_lapic_set_reg(apic, APIC_LVT0,
2345 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2346 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2347 
2348 	kvm_apic_set_dfr(apic, 0xffffffffU);
2349 	apic_set_spiv(apic, 0xff);
2350 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2351 	if (!apic_x2apic_mode(apic))
2352 		kvm_apic_set_ldr(apic, 0);
2353 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2354 	kvm_lapic_set_reg(apic, APIC_ICR, 0);
2355 	kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2356 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2357 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2358 	for (i = 0; i < 8; i++) {
2359 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2360 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2361 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2362 	}
2363 	kvm_apic_update_apicv(vcpu);
2364 	apic->highest_isr_cache = -1;
2365 	update_divide_count(apic);
2366 	atomic_set(&apic->lapic_timer.pending, 0);
2367 
2368 	vcpu->arch.pv_eoi.msr_val = 0;
2369 	apic_update_ppr(apic);
2370 	if (vcpu->arch.apicv_active) {
2371 		static_call(kvm_x86_apicv_post_state_restore)(vcpu);
2372 		static_call(kvm_x86_hwapic_irr_update)(vcpu, -1);
2373 		static_call(kvm_x86_hwapic_isr_update)(vcpu, -1);
2374 	}
2375 
2376 	vcpu->arch.apic_arb_prio = 0;
2377 	vcpu->arch.apic_attention = 0;
2378 
2379 	kvm_recalculate_apic_map(vcpu->kvm);
2380 }
2381 
2382 /*
2383  *----------------------------------------------------------------------
2384  * timer interface
2385  *----------------------------------------------------------------------
2386  */
2387 
2388 static bool lapic_is_periodic(struct kvm_lapic *apic)
2389 {
2390 	return apic_lvtt_period(apic);
2391 }
2392 
2393 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2394 {
2395 	struct kvm_lapic *apic = vcpu->arch.apic;
2396 
2397 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2398 		return atomic_read(&apic->lapic_timer.pending);
2399 
2400 	return 0;
2401 }
2402 
2403 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2404 {
2405 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2406 	int vector, mode, trig_mode;
2407 
2408 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2409 		vector = reg & APIC_VECTOR_MASK;
2410 		mode = reg & APIC_MODE_MASK;
2411 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2412 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2413 					NULL);
2414 	}
2415 	return 0;
2416 }
2417 
2418 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2419 {
2420 	struct kvm_lapic *apic = vcpu->arch.apic;
2421 
2422 	if (apic)
2423 		kvm_apic_local_deliver(apic, APIC_LVT0);
2424 }
2425 
2426 static const struct kvm_io_device_ops apic_mmio_ops = {
2427 	.read     = apic_mmio_read,
2428 	.write    = apic_mmio_write,
2429 };
2430 
2431 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2432 {
2433 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2434 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2435 
2436 	apic_timer_expired(apic, true);
2437 
2438 	if (lapic_is_periodic(apic)) {
2439 		advance_periodic_target_expiration(apic);
2440 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2441 		return HRTIMER_RESTART;
2442 	} else
2443 		return HRTIMER_NORESTART;
2444 }
2445 
2446 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2447 {
2448 	struct kvm_lapic *apic;
2449 
2450 	ASSERT(vcpu != NULL);
2451 
2452 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2453 	if (!apic)
2454 		goto nomem;
2455 
2456 	vcpu->arch.apic = apic;
2457 
2458 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2459 	if (!apic->regs) {
2460 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2461 		       vcpu->vcpu_id);
2462 		goto nomem_free_apic;
2463 	}
2464 	apic->vcpu = vcpu;
2465 
2466 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2467 		     HRTIMER_MODE_ABS_HARD);
2468 	apic->lapic_timer.timer.function = apic_timer_fn;
2469 	if (timer_advance_ns == -1) {
2470 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2471 		lapic_timer_advance_dynamic = true;
2472 	} else {
2473 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2474 		lapic_timer_advance_dynamic = false;
2475 	}
2476 
2477 	/*
2478 	 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2479 	 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2480 	 */
2481 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2482 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2483 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2484 
2485 	return 0;
2486 nomem_free_apic:
2487 	kfree(apic);
2488 	vcpu->arch.apic = NULL;
2489 nomem:
2490 	return -ENOMEM;
2491 }
2492 
2493 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2494 {
2495 	struct kvm_lapic *apic = vcpu->arch.apic;
2496 	u32 ppr;
2497 
2498 	if (!kvm_apic_present(vcpu))
2499 		return -1;
2500 
2501 	__apic_update_ppr(apic, &ppr);
2502 	return apic_has_interrupt_for_ppr(apic, ppr);
2503 }
2504 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2505 
2506 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2507 {
2508 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2509 
2510 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2511 		return 1;
2512 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2513 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2514 		return 1;
2515 	return 0;
2516 }
2517 
2518 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2519 {
2520 	struct kvm_lapic *apic = vcpu->arch.apic;
2521 
2522 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2523 		kvm_apic_inject_pending_timer_irqs(apic);
2524 		atomic_set(&apic->lapic_timer.pending, 0);
2525 	}
2526 }
2527 
2528 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2529 {
2530 	int vector = kvm_apic_has_interrupt(vcpu);
2531 	struct kvm_lapic *apic = vcpu->arch.apic;
2532 	u32 ppr;
2533 
2534 	if (vector == -1)
2535 		return -1;
2536 
2537 	/*
2538 	 * We get here even with APIC virtualization enabled, if doing
2539 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2540 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2541 	 * because the process would deliver it through the IDT.
2542 	 */
2543 
2544 	apic_clear_irr(vector, apic);
2545 	if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2546 		/*
2547 		 * For auto-EOI interrupts, there might be another pending
2548 		 * interrupt above PPR, so check whether to raise another
2549 		 * KVM_REQ_EVENT.
2550 		 */
2551 		apic_update_ppr(apic);
2552 	} else {
2553 		/*
2554 		 * For normal interrupts, PPR has been raised and there cannot
2555 		 * be a higher-priority pending interrupt---except if there was
2556 		 * a concurrent interrupt injection, but that would have
2557 		 * triggered KVM_REQ_EVENT already.
2558 		 */
2559 		apic_set_isr(vector, apic);
2560 		__apic_update_ppr(apic, &ppr);
2561 	}
2562 
2563 	return vector;
2564 }
2565 
2566 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2567 		struct kvm_lapic_state *s, bool set)
2568 {
2569 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2570 		u32 *id = (u32 *)(s->regs + APIC_ID);
2571 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2572 
2573 		if (vcpu->kvm->arch.x2apic_format) {
2574 			if (*id != vcpu->vcpu_id)
2575 				return -EINVAL;
2576 		} else {
2577 			if (set)
2578 				*id >>= 24;
2579 			else
2580 				*id <<= 24;
2581 		}
2582 
2583 		/* In x2APIC mode, the LDR is fixed and based on the id */
2584 		if (set)
2585 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2592 {
2593 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2594 
2595 	/*
2596 	 * Get calculated timer current count for remaining timer period (if
2597 	 * any) and store it in the returned register set.
2598 	 */
2599 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2600 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2601 
2602 	return kvm_apic_state_fixup(vcpu, s, false);
2603 }
2604 
2605 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2606 {
2607 	struct kvm_lapic *apic = vcpu->arch.apic;
2608 	int r;
2609 
2610 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2611 	/* set SPIV separately to get count of SW disabled APICs right */
2612 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2613 
2614 	r = kvm_apic_state_fixup(vcpu, s, true);
2615 	if (r) {
2616 		kvm_recalculate_apic_map(vcpu->kvm);
2617 		return r;
2618 	}
2619 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2620 
2621 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2622 	kvm_recalculate_apic_map(vcpu->kvm);
2623 	kvm_apic_set_version(vcpu);
2624 
2625 	apic_update_ppr(apic);
2626 	cancel_apic_timer(apic);
2627 	apic->lapic_timer.expired_tscdeadline = 0;
2628 	apic_update_lvtt(apic);
2629 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2630 	update_divide_count(apic);
2631 	__start_apic_timer(apic, APIC_TMCCT);
2632 	kvm_lapic_set_reg(apic, APIC_TMCCT, 0);
2633 	kvm_apic_update_apicv(vcpu);
2634 	apic->highest_isr_cache = -1;
2635 	if (vcpu->arch.apicv_active) {
2636 		static_call(kvm_x86_apicv_post_state_restore)(vcpu);
2637 		static_call(kvm_x86_hwapic_irr_update)(vcpu,
2638 				apic_find_highest_irr(apic));
2639 		static_call(kvm_x86_hwapic_isr_update)(vcpu,
2640 				apic_find_highest_isr(apic));
2641 	}
2642 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2643 	if (ioapic_in_kernel(vcpu->kvm))
2644 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2645 
2646 	vcpu->arch.apic_arb_prio = 0;
2647 
2648 	return 0;
2649 }
2650 
2651 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2652 {
2653 	struct hrtimer *timer;
2654 
2655 	if (!lapic_in_kernel(vcpu) ||
2656 		kvm_can_post_timer_interrupt(vcpu))
2657 		return;
2658 
2659 	timer = &vcpu->arch.apic->lapic_timer.timer;
2660 	if (hrtimer_cancel(timer))
2661 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2662 }
2663 
2664 /*
2665  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2666  *
2667  * Detect whether guest triggered PV EOI since the
2668  * last entry. If yes, set EOI on guests's behalf.
2669  * Clear PV EOI in guest memory in any case.
2670  */
2671 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2672 					struct kvm_lapic *apic)
2673 {
2674 	int vector;
2675 	/*
2676 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2677 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2678 	 *
2679 	 * KVM_APIC_PV_EOI_PENDING is unset:
2680 	 * 	-> host disabled PV EOI.
2681 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2682 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
2683 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2684 	 * 	-> host enabled PV EOI, guest executed EOI.
2685 	 */
2686 	BUG_ON(!pv_eoi_enabled(vcpu));
2687 
2688 	if (pv_eoi_test_and_clr_pending(vcpu))
2689 		return;
2690 	vector = apic_set_eoi(apic);
2691 	trace_kvm_pv_eoi(apic, vector);
2692 }
2693 
2694 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2695 {
2696 	u32 data;
2697 
2698 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2699 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2700 
2701 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2702 		return;
2703 
2704 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2705 				  sizeof(u32)))
2706 		return;
2707 
2708 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
2709 }
2710 
2711 /*
2712  * apic_sync_pv_eoi_to_guest - called before vmentry
2713  *
2714  * Detect whether it's safe to enable PV EOI and
2715  * if yes do so.
2716  */
2717 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2718 					struct kvm_lapic *apic)
2719 {
2720 	if (!pv_eoi_enabled(vcpu) ||
2721 	    /* IRR set or many bits in ISR: could be nested. */
2722 	    apic->irr_pending ||
2723 	    /* Cache not set: could be safe but we don't bother. */
2724 	    apic->highest_isr_cache == -1 ||
2725 	    /* Need EOI to update ioapic. */
2726 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2727 		/*
2728 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2729 		 * so we need not do anything here.
2730 		 */
2731 		return;
2732 	}
2733 
2734 	pv_eoi_set_pending(apic->vcpu);
2735 }
2736 
2737 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2738 {
2739 	u32 data, tpr;
2740 	int max_irr, max_isr;
2741 	struct kvm_lapic *apic = vcpu->arch.apic;
2742 
2743 	apic_sync_pv_eoi_to_guest(vcpu, apic);
2744 
2745 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2746 		return;
2747 
2748 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2749 	max_irr = apic_find_highest_irr(apic);
2750 	if (max_irr < 0)
2751 		max_irr = 0;
2752 	max_isr = apic_find_highest_isr(apic);
2753 	if (max_isr < 0)
2754 		max_isr = 0;
2755 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2756 
2757 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2758 				sizeof(u32));
2759 }
2760 
2761 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2762 {
2763 	if (vapic_addr) {
2764 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2765 					&vcpu->arch.apic->vapic_cache,
2766 					vapic_addr, sizeof(u32)))
2767 			return -EINVAL;
2768 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2769 	} else {
2770 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2771 	}
2772 
2773 	vcpu->arch.apic->vapic_addr = vapic_addr;
2774 	return 0;
2775 }
2776 
2777 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2778 {
2779 	struct kvm_lapic *apic = vcpu->arch.apic;
2780 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2781 
2782 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2783 		return 1;
2784 
2785 	if (reg == APIC_ICR2)
2786 		return 1;
2787 
2788 	/* if this is ICR write vector before command */
2789 	if (reg == APIC_ICR)
2790 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2791 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2792 }
2793 
2794 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2795 {
2796 	struct kvm_lapic *apic = vcpu->arch.apic;
2797 	u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2798 
2799 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2800 		return 1;
2801 
2802 	if (reg == APIC_DFR || reg == APIC_ICR2)
2803 		return 1;
2804 
2805 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2806 		return 1;
2807 	if (reg == APIC_ICR)
2808 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2809 
2810 	*data = (((u64)high) << 32) | low;
2811 
2812 	return 0;
2813 }
2814 
2815 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2816 {
2817 	struct kvm_lapic *apic = vcpu->arch.apic;
2818 
2819 	if (!lapic_in_kernel(vcpu))
2820 		return 1;
2821 
2822 	/* if this is ICR write vector before command */
2823 	if (reg == APIC_ICR)
2824 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2825 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2826 }
2827 
2828 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2829 {
2830 	struct kvm_lapic *apic = vcpu->arch.apic;
2831 	u32 low, high = 0;
2832 
2833 	if (!lapic_in_kernel(vcpu))
2834 		return 1;
2835 
2836 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2837 		return 1;
2838 	if (reg == APIC_ICR)
2839 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2840 
2841 	*data = (((u64)high) << 32) | low;
2842 
2843 	return 0;
2844 }
2845 
2846 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2847 {
2848 	u64 addr = data & ~KVM_MSR_ENABLED;
2849 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2850 	unsigned long new_len;
2851 	int ret;
2852 
2853 	if (!IS_ALIGNED(addr, 4))
2854 		return 1;
2855 
2856 	if (data & KVM_MSR_ENABLED) {
2857 		if (addr == ghc->gpa && len <= ghc->len)
2858 			new_len = ghc->len;
2859 		else
2860 			new_len = len;
2861 
2862 		ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2863 		if (ret)
2864 			return ret;
2865 	}
2866 
2867 	vcpu->arch.pv_eoi.msr_val = data;
2868 
2869 	return 0;
2870 }
2871 
2872 int kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2873 {
2874 	struct kvm_lapic *apic = vcpu->arch.apic;
2875 	u8 sipi_vector;
2876 	int r;
2877 	unsigned long pe;
2878 
2879 	if (!lapic_in_kernel(vcpu))
2880 		return 0;
2881 
2882 	/*
2883 	 * Read pending events before calling the check_events
2884 	 * callback.
2885 	 */
2886 	pe = smp_load_acquire(&apic->pending_events);
2887 	if (!pe)
2888 		return 0;
2889 
2890 	if (is_guest_mode(vcpu)) {
2891 		r = kvm_check_nested_events(vcpu);
2892 		if (r < 0)
2893 			return r == -EBUSY ? 0 : r;
2894 		/*
2895 		 * If an event has happened and caused a vmexit,
2896 		 * we know INITs are latched and therefore
2897 		 * we will not incorrectly deliver an APIC
2898 		 * event instead of a vmexit.
2899 		 */
2900 	}
2901 
2902 	/*
2903 	 * INITs are latched while CPU is in specific states
2904 	 * (SMM, VMX root mode, SVM with GIF=0).
2905 	 * Because a CPU cannot be in these states immediately
2906 	 * after it has processed an INIT signal (and thus in
2907 	 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2908 	 * and leave the INIT pending.
2909 	 */
2910 	if (kvm_vcpu_latch_init(vcpu)) {
2911 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2912 		if (test_bit(KVM_APIC_SIPI, &pe))
2913 			clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2914 		return 0;
2915 	}
2916 
2917 	if (test_bit(KVM_APIC_INIT, &pe)) {
2918 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
2919 		kvm_vcpu_reset(vcpu, true);
2920 		if (kvm_vcpu_is_bsp(apic->vcpu))
2921 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2922 		else
2923 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2924 	}
2925 	if (test_bit(KVM_APIC_SIPI, &pe)) {
2926 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2927 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2928 			/* evaluate pending_events before reading the vector */
2929 			smp_rmb();
2930 			sipi_vector = apic->sipi_vector;
2931 			kvm_x86_ops.vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2932 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2933 		}
2934 	}
2935 	return 0;
2936 }
2937 
2938 void kvm_lapic_exit(void)
2939 {
2940 	static_key_deferred_flush(&apic_hw_disabled);
2941 	WARN_ON(static_branch_unlikely(&apic_hw_disabled.key));
2942 	static_key_deferred_flush(&apic_sw_disabled);
2943 	WARN_ON(static_branch_unlikely(&apic_sw_disabled.key));
2944 }
2945