1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline int apic_test_vector(int vec, void *bitmap) 72 { 73 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 74 } 75 76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 77 { 78 struct kvm_lapic *apic = vcpu->arch.apic; 79 80 return apic_test_vector(vector, apic->regs + APIC_ISR) || 81 apic_test_vector(vector, apic->regs + APIC_IRR); 82 } 83 84 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 85 { 86 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 87 } 88 89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 90 { 91 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 92 } 93 94 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 95 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 96 97 static inline int apic_enabled(struct kvm_lapic *apic) 98 { 99 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 100 } 101 102 #define LVT_MASK \ 103 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 104 105 #define LINT_MASK \ 106 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 107 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 108 109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 110 { 111 return apic->vcpu->vcpu_id; 112 } 113 114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 115 { 116 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 117 } 118 119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 120 { 121 return kvm_x86_ops.set_hv_timer 122 && !(kvm_mwait_in_guest(vcpu->kvm) || 123 kvm_can_post_timer_interrupt(vcpu)); 124 } 125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 126 127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 130 } 131 132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 134 switch (map->mode) { 135 case KVM_APIC_MODE_X2APIC: { 136 u32 offset = (dest_id >> 16) * 16; 137 u32 max_apic_id = map->max_apic_id; 138 139 if (offset <= max_apic_id) { 140 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 141 142 offset = array_index_nospec(offset, map->max_apic_id + 1); 143 *cluster = &map->phys_map[offset]; 144 *mask = dest_id & (0xffff >> (16 - cluster_size)); 145 } else { 146 *mask = 0; 147 } 148 149 return true; 150 } 151 case KVM_APIC_MODE_XAPIC_FLAT: 152 *cluster = map->xapic_flat_map; 153 *mask = dest_id & 0xff; 154 return true; 155 case KVM_APIC_MODE_XAPIC_CLUSTER: 156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 157 *mask = dest_id & 0xf; 158 return true; 159 default: 160 /* Not optimized. */ 161 return false; 162 } 163 } 164 165 static void kvm_apic_map_free(struct rcu_head *rcu) 166 { 167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 168 169 kvfree(map); 170 } 171 172 /* 173 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 174 * 175 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 176 * apic_map_lock_held. 177 */ 178 enum { 179 CLEAN, 180 UPDATE_IN_PROGRESS, 181 DIRTY 182 }; 183 184 void kvm_recalculate_apic_map(struct kvm *kvm) 185 { 186 struct kvm_apic_map *new, *old = NULL; 187 struct kvm_vcpu *vcpu; 188 int i; 189 u32 max_id = 255; /* enough space for any xAPIC ID */ 190 191 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 192 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 193 return; 194 195 mutex_lock(&kvm->arch.apic_map_lock); 196 /* 197 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 198 * (if clean) or the APIC registers (if dirty). 199 */ 200 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 201 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 202 /* Someone else has updated the map. */ 203 mutex_unlock(&kvm->arch.apic_map_lock); 204 return; 205 } 206 207 kvm_for_each_vcpu(i, vcpu, kvm) 208 if (kvm_apic_present(vcpu)) 209 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 210 211 new = kvzalloc(sizeof(struct kvm_apic_map) + 212 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 213 GFP_KERNEL_ACCOUNT); 214 215 if (!new) 216 goto out; 217 218 new->max_apic_id = max_id; 219 220 kvm_for_each_vcpu(i, vcpu, kvm) { 221 struct kvm_lapic *apic = vcpu->arch.apic; 222 struct kvm_lapic **cluster; 223 u16 mask; 224 u32 ldr; 225 u8 xapic_id; 226 u32 x2apic_id; 227 228 if (!kvm_apic_present(vcpu)) 229 continue; 230 231 xapic_id = kvm_xapic_id(apic); 232 x2apic_id = kvm_x2apic_id(apic); 233 234 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 235 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 236 x2apic_id <= new->max_apic_id) 237 new->phys_map[x2apic_id] = apic; 238 /* 239 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 240 * prevent them from masking VCPUs with APIC ID <= 0xff. 241 */ 242 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 243 new->phys_map[xapic_id] = apic; 244 245 if (!kvm_apic_sw_enabled(apic)) 246 continue; 247 248 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 249 250 if (apic_x2apic_mode(apic)) { 251 new->mode |= KVM_APIC_MODE_X2APIC; 252 } else if (ldr) { 253 ldr = GET_APIC_LOGICAL_ID(ldr); 254 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 255 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 256 else 257 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 258 } 259 260 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 261 continue; 262 263 if (mask) 264 cluster[ffs(mask) - 1] = apic; 265 } 266 out: 267 old = rcu_dereference_protected(kvm->arch.apic_map, 268 lockdep_is_held(&kvm->arch.apic_map_lock)); 269 rcu_assign_pointer(kvm->arch.apic_map, new); 270 /* 271 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 272 * If another update has come in, leave it DIRTY. 273 */ 274 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 275 UPDATE_IN_PROGRESS, CLEAN); 276 mutex_unlock(&kvm->arch.apic_map_lock); 277 278 if (old) 279 call_rcu(&old->rcu, kvm_apic_map_free); 280 281 kvm_make_scan_ioapic_request(kvm); 282 } 283 284 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 285 { 286 bool enabled = val & APIC_SPIV_APIC_ENABLED; 287 288 kvm_lapic_set_reg(apic, APIC_SPIV, val); 289 290 if (enabled != apic->sw_enabled) { 291 apic->sw_enabled = enabled; 292 if (enabled) 293 static_branch_slow_dec_deferred(&apic_sw_disabled); 294 else 295 static_branch_inc(&apic_sw_disabled.key); 296 297 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 298 } 299 300 /* Check if there are APF page ready requests pending */ 301 if (enabled) 302 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 303 } 304 305 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 306 { 307 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 308 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 309 } 310 311 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 312 { 313 kvm_lapic_set_reg(apic, APIC_LDR, id); 314 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 315 } 316 317 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 318 { 319 kvm_lapic_set_reg(apic, APIC_DFR, val); 320 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 321 } 322 323 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 324 { 325 return ((id >> 4) << 16) | (1 << (id & 0xf)); 326 } 327 328 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 329 { 330 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 331 332 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 333 334 kvm_lapic_set_reg(apic, APIC_ID, id); 335 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 336 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 337 } 338 339 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 340 { 341 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 342 } 343 344 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 345 { 346 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 347 } 348 349 static inline int apic_lvtt_period(struct kvm_lapic *apic) 350 { 351 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 352 } 353 354 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 355 { 356 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 357 } 358 359 static inline int apic_lvt_nmi_mode(u32 lvt_val) 360 { 361 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 362 } 363 364 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 365 { 366 struct kvm_lapic *apic = vcpu->arch.apic; 367 u32 v = APIC_VERSION; 368 369 if (!lapic_in_kernel(vcpu)) 370 return; 371 372 /* 373 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 374 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 375 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 376 * version first and level-triggered interrupts never get EOIed in 377 * IOAPIC. 378 */ 379 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 380 !ioapic_in_kernel(vcpu->kvm)) 381 v |= APIC_LVR_DIRECTED_EOI; 382 kvm_lapic_set_reg(apic, APIC_LVR, v); 383 } 384 385 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 386 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 387 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 388 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 389 LINT_MASK, LINT_MASK, /* LVT0-1 */ 390 LVT_MASK /* LVTERR */ 391 }; 392 393 static int find_highest_vector(void *bitmap) 394 { 395 int vec; 396 u32 *reg; 397 398 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 399 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 400 reg = bitmap + REG_POS(vec); 401 if (*reg) 402 return __fls(*reg) + vec; 403 } 404 405 return -1; 406 } 407 408 static u8 count_vectors(void *bitmap) 409 { 410 int vec; 411 u32 *reg; 412 u8 count = 0; 413 414 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 415 reg = bitmap + REG_POS(vec); 416 count += hweight32(*reg); 417 } 418 419 return count; 420 } 421 422 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 423 { 424 u32 i, vec; 425 u32 pir_val, irr_val, prev_irr_val; 426 int max_updated_irr; 427 428 max_updated_irr = -1; 429 *max_irr = -1; 430 431 for (i = vec = 0; i <= 7; i++, vec += 32) { 432 pir_val = READ_ONCE(pir[i]); 433 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 434 if (pir_val) { 435 prev_irr_val = irr_val; 436 irr_val |= xchg(&pir[i], 0); 437 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 438 if (prev_irr_val != irr_val) { 439 max_updated_irr = 440 __fls(irr_val ^ prev_irr_val) + vec; 441 } 442 } 443 if (irr_val) 444 *max_irr = __fls(irr_val) + vec; 445 } 446 447 return ((max_updated_irr != -1) && 448 (max_updated_irr == *max_irr)); 449 } 450 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 451 452 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 453 { 454 struct kvm_lapic *apic = vcpu->arch.apic; 455 456 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 457 } 458 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 459 460 static inline int apic_search_irr(struct kvm_lapic *apic) 461 { 462 return find_highest_vector(apic->regs + APIC_IRR); 463 } 464 465 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 466 { 467 int result; 468 469 /* 470 * Note that irr_pending is just a hint. It will be always 471 * true with virtual interrupt delivery enabled. 472 */ 473 if (!apic->irr_pending) 474 return -1; 475 476 result = apic_search_irr(apic); 477 ASSERT(result == -1 || result >= 16); 478 479 return result; 480 } 481 482 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 483 { 484 struct kvm_vcpu *vcpu; 485 486 vcpu = apic->vcpu; 487 488 if (unlikely(vcpu->arch.apicv_active)) { 489 /* need to update RVI */ 490 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 491 static_call(kvm_x86_hwapic_irr_update)(vcpu, 492 apic_find_highest_irr(apic)); 493 } else { 494 apic->irr_pending = false; 495 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 496 if (apic_search_irr(apic) != -1) 497 apic->irr_pending = true; 498 } 499 } 500 501 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 502 { 503 apic_clear_irr(vec, vcpu->arch.apic); 504 } 505 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 506 507 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 508 { 509 struct kvm_vcpu *vcpu; 510 511 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 512 return; 513 514 vcpu = apic->vcpu; 515 516 /* 517 * With APIC virtualization enabled, all caching is disabled 518 * because the processor can modify ISR under the hood. Instead 519 * just set SVI. 520 */ 521 if (unlikely(vcpu->arch.apicv_active)) 522 static_call(kvm_x86_hwapic_isr_update)(vcpu, vec); 523 else { 524 ++apic->isr_count; 525 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 526 /* 527 * ISR (in service register) bit is set when injecting an interrupt. 528 * The highest vector is injected. Thus the latest bit set matches 529 * the highest bit in ISR. 530 */ 531 apic->highest_isr_cache = vec; 532 } 533 } 534 535 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 536 { 537 int result; 538 539 /* 540 * Note that isr_count is always 1, and highest_isr_cache 541 * is always -1, with APIC virtualization enabled. 542 */ 543 if (!apic->isr_count) 544 return -1; 545 if (likely(apic->highest_isr_cache != -1)) 546 return apic->highest_isr_cache; 547 548 result = find_highest_vector(apic->regs + APIC_ISR); 549 ASSERT(result == -1 || result >= 16); 550 551 return result; 552 } 553 554 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 555 { 556 struct kvm_vcpu *vcpu; 557 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 558 return; 559 560 vcpu = apic->vcpu; 561 562 /* 563 * We do get here for APIC virtualization enabled if the guest 564 * uses the Hyper-V APIC enlightenment. In this case we may need 565 * to trigger a new interrupt delivery by writing the SVI field; 566 * on the other hand isr_count and highest_isr_cache are unused 567 * and must be left alone. 568 */ 569 if (unlikely(vcpu->arch.apicv_active)) 570 static_call(kvm_x86_hwapic_isr_update)(vcpu, 571 apic_find_highest_isr(apic)); 572 else { 573 --apic->isr_count; 574 BUG_ON(apic->isr_count < 0); 575 apic->highest_isr_cache = -1; 576 } 577 } 578 579 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 580 { 581 /* This may race with setting of irr in __apic_accept_irq() and 582 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 583 * will cause vmexit immediately and the value will be recalculated 584 * on the next vmentry. 585 */ 586 return apic_find_highest_irr(vcpu->arch.apic); 587 } 588 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 589 590 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 591 int vector, int level, int trig_mode, 592 struct dest_map *dest_map); 593 594 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 595 struct dest_map *dest_map) 596 { 597 struct kvm_lapic *apic = vcpu->arch.apic; 598 599 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 600 irq->level, irq->trig_mode, dest_map); 601 } 602 603 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 604 struct kvm_lapic_irq *irq, u32 min) 605 { 606 int i, count = 0; 607 struct kvm_vcpu *vcpu; 608 609 if (min > map->max_apic_id) 610 return 0; 611 612 for_each_set_bit(i, ipi_bitmap, 613 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 614 if (map->phys_map[min + i]) { 615 vcpu = map->phys_map[min + i]->vcpu; 616 count += kvm_apic_set_irq(vcpu, irq, NULL); 617 } 618 } 619 620 return count; 621 } 622 623 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 624 unsigned long ipi_bitmap_high, u32 min, 625 unsigned long icr, int op_64_bit) 626 { 627 struct kvm_apic_map *map; 628 struct kvm_lapic_irq irq = {0}; 629 int cluster_size = op_64_bit ? 64 : 32; 630 int count; 631 632 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 633 return -KVM_EINVAL; 634 635 irq.vector = icr & APIC_VECTOR_MASK; 636 irq.delivery_mode = icr & APIC_MODE_MASK; 637 irq.level = (icr & APIC_INT_ASSERT) != 0; 638 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 639 640 rcu_read_lock(); 641 map = rcu_dereference(kvm->arch.apic_map); 642 643 count = -EOPNOTSUPP; 644 if (likely(map)) { 645 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 646 min += cluster_size; 647 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 648 } 649 650 rcu_read_unlock(); 651 return count; 652 } 653 654 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 655 { 656 657 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 658 sizeof(val)); 659 } 660 661 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 662 { 663 664 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 665 sizeof(*val)); 666 } 667 668 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 669 { 670 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 671 } 672 673 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 674 { 675 u8 val; 676 if (pv_eoi_get_user(vcpu, &val) < 0) { 677 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 678 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 679 return false; 680 } 681 return val & KVM_PV_EOI_ENABLED; 682 } 683 684 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 685 { 686 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 687 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 688 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 689 return; 690 } 691 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 692 } 693 694 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 695 { 696 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 697 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 698 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 699 return; 700 } 701 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 702 } 703 704 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 705 { 706 int highest_irr; 707 if (apic->vcpu->arch.apicv_active) 708 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 709 else 710 highest_irr = apic_find_highest_irr(apic); 711 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 712 return -1; 713 return highest_irr; 714 } 715 716 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 717 { 718 u32 tpr, isrv, ppr, old_ppr; 719 int isr; 720 721 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 722 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 723 isr = apic_find_highest_isr(apic); 724 isrv = (isr != -1) ? isr : 0; 725 726 if ((tpr & 0xf0) >= (isrv & 0xf0)) 727 ppr = tpr & 0xff; 728 else 729 ppr = isrv & 0xf0; 730 731 *new_ppr = ppr; 732 if (old_ppr != ppr) 733 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 734 735 return ppr < old_ppr; 736 } 737 738 static void apic_update_ppr(struct kvm_lapic *apic) 739 { 740 u32 ppr; 741 742 if (__apic_update_ppr(apic, &ppr) && 743 apic_has_interrupt_for_ppr(apic, ppr) != -1) 744 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 745 } 746 747 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 748 { 749 apic_update_ppr(vcpu->arch.apic); 750 } 751 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 752 753 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 754 { 755 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 756 apic_update_ppr(apic); 757 } 758 759 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 760 { 761 return mda == (apic_x2apic_mode(apic) ? 762 X2APIC_BROADCAST : APIC_BROADCAST); 763 } 764 765 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 766 { 767 if (kvm_apic_broadcast(apic, mda)) 768 return true; 769 770 if (apic_x2apic_mode(apic)) 771 return mda == kvm_x2apic_id(apic); 772 773 /* 774 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 775 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 776 * this allows unique addressing of VCPUs with APIC ID over 0xff. 777 * The 0xff condition is needed because writeable xAPIC ID. 778 */ 779 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 780 return true; 781 782 return mda == kvm_xapic_id(apic); 783 } 784 785 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 786 { 787 u32 logical_id; 788 789 if (kvm_apic_broadcast(apic, mda)) 790 return true; 791 792 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 793 794 if (apic_x2apic_mode(apic)) 795 return ((logical_id >> 16) == (mda >> 16)) 796 && (logical_id & mda & 0xffff) != 0; 797 798 logical_id = GET_APIC_LOGICAL_ID(logical_id); 799 800 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 801 case APIC_DFR_FLAT: 802 return (logical_id & mda) != 0; 803 case APIC_DFR_CLUSTER: 804 return ((logical_id >> 4) == (mda >> 4)) 805 && (logical_id & mda & 0xf) != 0; 806 default: 807 return false; 808 } 809 } 810 811 /* The KVM local APIC implementation has two quirks: 812 * 813 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 814 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 815 * KVM doesn't do that aliasing. 816 * 817 * - in-kernel IOAPIC messages have to be delivered directly to 818 * x2APIC, because the kernel does not support interrupt remapping. 819 * In order to support broadcast without interrupt remapping, x2APIC 820 * rewrites the destination of non-IPI messages from APIC_BROADCAST 821 * to X2APIC_BROADCAST. 822 * 823 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 824 * important when userspace wants to use x2APIC-format MSIs, because 825 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 826 */ 827 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 828 struct kvm_lapic *source, struct kvm_lapic *target) 829 { 830 bool ipi = source != NULL; 831 832 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 833 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 834 return X2APIC_BROADCAST; 835 836 return dest_id; 837 } 838 839 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 840 int shorthand, unsigned int dest, int dest_mode) 841 { 842 struct kvm_lapic *target = vcpu->arch.apic; 843 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 844 845 ASSERT(target); 846 switch (shorthand) { 847 case APIC_DEST_NOSHORT: 848 if (dest_mode == APIC_DEST_PHYSICAL) 849 return kvm_apic_match_physical_addr(target, mda); 850 else 851 return kvm_apic_match_logical_addr(target, mda); 852 case APIC_DEST_SELF: 853 return target == source; 854 case APIC_DEST_ALLINC: 855 return true; 856 case APIC_DEST_ALLBUT: 857 return target != source; 858 default: 859 return false; 860 } 861 } 862 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 863 864 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 865 const unsigned long *bitmap, u32 bitmap_size) 866 { 867 u32 mod; 868 int i, idx = -1; 869 870 mod = vector % dest_vcpus; 871 872 for (i = 0; i <= mod; i++) { 873 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 874 BUG_ON(idx == bitmap_size); 875 } 876 877 return idx; 878 } 879 880 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 881 { 882 if (!kvm->arch.disabled_lapic_found) { 883 kvm->arch.disabled_lapic_found = true; 884 printk(KERN_INFO 885 "Disabled LAPIC found during irq injection\n"); 886 } 887 } 888 889 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 890 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 891 { 892 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 893 if ((irq->dest_id == APIC_BROADCAST && 894 map->mode != KVM_APIC_MODE_X2APIC)) 895 return true; 896 if (irq->dest_id == X2APIC_BROADCAST) 897 return true; 898 } else { 899 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 900 if (irq->dest_id == (x2apic_ipi ? 901 X2APIC_BROADCAST : APIC_BROADCAST)) 902 return true; 903 } 904 905 return false; 906 } 907 908 /* Return true if the interrupt can be handled by using *bitmap as index mask 909 * for valid destinations in *dst array. 910 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 911 * Note: we may have zero kvm_lapic destinations when we return true, which 912 * means that the interrupt should be dropped. In this case, *bitmap would be 913 * zero and *dst undefined. 914 */ 915 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 916 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 917 struct kvm_apic_map *map, struct kvm_lapic ***dst, 918 unsigned long *bitmap) 919 { 920 int i, lowest; 921 922 if (irq->shorthand == APIC_DEST_SELF && src) { 923 *dst = src; 924 *bitmap = 1; 925 return true; 926 } else if (irq->shorthand) 927 return false; 928 929 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 930 return false; 931 932 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 933 if (irq->dest_id > map->max_apic_id) { 934 *bitmap = 0; 935 } else { 936 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 937 *dst = &map->phys_map[dest_id]; 938 *bitmap = 1; 939 } 940 return true; 941 } 942 943 *bitmap = 0; 944 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 945 (u16 *)bitmap)) 946 return false; 947 948 if (!kvm_lowest_prio_delivery(irq)) 949 return true; 950 951 if (!kvm_vector_hashing_enabled()) { 952 lowest = -1; 953 for_each_set_bit(i, bitmap, 16) { 954 if (!(*dst)[i]) 955 continue; 956 if (lowest < 0) 957 lowest = i; 958 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 959 (*dst)[lowest]->vcpu) < 0) 960 lowest = i; 961 } 962 } else { 963 if (!*bitmap) 964 return true; 965 966 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 967 bitmap, 16); 968 969 if (!(*dst)[lowest]) { 970 kvm_apic_disabled_lapic_found(kvm); 971 *bitmap = 0; 972 return true; 973 } 974 } 975 976 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 977 978 return true; 979 } 980 981 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 982 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 983 { 984 struct kvm_apic_map *map; 985 unsigned long bitmap; 986 struct kvm_lapic **dst = NULL; 987 int i; 988 bool ret; 989 990 *r = -1; 991 992 if (irq->shorthand == APIC_DEST_SELF) { 993 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 994 return true; 995 } 996 997 rcu_read_lock(); 998 map = rcu_dereference(kvm->arch.apic_map); 999 1000 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1001 if (ret) { 1002 *r = 0; 1003 for_each_set_bit(i, &bitmap, 16) { 1004 if (!dst[i]) 1005 continue; 1006 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1007 } 1008 } 1009 1010 rcu_read_unlock(); 1011 return ret; 1012 } 1013 1014 /* 1015 * This routine tries to handle interrupts in posted mode, here is how 1016 * it deals with different cases: 1017 * - For single-destination interrupts, handle it in posted mode 1018 * - Else if vector hashing is enabled and it is a lowest-priority 1019 * interrupt, handle it in posted mode and use the following mechanism 1020 * to find the destination vCPU. 1021 * 1. For lowest-priority interrupts, store all the possible 1022 * destination vCPUs in an array. 1023 * 2. Use "guest vector % max number of destination vCPUs" to find 1024 * the right destination vCPU in the array for the lowest-priority 1025 * interrupt. 1026 * - Otherwise, use remapped mode to inject the interrupt. 1027 */ 1028 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1029 struct kvm_vcpu **dest_vcpu) 1030 { 1031 struct kvm_apic_map *map; 1032 unsigned long bitmap; 1033 struct kvm_lapic **dst = NULL; 1034 bool ret = false; 1035 1036 if (irq->shorthand) 1037 return false; 1038 1039 rcu_read_lock(); 1040 map = rcu_dereference(kvm->arch.apic_map); 1041 1042 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1043 hweight16(bitmap) == 1) { 1044 unsigned long i = find_first_bit(&bitmap, 16); 1045 1046 if (dst[i]) { 1047 *dest_vcpu = dst[i]->vcpu; 1048 ret = true; 1049 } 1050 } 1051 1052 rcu_read_unlock(); 1053 return ret; 1054 } 1055 1056 /* 1057 * Add a pending IRQ into lapic. 1058 * Return 1 if successfully added and 0 if discarded. 1059 */ 1060 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1061 int vector, int level, int trig_mode, 1062 struct dest_map *dest_map) 1063 { 1064 int result = 0; 1065 struct kvm_vcpu *vcpu = apic->vcpu; 1066 1067 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1068 trig_mode, vector); 1069 switch (delivery_mode) { 1070 case APIC_DM_LOWEST: 1071 vcpu->arch.apic_arb_prio++; 1072 fallthrough; 1073 case APIC_DM_FIXED: 1074 if (unlikely(trig_mode && !level)) 1075 break; 1076 1077 /* FIXME add logic for vcpu on reset */ 1078 if (unlikely(!apic_enabled(apic))) 1079 break; 1080 1081 result = 1; 1082 1083 if (dest_map) { 1084 __set_bit(vcpu->vcpu_id, dest_map->map); 1085 dest_map->vectors[vcpu->vcpu_id] = vector; 1086 } 1087 1088 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1089 if (trig_mode) 1090 kvm_lapic_set_vector(vector, 1091 apic->regs + APIC_TMR); 1092 else 1093 kvm_lapic_clear_vector(vector, 1094 apic->regs + APIC_TMR); 1095 } 1096 1097 if (static_call(kvm_x86_deliver_posted_interrupt)(vcpu, vector)) { 1098 kvm_lapic_set_irr(vector, apic); 1099 kvm_make_request(KVM_REQ_EVENT, vcpu); 1100 kvm_vcpu_kick(vcpu); 1101 } 1102 break; 1103 1104 case APIC_DM_REMRD: 1105 result = 1; 1106 vcpu->arch.pv.pv_unhalted = 1; 1107 kvm_make_request(KVM_REQ_EVENT, vcpu); 1108 kvm_vcpu_kick(vcpu); 1109 break; 1110 1111 case APIC_DM_SMI: 1112 result = 1; 1113 kvm_make_request(KVM_REQ_SMI, vcpu); 1114 kvm_vcpu_kick(vcpu); 1115 break; 1116 1117 case APIC_DM_NMI: 1118 result = 1; 1119 kvm_inject_nmi(vcpu); 1120 kvm_vcpu_kick(vcpu); 1121 break; 1122 1123 case APIC_DM_INIT: 1124 if (!trig_mode || level) { 1125 result = 1; 1126 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1127 apic->pending_events = (1UL << KVM_APIC_INIT); 1128 kvm_make_request(KVM_REQ_EVENT, vcpu); 1129 kvm_vcpu_kick(vcpu); 1130 } 1131 break; 1132 1133 case APIC_DM_STARTUP: 1134 result = 1; 1135 apic->sipi_vector = vector; 1136 /* make sure sipi_vector is visible for the receiver */ 1137 smp_wmb(); 1138 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1139 kvm_make_request(KVM_REQ_EVENT, vcpu); 1140 kvm_vcpu_kick(vcpu); 1141 break; 1142 1143 case APIC_DM_EXTINT: 1144 /* 1145 * Should only be called by kvm_apic_local_deliver() with LVT0, 1146 * before NMI watchdog was enabled. Already handled by 1147 * kvm_apic_accept_pic_intr(). 1148 */ 1149 break; 1150 1151 default: 1152 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1153 delivery_mode); 1154 break; 1155 } 1156 return result; 1157 } 1158 1159 /* 1160 * This routine identifies the destination vcpus mask meant to receive the 1161 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1162 * out the destination vcpus array and set the bitmap or it traverses to 1163 * each available vcpu to identify the same. 1164 */ 1165 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1166 unsigned long *vcpu_bitmap) 1167 { 1168 struct kvm_lapic **dest_vcpu = NULL; 1169 struct kvm_lapic *src = NULL; 1170 struct kvm_apic_map *map; 1171 struct kvm_vcpu *vcpu; 1172 unsigned long bitmap; 1173 int i, vcpu_idx; 1174 bool ret; 1175 1176 rcu_read_lock(); 1177 map = rcu_dereference(kvm->arch.apic_map); 1178 1179 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1180 &bitmap); 1181 if (ret) { 1182 for_each_set_bit(i, &bitmap, 16) { 1183 if (!dest_vcpu[i]) 1184 continue; 1185 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1186 __set_bit(vcpu_idx, vcpu_bitmap); 1187 } 1188 } else { 1189 kvm_for_each_vcpu(i, vcpu, kvm) { 1190 if (!kvm_apic_present(vcpu)) 1191 continue; 1192 if (!kvm_apic_match_dest(vcpu, NULL, 1193 irq->shorthand, 1194 irq->dest_id, 1195 irq->dest_mode)) 1196 continue; 1197 __set_bit(i, vcpu_bitmap); 1198 } 1199 } 1200 rcu_read_unlock(); 1201 } 1202 1203 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1204 { 1205 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1206 } 1207 1208 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1209 { 1210 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1211 } 1212 1213 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1214 { 1215 int trigger_mode; 1216 1217 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1218 if (!kvm_ioapic_handles_vector(apic, vector)) 1219 return; 1220 1221 /* Request a KVM exit to inform the userspace IOAPIC. */ 1222 if (irqchip_split(apic->vcpu->kvm)) { 1223 apic->vcpu->arch.pending_ioapic_eoi = vector; 1224 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1225 return; 1226 } 1227 1228 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1229 trigger_mode = IOAPIC_LEVEL_TRIG; 1230 else 1231 trigger_mode = IOAPIC_EDGE_TRIG; 1232 1233 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1234 } 1235 1236 static int apic_set_eoi(struct kvm_lapic *apic) 1237 { 1238 int vector = apic_find_highest_isr(apic); 1239 1240 trace_kvm_eoi(apic, vector); 1241 1242 /* 1243 * Not every write EOI will has corresponding ISR, 1244 * one example is when Kernel check timer on setup_IO_APIC 1245 */ 1246 if (vector == -1) 1247 return vector; 1248 1249 apic_clear_isr(vector, apic); 1250 apic_update_ppr(apic); 1251 1252 if (to_hv_vcpu(apic->vcpu) && 1253 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1254 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1255 1256 kvm_ioapic_send_eoi(apic, vector); 1257 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1258 return vector; 1259 } 1260 1261 /* 1262 * this interface assumes a trap-like exit, which has already finished 1263 * desired side effect including vISR and vPPR update. 1264 */ 1265 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1266 { 1267 struct kvm_lapic *apic = vcpu->arch.apic; 1268 1269 trace_kvm_eoi(apic, vector); 1270 1271 kvm_ioapic_send_eoi(apic, vector); 1272 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1273 } 1274 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1275 1276 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1277 { 1278 struct kvm_lapic_irq irq; 1279 1280 irq.vector = icr_low & APIC_VECTOR_MASK; 1281 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1282 irq.dest_mode = icr_low & APIC_DEST_MASK; 1283 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1284 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1285 irq.shorthand = icr_low & APIC_SHORT_MASK; 1286 irq.msi_redir_hint = false; 1287 if (apic_x2apic_mode(apic)) 1288 irq.dest_id = icr_high; 1289 else 1290 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1291 1292 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1293 1294 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1295 } 1296 1297 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1298 { 1299 ktime_t remaining, now; 1300 s64 ns; 1301 u32 tmcct; 1302 1303 ASSERT(apic != NULL); 1304 1305 /* if initial count is 0, current count should also be 0 */ 1306 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1307 apic->lapic_timer.period == 0) 1308 return 0; 1309 1310 now = ktime_get(); 1311 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1312 if (ktime_to_ns(remaining) < 0) 1313 remaining = 0; 1314 1315 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1316 tmcct = div64_u64(ns, 1317 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1318 1319 return tmcct; 1320 } 1321 1322 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1323 { 1324 struct kvm_vcpu *vcpu = apic->vcpu; 1325 struct kvm_run *run = vcpu->run; 1326 1327 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1328 run->tpr_access.rip = kvm_rip_read(vcpu); 1329 run->tpr_access.is_write = write; 1330 } 1331 1332 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1333 { 1334 if (apic->vcpu->arch.tpr_access_reporting) 1335 __report_tpr_access(apic, write); 1336 } 1337 1338 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1339 { 1340 u32 val = 0; 1341 1342 if (offset >= LAPIC_MMIO_LENGTH) 1343 return 0; 1344 1345 switch (offset) { 1346 case APIC_ARBPRI: 1347 break; 1348 1349 case APIC_TMCCT: /* Timer CCR */ 1350 if (apic_lvtt_tscdeadline(apic)) 1351 return 0; 1352 1353 val = apic_get_tmcct(apic); 1354 break; 1355 case APIC_PROCPRI: 1356 apic_update_ppr(apic); 1357 val = kvm_lapic_get_reg(apic, offset); 1358 break; 1359 case APIC_TASKPRI: 1360 report_tpr_access(apic, false); 1361 fallthrough; 1362 default: 1363 val = kvm_lapic_get_reg(apic, offset); 1364 break; 1365 } 1366 1367 return val; 1368 } 1369 1370 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1371 { 1372 return container_of(dev, struct kvm_lapic, dev); 1373 } 1374 1375 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1376 #define APIC_REGS_MASK(first, count) \ 1377 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1378 1379 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1380 void *data) 1381 { 1382 unsigned char alignment = offset & 0xf; 1383 u32 result; 1384 /* this bitmask has a bit cleared for each reserved register */ 1385 u64 valid_reg_mask = 1386 APIC_REG_MASK(APIC_ID) | 1387 APIC_REG_MASK(APIC_LVR) | 1388 APIC_REG_MASK(APIC_TASKPRI) | 1389 APIC_REG_MASK(APIC_PROCPRI) | 1390 APIC_REG_MASK(APIC_LDR) | 1391 APIC_REG_MASK(APIC_DFR) | 1392 APIC_REG_MASK(APIC_SPIV) | 1393 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1394 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1395 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1396 APIC_REG_MASK(APIC_ESR) | 1397 APIC_REG_MASK(APIC_ICR) | 1398 APIC_REG_MASK(APIC_ICR2) | 1399 APIC_REG_MASK(APIC_LVTT) | 1400 APIC_REG_MASK(APIC_LVTTHMR) | 1401 APIC_REG_MASK(APIC_LVTPC) | 1402 APIC_REG_MASK(APIC_LVT0) | 1403 APIC_REG_MASK(APIC_LVT1) | 1404 APIC_REG_MASK(APIC_LVTERR) | 1405 APIC_REG_MASK(APIC_TMICT) | 1406 APIC_REG_MASK(APIC_TMCCT) | 1407 APIC_REG_MASK(APIC_TDCR); 1408 1409 /* ARBPRI is not valid on x2APIC */ 1410 if (!apic_x2apic_mode(apic)) 1411 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1412 1413 if (alignment + len > 4) 1414 return 1; 1415 1416 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1417 return 1; 1418 1419 result = __apic_read(apic, offset & ~0xf); 1420 1421 trace_kvm_apic_read(offset, result); 1422 1423 switch (len) { 1424 case 1: 1425 case 2: 1426 case 4: 1427 memcpy(data, (char *)&result + alignment, len); 1428 break; 1429 default: 1430 printk(KERN_ERR "Local APIC read with len = %x, " 1431 "should be 1,2, or 4 instead\n", len); 1432 break; 1433 } 1434 return 0; 1435 } 1436 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1437 1438 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1439 { 1440 return addr >= apic->base_address && 1441 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1442 } 1443 1444 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1445 gpa_t address, int len, void *data) 1446 { 1447 struct kvm_lapic *apic = to_lapic(this); 1448 u32 offset = address - apic->base_address; 1449 1450 if (!apic_mmio_in_range(apic, address)) 1451 return -EOPNOTSUPP; 1452 1453 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1454 if (!kvm_check_has_quirk(vcpu->kvm, 1455 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1456 return -EOPNOTSUPP; 1457 1458 memset(data, 0xff, len); 1459 return 0; 1460 } 1461 1462 kvm_lapic_reg_read(apic, offset, len, data); 1463 1464 return 0; 1465 } 1466 1467 static void update_divide_count(struct kvm_lapic *apic) 1468 { 1469 u32 tmp1, tmp2, tdcr; 1470 1471 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1472 tmp1 = tdcr & 0xf; 1473 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1474 apic->divide_count = 0x1 << (tmp2 & 0x7); 1475 } 1476 1477 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1478 { 1479 /* 1480 * Do not allow the guest to program periodic timers with small 1481 * interval, since the hrtimers are not throttled by the host 1482 * scheduler. 1483 */ 1484 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1485 s64 min_period = min_timer_period_us * 1000LL; 1486 1487 if (apic->lapic_timer.period < min_period) { 1488 pr_info_ratelimited( 1489 "kvm: vcpu %i: requested %lld ns " 1490 "lapic timer period limited to %lld ns\n", 1491 apic->vcpu->vcpu_id, 1492 apic->lapic_timer.period, min_period); 1493 apic->lapic_timer.period = min_period; 1494 } 1495 } 1496 } 1497 1498 static void cancel_hv_timer(struct kvm_lapic *apic); 1499 1500 static void cancel_apic_timer(struct kvm_lapic *apic) 1501 { 1502 hrtimer_cancel(&apic->lapic_timer.timer); 1503 preempt_disable(); 1504 if (apic->lapic_timer.hv_timer_in_use) 1505 cancel_hv_timer(apic); 1506 preempt_enable(); 1507 } 1508 1509 static void apic_update_lvtt(struct kvm_lapic *apic) 1510 { 1511 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1512 apic->lapic_timer.timer_mode_mask; 1513 1514 if (apic->lapic_timer.timer_mode != timer_mode) { 1515 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1516 APIC_LVT_TIMER_TSCDEADLINE)) { 1517 cancel_apic_timer(apic); 1518 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1519 apic->lapic_timer.period = 0; 1520 apic->lapic_timer.tscdeadline = 0; 1521 } 1522 apic->lapic_timer.timer_mode = timer_mode; 1523 limit_periodic_timer_frequency(apic); 1524 } 1525 } 1526 1527 /* 1528 * On APICv, this test will cause a busy wait 1529 * during a higher-priority task. 1530 */ 1531 1532 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1533 { 1534 struct kvm_lapic *apic = vcpu->arch.apic; 1535 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1536 1537 if (kvm_apic_hw_enabled(apic)) { 1538 int vec = reg & APIC_VECTOR_MASK; 1539 void *bitmap = apic->regs + APIC_ISR; 1540 1541 if (vcpu->arch.apicv_active) 1542 bitmap = apic->regs + APIC_IRR; 1543 1544 if (apic_test_vector(vec, bitmap)) 1545 return true; 1546 } 1547 return false; 1548 } 1549 1550 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1551 { 1552 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1553 1554 /* 1555 * If the guest TSC is running at a different ratio than the host, then 1556 * convert the delay to nanoseconds to achieve an accurate delay. Note 1557 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1558 * always for VMX enabled hardware. 1559 */ 1560 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1561 __delay(min(guest_cycles, 1562 nsec_to_cycles(vcpu, timer_advance_ns))); 1563 } else { 1564 u64 delay_ns = guest_cycles * 1000000ULL; 1565 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1566 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1567 } 1568 } 1569 1570 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1571 s64 advance_expire_delta) 1572 { 1573 struct kvm_lapic *apic = vcpu->arch.apic; 1574 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1575 u64 ns; 1576 1577 /* Do not adjust for tiny fluctuations or large random spikes. */ 1578 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1579 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1580 return; 1581 1582 /* too early */ 1583 if (advance_expire_delta < 0) { 1584 ns = -advance_expire_delta * 1000000ULL; 1585 do_div(ns, vcpu->arch.virtual_tsc_khz); 1586 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1587 } else { 1588 /* too late */ 1589 ns = advance_expire_delta * 1000000ULL; 1590 do_div(ns, vcpu->arch.virtual_tsc_khz); 1591 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1592 } 1593 1594 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1595 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1596 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1597 } 1598 1599 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1600 { 1601 struct kvm_lapic *apic = vcpu->arch.apic; 1602 u64 guest_tsc, tsc_deadline; 1603 1604 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1605 apic->lapic_timer.expired_tscdeadline = 0; 1606 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1607 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1608 1609 if (lapic_timer_advance_dynamic) { 1610 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1611 /* 1612 * If the timer fired early, reread the TSC to account for the 1613 * overhead of the above adjustment to avoid waiting longer 1614 * than is necessary. 1615 */ 1616 if (guest_tsc < tsc_deadline) 1617 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1618 } 1619 1620 if (guest_tsc < tsc_deadline) 1621 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1622 } 1623 1624 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1625 { 1626 if (lapic_in_kernel(vcpu) && 1627 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1628 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1629 lapic_timer_int_injected(vcpu)) 1630 __kvm_wait_lapic_expire(vcpu); 1631 } 1632 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1633 1634 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1635 { 1636 struct kvm_timer *ktimer = &apic->lapic_timer; 1637 1638 kvm_apic_local_deliver(apic, APIC_LVTT); 1639 if (apic_lvtt_tscdeadline(apic)) { 1640 ktimer->tscdeadline = 0; 1641 } else if (apic_lvtt_oneshot(apic)) { 1642 ktimer->tscdeadline = 0; 1643 ktimer->target_expiration = 0; 1644 } 1645 } 1646 1647 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1648 { 1649 struct kvm_vcpu *vcpu = apic->vcpu; 1650 struct kvm_timer *ktimer = &apic->lapic_timer; 1651 1652 if (atomic_read(&apic->lapic_timer.pending)) 1653 return; 1654 1655 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1656 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1657 1658 if (!from_timer_fn && vcpu->arch.apicv_active) { 1659 WARN_ON(kvm_get_running_vcpu() != vcpu); 1660 kvm_apic_inject_pending_timer_irqs(apic); 1661 return; 1662 } 1663 1664 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1665 /* 1666 * Ensure the guest's timer has truly expired before posting an 1667 * interrupt. Open code the relevant checks to avoid querying 1668 * lapic_timer_int_injected(), which will be false since the 1669 * interrupt isn't yet injected. Waiting until after injecting 1670 * is not an option since that won't help a posted interrupt. 1671 */ 1672 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1673 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1674 __kvm_wait_lapic_expire(vcpu); 1675 kvm_apic_inject_pending_timer_irqs(apic); 1676 return; 1677 } 1678 1679 atomic_inc(&apic->lapic_timer.pending); 1680 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1681 if (from_timer_fn) 1682 kvm_vcpu_kick(vcpu); 1683 } 1684 1685 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1686 { 1687 struct kvm_timer *ktimer = &apic->lapic_timer; 1688 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1689 u64 ns = 0; 1690 ktime_t expire; 1691 struct kvm_vcpu *vcpu = apic->vcpu; 1692 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1693 unsigned long flags; 1694 ktime_t now; 1695 1696 if (unlikely(!tscdeadline || !this_tsc_khz)) 1697 return; 1698 1699 local_irq_save(flags); 1700 1701 now = ktime_get(); 1702 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1703 1704 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1705 do_div(ns, this_tsc_khz); 1706 1707 if (likely(tscdeadline > guest_tsc) && 1708 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1709 expire = ktime_add_ns(now, ns); 1710 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1711 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1712 } else 1713 apic_timer_expired(apic, false); 1714 1715 local_irq_restore(flags); 1716 } 1717 1718 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1719 { 1720 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1721 } 1722 1723 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1724 { 1725 ktime_t now, remaining; 1726 u64 ns_remaining_old, ns_remaining_new; 1727 1728 apic->lapic_timer.period = 1729 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1730 limit_periodic_timer_frequency(apic); 1731 1732 now = ktime_get(); 1733 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1734 if (ktime_to_ns(remaining) < 0) 1735 remaining = 0; 1736 1737 ns_remaining_old = ktime_to_ns(remaining); 1738 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1739 apic->divide_count, old_divisor); 1740 1741 apic->lapic_timer.tscdeadline += 1742 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1743 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1744 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1745 } 1746 1747 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1748 { 1749 ktime_t now; 1750 u64 tscl = rdtsc(); 1751 s64 deadline; 1752 1753 now = ktime_get(); 1754 apic->lapic_timer.period = 1755 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1756 1757 if (!apic->lapic_timer.period) { 1758 apic->lapic_timer.tscdeadline = 0; 1759 return false; 1760 } 1761 1762 limit_periodic_timer_frequency(apic); 1763 deadline = apic->lapic_timer.period; 1764 1765 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1766 if (unlikely(count_reg != APIC_TMICT)) { 1767 deadline = tmict_to_ns(apic, 1768 kvm_lapic_get_reg(apic, count_reg)); 1769 if (unlikely(deadline <= 0)) 1770 deadline = apic->lapic_timer.period; 1771 else if (unlikely(deadline > apic->lapic_timer.period)) { 1772 pr_info_ratelimited( 1773 "kvm: vcpu %i: requested lapic timer restore with " 1774 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1775 "Using initial count to start timer.\n", 1776 apic->vcpu->vcpu_id, 1777 count_reg, 1778 kvm_lapic_get_reg(apic, count_reg), 1779 deadline, apic->lapic_timer.period); 1780 kvm_lapic_set_reg(apic, count_reg, 0); 1781 deadline = apic->lapic_timer.period; 1782 } 1783 } 1784 } 1785 1786 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1787 nsec_to_cycles(apic->vcpu, deadline); 1788 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1789 1790 return true; 1791 } 1792 1793 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1794 { 1795 ktime_t now = ktime_get(); 1796 u64 tscl = rdtsc(); 1797 ktime_t delta; 1798 1799 /* 1800 * Synchronize both deadlines to the same time source or 1801 * differences in the periods (caused by differences in the 1802 * underlying clocks or numerical approximation errors) will 1803 * cause the two to drift apart over time as the errors 1804 * accumulate. 1805 */ 1806 apic->lapic_timer.target_expiration = 1807 ktime_add_ns(apic->lapic_timer.target_expiration, 1808 apic->lapic_timer.period); 1809 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1810 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1811 nsec_to_cycles(apic->vcpu, delta); 1812 } 1813 1814 static void start_sw_period(struct kvm_lapic *apic) 1815 { 1816 if (!apic->lapic_timer.period) 1817 return; 1818 1819 if (ktime_after(ktime_get(), 1820 apic->lapic_timer.target_expiration)) { 1821 apic_timer_expired(apic, false); 1822 1823 if (apic_lvtt_oneshot(apic)) 1824 return; 1825 1826 advance_periodic_target_expiration(apic); 1827 } 1828 1829 hrtimer_start(&apic->lapic_timer.timer, 1830 apic->lapic_timer.target_expiration, 1831 HRTIMER_MODE_ABS_HARD); 1832 } 1833 1834 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1835 { 1836 if (!lapic_in_kernel(vcpu)) 1837 return false; 1838 1839 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1840 } 1841 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1842 1843 static void cancel_hv_timer(struct kvm_lapic *apic) 1844 { 1845 WARN_ON(preemptible()); 1846 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1847 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 1848 apic->lapic_timer.hv_timer_in_use = false; 1849 } 1850 1851 static bool start_hv_timer(struct kvm_lapic *apic) 1852 { 1853 struct kvm_timer *ktimer = &apic->lapic_timer; 1854 struct kvm_vcpu *vcpu = apic->vcpu; 1855 bool expired; 1856 1857 WARN_ON(preemptible()); 1858 if (!kvm_can_use_hv_timer(vcpu)) 1859 return false; 1860 1861 if (!ktimer->tscdeadline) 1862 return false; 1863 1864 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 1865 return false; 1866 1867 ktimer->hv_timer_in_use = true; 1868 hrtimer_cancel(&ktimer->timer); 1869 1870 /* 1871 * To simplify handling the periodic timer, leave the hv timer running 1872 * even if the deadline timer has expired, i.e. rely on the resulting 1873 * VM-Exit to recompute the periodic timer's target expiration. 1874 */ 1875 if (!apic_lvtt_period(apic)) { 1876 /* 1877 * Cancel the hv timer if the sw timer fired while the hv timer 1878 * was being programmed, or if the hv timer itself expired. 1879 */ 1880 if (atomic_read(&ktimer->pending)) { 1881 cancel_hv_timer(apic); 1882 } else if (expired) { 1883 apic_timer_expired(apic, false); 1884 cancel_hv_timer(apic); 1885 } 1886 } 1887 1888 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1889 1890 return true; 1891 } 1892 1893 static void start_sw_timer(struct kvm_lapic *apic) 1894 { 1895 struct kvm_timer *ktimer = &apic->lapic_timer; 1896 1897 WARN_ON(preemptible()); 1898 if (apic->lapic_timer.hv_timer_in_use) 1899 cancel_hv_timer(apic); 1900 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1901 return; 1902 1903 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1904 start_sw_period(apic); 1905 else if (apic_lvtt_tscdeadline(apic)) 1906 start_sw_tscdeadline(apic); 1907 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1908 } 1909 1910 static void restart_apic_timer(struct kvm_lapic *apic) 1911 { 1912 preempt_disable(); 1913 1914 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1915 goto out; 1916 1917 if (!start_hv_timer(apic)) 1918 start_sw_timer(apic); 1919 out: 1920 preempt_enable(); 1921 } 1922 1923 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1924 { 1925 struct kvm_lapic *apic = vcpu->arch.apic; 1926 1927 preempt_disable(); 1928 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1929 if (!apic->lapic_timer.hv_timer_in_use) 1930 goto out; 1931 WARN_ON(rcuwait_active(&vcpu->wait)); 1932 apic_timer_expired(apic, false); 1933 cancel_hv_timer(apic); 1934 1935 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1936 advance_periodic_target_expiration(apic); 1937 restart_apic_timer(apic); 1938 } 1939 out: 1940 preempt_enable(); 1941 } 1942 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1943 1944 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1945 { 1946 restart_apic_timer(vcpu->arch.apic); 1947 } 1948 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1949 1950 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1951 { 1952 struct kvm_lapic *apic = vcpu->arch.apic; 1953 1954 preempt_disable(); 1955 /* Possibly the TSC deadline timer is not enabled yet */ 1956 if (apic->lapic_timer.hv_timer_in_use) 1957 start_sw_timer(apic); 1958 preempt_enable(); 1959 } 1960 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1961 1962 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1963 { 1964 struct kvm_lapic *apic = vcpu->arch.apic; 1965 1966 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1967 restart_apic_timer(apic); 1968 } 1969 1970 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 1971 { 1972 atomic_set(&apic->lapic_timer.pending, 0); 1973 1974 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1975 && !set_target_expiration(apic, count_reg)) 1976 return; 1977 1978 restart_apic_timer(apic); 1979 } 1980 1981 static void start_apic_timer(struct kvm_lapic *apic) 1982 { 1983 __start_apic_timer(apic, APIC_TMICT); 1984 } 1985 1986 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1987 { 1988 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1989 1990 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1991 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1992 if (lvt0_in_nmi_mode) { 1993 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1994 } else 1995 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1996 } 1997 } 1998 1999 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2000 { 2001 int ret = 0; 2002 2003 trace_kvm_apic_write(reg, val); 2004 2005 switch (reg) { 2006 case APIC_ID: /* Local APIC ID */ 2007 if (!apic_x2apic_mode(apic)) 2008 kvm_apic_set_xapic_id(apic, val >> 24); 2009 else 2010 ret = 1; 2011 break; 2012 2013 case APIC_TASKPRI: 2014 report_tpr_access(apic, true); 2015 apic_set_tpr(apic, val & 0xff); 2016 break; 2017 2018 case APIC_EOI: 2019 apic_set_eoi(apic); 2020 break; 2021 2022 case APIC_LDR: 2023 if (!apic_x2apic_mode(apic)) 2024 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2025 else 2026 ret = 1; 2027 break; 2028 2029 case APIC_DFR: 2030 if (!apic_x2apic_mode(apic)) 2031 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2032 else 2033 ret = 1; 2034 break; 2035 2036 case APIC_SPIV: { 2037 u32 mask = 0x3ff; 2038 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2039 mask |= APIC_SPIV_DIRECTED_EOI; 2040 apic_set_spiv(apic, val & mask); 2041 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2042 int i; 2043 u32 lvt_val; 2044 2045 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2046 lvt_val = kvm_lapic_get_reg(apic, 2047 APIC_LVTT + 0x10 * i); 2048 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2049 lvt_val | APIC_LVT_MASKED); 2050 } 2051 apic_update_lvtt(apic); 2052 atomic_set(&apic->lapic_timer.pending, 0); 2053 2054 } 2055 break; 2056 } 2057 case APIC_ICR: 2058 /* No delay here, so we always clear the pending bit */ 2059 val &= ~(1 << 12); 2060 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2061 kvm_lapic_set_reg(apic, APIC_ICR, val); 2062 break; 2063 2064 case APIC_ICR2: 2065 if (!apic_x2apic_mode(apic)) 2066 val &= 0xff000000; 2067 kvm_lapic_set_reg(apic, APIC_ICR2, val); 2068 break; 2069 2070 case APIC_LVT0: 2071 apic_manage_nmi_watchdog(apic, val); 2072 fallthrough; 2073 case APIC_LVTTHMR: 2074 case APIC_LVTPC: 2075 case APIC_LVT1: 2076 case APIC_LVTERR: { 2077 /* TODO: Check vector */ 2078 size_t size; 2079 u32 index; 2080 2081 if (!kvm_apic_sw_enabled(apic)) 2082 val |= APIC_LVT_MASKED; 2083 size = ARRAY_SIZE(apic_lvt_mask); 2084 index = array_index_nospec( 2085 (reg - APIC_LVTT) >> 4, size); 2086 val &= apic_lvt_mask[index]; 2087 kvm_lapic_set_reg(apic, reg, val); 2088 break; 2089 } 2090 2091 case APIC_LVTT: 2092 if (!kvm_apic_sw_enabled(apic)) 2093 val |= APIC_LVT_MASKED; 2094 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2095 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2096 apic_update_lvtt(apic); 2097 break; 2098 2099 case APIC_TMICT: 2100 if (apic_lvtt_tscdeadline(apic)) 2101 break; 2102 2103 cancel_apic_timer(apic); 2104 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2105 start_apic_timer(apic); 2106 break; 2107 2108 case APIC_TDCR: { 2109 uint32_t old_divisor = apic->divide_count; 2110 2111 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2112 update_divide_count(apic); 2113 if (apic->divide_count != old_divisor && 2114 apic->lapic_timer.period) { 2115 hrtimer_cancel(&apic->lapic_timer.timer); 2116 update_target_expiration(apic, old_divisor); 2117 restart_apic_timer(apic); 2118 } 2119 break; 2120 } 2121 case APIC_ESR: 2122 if (apic_x2apic_mode(apic) && val != 0) 2123 ret = 1; 2124 break; 2125 2126 case APIC_SELF_IPI: 2127 if (apic_x2apic_mode(apic)) { 2128 kvm_lapic_reg_write(apic, APIC_ICR, 2129 APIC_DEST_SELF | (val & APIC_VECTOR_MASK)); 2130 } else 2131 ret = 1; 2132 break; 2133 default: 2134 ret = 1; 2135 break; 2136 } 2137 2138 kvm_recalculate_apic_map(apic->vcpu->kvm); 2139 2140 return ret; 2141 } 2142 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2143 2144 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2145 gpa_t address, int len, const void *data) 2146 { 2147 struct kvm_lapic *apic = to_lapic(this); 2148 unsigned int offset = address - apic->base_address; 2149 u32 val; 2150 2151 if (!apic_mmio_in_range(apic, address)) 2152 return -EOPNOTSUPP; 2153 2154 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2155 if (!kvm_check_has_quirk(vcpu->kvm, 2156 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2157 return -EOPNOTSUPP; 2158 2159 return 0; 2160 } 2161 2162 /* 2163 * APIC register must be aligned on 128-bits boundary. 2164 * 32/64/128 bits registers must be accessed thru 32 bits. 2165 * Refer SDM 8.4.1 2166 */ 2167 if (len != 4 || (offset & 0xf)) 2168 return 0; 2169 2170 val = *(u32*)data; 2171 2172 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2173 2174 return 0; 2175 } 2176 2177 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2178 { 2179 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2180 } 2181 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2182 2183 /* emulate APIC access in a trap manner */ 2184 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2185 { 2186 u32 val = 0; 2187 2188 /* hw has done the conditional check and inst decode */ 2189 offset &= 0xff0; 2190 2191 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2192 2193 /* TODO: optimize to just emulate side effect w/o one more write */ 2194 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2195 } 2196 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2197 2198 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2199 { 2200 struct kvm_lapic *apic = vcpu->arch.apic; 2201 2202 if (!vcpu->arch.apic) 2203 return; 2204 2205 hrtimer_cancel(&apic->lapic_timer.timer); 2206 2207 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2208 static_branch_slow_dec_deferred(&apic_hw_disabled); 2209 2210 if (!apic->sw_enabled) 2211 static_branch_slow_dec_deferred(&apic_sw_disabled); 2212 2213 if (apic->regs) 2214 free_page((unsigned long)apic->regs); 2215 2216 kfree(apic); 2217 } 2218 2219 /* 2220 *---------------------------------------------------------------------- 2221 * LAPIC interface 2222 *---------------------------------------------------------------------- 2223 */ 2224 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2225 { 2226 struct kvm_lapic *apic = vcpu->arch.apic; 2227 2228 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2229 return 0; 2230 2231 return apic->lapic_timer.tscdeadline; 2232 } 2233 2234 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2235 { 2236 struct kvm_lapic *apic = vcpu->arch.apic; 2237 2238 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2239 return; 2240 2241 hrtimer_cancel(&apic->lapic_timer.timer); 2242 apic->lapic_timer.tscdeadline = data; 2243 start_apic_timer(apic); 2244 } 2245 2246 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2247 { 2248 struct kvm_lapic *apic = vcpu->arch.apic; 2249 2250 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2251 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2252 } 2253 2254 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2255 { 2256 u64 tpr; 2257 2258 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2259 2260 return (tpr & 0xf0) >> 4; 2261 } 2262 2263 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2264 { 2265 u64 old_value = vcpu->arch.apic_base; 2266 struct kvm_lapic *apic = vcpu->arch.apic; 2267 2268 if (!apic) 2269 value |= MSR_IA32_APICBASE_BSP; 2270 2271 vcpu->arch.apic_base = value; 2272 2273 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2274 kvm_update_cpuid_runtime(vcpu); 2275 2276 if (!apic) 2277 return; 2278 2279 /* update jump label if enable bit changes */ 2280 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2281 if (value & MSR_IA32_APICBASE_ENABLE) { 2282 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2283 static_branch_slow_dec_deferred(&apic_hw_disabled); 2284 /* Check if there are APF page ready requests pending */ 2285 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2286 } else { 2287 static_branch_inc(&apic_hw_disabled.key); 2288 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2289 } 2290 } 2291 2292 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2293 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2294 2295 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2296 static_call(kvm_x86_set_virtual_apic_mode)(vcpu); 2297 2298 apic->base_address = apic->vcpu->arch.apic_base & 2299 MSR_IA32_APICBASE_BASE; 2300 2301 if ((value & MSR_IA32_APICBASE_ENABLE) && 2302 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2303 pr_warn_once("APIC base relocation is unsupported by KVM"); 2304 } 2305 2306 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2307 { 2308 struct kvm_lapic *apic = vcpu->arch.apic; 2309 2310 if (vcpu->arch.apicv_active) { 2311 /* irr_pending is always true when apicv is activated. */ 2312 apic->irr_pending = true; 2313 apic->isr_count = 1; 2314 } else { 2315 apic->irr_pending = (apic_search_irr(apic) != -1); 2316 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2317 } 2318 } 2319 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2320 2321 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2322 { 2323 struct kvm_lapic *apic = vcpu->arch.apic; 2324 int i; 2325 2326 if (!apic) 2327 return; 2328 2329 /* Stop the timer in case it's a reset to an active apic */ 2330 hrtimer_cancel(&apic->lapic_timer.timer); 2331 2332 if (!init_event) { 2333 kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE | 2334 MSR_IA32_APICBASE_ENABLE); 2335 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2336 } 2337 kvm_apic_set_version(apic->vcpu); 2338 2339 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2340 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2341 apic_update_lvtt(apic); 2342 if (kvm_vcpu_is_reset_bsp(vcpu) && 2343 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2344 kvm_lapic_set_reg(apic, APIC_LVT0, 2345 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2346 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2347 2348 kvm_apic_set_dfr(apic, 0xffffffffU); 2349 apic_set_spiv(apic, 0xff); 2350 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2351 if (!apic_x2apic_mode(apic)) 2352 kvm_apic_set_ldr(apic, 0); 2353 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2354 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2355 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2356 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2357 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2358 for (i = 0; i < 8; i++) { 2359 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2360 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2361 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2362 } 2363 kvm_apic_update_apicv(vcpu); 2364 apic->highest_isr_cache = -1; 2365 update_divide_count(apic); 2366 atomic_set(&apic->lapic_timer.pending, 0); 2367 if (kvm_vcpu_is_bsp(vcpu)) 2368 kvm_lapic_set_base(vcpu, 2369 vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP); 2370 vcpu->arch.pv_eoi.msr_val = 0; 2371 apic_update_ppr(apic); 2372 if (vcpu->arch.apicv_active) { 2373 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2374 static_call(kvm_x86_hwapic_irr_update)(vcpu, -1); 2375 static_call(kvm_x86_hwapic_isr_update)(vcpu, -1); 2376 } 2377 2378 vcpu->arch.apic_arb_prio = 0; 2379 vcpu->arch.apic_attention = 0; 2380 2381 kvm_recalculate_apic_map(vcpu->kvm); 2382 } 2383 2384 /* 2385 *---------------------------------------------------------------------- 2386 * timer interface 2387 *---------------------------------------------------------------------- 2388 */ 2389 2390 static bool lapic_is_periodic(struct kvm_lapic *apic) 2391 { 2392 return apic_lvtt_period(apic); 2393 } 2394 2395 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2396 { 2397 struct kvm_lapic *apic = vcpu->arch.apic; 2398 2399 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2400 return atomic_read(&apic->lapic_timer.pending); 2401 2402 return 0; 2403 } 2404 2405 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2406 { 2407 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2408 int vector, mode, trig_mode; 2409 2410 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2411 vector = reg & APIC_VECTOR_MASK; 2412 mode = reg & APIC_MODE_MASK; 2413 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2414 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2415 NULL); 2416 } 2417 return 0; 2418 } 2419 2420 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2421 { 2422 struct kvm_lapic *apic = vcpu->arch.apic; 2423 2424 if (apic) 2425 kvm_apic_local_deliver(apic, APIC_LVT0); 2426 } 2427 2428 static const struct kvm_io_device_ops apic_mmio_ops = { 2429 .read = apic_mmio_read, 2430 .write = apic_mmio_write, 2431 }; 2432 2433 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2434 { 2435 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2436 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2437 2438 apic_timer_expired(apic, true); 2439 2440 if (lapic_is_periodic(apic)) { 2441 advance_periodic_target_expiration(apic); 2442 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2443 return HRTIMER_RESTART; 2444 } else 2445 return HRTIMER_NORESTART; 2446 } 2447 2448 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2449 { 2450 struct kvm_lapic *apic; 2451 2452 ASSERT(vcpu != NULL); 2453 2454 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2455 if (!apic) 2456 goto nomem; 2457 2458 vcpu->arch.apic = apic; 2459 2460 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2461 if (!apic->regs) { 2462 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2463 vcpu->vcpu_id); 2464 goto nomem_free_apic; 2465 } 2466 apic->vcpu = vcpu; 2467 2468 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2469 HRTIMER_MODE_ABS_HARD); 2470 apic->lapic_timer.timer.function = apic_timer_fn; 2471 if (timer_advance_ns == -1) { 2472 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2473 lapic_timer_advance_dynamic = true; 2474 } else { 2475 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2476 lapic_timer_advance_dynamic = false; 2477 } 2478 2479 /* 2480 * APIC is created enabled. This will prevent kvm_lapic_set_base from 2481 * thinking that APIC state has changed. 2482 */ 2483 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2484 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2485 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2486 2487 return 0; 2488 nomem_free_apic: 2489 kfree(apic); 2490 vcpu->arch.apic = NULL; 2491 nomem: 2492 return -ENOMEM; 2493 } 2494 2495 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2496 { 2497 struct kvm_lapic *apic = vcpu->arch.apic; 2498 u32 ppr; 2499 2500 if (!kvm_apic_present(vcpu)) 2501 return -1; 2502 2503 __apic_update_ppr(apic, &ppr); 2504 return apic_has_interrupt_for_ppr(apic, ppr); 2505 } 2506 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2507 2508 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2509 { 2510 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2511 2512 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2513 return 1; 2514 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2515 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2516 return 1; 2517 return 0; 2518 } 2519 2520 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2521 { 2522 struct kvm_lapic *apic = vcpu->arch.apic; 2523 2524 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2525 kvm_apic_inject_pending_timer_irqs(apic); 2526 atomic_set(&apic->lapic_timer.pending, 0); 2527 } 2528 } 2529 2530 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2531 { 2532 int vector = kvm_apic_has_interrupt(vcpu); 2533 struct kvm_lapic *apic = vcpu->arch.apic; 2534 u32 ppr; 2535 2536 if (vector == -1) 2537 return -1; 2538 2539 /* 2540 * We get here even with APIC virtualization enabled, if doing 2541 * nested virtualization and L1 runs with the "acknowledge interrupt 2542 * on exit" mode. Then we cannot inject the interrupt via RVI, 2543 * because the process would deliver it through the IDT. 2544 */ 2545 2546 apic_clear_irr(vector, apic); 2547 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2548 /* 2549 * For auto-EOI interrupts, there might be another pending 2550 * interrupt above PPR, so check whether to raise another 2551 * KVM_REQ_EVENT. 2552 */ 2553 apic_update_ppr(apic); 2554 } else { 2555 /* 2556 * For normal interrupts, PPR has been raised and there cannot 2557 * be a higher-priority pending interrupt---except if there was 2558 * a concurrent interrupt injection, but that would have 2559 * triggered KVM_REQ_EVENT already. 2560 */ 2561 apic_set_isr(vector, apic); 2562 __apic_update_ppr(apic, &ppr); 2563 } 2564 2565 return vector; 2566 } 2567 2568 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2569 struct kvm_lapic_state *s, bool set) 2570 { 2571 if (apic_x2apic_mode(vcpu->arch.apic)) { 2572 u32 *id = (u32 *)(s->regs + APIC_ID); 2573 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2574 2575 if (vcpu->kvm->arch.x2apic_format) { 2576 if (*id != vcpu->vcpu_id) 2577 return -EINVAL; 2578 } else { 2579 if (set) 2580 *id >>= 24; 2581 else 2582 *id <<= 24; 2583 } 2584 2585 /* In x2APIC mode, the LDR is fixed and based on the id */ 2586 if (set) 2587 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2588 } 2589 2590 return 0; 2591 } 2592 2593 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2594 { 2595 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2596 2597 /* 2598 * Get calculated timer current count for remaining timer period (if 2599 * any) and store it in the returned register set. 2600 */ 2601 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2602 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2603 2604 return kvm_apic_state_fixup(vcpu, s, false); 2605 } 2606 2607 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2608 { 2609 struct kvm_lapic *apic = vcpu->arch.apic; 2610 int r; 2611 2612 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2613 /* set SPIV separately to get count of SW disabled APICs right */ 2614 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2615 2616 r = kvm_apic_state_fixup(vcpu, s, true); 2617 if (r) { 2618 kvm_recalculate_apic_map(vcpu->kvm); 2619 return r; 2620 } 2621 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2622 2623 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2624 kvm_recalculate_apic_map(vcpu->kvm); 2625 kvm_apic_set_version(vcpu); 2626 2627 apic_update_ppr(apic); 2628 hrtimer_cancel(&apic->lapic_timer.timer); 2629 apic->lapic_timer.expired_tscdeadline = 0; 2630 apic_update_lvtt(apic); 2631 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2632 update_divide_count(apic); 2633 __start_apic_timer(apic, APIC_TMCCT); 2634 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 2635 kvm_apic_update_apicv(vcpu); 2636 apic->highest_isr_cache = -1; 2637 if (vcpu->arch.apicv_active) { 2638 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2639 static_call(kvm_x86_hwapic_irr_update)(vcpu, 2640 apic_find_highest_irr(apic)); 2641 static_call(kvm_x86_hwapic_isr_update)(vcpu, 2642 apic_find_highest_isr(apic)); 2643 } 2644 kvm_make_request(KVM_REQ_EVENT, vcpu); 2645 if (ioapic_in_kernel(vcpu->kvm)) 2646 kvm_rtc_eoi_tracking_restore_one(vcpu); 2647 2648 vcpu->arch.apic_arb_prio = 0; 2649 2650 return 0; 2651 } 2652 2653 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2654 { 2655 struct hrtimer *timer; 2656 2657 if (!lapic_in_kernel(vcpu) || 2658 kvm_can_post_timer_interrupt(vcpu)) 2659 return; 2660 2661 timer = &vcpu->arch.apic->lapic_timer.timer; 2662 if (hrtimer_cancel(timer)) 2663 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2664 } 2665 2666 /* 2667 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2668 * 2669 * Detect whether guest triggered PV EOI since the 2670 * last entry. If yes, set EOI on guests's behalf. 2671 * Clear PV EOI in guest memory in any case. 2672 */ 2673 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2674 struct kvm_lapic *apic) 2675 { 2676 bool pending; 2677 int vector; 2678 /* 2679 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2680 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2681 * 2682 * KVM_APIC_PV_EOI_PENDING is unset: 2683 * -> host disabled PV EOI. 2684 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2685 * -> host enabled PV EOI, guest did not execute EOI yet. 2686 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2687 * -> host enabled PV EOI, guest executed EOI. 2688 */ 2689 BUG_ON(!pv_eoi_enabled(vcpu)); 2690 pending = pv_eoi_get_pending(vcpu); 2691 /* 2692 * Clear pending bit in any case: it will be set again on vmentry. 2693 * While this might not be ideal from performance point of view, 2694 * this makes sure pv eoi is only enabled when we know it's safe. 2695 */ 2696 pv_eoi_clr_pending(vcpu); 2697 if (pending) 2698 return; 2699 vector = apic_set_eoi(apic); 2700 trace_kvm_pv_eoi(apic, vector); 2701 } 2702 2703 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2704 { 2705 u32 data; 2706 2707 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2708 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2709 2710 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2711 return; 2712 2713 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2714 sizeof(u32))) 2715 return; 2716 2717 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2718 } 2719 2720 /* 2721 * apic_sync_pv_eoi_to_guest - called before vmentry 2722 * 2723 * Detect whether it's safe to enable PV EOI and 2724 * if yes do so. 2725 */ 2726 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2727 struct kvm_lapic *apic) 2728 { 2729 if (!pv_eoi_enabled(vcpu) || 2730 /* IRR set or many bits in ISR: could be nested. */ 2731 apic->irr_pending || 2732 /* Cache not set: could be safe but we don't bother. */ 2733 apic->highest_isr_cache == -1 || 2734 /* Need EOI to update ioapic. */ 2735 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2736 /* 2737 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2738 * so we need not do anything here. 2739 */ 2740 return; 2741 } 2742 2743 pv_eoi_set_pending(apic->vcpu); 2744 } 2745 2746 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2747 { 2748 u32 data, tpr; 2749 int max_irr, max_isr; 2750 struct kvm_lapic *apic = vcpu->arch.apic; 2751 2752 apic_sync_pv_eoi_to_guest(vcpu, apic); 2753 2754 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2755 return; 2756 2757 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2758 max_irr = apic_find_highest_irr(apic); 2759 if (max_irr < 0) 2760 max_irr = 0; 2761 max_isr = apic_find_highest_isr(apic); 2762 if (max_isr < 0) 2763 max_isr = 0; 2764 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2765 2766 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2767 sizeof(u32)); 2768 } 2769 2770 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2771 { 2772 if (vapic_addr) { 2773 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2774 &vcpu->arch.apic->vapic_cache, 2775 vapic_addr, sizeof(u32))) 2776 return -EINVAL; 2777 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2778 } else { 2779 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2780 } 2781 2782 vcpu->arch.apic->vapic_addr = vapic_addr; 2783 return 0; 2784 } 2785 2786 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2787 { 2788 struct kvm_lapic *apic = vcpu->arch.apic; 2789 u32 reg = (msr - APIC_BASE_MSR) << 4; 2790 2791 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2792 return 1; 2793 2794 if (reg == APIC_ICR2) 2795 return 1; 2796 2797 /* if this is ICR write vector before command */ 2798 if (reg == APIC_ICR) 2799 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2800 return kvm_lapic_reg_write(apic, reg, (u32)data); 2801 } 2802 2803 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2804 { 2805 struct kvm_lapic *apic = vcpu->arch.apic; 2806 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2807 2808 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2809 return 1; 2810 2811 if (reg == APIC_DFR || reg == APIC_ICR2) 2812 return 1; 2813 2814 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2815 return 1; 2816 if (reg == APIC_ICR) 2817 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2818 2819 *data = (((u64)high) << 32) | low; 2820 2821 return 0; 2822 } 2823 2824 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2825 { 2826 struct kvm_lapic *apic = vcpu->arch.apic; 2827 2828 if (!lapic_in_kernel(vcpu)) 2829 return 1; 2830 2831 /* if this is ICR write vector before command */ 2832 if (reg == APIC_ICR) 2833 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2834 return kvm_lapic_reg_write(apic, reg, (u32)data); 2835 } 2836 2837 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2838 { 2839 struct kvm_lapic *apic = vcpu->arch.apic; 2840 u32 low, high = 0; 2841 2842 if (!lapic_in_kernel(vcpu)) 2843 return 1; 2844 2845 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2846 return 1; 2847 if (reg == APIC_ICR) 2848 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2849 2850 *data = (((u64)high) << 32) | low; 2851 2852 return 0; 2853 } 2854 2855 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2856 { 2857 u64 addr = data & ~KVM_MSR_ENABLED; 2858 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2859 unsigned long new_len; 2860 2861 if (!IS_ALIGNED(addr, 4)) 2862 return 1; 2863 2864 vcpu->arch.pv_eoi.msr_val = data; 2865 if (!pv_eoi_enabled(vcpu)) 2866 return 0; 2867 2868 if (addr == ghc->gpa && len <= ghc->len) 2869 new_len = ghc->len; 2870 else 2871 new_len = len; 2872 2873 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2874 } 2875 2876 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2877 { 2878 struct kvm_lapic *apic = vcpu->arch.apic; 2879 u8 sipi_vector; 2880 int r; 2881 unsigned long pe; 2882 2883 if (!lapic_in_kernel(vcpu)) 2884 return 0; 2885 2886 /* 2887 * Read pending events before calling the check_events 2888 * callback. 2889 */ 2890 pe = smp_load_acquire(&apic->pending_events); 2891 if (!pe) 2892 return 0; 2893 2894 if (is_guest_mode(vcpu)) { 2895 r = kvm_check_nested_events(vcpu); 2896 if (r < 0) 2897 return r == -EBUSY ? 0 : r; 2898 /* 2899 * If an event has happened and caused a vmexit, 2900 * we know INITs are latched and therefore 2901 * we will not incorrectly deliver an APIC 2902 * event instead of a vmexit. 2903 */ 2904 } 2905 2906 /* 2907 * INITs are latched while CPU is in specific states 2908 * (SMM, VMX root mode, SVM with GIF=0). 2909 * Because a CPU cannot be in these states immediately 2910 * after it has processed an INIT signal (and thus in 2911 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2912 * and leave the INIT pending. 2913 */ 2914 if (kvm_vcpu_latch_init(vcpu)) { 2915 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2916 if (test_bit(KVM_APIC_SIPI, &pe)) 2917 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2918 return 0; 2919 } 2920 2921 if (test_bit(KVM_APIC_INIT, &pe)) { 2922 clear_bit(KVM_APIC_INIT, &apic->pending_events); 2923 kvm_vcpu_reset(vcpu, true); 2924 if (kvm_vcpu_is_bsp(apic->vcpu)) 2925 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2926 else 2927 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2928 } 2929 if (test_bit(KVM_APIC_SIPI, &pe)) { 2930 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2931 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2932 /* evaluate pending_events before reading the vector */ 2933 smp_rmb(); 2934 sipi_vector = apic->sipi_vector; 2935 kvm_x86_ops.vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2936 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2937 } 2938 } 2939 return 0; 2940 } 2941 2942 void kvm_lapic_exit(void) 2943 { 2944 static_key_deferred_flush(&apic_hw_disabled); 2945 static_key_deferred_flush(&apic_sw_disabled); 2946 } 2947