xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision 297e77e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "ioapic.h"
40 #include "trace.h"
41 #include "x86.h"
42 #include "cpuid.h"
43 #include "hyperv.h"
44 
45 #ifndef CONFIG_X86_64
46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
47 #else
48 #define mod_64(x, y) ((x) % (y))
49 #endif
50 
51 #define PRId64 "d"
52 #define PRIx64 "llx"
53 #define PRIu64 "u"
54 #define PRIo64 "o"
55 
56 /* 14 is the version for Xeon and Pentium 8.4.8*/
57 #define APIC_VERSION			(0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
58 #define LAPIC_MMIO_LENGTH		(1 << 12)
59 /* followed define is not in apicdef.h */
60 #define MAX_APIC_VECTOR			256
61 #define APIC_VECTORS_PER_REG		32
62 
63 static bool lapic_timer_advance_dynamic __read_mostly;
64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
66 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
67 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
68 /* step-by-step approximation to mitigate fluctuation */
69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
70 
71 static inline int apic_test_vector(int vec, void *bitmap)
72 {
73 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
74 }
75 
76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
77 {
78 	struct kvm_lapic *apic = vcpu->arch.apic;
79 
80 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
81 		apic_test_vector(vector, apic->regs + APIC_IRR);
82 }
83 
84 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
85 {
86 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
87 }
88 
89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
90 {
91 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
92 }
93 
94 struct static_key_deferred apic_hw_disabled __read_mostly;
95 struct static_key_deferred apic_sw_disabled __read_mostly;
96 
97 static inline int apic_enabled(struct kvm_lapic *apic)
98 {
99 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
100 }
101 
102 #define LVT_MASK	\
103 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
104 
105 #define LINT_MASK	\
106 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
107 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
108 
109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
110 {
111 	return apic->vcpu->vcpu_id;
112 }
113 
114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
115 {
116 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
117 }
118 
119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
120 {
121 	return kvm_x86_ops.set_hv_timer
122 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
123 		    kvm_can_post_timer_interrupt(vcpu));
124 }
125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer);
126 
127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
128 {
129 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
130 }
131 
132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
133 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
134 	switch (map->mode) {
135 	case KVM_APIC_MODE_X2APIC: {
136 		u32 offset = (dest_id >> 16) * 16;
137 		u32 max_apic_id = map->max_apic_id;
138 
139 		if (offset <= max_apic_id) {
140 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
141 
142 			offset = array_index_nospec(offset, map->max_apic_id + 1);
143 			*cluster = &map->phys_map[offset];
144 			*mask = dest_id & (0xffff >> (16 - cluster_size));
145 		} else {
146 			*mask = 0;
147 		}
148 
149 		return true;
150 		}
151 	case KVM_APIC_MODE_XAPIC_FLAT:
152 		*cluster = map->xapic_flat_map;
153 		*mask = dest_id & 0xff;
154 		return true;
155 	case KVM_APIC_MODE_XAPIC_CLUSTER:
156 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
157 		*mask = dest_id & 0xf;
158 		return true;
159 	default:
160 		/* Not optimized. */
161 		return false;
162 	}
163 }
164 
165 static void kvm_apic_map_free(struct rcu_head *rcu)
166 {
167 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
168 
169 	kvfree(map);
170 }
171 
172 /*
173  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
174  *
175  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
176  * apic_map_lock_held.
177  */
178 enum {
179 	CLEAN,
180 	UPDATE_IN_PROGRESS,
181 	DIRTY
182 };
183 
184 void kvm_recalculate_apic_map(struct kvm *kvm)
185 {
186 	struct kvm_apic_map *new, *old = NULL;
187 	struct kvm_vcpu *vcpu;
188 	int i;
189 	u32 max_id = 255; /* enough space for any xAPIC ID */
190 
191 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
192 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
193 		return;
194 
195 	mutex_lock(&kvm->arch.apic_map_lock);
196 	/*
197 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
198 	 * (if clean) or the APIC registers (if dirty).
199 	 */
200 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
201 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
202 		/* Someone else has updated the map. */
203 		mutex_unlock(&kvm->arch.apic_map_lock);
204 		return;
205 	}
206 
207 	kvm_for_each_vcpu(i, vcpu, kvm)
208 		if (kvm_apic_present(vcpu))
209 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
210 
211 	new = kvzalloc(sizeof(struct kvm_apic_map) +
212 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
213 			   GFP_KERNEL_ACCOUNT);
214 
215 	if (!new)
216 		goto out;
217 
218 	new->max_apic_id = max_id;
219 
220 	kvm_for_each_vcpu(i, vcpu, kvm) {
221 		struct kvm_lapic *apic = vcpu->arch.apic;
222 		struct kvm_lapic **cluster;
223 		u16 mask;
224 		u32 ldr;
225 		u8 xapic_id;
226 		u32 x2apic_id;
227 
228 		if (!kvm_apic_present(vcpu))
229 			continue;
230 
231 		xapic_id = kvm_xapic_id(apic);
232 		x2apic_id = kvm_x2apic_id(apic);
233 
234 		/* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
235 		if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
236 				x2apic_id <= new->max_apic_id)
237 			new->phys_map[x2apic_id] = apic;
238 		/*
239 		 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
240 		 * prevent them from masking VCPUs with APIC ID <= 0xff.
241 		 */
242 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
243 			new->phys_map[xapic_id] = apic;
244 
245 		if (!kvm_apic_sw_enabled(apic))
246 			continue;
247 
248 		ldr = kvm_lapic_get_reg(apic, APIC_LDR);
249 
250 		if (apic_x2apic_mode(apic)) {
251 			new->mode |= KVM_APIC_MODE_X2APIC;
252 		} else if (ldr) {
253 			ldr = GET_APIC_LOGICAL_ID(ldr);
254 			if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
255 				new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
256 			else
257 				new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
258 		}
259 
260 		if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
261 			continue;
262 
263 		if (mask)
264 			cluster[ffs(mask) - 1] = apic;
265 	}
266 out:
267 	old = rcu_dereference_protected(kvm->arch.apic_map,
268 			lockdep_is_held(&kvm->arch.apic_map_lock));
269 	rcu_assign_pointer(kvm->arch.apic_map, new);
270 	/*
271 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
272 	 * If another update has come in, leave it DIRTY.
273 	 */
274 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
275 			       UPDATE_IN_PROGRESS, CLEAN);
276 	mutex_unlock(&kvm->arch.apic_map_lock);
277 
278 	if (old)
279 		call_rcu(&old->rcu, kvm_apic_map_free);
280 
281 	kvm_make_scan_ioapic_request(kvm);
282 }
283 
284 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
285 {
286 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
287 
288 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
289 
290 	if (enabled != apic->sw_enabled) {
291 		apic->sw_enabled = enabled;
292 		if (enabled)
293 			static_key_slow_dec_deferred(&apic_sw_disabled);
294 		else
295 			static_key_slow_inc(&apic_sw_disabled.key);
296 
297 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
298 	}
299 }
300 
301 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
302 {
303 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
304 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
305 }
306 
307 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
308 {
309 	kvm_lapic_set_reg(apic, APIC_LDR, id);
310 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
311 }
312 
313 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
314 {
315 	return ((id >> 4) << 16) | (1 << (id & 0xf));
316 }
317 
318 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
319 {
320 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
321 
322 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
323 
324 	kvm_lapic_set_reg(apic, APIC_ID, id);
325 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
326 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
327 }
328 
329 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
330 {
331 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
332 }
333 
334 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
335 {
336 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
337 }
338 
339 static inline int apic_lvtt_period(struct kvm_lapic *apic)
340 {
341 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
342 }
343 
344 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
345 {
346 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
347 }
348 
349 static inline int apic_lvt_nmi_mode(u32 lvt_val)
350 {
351 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
352 }
353 
354 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
355 {
356 	struct kvm_lapic *apic = vcpu->arch.apic;
357 	u32 v = APIC_VERSION;
358 
359 	if (!lapic_in_kernel(vcpu))
360 		return;
361 
362 	/*
363 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
364 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
365 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
366 	 * version first and level-triggered interrupts never get EOIed in
367 	 * IOAPIC.
368 	 */
369 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
370 	    !ioapic_in_kernel(vcpu->kvm))
371 		v |= APIC_LVR_DIRECTED_EOI;
372 	kvm_lapic_set_reg(apic, APIC_LVR, v);
373 }
374 
375 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
376 	LVT_MASK ,      /* part LVTT mask, timer mode mask added at runtime */
377 	LVT_MASK | APIC_MODE_MASK,	/* LVTTHMR */
378 	LVT_MASK | APIC_MODE_MASK,	/* LVTPC */
379 	LINT_MASK, LINT_MASK,	/* LVT0-1 */
380 	LVT_MASK		/* LVTERR */
381 };
382 
383 static int find_highest_vector(void *bitmap)
384 {
385 	int vec;
386 	u32 *reg;
387 
388 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
389 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
390 		reg = bitmap + REG_POS(vec);
391 		if (*reg)
392 			return __fls(*reg) + vec;
393 	}
394 
395 	return -1;
396 }
397 
398 static u8 count_vectors(void *bitmap)
399 {
400 	int vec;
401 	u32 *reg;
402 	u8 count = 0;
403 
404 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
405 		reg = bitmap + REG_POS(vec);
406 		count += hweight32(*reg);
407 	}
408 
409 	return count;
410 }
411 
412 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
413 {
414 	u32 i, vec;
415 	u32 pir_val, irr_val, prev_irr_val;
416 	int max_updated_irr;
417 
418 	max_updated_irr = -1;
419 	*max_irr = -1;
420 
421 	for (i = vec = 0; i <= 7; i++, vec += 32) {
422 		pir_val = READ_ONCE(pir[i]);
423 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
424 		if (pir_val) {
425 			prev_irr_val = irr_val;
426 			irr_val |= xchg(&pir[i], 0);
427 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
428 			if (prev_irr_val != irr_val) {
429 				max_updated_irr =
430 					__fls(irr_val ^ prev_irr_val) + vec;
431 			}
432 		}
433 		if (irr_val)
434 			*max_irr = __fls(irr_val) + vec;
435 	}
436 
437 	return ((max_updated_irr != -1) &&
438 		(max_updated_irr == *max_irr));
439 }
440 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
441 
442 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
443 {
444 	struct kvm_lapic *apic = vcpu->arch.apic;
445 
446 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
447 }
448 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
449 
450 static inline int apic_search_irr(struct kvm_lapic *apic)
451 {
452 	return find_highest_vector(apic->regs + APIC_IRR);
453 }
454 
455 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
456 {
457 	int result;
458 
459 	/*
460 	 * Note that irr_pending is just a hint. It will be always
461 	 * true with virtual interrupt delivery enabled.
462 	 */
463 	if (!apic->irr_pending)
464 		return -1;
465 
466 	result = apic_search_irr(apic);
467 	ASSERT(result == -1 || result >= 16);
468 
469 	return result;
470 }
471 
472 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
473 {
474 	struct kvm_vcpu *vcpu;
475 
476 	vcpu = apic->vcpu;
477 
478 	if (unlikely(vcpu->arch.apicv_active)) {
479 		/* need to update RVI */
480 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
481 		kvm_x86_ops.hwapic_irr_update(vcpu,
482 				apic_find_highest_irr(apic));
483 	} else {
484 		apic->irr_pending = false;
485 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
486 		if (apic_search_irr(apic) != -1)
487 			apic->irr_pending = true;
488 	}
489 }
490 
491 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
492 {
493 	struct kvm_vcpu *vcpu;
494 
495 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
496 		return;
497 
498 	vcpu = apic->vcpu;
499 
500 	/*
501 	 * With APIC virtualization enabled, all caching is disabled
502 	 * because the processor can modify ISR under the hood.  Instead
503 	 * just set SVI.
504 	 */
505 	if (unlikely(vcpu->arch.apicv_active))
506 		kvm_x86_ops.hwapic_isr_update(vcpu, vec);
507 	else {
508 		++apic->isr_count;
509 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
510 		/*
511 		 * ISR (in service register) bit is set when injecting an interrupt.
512 		 * The highest vector is injected. Thus the latest bit set matches
513 		 * the highest bit in ISR.
514 		 */
515 		apic->highest_isr_cache = vec;
516 	}
517 }
518 
519 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
520 {
521 	int result;
522 
523 	/*
524 	 * Note that isr_count is always 1, and highest_isr_cache
525 	 * is always -1, with APIC virtualization enabled.
526 	 */
527 	if (!apic->isr_count)
528 		return -1;
529 	if (likely(apic->highest_isr_cache != -1))
530 		return apic->highest_isr_cache;
531 
532 	result = find_highest_vector(apic->regs + APIC_ISR);
533 	ASSERT(result == -1 || result >= 16);
534 
535 	return result;
536 }
537 
538 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
539 {
540 	struct kvm_vcpu *vcpu;
541 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
542 		return;
543 
544 	vcpu = apic->vcpu;
545 
546 	/*
547 	 * We do get here for APIC virtualization enabled if the guest
548 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
549 	 * to trigger a new interrupt delivery by writing the SVI field;
550 	 * on the other hand isr_count and highest_isr_cache are unused
551 	 * and must be left alone.
552 	 */
553 	if (unlikely(vcpu->arch.apicv_active))
554 		kvm_x86_ops.hwapic_isr_update(vcpu,
555 					       apic_find_highest_isr(apic));
556 	else {
557 		--apic->isr_count;
558 		BUG_ON(apic->isr_count < 0);
559 		apic->highest_isr_cache = -1;
560 	}
561 }
562 
563 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
564 {
565 	/* This may race with setting of irr in __apic_accept_irq() and
566 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
567 	 * will cause vmexit immediately and the value will be recalculated
568 	 * on the next vmentry.
569 	 */
570 	return apic_find_highest_irr(vcpu->arch.apic);
571 }
572 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
573 
574 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
575 			     int vector, int level, int trig_mode,
576 			     struct dest_map *dest_map);
577 
578 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
579 		     struct dest_map *dest_map)
580 {
581 	struct kvm_lapic *apic = vcpu->arch.apic;
582 
583 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
584 			irq->level, irq->trig_mode, dest_map);
585 }
586 
587 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
588 			 struct kvm_lapic_irq *irq, u32 min)
589 {
590 	int i, count = 0;
591 	struct kvm_vcpu *vcpu;
592 
593 	if (min > map->max_apic_id)
594 		return 0;
595 
596 	for_each_set_bit(i, ipi_bitmap,
597 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
598 		if (map->phys_map[min + i]) {
599 			vcpu = map->phys_map[min + i]->vcpu;
600 			count += kvm_apic_set_irq(vcpu, irq, NULL);
601 		}
602 	}
603 
604 	return count;
605 }
606 
607 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
608 		    unsigned long ipi_bitmap_high, u32 min,
609 		    unsigned long icr, int op_64_bit)
610 {
611 	struct kvm_apic_map *map;
612 	struct kvm_lapic_irq irq = {0};
613 	int cluster_size = op_64_bit ? 64 : 32;
614 	int count;
615 
616 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
617 		return -KVM_EINVAL;
618 
619 	irq.vector = icr & APIC_VECTOR_MASK;
620 	irq.delivery_mode = icr & APIC_MODE_MASK;
621 	irq.level = (icr & APIC_INT_ASSERT) != 0;
622 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
623 
624 	rcu_read_lock();
625 	map = rcu_dereference(kvm->arch.apic_map);
626 
627 	count = -EOPNOTSUPP;
628 	if (likely(map)) {
629 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
630 		min += cluster_size;
631 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
632 	}
633 
634 	rcu_read_unlock();
635 	return count;
636 }
637 
638 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
639 {
640 
641 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
642 				      sizeof(val));
643 }
644 
645 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
646 {
647 
648 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
649 				      sizeof(*val));
650 }
651 
652 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
653 {
654 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
655 }
656 
657 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
658 {
659 	u8 val;
660 	if (pv_eoi_get_user(vcpu, &val) < 0) {
661 		printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n",
662 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
663 		return false;
664 	}
665 	return val & 0x1;
666 }
667 
668 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
669 {
670 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
671 		printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n",
672 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
673 		return;
674 	}
675 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
676 }
677 
678 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
679 {
680 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
681 		printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n",
682 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
683 		return;
684 	}
685 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
686 }
687 
688 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
689 {
690 	int highest_irr;
691 	if (apic->vcpu->arch.apicv_active)
692 		highest_irr = kvm_x86_ops.sync_pir_to_irr(apic->vcpu);
693 	else
694 		highest_irr = apic_find_highest_irr(apic);
695 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
696 		return -1;
697 	return highest_irr;
698 }
699 
700 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
701 {
702 	u32 tpr, isrv, ppr, old_ppr;
703 	int isr;
704 
705 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
706 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
707 	isr = apic_find_highest_isr(apic);
708 	isrv = (isr != -1) ? isr : 0;
709 
710 	if ((tpr & 0xf0) >= (isrv & 0xf0))
711 		ppr = tpr & 0xff;
712 	else
713 		ppr = isrv & 0xf0;
714 
715 	*new_ppr = ppr;
716 	if (old_ppr != ppr)
717 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
718 
719 	return ppr < old_ppr;
720 }
721 
722 static void apic_update_ppr(struct kvm_lapic *apic)
723 {
724 	u32 ppr;
725 
726 	if (__apic_update_ppr(apic, &ppr) &&
727 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
728 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
729 }
730 
731 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
732 {
733 	apic_update_ppr(vcpu->arch.apic);
734 }
735 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
736 
737 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
738 {
739 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
740 	apic_update_ppr(apic);
741 }
742 
743 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
744 {
745 	return mda == (apic_x2apic_mode(apic) ?
746 			X2APIC_BROADCAST : APIC_BROADCAST);
747 }
748 
749 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
750 {
751 	if (kvm_apic_broadcast(apic, mda))
752 		return true;
753 
754 	if (apic_x2apic_mode(apic))
755 		return mda == kvm_x2apic_id(apic);
756 
757 	/*
758 	 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
759 	 * it were in x2APIC mode.  Hotplugged VCPUs start in xAPIC mode and
760 	 * this allows unique addressing of VCPUs with APIC ID over 0xff.
761 	 * The 0xff condition is needed because writeable xAPIC ID.
762 	 */
763 	if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
764 		return true;
765 
766 	return mda == kvm_xapic_id(apic);
767 }
768 
769 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
770 {
771 	u32 logical_id;
772 
773 	if (kvm_apic_broadcast(apic, mda))
774 		return true;
775 
776 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
777 
778 	if (apic_x2apic_mode(apic))
779 		return ((logical_id >> 16) == (mda >> 16))
780 		       && (logical_id & mda & 0xffff) != 0;
781 
782 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
783 
784 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
785 	case APIC_DFR_FLAT:
786 		return (logical_id & mda) != 0;
787 	case APIC_DFR_CLUSTER:
788 		return ((logical_id >> 4) == (mda >> 4))
789 		       && (logical_id & mda & 0xf) != 0;
790 	default:
791 		return false;
792 	}
793 }
794 
795 /* The KVM local APIC implementation has two quirks:
796  *
797  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
798  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
799  *    KVM doesn't do that aliasing.
800  *
801  *  - in-kernel IOAPIC messages have to be delivered directly to
802  *    x2APIC, because the kernel does not support interrupt remapping.
803  *    In order to support broadcast without interrupt remapping, x2APIC
804  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
805  *    to X2APIC_BROADCAST.
806  *
807  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
808  * important when userspace wants to use x2APIC-format MSIs, because
809  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
810  */
811 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
812 		struct kvm_lapic *source, struct kvm_lapic *target)
813 {
814 	bool ipi = source != NULL;
815 
816 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
817 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
818 		return X2APIC_BROADCAST;
819 
820 	return dest_id;
821 }
822 
823 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
824 			   int shorthand, unsigned int dest, int dest_mode)
825 {
826 	struct kvm_lapic *target = vcpu->arch.apic;
827 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
828 
829 	ASSERT(target);
830 	switch (shorthand) {
831 	case APIC_DEST_NOSHORT:
832 		if (dest_mode == APIC_DEST_PHYSICAL)
833 			return kvm_apic_match_physical_addr(target, mda);
834 		else
835 			return kvm_apic_match_logical_addr(target, mda);
836 	case APIC_DEST_SELF:
837 		return target == source;
838 	case APIC_DEST_ALLINC:
839 		return true;
840 	case APIC_DEST_ALLBUT:
841 		return target != source;
842 	default:
843 		return false;
844 	}
845 }
846 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
847 
848 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
849 		       const unsigned long *bitmap, u32 bitmap_size)
850 {
851 	u32 mod;
852 	int i, idx = -1;
853 
854 	mod = vector % dest_vcpus;
855 
856 	for (i = 0; i <= mod; i++) {
857 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
858 		BUG_ON(idx == bitmap_size);
859 	}
860 
861 	return idx;
862 }
863 
864 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
865 {
866 	if (!kvm->arch.disabled_lapic_found) {
867 		kvm->arch.disabled_lapic_found = true;
868 		printk(KERN_INFO
869 		       "Disabled LAPIC found during irq injection\n");
870 	}
871 }
872 
873 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
874 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
875 {
876 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
877 		if ((irq->dest_id == APIC_BROADCAST &&
878 				map->mode != KVM_APIC_MODE_X2APIC))
879 			return true;
880 		if (irq->dest_id == X2APIC_BROADCAST)
881 			return true;
882 	} else {
883 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
884 		if (irq->dest_id == (x2apic_ipi ?
885 		                     X2APIC_BROADCAST : APIC_BROADCAST))
886 			return true;
887 	}
888 
889 	return false;
890 }
891 
892 /* Return true if the interrupt can be handled by using *bitmap as index mask
893  * for valid destinations in *dst array.
894  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
895  * Note: we may have zero kvm_lapic destinations when we return true, which
896  * means that the interrupt should be dropped.  In this case, *bitmap would be
897  * zero and *dst undefined.
898  */
899 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
900 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
901 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
902 		unsigned long *bitmap)
903 {
904 	int i, lowest;
905 
906 	if (irq->shorthand == APIC_DEST_SELF && src) {
907 		*dst = src;
908 		*bitmap = 1;
909 		return true;
910 	} else if (irq->shorthand)
911 		return false;
912 
913 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
914 		return false;
915 
916 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
917 		if (irq->dest_id > map->max_apic_id) {
918 			*bitmap = 0;
919 		} else {
920 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
921 			*dst = &map->phys_map[dest_id];
922 			*bitmap = 1;
923 		}
924 		return true;
925 	}
926 
927 	*bitmap = 0;
928 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
929 				(u16 *)bitmap))
930 		return false;
931 
932 	if (!kvm_lowest_prio_delivery(irq))
933 		return true;
934 
935 	if (!kvm_vector_hashing_enabled()) {
936 		lowest = -1;
937 		for_each_set_bit(i, bitmap, 16) {
938 			if (!(*dst)[i])
939 				continue;
940 			if (lowest < 0)
941 				lowest = i;
942 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
943 						(*dst)[lowest]->vcpu) < 0)
944 				lowest = i;
945 		}
946 	} else {
947 		if (!*bitmap)
948 			return true;
949 
950 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
951 				bitmap, 16);
952 
953 		if (!(*dst)[lowest]) {
954 			kvm_apic_disabled_lapic_found(kvm);
955 			*bitmap = 0;
956 			return true;
957 		}
958 	}
959 
960 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
961 
962 	return true;
963 }
964 
965 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
966 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
967 {
968 	struct kvm_apic_map *map;
969 	unsigned long bitmap;
970 	struct kvm_lapic **dst = NULL;
971 	int i;
972 	bool ret;
973 
974 	*r = -1;
975 
976 	if (irq->shorthand == APIC_DEST_SELF) {
977 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
978 		return true;
979 	}
980 
981 	rcu_read_lock();
982 	map = rcu_dereference(kvm->arch.apic_map);
983 
984 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
985 	if (ret) {
986 		*r = 0;
987 		for_each_set_bit(i, &bitmap, 16) {
988 			if (!dst[i])
989 				continue;
990 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
991 		}
992 	}
993 
994 	rcu_read_unlock();
995 	return ret;
996 }
997 
998 /*
999  * This routine tries to handle interrupts in posted mode, here is how
1000  * it deals with different cases:
1001  * - For single-destination interrupts, handle it in posted mode
1002  * - Else if vector hashing is enabled and it is a lowest-priority
1003  *   interrupt, handle it in posted mode and use the following mechanism
1004  *   to find the destination vCPU.
1005  *	1. For lowest-priority interrupts, store all the possible
1006  *	   destination vCPUs in an array.
1007  *	2. Use "guest vector % max number of destination vCPUs" to find
1008  *	   the right destination vCPU in the array for the lowest-priority
1009  *	   interrupt.
1010  * - Otherwise, use remapped mode to inject the interrupt.
1011  */
1012 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1013 			struct kvm_vcpu **dest_vcpu)
1014 {
1015 	struct kvm_apic_map *map;
1016 	unsigned long bitmap;
1017 	struct kvm_lapic **dst = NULL;
1018 	bool ret = false;
1019 
1020 	if (irq->shorthand)
1021 		return false;
1022 
1023 	rcu_read_lock();
1024 	map = rcu_dereference(kvm->arch.apic_map);
1025 
1026 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1027 			hweight16(bitmap) == 1) {
1028 		unsigned long i = find_first_bit(&bitmap, 16);
1029 
1030 		if (dst[i]) {
1031 			*dest_vcpu = dst[i]->vcpu;
1032 			ret = true;
1033 		}
1034 	}
1035 
1036 	rcu_read_unlock();
1037 	return ret;
1038 }
1039 
1040 /*
1041  * Add a pending IRQ into lapic.
1042  * Return 1 if successfully added and 0 if discarded.
1043  */
1044 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1045 			     int vector, int level, int trig_mode,
1046 			     struct dest_map *dest_map)
1047 {
1048 	int result = 0;
1049 	struct kvm_vcpu *vcpu = apic->vcpu;
1050 
1051 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1052 				  trig_mode, vector);
1053 	switch (delivery_mode) {
1054 	case APIC_DM_LOWEST:
1055 		vcpu->arch.apic_arb_prio++;
1056 		fallthrough;
1057 	case APIC_DM_FIXED:
1058 		if (unlikely(trig_mode && !level))
1059 			break;
1060 
1061 		/* FIXME add logic for vcpu on reset */
1062 		if (unlikely(!apic_enabled(apic)))
1063 			break;
1064 
1065 		result = 1;
1066 
1067 		if (dest_map) {
1068 			__set_bit(vcpu->vcpu_id, dest_map->map);
1069 			dest_map->vectors[vcpu->vcpu_id] = vector;
1070 		}
1071 
1072 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1073 			if (trig_mode)
1074 				kvm_lapic_set_vector(vector,
1075 						     apic->regs + APIC_TMR);
1076 			else
1077 				kvm_lapic_clear_vector(vector,
1078 						       apic->regs + APIC_TMR);
1079 		}
1080 
1081 		if (kvm_x86_ops.deliver_posted_interrupt(vcpu, vector)) {
1082 			kvm_lapic_set_irr(vector, apic);
1083 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1084 			kvm_vcpu_kick(vcpu);
1085 		}
1086 		break;
1087 
1088 	case APIC_DM_REMRD:
1089 		result = 1;
1090 		vcpu->arch.pv.pv_unhalted = 1;
1091 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1092 		kvm_vcpu_kick(vcpu);
1093 		break;
1094 
1095 	case APIC_DM_SMI:
1096 		result = 1;
1097 		kvm_make_request(KVM_REQ_SMI, vcpu);
1098 		kvm_vcpu_kick(vcpu);
1099 		break;
1100 
1101 	case APIC_DM_NMI:
1102 		result = 1;
1103 		kvm_inject_nmi(vcpu);
1104 		kvm_vcpu_kick(vcpu);
1105 		break;
1106 
1107 	case APIC_DM_INIT:
1108 		if (!trig_mode || level) {
1109 			result = 1;
1110 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1111 			apic->pending_events = (1UL << KVM_APIC_INIT);
1112 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1113 			kvm_vcpu_kick(vcpu);
1114 		}
1115 		break;
1116 
1117 	case APIC_DM_STARTUP:
1118 		result = 1;
1119 		apic->sipi_vector = vector;
1120 		/* make sure sipi_vector is visible for the receiver */
1121 		smp_wmb();
1122 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1123 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1124 		kvm_vcpu_kick(vcpu);
1125 		break;
1126 
1127 	case APIC_DM_EXTINT:
1128 		/*
1129 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1130 		 * before NMI watchdog was enabled. Already handled by
1131 		 * kvm_apic_accept_pic_intr().
1132 		 */
1133 		break;
1134 
1135 	default:
1136 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1137 		       delivery_mode);
1138 		break;
1139 	}
1140 	return result;
1141 }
1142 
1143 /*
1144  * This routine identifies the destination vcpus mask meant to receive the
1145  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1146  * out the destination vcpus array and set the bitmap or it traverses to
1147  * each available vcpu to identify the same.
1148  */
1149 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1150 			      unsigned long *vcpu_bitmap)
1151 {
1152 	struct kvm_lapic **dest_vcpu = NULL;
1153 	struct kvm_lapic *src = NULL;
1154 	struct kvm_apic_map *map;
1155 	struct kvm_vcpu *vcpu;
1156 	unsigned long bitmap;
1157 	int i, vcpu_idx;
1158 	bool ret;
1159 
1160 	rcu_read_lock();
1161 	map = rcu_dereference(kvm->arch.apic_map);
1162 
1163 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1164 					  &bitmap);
1165 	if (ret) {
1166 		for_each_set_bit(i, &bitmap, 16) {
1167 			if (!dest_vcpu[i])
1168 				continue;
1169 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1170 			__set_bit(vcpu_idx, vcpu_bitmap);
1171 		}
1172 	} else {
1173 		kvm_for_each_vcpu(i, vcpu, kvm) {
1174 			if (!kvm_apic_present(vcpu))
1175 				continue;
1176 			if (!kvm_apic_match_dest(vcpu, NULL,
1177 						 irq->shorthand,
1178 						 irq->dest_id,
1179 						 irq->dest_mode))
1180 				continue;
1181 			__set_bit(i, vcpu_bitmap);
1182 		}
1183 	}
1184 	rcu_read_unlock();
1185 }
1186 
1187 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1188 {
1189 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1190 }
1191 
1192 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1193 {
1194 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1195 }
1196 
1197 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1198 {
1199 	int trigger_mode;
1200 
1201 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1202 	if (!kvm_ioapic_handles_vector(apic, vector))
1203 		return;
1204 
1205 	/* Request a KVM exit to inform the userspace IOAPIC. */
1206 	if (irqchip_split(apic->vcpu->kvm)) {
1207 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1208 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1209 		return;
1210 	}
1211 
1212 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1213 		trigger_mode = IOAPIC_LEVEL_TRIG;
1214 	else
1215 		trigger_mode = IOAPIC_EDGE_TRIG;
1216 
1217 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1218 }
1219 
1220 static int apic_set_eoi(struct kvm_lapic *apic)
1221 {
1222 	int vector = apic_find_highest_isr(apic);
1223 
1224 	trace_kvm_eoi(apic, vector);
1225 
1226 	/*
1227 	 * Not every write EOI will has corresponding ISR,
1228 	 * one example is when Kernel check timer on setup_IO_APIC
1229 	 */
1230 	if (vector == -1)
1231 		return vector;
1232 
1233 	apic_clear_isr(vector, apic);
1234 	apic_update_ppr(apic);
1235 
1236 	if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap))
1237 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1238 
1239 	kvm_ioapic_send_eoi(apic, vector);
1240 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1241 	return vector;
1242 }
1243 
1244 /*
1245  * this interface assumes a trap-like exit, which has already finished
1246  * desired side effect including vISR and vPPR update.
1247  */
1248 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1249 {
1250 	struct kvm_lapic *apic = vcpu->arch.apic;
1251 
1252 	trace_kvm_eoi(apic, vector);
1253 
1254 	kvm_ioapic_send_eoi(apic, vector);
1255 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1256 }
1257 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1258 
1259 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1260 {
1261 	struct kvm_lapic_irq irq;
1262 
1263 	irq.vector = icr_low & APIC_VECTOR_MASK;
1264 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1265 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1266 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1267 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1268 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1269 	irq.msi_redir_hint = false;
1270 	if (apic_x2apic_mode(apic))
1271 		irq.dest_id = icr_high;
1272 	else
1273 		irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1274 
1275 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1276 
1277 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1278 }
1279 
1280 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1281 {
1282 	ktime_t remaining, now;
1283 	s64 ns;
1284 	u32 tmcct;
1285 
1286 	ASSERT(apic != NULL);
1287 
1288 	/* if initial count is 0, current count should also be 0 */
1289 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1290 		apic->lapic_timer.period == 0)
1291 		return 0;
1292 
1293 	now = ktime_get();
1294 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1295 	if (ktime_to_ns(remaining) < 0)
1296 		remaining = 0;
1297 
1298 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1299 	tmcct = div64_u64(ns,
1300 			 (APIC_BUS_CYCLE_NS * apic->divide_count));
1301 
1302 	return tmcct;
1303 }
1304 
1305 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1306 {
1307 	struct kvm_vcpu *vcpu = apic->vcpu;
1308 	struct kvm_run *run = vcpu->run;
1309 
1310 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1311 	run->tpr_access.rip = kvm_rip_read(vcpu);
1312 	run->tpr_access.is_write = write;
1313 }
1314 
1315 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1316 {
1317 	if (apic->vcpu->arch.tpr_access_reporting)
1318 		__report_tpr_access(apic, write);
1319 }
1320 
1321 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1322 {
1323 	u32 val = 0;
1324 
1325 	if (offset >= LAPIC_MMIO_LENGTH)
1326 		return 0;
1327 
1328 	switch (offset) {
1329 	case APIC_ARBPRI:
1330 		break;
1331 
1332 	case APIC_TMCCT:	/* Timer CCR */
1333 		if (apic_lvtt_tscdeadline(apic))
1334 			return 0;
1335 
1336 		val = apic_get_tmcct(apic);
1337 		break;
1338 	case APIC_PROCPRI:
1339 		apic_update_ppr(apic);
1340 		val = kvm_lapic_get_reg(apic, offset);
1341 		break;
1342 	case APIC_TASKPRI:
1343 		report_tpr_access(apic, false);
1344 		fallthrough;
1345 	default:
1346 		val = kvm_lapic_get_reg(apic, offset);
1347 		break;
1348 	}
1349 
1350 	return val;
1351 }
1352 
1353 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1354 {
1355 	return container_of(dev, struct kvm_lapic, dev);
1356 }
1357 
1358 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1359 #define APIC_REGS_MASK(first, count) \
1360 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1361 
1362 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1363 		void *data)
1364 {
1365 	unsigned char alignment = offset & 0xf;
1366 	u32 result;
1367 	/* this bitmask has a bit cleared for each reserved register */
1368 	u64 valid_reg_mask =
1369 		APIC_REG_MASK(APIC_ID) |
1370 		APIC_REG_MASK(APIC_LVR) |
1371 		APIC_REG_MASK(APIC_TASKPRI) |
1372 		APIC_REG_MASK(APIC_PROCPRI) |
1373 		APIC_REG_MASK(APIC_LDR) |
1374 		APIC_REG_MASK(APIC_DFR) |
1375 		APIC_REG_MASK(APIC_SPIV) |
1376 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1377 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1378 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1379 		APIC_REG_MASK(APIC_ESR) |
1380 		APIC_REG_MASK(APIC_ICR) |
1381 		APIC_REG_MASK(APIC_ICR2) |
1382 		APIC_REG_MASK(APIC_LVTT) |
1383 		APIC_REG_MASK(APIC_LVTTHMR) |
1384 		APIC_REG_MASK(APIC_LVTPC) |
1385 		APIC_REG_MASK(APIC_LVT0) |
1386 		APIC_REG_MASK(APIC_LVT1) |
1387 		APIC_REG_MASK(APIC_LVTERR) |
1388 		APIC_REG_MASK(APIC_TMICT) |
1389 		APIC_REG_MASK(APIC_TMCCT) |
1390 		APIC_REG_MASK(APIC_TDCR);
1391 
1392 	/* ARBPRI is not valid on x2APIC */
1393 	if (!apic_x2apic_mode(apic))
1394 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1395 
1396 	if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1397 		return 1;
1398 
1399 	result = __apic_read(apic, offset & ~0xf);
1400 
1401 	trace_kvm_apic_read(offset, result);
1402 
1403 	switch (len) {
1404 	case 1:
1405 	case 2:
1406 	case 4:
1407 		memcpy(data, (char *)&result + alignment, len);
1408 		break;
1409 	default:
1410 		printk(KERN_ERR "Local APIC read with len = %x, "
1411 		       "should be 1,2, or 4 instead\n", len);
1412 		break;
1413 	}
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1417 
1418 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1419 {
1420 	return addr >= apic->base_address &&
1421 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1422 }
1423 
1424 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1425 			   gpa_t address, int len, void *data)
1426 {
1427 	struct kvm_lapic *apic = to_lapic(this);
1428 	u32 offset = address - apic->base_address;
1429 
1430 	if (!apic_mmio_in_range(apic, address))
1431 		return -EOPNOTSUPP;
1432 
1433 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1434 		if (!kvm_check_has_quirk(vcpu->kvm,
1435 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1436 			return -EOPNOTSUPP;
1437 
1438 		memset(data, 0xff, len);
1439 		return 0;
1440 	}
1441 
1442 	kvm_lapic_reg_read(apic, offset, len, data);
1443 
1444 	return 0;
1445 }
1446 
1447 static void update_divide_count(struct kvm_lapic *apic)
1448 {
1449 	u32 tmp1, tmp2, tdcr;
1450 
1451 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1452 	tmp1 = tdcr & 0xf;
1453 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1454 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1455 }
1456 
1457 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1458 {
1459 	/*
1460 	 * Do not allow the guest to program periodic timers with small
1461 	 * interval, since the hrtimers are not throttled by the host
1462 	 * scheduler.
1463 	 */
1464 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1465 		s64 min_period = min_timer_period_us * 1000LL;
1466 
1467 		if (apic->lapic_timer.period < min_period) {
1468 			pr_info_ratelimited(
1469 			    "kvm: vcpu %i: requested %lld ns "
1470 			    "lapic timer period limited to %lld ns\n",
1471 			    apic->vcpu->vcpu_id,
1472 			    apic->lapic_timer.period, min_period);
1473 			apic->lapic_timer.period = min_period;
1474 		}
1475 	}
1476 }
1477 
1478 static void cancel_hv_timer(struct kvm_lapic *apic);
1479 
1480 static void apic_update_lvtt(struct kvm_lapic *apic)
1481 {
1482 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1483 			apic->lapic_timer.timer_mode_mask;
1484 
1485 	if (apic->lapic_timer.timer_mode != timer_mode) {
1486 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1487 				APIC_LVT_TIMER_TSCDEADLINE)) {
1488 			hrtimer_cancel(&apic->lapic_timer.timer);
1489 			preempt_disable();
1490 			if (apic->lapic_timer.hv_timer_in_use)
1491 				cancel_hv_timer(apic);
1492 			preempt_enable();
1493 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1494 			apic->lapic_timer.period = 0;
1495 			apic->lapic_timer.tscdeadline = 0;
1496 		}
1497 		apic->lapic_timer.timer_mode = timer_mode;
1498 		limit_periodic_timer_frequency(apic);
1499 	}
1500 }
1501 
1502 /*
1503  * On APICv, this test will cause a busy wait
1504  * during a higher-priority task.
1505  */
1506 
1507 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1508 {
1509 	struct kvm_lapic *apic = vcpu->arch.apic;
1510 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1511 
1512 	if (kvm_apic_hw_enabled(apic)) {
1513 		int vec = reg & APIC_VECTOR_MASK;
1514 		void *bitmap = apic->regs + APIC_ISR;
1515 
1516 		if (vcpu->arch.apicv_active)
1517 			bitmap = apic->regs + APIC_IRR;
1518 
1519 		if (apic_test_vector(vec, bitmap))
1520 			return true;
1521 	}
1522 	return false;
1523 }
1524 
1525 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1526 {
1527 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1528 
1529 	/*
1530 	 * If the guest TSC is running at a different ratio than the host, then
1531 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1532 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1533 	 * always for VMX enabled hardware.
1534 	 */
1535 	if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1536 		__delay(min(guest_cycles,
1537 			nsec_to_cycles(vcpu, timer_advance_ns)));
1538 	} else {
1539 		u64 delay_ns = guest_cycles * 1000000ULL;
1540 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1541 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1542 	}
1543 }
1544 
1545 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1546 					      s64 advance_expire_delta)
1547 {
1548 	struct kvm_lapic *apic = vcpu->arch.apic;
1549 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1550 	u64 ns;
1551 
1552 	/* Do not adjust for tiny fluctuations or large random spikes. */
1553 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1554 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1555 		return;
1556 
1557 	/* too early */
1558 	if (advance_expire_delta < 0) {
1559 		ns = -advance_expire_delta * 1000000ULL;
1560 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1561 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1562 	} else {
1563 	/* too late */
1564 		ns = advance_expire_delta * 1000000ULL;
1565 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1566 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1567 	}
1568 
1569 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1570 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1571 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1572 }
1573 
1574 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1575 {
1576 	struct kvm_lapic *apic = vcpu->arch.apic;
1577 	u64 guest_tsc, tsc_deadline;
1578 
1579 	if (apic->lapic_timer.expired_tscdeadline == 0)
1580 		return;
1581 
1582 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1583 	apic->lapic_timer.expired_tscdeadline = 0;
1584 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1585 	apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1586 
1587 	if (guest_tsc < tsc_deadline)
1588 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1589 
1590 	if (lapic_timer_advance_dynamic)
1591 		adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1592 }
1593 
1594 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1595 {
1596 	if (lapic_timer_int_injected(vcpu))
1597 		__kvm_wait_lapic_expire(vcpu);
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1600 
1601 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1602 {
1603 	struct kvm_timer *ktimer = &apic->lapic_timer;
1604 
1605 	kvm_apic_local_deliver(apic, APIC_LVTT);
1606 	if (apic_lvtt_tscdeadline(apic)) {
1607 		ktimer->tscdeadline = 0;
1608 	} else if (apic_lvtt_oneshot(apic)) {
1609 		ktimer->tscdeadline = 0;
1610 		ktimer->target_expiration = 0;
1611 	}
1612 }
1613 
1614 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1615 {
1616 	struct kvm_vcpu *vcpu = apic->vcpu;
1617 	struct kvm_timer *ktimer = &apic->lapic_timer;
1618 
1619 	if (atomic_read(&apic->lapic_timer.pending))
1620 		return;
1621 
1622 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1623 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1624 
1625 	if (!from_timer_fn && vcpu->arch.apicv_active) {
1626 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1627 		kvm_apic_inject_pending_timer_irqs(apic);
1628 		return;
1629 	}
1630 
1631 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1632 		if (apic->lapic_timer.timer_advance_ns)
1633 			__kvm_wait_lapic_expire(vcpu);
1634 		kvm_apic_inject_pending_timer_irqs(apic);
1635 		return;
1636 	}
1637 
1638 	atomic_inc(&apic->lapic_timer.pending);
1639 	kvm_set_pending_timer(vcpu);
1640 }
1641 
1642 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1643 {
1644 	struct kvm_timer *ktimer = &apic->lapic_timer;
1645 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1646 	u64 ns = 0;
1647 	ktime_t expire;
1648 	struct kvm_vcpu *vcpu = apic->vcpu;
1649 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1650 	unsigned long flags;
1651 	ktime_t now;
1652 
1653 	if (unlikely(!tscdeadline || !this_tsc_khz))
1654 		return;
1655 
1656 	local_irq_save(flags);
1657 
1658 	now = ktime_get();
1659 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1660 
1661 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1662 	do_div(ns, this_tsc_khz);
1663 
1664 	if (likely(tscdeadline > guest_tsc) &&
1665 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1666 		expire = ktime_add_ns(now, ns);
1667 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1668 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1669 	} else
1670 		apic_timer_expired(apic, false);
1671 
1672 	local_irq_restore(flags);
1673 }
1674 
1675 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1676 {
1677 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1678 }
1679 
1680 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1681 {
1682 	ktime_t now, remaining;
1683 	u64 ns_remaining_old, ns_remaining_new;
1684 
1685 	apic->lapic_timer.period =
1686 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1687 	limit_periodic_timer_frequency(apic);
1688 
1689 	now = ktime_get();
1690 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1691 	if (ktime_to_ns(remaining) < 0)
1692 		remaining = 0;
1693 
1694 	ns_remaining_old = ktime_to_ns(remaining);
1695 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1696 	                                   apic->divide_count, old_divisor);
1697 
1698 	apic->lapic_timer.tscdeadline +=
1699 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1700 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1701 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1702 }
1703 
1704 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1705 {
1706 	ktime_t now;
1707 	u64 tscl = rdtsc();
1708 	s64 deadline;
1709 
1710 	now = ktime_get();
1711 	apic->lapic_timer.period =
1712 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1713 
1714 	if (!apic->lapic_timer.period) {
1715 		apic->lapic_timer.tscdeadline = 0;
1716 		return false;
1717 	}
1718 
1719 	limit_periodic_timer_frequency(apic);
1720 	deadline = apic->lapic_timer.period;
1721 
1722 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1723 		if (unlikely(count_reg != APIC_TMICT)) {
1724 			deadline = tmict_to_ns(apic,
1725 				     kvm_lapic_get_reg(apic, count_reg));
1726 			if (unlikely(deadline <= 0))
1727 				deadline = apic->lapic_timer.period;
1728 			else if (unlikely(deadline > apic->lapic_timer.period)) {
1729 				pr_info_ratelimited(
1730 				    "kvm: vcpu %i: requested lapic timer restore with "
1731 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
1732 				    "Using initial count to start timer.\n",
1733 				    apic->vcpu->vcpu_id,
1734 				    count_reg,
1735 				    kvm_lapic_get_reg(apic, count_reg),
1736 				    deadline, apic->lapic_timer.period);
1737 				kvm_lapic_set_reg(apic, count_reg, 0);
1738 				deadline = apic->lapic_timer.period;
1739 			}
1740 		}
1741 	}
1742 
1743 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1744 		nsec_to_cycles(apic->vcpu, deadline);
1745 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
1746 
1747 	return true;
1748 }
1749 
1750 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1751 {
1752 	ktime_t now = ktime_get();
1753 	u64 tscl = rdtsc();
1754 	ktime_t delta;
1755 
1756 	/*
1757 	 * Synchronize both deadlines to the same time source or
1758 	 * differences in the periods (caused by differences in the
1759 	 * underlying clocks or numerical approximation errors) will
1760 	 * cause the two to drift apart over time as the errors
1761 	 * accumulate.
1762 	 */
1763 	apic->lapic_timer.target_expiration =
1764 		ktime_add_ns(apic->lapic_timer.target_expiration,
1765 				apic->lapic_timer.period);
1766 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1767 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1768 		nsec_to_cycles(apic->vcpu, delta);
1769 }
1770 
1771 static void start_sw_period(struct kvm_lapic *apic)
1772 {
1773 	if (!apic->lapic_timer.period)
1774 		return;
1775 
1776 	if (ktime_after(ktime_get(),
1777 			apic->lapic_timer.target_expiration)) {
1778 		apic_timer_expired(apic, false);
1779 
1780 		if (apic_lvtt_oneshot(apic))
1781 			return;
1782 
1783 		advance_periodic_target_expiration(apic);
1784 	}
1785 
1786 	hrtimer_start(&apic->lapic_timer.timer,
1787 		apic->lapic_timer.target_expiration,
1788 		HRTIMER_MODE_ABS_HARD);
1789 }
1790 
1791 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1792 {
1793 	if (!lapic_in_kernel(vcpu))
1794 		return false;
1795 
1796 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1797 }
1798 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1799 
1800 static void cancel_hv_timer(struct kvm_lapic *apic)
1801 {
1802 	WARN_ON(preemptible());
1803 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1804 	kvm_x86_ops.cancel_hv_timer(apic->vcpu);
1805 	apic->lapic_timer.hv_timer_in_use = false;
1806 }
1807 
1808 static bool start_hv_timer(struct kvm_lapic *apic)
1809 {
1810 	struct kvm_timer *ktimer = &apic->lapic_timer;
1811 	struct kvm_vcpu *vcpu = apic->vcpu;
1812 	bool expired;
1813 
1814 	WARN_ON(preemptible());
1815 	if (!kvm_can_use_hv_timer(vcpu))
1816 		return false;
1817 
1818 	if (!ktimer->tscdeadline)
1819 		return false;
1820 
1821 	if (kvm_x86_ops.set_hv_timer(vcpu, ktimer->tscdeadline, &expired))
1822 		return false;
1823 
1824 	ktimer->hv_timer_in_use = true;
1825 	hrtimer_cancel(&ktimer->timer);
1826 
1827 	/*
1828 	 * To simplify handling the periodic timer, leave the hv timer running
1829 	 * even if the deadline timer has expired, i.e. rely on the resulting
1830 	 * VM-Exit to recompute the periodic timer's target expiration.
1831 	 */
1832 	if (!apic_lvtt_period(apic)) {
1833 		/*
1834 		 * Cancel the hv timer if the sw timer fired while the hv timer
1835 		 * was being programmed, or if the hv timer itself expired.
1836 		 */
1837 		if (atomic_read(&ktimer->pending)) {
1838 			cancel_hv_timer(apic);
1839 		} else if (expired) {
1840 			apic_timer_expired(apic, false);
1841 			cancel_hv_timer(apic);
1842 		}
1843 	}
1844 
1845 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1846 
1847 	return true;
1848 }
1849 
1850 static void start_sw_timer(struct kvm_lapic *apic)
1851 {
1852 	struct kvm_timer *ktimer = &apic->lapic_timer;
1853 
1854 	WARN_ON(preemptible());
1855 	if (apic->lapic_timer.hv_timer_in_use)
1856 		cancel_hv_timer(apic);
1857 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1858 		return;
1859 
1860 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1861 		start_sw_period(apic);
1862 	else if (apic_lvtt_tscdeadline(apic))
1863 		start_sw_tscdeadline(apic);
1864 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1865 }
1866 
1867 static void restart_apic_timer(struct kvm_lapic *apic)
1868 {
1869 	preempt_disable();
1870 
1871 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1872 		goto out;
1873 
1874 	if (!start_hv_timer(apic))
1875 		start_sw_timer(apic);
1876 out:
1877 	preempt_enable();
1878 }
1879 
1880 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1881 {
1882 	struct kvm_lapic *apic = vcpu->arch.apic;
1883 
1884 	preempt_disable();
1885 	/* If the preempt notifier has already run, it also called apic_timer_expired */
1886 	if (!apic->lapic_timer.hv_timer_in_use)
1887 		goto out;
1888 	WARN_ON(rcuwait_active(&vcpu->wait));
1889 	cancel_hv_timer(apic);
1890 	apic_timer_expired(apic, false);
1891 
1892 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1893 		advance_periodic_target_expiration(apic);
1894 		restart_apic_timer(apic);
1895 	}
1896 out:
1897 	preempt_enable();
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1900 
1901 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1902 {
1903 	restart_apic_timer(vcpu->arch.apic);
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1906 
1907 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1908 {
1909 	struct kvm_lapic *apic = vcpu->arch.apic;
1910 
1911 	preempt_disable();
1912 	/* Possibly the TSC deadline timer is not enabled yet */
1913 	if (apic->lapic_timer.hv_timer_in_use)
1914 		start_sw_timer(apic);
1915 	preempt_enable();
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1918 
1919 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1920 {
1921 	struct kvm_lapic *apic = vcpu->arch.apic;
1922 
1923 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1924 	restart_apic_timer(apic);
1925 }
1926 
1927 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
1928 {
1929 	atomic_set(&apic->lapic_timer.pending, 0);
1930 
1931 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1932 	    && !set_target_expiration(apic, count_reg))
1933 		return;
1934 
1935 	restart_apic_timer(apic);
1936 }
1937 
1938 static void start_apic_timer(struct kvm_lapic *apic)
1939 {
1940 	__start_apic_timer(apic, APIC_TMICT);
1941 }
1942 
1943 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1944 {
1945 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1946 
1947 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1948 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1949 		if (lvt0_in_nmi_mode) {
1950 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1951 		} else
1952 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1953 	}
1954 }
1955 
1956 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1957 {
1958 	int ret = 0;
1959 
1960 	trace_kvm_apic_write(reg, val);
1961 
1962 	switch (reg) {
1963 	case APIC_ID:		/* Local APIC ID */
1964 		if (!apic_x2apic_mode(apic))
1965 			kvm_apic_set_xapic_id(apic, val >> 24);
1966 		else
1967 			ret = 1;
1968 		break;
1969 
1970 	case APIC_TASKPRI:
1971 		report_tpr_access(apic, true);
1972 		apic_set_tpr(apic, val & 0xff);
1973 		break;
1974 
1975 	case APIC_EOI:
1976 		apic_set_eoi(apic);
1977 		break;
1978 
1979 	case APIC_LDR:
1980 		if (!apic_x2apic_mode(apic))
1981 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
1982 		else
1983 			ret = 1;
1984 		break;
1985 
1986 	case APIC_DFR:
1987 		if (!apic_x2apic_mode(apic)) {
1988 			kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
1989 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
1990 		} else
1991 			ret = 1;
1992 		break;
1993 
1994 	case APIC_SPIV: {
1995 		u32 mask = 0x3ff;
1996 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
1997 			mask |= APIC_SPIV_DIRECTED_EOI;
1998 		apic_set_spiv(apic, val & mask);
1999 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2000 			int i;
2001 			u32 lvt_val;
2002 
2003 			for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
2004 				lvt_val = kvm_lapic_get_reg(apic,
2005 						       APIC_LVTT + 0x10 * i);
2006 				kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
2007 					     lvt_val | APIC_LVT_MASKED);
2008 			}
2009 			apic_update_lvtt(apic);
2010 			atomic_set(&apic->lapic_timer.pending, 0);
2011 
2012 		}
2013 		break;
2014 	}
2015 	case APIC_ICR:
2016 		/* No delay here, so we always clear the pending bit */
2017 		val &= ~(1 << 12);
2018 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2019 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2020 		break;
2021 
2022 	case APIC_ICR2:
2023 		if (!apic_x2apic_mode(apic))
2024 			val &= 0xff000000;
2025 		kvm_lapic_set_reg(apic, APIC_ICR2, val);
2026 		break;
2027 
2028 	case APIC_LVT0:
2029 		apic_manage_nmi_watchdog(apic, val);
2030 		fallthrough;
2031 	case APIC_LVTTHMR:
2032 	case APIC_LVTPC:
2033 	case APIC_LVT1:
2034 	case APIC_LVTERR: {
2035 		/* TODO: Check vector */
2036 		size_t size;
2037 		u32 index;
2038 
2039 		if (!kvm_apic_sw_enabled(apic))
2040 			val |= APIC_LVT_MASKED;
2041 		size = ARRAY_SIZE(apic_lvt_mask);
2042 		index = array_index_nospec(
2043 				(reg - APIC_LVTT) >> 4, size);
2044 		val &= apic_lvt_mask[index];
2045 		kvm_lapic_set_reg(apic, reg, val);
2046 		break;
2047 	}
2048 
2049 	case APIC_LVTT:
2050 		if (!kvm_apic_sw_enabled(apic))
2051 			val |= APIC_LVT_MASKED;
2052 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2053 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2054 		apic_update_lvtt(apic);
2055 		break;
2056 
2057 	case APIC_TMICT:
2058 		if (apic_lvtt_tscdeadline(apic))
2059 			break;
2060 
2061 		hrtimer_cancel(&apic->lapic_timer.timer);
2062 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2063 		start_apic_timer(apic);
2064 		break;
2065 
2066 	case APIC_TDCR: {
2067 		uint32_t old_divisor = apic->divide_count;
2068 
2069 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2070 		update_divide_count(apic);
2071 		if (apic->divide_count != old_divisor &&
2072 				apic->lapic_timer.period) {
2073 			hrtimer_cancel(&apic->lapic_timer.timer);
2074 			update_target_expiration(apic, old_divisor);
2075 			restart_apic_timer(apic);
2076 		}
2077 		break;
2078 	}
2079 	case APIC_ESR:
2080 		if (apic_x2apic_mode(apic) && val != 0)
2081 			ret = 1;
2082 		break;
2083 
2084 	case APIC_SELF_IPI:
2085 		if (apic_x2apic_mode(apic)) {
2086 			kvm_lapic_reg_write(apic, APIC_ICR,
2087 					    APIC_DEST_SELF | (val & APIC_VECTOR_MASK));
2088 		} else
2089 			ret = 1;
2090 		break;
2091 	default:
2092 		ret = 1;
2093 		break;
2094 	}
2095 
2096 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2097 
2098 	return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
2101 
2102 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2103 			    gpa_t address, int len, const void *data)
2104 {
2105 	struct kvm_lapic *apic = to_lapic(this);
2106 	unsigned int offset = address - apic->base_address;
2107 	u32 val;
2108 
2109 	if (!apic_mmio_in_range(apic, address))
2110 		return -EOPNOTSUPP;
2111 
2112 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2113 		if (!kvm_check_has_quirk(vcpu->kvm,
2114 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2115 			return -EOPNOTSUPP;
2116 
2117 		return 0;
2118 	}
2119 
2120 	/*
2121 	 * APIC register must be aligned on 128-bits boundary.
2122 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2123 	 * Refer SDM 8.4.1
2124 	 */
2125 	if (len != 4 || (offset & 0xf))
2126 		return 0;
2127 
2128 	val = *(u32*)data;
2129 
2130 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2131 
2132 	return 0;
2133 }
2134 
2135 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2136 {
2137 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2138 }
2139 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2140 
2141 /* emulate APIC access in a trap manner */
2142 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2143 {
2144 	u32 val = 0;
2145 
2146 	/* hw has done the conditional check and inst decode */
2147 	offset &= 0xff0;
2148 
2149 	kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2150 
2151 	/* TODO: optimize to just emulate side effect w/o one more write */
2152 	kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2153 }
2154 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2155 
2156 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2157 {
2158 	struct kvm_lapic *apic = vcpu->arch.apic;
2159 
2160 	if (!vcpu->arch.apic)
2161 		return;
2162 
2163 	hrtimer_cancel(&apic->lapic_timer.timer);
2164 
2165 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2166 		static_key_slow_dec_deferred(&apic_hw_disabled);
2167 
2168 	if (!apic->sw_enabled)
2169 		static_key_slow_dec_deferred(&apic_sw_disabled);
2170 
2171 	if (apic->regs)
2172 		free_page((unsigned long)apic->regs);
2173 
2174 	kfree(apic);
2175 }
2176 
2177 /*
2178  *----------------------------------------------------------------------
2179  * LAPIC interface
2180  *----------------------------------------------------------------------
2181  */
2182 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2183 {
2184 	struct kvm_lapic *apic = vcpu->arch.apic;
2185 
2186 	if (!lapic_in_kernel(vcpu) ||
2187 		!apic_lvtt_tscdeadline(apic))
2188 		return 0;
2189 
2190 	return apic->lapic_timer.tscdeadline;
2191 }
2192 
2193 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2194 {
2195 	struct kvm_lapic *apic = vcpu->arch.apic;
2196 
2197 	if (!kvm_apic_present(vcpu) || apic_lvtt_oneshot(apic) ||
2198 			apic_lvtt_period(apic))
2199 		return;
2200 
2201 	hrtimer_cancel(&apic->lapic_timer.timer);
2202 	apic->lapic_timer.tscdeadline = data;
2203 	start_apic_timer(apic);
2204 }
2205 
2206 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2207 {
2208 	struct kvm_lapic *apic = vcpu->arch.apic;
2209 
2210 	apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2211 		     | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2212 }
2213 
2214 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2215 {
2216 	u64 tpr;
2217 
2218 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2219 
2220 	return (tpr & 0xf0) >> 4;
2221 }
2222 
2223 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2224 {
2225 	u64 old_value = vcpu->arch.apic_base;
2226 	struct kvm_lapic *apic = vcpu->arch.apic;
2227 
2228 	if (!apic)
2229 		value |= MSR_IA32_APICBASE_BSP;
2230 
2231 	vcpu->arch.apic_base = value;
2232 
2233 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2234 		kvm_update_cpuid_runtime(vcpu);
2235 
2236 	if (!apic)
2237 		return;
2238 
2239 	/* update jump label if enable bit changes */
2240 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2241 		if (value & MSR_IA32_APICBASE_ENABLE) {
2242 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2243 			static_key_slow_dec_deferred(&apic_hw_disabled);
2244 		} else {
2245 			static_key_slow_inc(&apic_hw_disabled.key);
2246 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2247 		}
2248 	}
2249 
2250 	if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2251 		kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2252 
2253 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2254 		kvm_x86_ops.set_virtual_apic_mode(vcpu);
2255 
2256 	apic->base_address = apic->vcpu->arch.apic_base &
2257 			     MSR_IA32_APICBASE_BASE;
2258 
2259 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2260 	     apic->base_address != APIC_DEFAULT_PHYS_BASE)
2261 		pr_warn_once("APIC base relocation is unsupported by KVM");
2262 }
2263 
2264 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2265 {
2266 	struct kvm_lapic *apic = vcpu->arch.apic;
2267 
2268 	if (vcpu->arch.apicv_active) {
2269 		/* irr_pending is always true when apicv is activated. */
2270 		apic->irr_pending = true;
2271 		apic->isr_count = 1;
2272 	} else {
2273 		apic->irr_pending = (apic_search_irr(apic) != -1);
2274 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2275 	}
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv);
2278 
2279 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2280 {
2281 	struct kvm_lapic *apic = vcpu->arch.apic;
2282 	int i;
2283 
2284 	if (!apic)
2285 		return;
2286 
2287 	/* Stop the timer in case it's a reset to an active apic */
2288 	hrtimer_cancel(&apic->lapic_timer.timer);
2289 
2290 	if (!init_event) {
2291 		kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
2292 		                         MSR_IA32_APICBASE_ENABLE);
2293 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2294 	}
2295 	kvm_apic_set_version(apic->vcpu);
2296 
2297 	for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2298 		kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2299 	apic_update_lvtt(apic);
2300 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2301 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2302 		kvm_lapic_set_reg(apic, APIC_LVT0,
2303 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2304 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2305 
2306 	kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU);
2307 	apic_set_spiv(apic, 0xff);
2308 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2309 	if (!apic_x2apic_mode(apic))
2310 		kvm_apic_set_ldr(apic, 0);
2311 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2312 	kvm_lapic_set_reg(apic, APIC_ICR, 0);
2313 	kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2314 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2315 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2316 	for (i = 0; i < 8; i++) {
2317 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2318 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2319 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2320 	}
2321 	kvm_apic_update_apicv(vcpu);
2322 	apic->highest_isr_cache = -1;
2323 	update_divide_count(apic);
2324 	atomic_set(&apic->lapic_timer.pending, 0);
2325 	if (kvm_vcpu_is_bsp(vcpu))
2326 		kvm_lapic_set_base(vcpu,
2327 				vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
2328 	vcpu->arch.pv_eoi.msr_val = 0;
2329 	apic_update_ppr(apic);
2330 	if (vcpu->arch.apicv_active) {
2331 		kvm_x86_ops.apicv_post_state_restore(vcpu);
2332 		kvm_x86_ops.hwapic_irr_update(vcpu, -1);
2333 		kvm_x86_ops.hwapic_isr_update(vcpu, -1);
2334 	}
2335 
2336 	vcpu->arch.apic_arb_prio = 0;
2337 	vcpu->arch.apic_attention = 0;
2338 
2339 	kvm_recalculate_apic_map(vcpu->kvm);
2340 }
2341 
2342 /*
2343  *----------------------------------------------------------------------
2344  * timer interface
2345  *----------------------------------------------------------------------
2346  */
2347 
2348 static bool lapic_is_periodic(struct kvm_lapic *apic)
2349 {
2350 	return apic_lvtt_period(apic);
2351 }
2352 
2353 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2354 {
2355 	struct kvm_lapic *apic = vcpu->arch.apic;
2356 
2357 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2358 		return atomic_read(&apic->lapic_timer.pending);
2359 
2360 	return 0;
2361 }
2362 
2363 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2364 {
2365 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2366 	int vector, mode, trig_mode;
2367 
2368 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2369 		vector = reg & APIC_VECTOR_MASK;
2370 		mode = reg & APIC_MODE_MASK;
2371 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2372 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2373 					NULL);
2374 	}
2375 	return 0;
2376 }
2377 
2378 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2379 {
2380 	struct kvm_lapic *apic = vcpu->arch.apic;
2381 
2382 	if (apic)
2383 		kvm_apic_local_deliver(apic, APIC_LVT0);
2384 }
2385 
2386 static const struct kvm_io_device_ops apic_mmio_ops = {
2387 	.read     = apic_mmio_read,
2388 	.write    = apic_mmio_write,
2389 };
2390 
2391 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2392 {
2393 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2394 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2395 
2396 	apic_timer_expired(apic, true);
2397 
2398 	if (lapic_is_periodic(apic)) {
2399 		advance_periodic_target_expiration(apic);
2400 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2401 		return HRTIMER_RESTART;
2402 	} else
2403 		return HRTIMER_NORESTART;
2404 }
2405 
2406 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2407 {
2408 	struct kvm_lapic *apic;
2409 
2410 	ASSERT(vcpu != NULL);
2411 
2412 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2413 	if (!apic)
2414 		goto nomem;
2415 
2416 	vcpu->arch.apic = apic;
2417 
2418 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2419 	if (!apic->regs) {
2420 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2421 		       vcpu->vcpu_id);
2422 		goto nomem_free_apic;
2423 	}
2424 	apic->vcpu = vcpu;
2425 
2426 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2427 		     HRTIMER_MODE_ABS_HARD);
2428 	apic->lapic_timer.timer.function = apic_timer_fn;
2429 	if (timer_advance_ns == -1) {
2430 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2431 		lapic_timer_advance_dynamic = true;
2432 	} else {
2433 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2434 		lapic_timer_advance_dynamic = false;
2435 	}
2436 
2437 	/*
2438 	 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2439 	 * thinking that APIC state has changed.
2440 	 */
2441 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2442 	static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2443 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2444 
2445 	return 0;
2446 nomem_free_apic:
2447 	kfree(apic);
2448 	vcpu->arch.apic = NULL;
2449 nomem:
2450 	return -ENOMEM;
2451 }
2452 
2453 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2454 {
2455 	struct kvm_lapic *apic = vcpu->arch.apic;
2456 	u32 ppr;
2457 
2458 	if (!kvm_apic_hw_enabled(apic))
2459 		return -1;
2460 
2461 	__apic_update_ppr(apic, &ppr);
2462 	return apic_has_interrupt_for_ppr(apic, ppr);
2463 }
2464 
2465 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2466 {
2467 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2468 
2469 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2470 		return 1;
2471 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2472 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2473 		return 1;
2474 	return 0;
2475 }
2476 
2477 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2478 {
2479 	struct kvm_lapic *apic = vcpu->arch.apic;
2480 
2481 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2482 		kvm_apic_inject_pending_timer_irqs(apic);
2483 		atomic_set(&apic->lapic_timer.pending, 0);
2484 	}
2485 }
2486 
2487 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2488 {
2489 	int vector = kvm_apic_has_interrupt(vcpu);
2490 	struct kvm_lapic *apic = vcpu->arch.apic;
2491 	u32 ppr;
2492 
2493 	if (vector == -1)
2494 		return -1;
2495 
2496 	/*
2497 	 * We get here even with APIC virtualization enabled, if doing
2498 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2499 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2500 	 * because the process would deliver it through the IDT.
2501 	 */
2502 
2503 	apic_clear_irr(vector, apic);
2504 	if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
2505 		/*
2506 		 * For auto-EOI interrupts, there might be another pending
2507 		 * interrupt above PPR, so check whether to raise another
2508 		 * KVM_REQ_EVENT.
2509 		 */
2510 		apic_update_ppr(apic);
2511 	} else {
2512 		/*
2513 		 * For normal interrupts, PPR has been raised and there cannot
2514 		 * be a higher-priority pending interrupt---except if there was
2515 		 * a concurrent interrupt injection, but that would have
2516 		 * triggered KVM_REQ_EVENT already.
2517 		 */
2518 		apic_set_isr(vector, apic);
2519 		__apic_update_ppr(apic, &ppr);
2520 	}
2521 
2522 	return vector;
2523 }
2524 
2525 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2526 		struct kvm_lapic_state *s, bool set)
2527 {
2528 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2529 		u32 *id = (u32 *)(s->regs + APIC_ID);
2530 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2531 
2532 		if (vcpu->kvm->arch.x2apic_format) {
2533 			if (*id != vcpu->vcpu_id)
2534 				return -EINVAL;
2535 		} else {
2536 			if (set)
2537 				*id >>= 24;
2538 			else
2539 				*id <<= 24;
2540 		}
2541 
2542 		/* In x2APIC mode, the LDR is fixed and based on the id */
2543 		if (set)
2544 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2551 {
2552 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2553 
2554 	/*
2555 	 * Get calculated timer current count for remaining timer period (if
2556 	 * any) and store it in the returned register set.
2557 	 */
2558 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2559 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2560 
2561 	return kvm_apic_state_fixup(vcpu, s, false);
2562 }
2563 
2564 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2565 {
2566 	struct kvm_lapic *apic = vcpu->arch.apic;
2567 	int r;
2568 
2569 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2570 	/* set SPIV separately to get count of SW disabled APICs right */
2571 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2572 
2573 	r = kvm_apic_state_fixup(vcpu, s, true);
2574 	if (r) {
2575 		kvm_recalculate_apic_map(vcpu->kvm);
2576 		return r;
2577 	}
2578 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2579 
2580 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2581 	kvm_recalculate_apic_map(vcpu->kvm);
2582 	kvm_apic_set_version(vcpu);
2583 
2584 	apic_update_ppr(apic);
2585 	hrtimer_cancel(&apic->lapic_timer.timer);
2586 	apic_update_lvtt(apic);
2587 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2588 	update_divide_count(apic);
2589 	__start_apic_timer(apic, APIC_TMCCT);
2590 	kvm_apic_update_apicv(vcpu);
2591 	apic->highest_isr_cache = -1;
2592 	if (vcpu->arch.apicv_active) {
2593 		kvm_x86_ops.apicv_post_state_restore(vcpu);
2594 		kvm_x86_ops.hwapic_irr_update(vcpu,
2595 				apic_find_highest_irr(apic));
2596 		kvm_x86_ops.hwapic_isr_update(vcpu,
2597 				apic_find_highest_isr(apic));
2598 	}
2599 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2600 	if (ioapic_in_kernel(vcpu->kvm))
2601 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2602 
2603 	vcpu->arch.apic_arb_prio = 0;
2604 
2605 	return 0;
2606 }
2607 
2608 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2609 {
2610 	struct hrtimer *timer;
2611 
2612 	if (!lapic_in_kernel(vcpu) ||
2613 		kvm_can_post_timer_interrupt(vcpu))
2614 		return;
2615 
2616 	timer = &vcpu->arch.apic->lapic_timer.timer;
2617 	if (hrtimer_cancel(timer))
2618 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2619 }
2620 
2621 /*
2622  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2623  *
2624  * Detect whether guest triggered PV EOI since the
2625  * last entry. If yes, set EOI on guests's behalf.
2626  * Clear PV EOI in guest memory in any case.
2627  */
2628 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2629 					struct kvm_lapic *apic)
2630 {
2631 	bool pending;
2632 	int vector;
2633 	/*
2634 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2635 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2636 	 *
2637 	 * KVM_APIC_PV_EOI_PENDING is unset:
2638 	 * 	-> host disabled PV EOI.
2639 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2640 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
2641 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2642 	 * 	-> host enabled PV EOI, guest executed EOI.
2643 	 */
2644 	BUG_ON(!pv_eoi_enabled(vcpu));
2645 	pending = pv_eoi_get_pending(vcpu);
2646 	/*
2647 	 * Clear pending bit in any case: it will be set again on vmentry.
2648 	 * While this might not be ideal from performance point of view,
2649 	 * this makes sure pv eoi is only enabled when we know it's safe.
2650 	 */
2651 	pv_eoi_clr_pending(vcpu);
2652 	if (pending)
2653 		return;
2654 	vector = apic_set_eoi(apic);
2655 	trace_kvm_pv_eoi(apic, vector);
2656 }
2657 
2658 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2659 {
2660 	u32 data;
2661 
2662 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2663 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2664 
2665 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2666 		return;
2667 
2668 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2669 				  sizeof(u32)))
2670 		return;
2671 
2672 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
2673 }
2674 
2675 /*
2676  * apic_sync_pv_eoi_to_guest - called before vmentry
2677  *
2678  * Detect whether it's safe to enable PV EOI and
2679  * if yes do so.
2680  */
2681 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2682 					struct kvm_lapic *apic)
2683 {
2684 	if (!pv_eoi_enabled(vcpu) ||
2685 	    /* IRR set or many bits in ISR: could be nested. */
2686 	    apic->irr_pending ||
2687 	    /* Cache not set: could be safe but we don't bother. */
2688 	    apic->highest_isr_cache == -1 ||
2689 	    /* Need EOI to update ioapic. */
2690 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2691 		/*
2692 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2693 		 * so we need not do anything here.
2694 		 */
2695 		return;
2696 	}
2697 
2698 	pv_eoi_set_pending(apic->vcpu);
2699 }
2700 
2701 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2702 {
2703 	u32 data, tpr;
2704 	int max_irr, max_isr;
2705 	struct kvm_lapic *apic = vcpu->arch.apic;
2706 
2707 	apic_sync_pv_eoi_to_guest(vcpu, apic);
2708 
2709 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2710 		return;
2711 
2712 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2713 	max_irr = apic_find_highest_irr(apic);
2714 	if (max_irr < 0)
2715 		max_irr = 0;
2716 	max_isr = apic_find_highest_isr(apic);
2717 	if (max_isr < 0)
2718 		max_isr = 0;
2719 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2720 
2721 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2722 				sizeof(u32));
2723 }
2724 
2725 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2726 {
2727 	if (vapic_addr) {
2728 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2729 					&vcpu->arch.apic->vapic_cache,
2730 					vapic_addr, sizeof(u32)))
2731 			return -EINVAL;
2732 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2733 	} else {
2734 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2735 	}
2736 
2737 	vcpu->arch.apic->vapic_addr = vapic_addr;
2738 	return 0;
2739 }
2740 
2741 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2742 {
2743 	struct kvm_lapic *apic = vcpu->arch.apic;
2744 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2745 
2746 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2747 		return 1;
2748 
2749 	if (reg == APIC_ICR2)
2750 		return 1;
2751 
2752 	/* if this is ICR write vector before command */
2753 	if (reg == APIC_ICR)
2754 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2755 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2756 }
2757 
2758 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2759 {
2760 	struct kvm_lapic *apic = vcpu->arch.apic;
2761 	u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2762 
2763 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2764 		return 1;
2765 
2766 	if (reg == APIC_DFR || reg == APIC_ICR2)
2767 		return 1;
2768 
2769 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2770 		return 1;
2771 	if (reg == APIC_ICR)
2772 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2773 
2774 	*data = (((u64)high) << 32) | low;
2775 
2776 	return 0;
2777 }
2778 
2779 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2780 {
2781 	struct kvm_lapic *apic = vcpu->arch.apic;
2782 
2783 	if (!lapic_in_kernel(vcpu))
2784 		return 1;
2785 
2786 	/* if this is ICR write vector before command */
2787 	if (reg == APIC_ICR)
2788 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2789 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2790 }
2791 
2792 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2793 {
2794 	struct kvm_lapic *apic = vcpu->arch.apic;
2795 	u32 low, high = 0;
2796 
2797 	if (!lapic_in_kernel(vcpu))
2798 		return 1;
2799 
2800 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2801 		return 1;
2802 	if (reg == APIC_ICR)
2803 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2804 
2805 	*data = (((u64)high) << 32) | low;
2806 
2807 	return 0;
2808 }
2809 
2810 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2811 {
2812 	u64 addr = data & ~KVM_MSR_ENABLED;
2813 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2814 	unsigned long new_len;
2815 
2816 	if (!IS_ALIGNED(addr, 4))
2817 		return 1;
2818 
2819 	vcpu->arch.pv_eoi.msr_val = data;
2820 	if (!pv_eoi_enabled(vcpu))
2821 		return 0;
2822 
2823 	if (addr == ghc->gpa && len <= ghc->len)
2824 		new_len = ghc->len;
2825 	else
2826 		new_len = len;
2827 
2828 	return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2829 }
2830 
2831 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2832 {
2833 	struct kvm_lapic *apic = vcpu->arch.apic;
2834 	u8 sipi_vector;
2835 	unsigned long pe;
2836 
2837 	if (!lapic_in_kernel(vcpu) || !apic->pending_events)
2838 		return;
2839 
2840 	/*
2841 	 * INITs are latched while CPU is in specific states
2842 	 * (SMM, VMX non-root mode, SVM with GIF=0).
2843 	 * Because a CPU cannot be in these states immediately
2844 	 * after it has processed an INIT signal (and thus in
2845 	 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2846 	 * and leave the INIT pending.
2847 	 */
2848 	if (kvm_vcpu_latch_init(vcpu)) {
2849 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2850 		if (test_bit(KVM_APIC_SIPI, &apic->pending_events))
2851 			clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2852 		return;
2853 	}
2854 
2855 	pe = xchg(&apic->pending_events, 0);
2856 	if (test_bit(KVM_APIC_INIT, &pe)) {
2857 		kvm_vcpu_reset(vcpu, true);
2858 		if (kvm_vcpu_is_bsp(apic->vcpu))
2859 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2860 		else
2861 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2862 	}
2863 	if (test_bit(KVM_APIC_SIPI, &pe) &&
2864 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2865 		/* evaluate pending_events before reading the vector */
2866 		smp_rmb();
2867 		sipi_vector = apic->sipi_vector;
2868 		kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2869 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2870 	}
2871 }
2872 
2873 void kvm_lapic_init(void)
2874 {
2875 	/* do not patch jump label more than once per second */
2876 	jump_label_rate_limit(&apic_hw_disabled, HZ);
2877 	jump_label_rate_limit(&apic_sw_disabled, HZ);
2878 }
2879 
2880 void kvm_lapic_exit(void)
2881 {
2882 	static_key_deferred_flush(&apic_hw_disabled);
2883 	static_key_deferred_flush(&apic_sw_disabled);
2884 }
2885