1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline void __kvm_lapic_set_reg(char *regs, int reg_off, u32 val) 72 { 73 *((u32 *) (regs + reg_off)) = val; 74 } 75 76 static inline void kvm_lapic_set_reg(struct kvm_lapic *apic, int reg_off, u32 val) 77 { 78 __kvm_lapic_set_reg(apic->regs, reg_off, val); 79 } 80 81 static __always_inline u64 __kvm_lapic_get_reg64(char *regs, int reg) 82 { 83 BUILD_BUG_ON(reg != APIC_ICR); 84 return *((u64 *) (regs + reg)); 85 } 86 87 static __always_inline u64 kvm_lapic_get_reg64(struct kvm_lapic *apic, int reg) 88 { 89 return __kvm_lapic_get_reg64(apic->regs, reg); 90 } 91 92 static __always_inline void __kvm_lapic_set_reg64(char *regs, int reg, u64 val) 93 { 94 BUILD_BUG_ON(reg != APIC_ICR); 95 *((u64 *) (regs + reg)) = val; 96 } 97 98 static __always_inline void kvm_lapic_set_reg64(struct kvm_lapic *apic, 99 int reg, u64 val) 100 { 101 __kvm_lapic_set_reg64(apic->regs, reg, val); 102 } 103 104 static inline int apic_test_vector(int vec, void *bitmap) 105 { 106 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 107 } 108 109 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 110 { 111 struct kvm_lapic *apic = vcpu->arch.apic; 112 113 return apic_test_vector(vector, apic->regs + APIC_ISR) || 114 apic_test_vector(vector, apic->regs + APIC_IRR); 115 } 116 117 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 118 { 119 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 120 } 121 122 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 123 { 124 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 125 } 126 127 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 128 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 129 130 static inline int apic_enabled(struct kvm_lapic *apic) 131 { 132 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 133 } 134 135 #define LVT_MASK \ 136 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 137 138 #define LINT_MASK \ 139 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 140 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 141 142 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 143 { 144 return apic->vcpu->vcpu_id; 145 } 146 147 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 148 { 149 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu) && 150 (kvm_mwait_in_guest(vcpu->kvm) || kvm_hlt_in_guest(vcpu->kvm)); 151 } 152 153 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 154 { 155 return kvm_x86_ops.set_hv_timer 156 && !(kvm_mwait_in_guest(vcpu->kvm) || 157 kvm_can_post_timer_interrupt(vcpu)); 158 } 159 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 160 161 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 162 { 163 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 164 } 165 166 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 167 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 168 switch (map->mode) { 169 case KVM_APIC_MODE_X2APIC: { 170 u32 offset = (dest_id >> 16) * 16; 171 u32 max_apic_id = map->max_apic_id; 172 173 if (offset <= max_apic_id) { 174 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 175 176 offset = array_index_nospec(offset, map->max_apic_id + 1); 177 *cluster = &map->phys_map[offset]; 178 *mask = dest_id & (0xffff >> (16 - cluster_size)); 179 } else { 180 *mask = 0; 181 } 182 183 return true; 184 } 185 case KVM_APIC_MODE_XAPIC_FLAT: 186 *cluster = map->xapic_flat_map; 187 *mask = dest_id & 0xff; 188 return true; 189 case KVM_APIC_MODE_XAPIC_CLUSTER: 190 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 191 *mask = dest_id & 0xf; 192 return true; 193 default: 194 /* Not optimized. */ 195 return false; 196 } 197 } 198 199 static void kvm_apic_map_free(struct rcu_head *rcu) 200 { 201 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 202 203 kvfree(map); 204 } 205 206 /* 207 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 208 * 209 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 210 * apic_map_lock_held. 211 */ 212 enum { 213 CLEAN, 214 UPDATE_IN_PROGRESS, 215 DIRTY 216 }; 217 218 void kvm_recalculate_apic_map(struct kvm *kvm) 219 { 220 struct kvm_apic_map *new, *old = NULL; 221 struct kvm_vcpu *vcpu; 222 unsigned long i; 223 u32 max_id = 255; /* enough space for any xAPIC ID */ 224 225 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 226 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 227 return; 228 229 WARN_ONCE(!irqchip_in_kernel(kvm), 230 "Dirty APIC map without an in-kernel local APIC"); 231 232 mutex_lock(&kvm->arch.apic_map_lock); 233 /* 234 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 235 * (if clean) or the APIC registers (if dirty). 236 */ 237 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 238 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 239 /* Someone else has updated the map. */ 240 mutex_unlock(&kvm->arch.apic_map_lock); 241 return; 242 } 243 244 kvm_for_each_vcpu(i, vcpu, kvm) 245 if (kvm_apic_present(vcpu)) 246 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 247 248 new = kvzalloc(sizeof(struct kvm_apic_map) + 249 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 250 GFP_KERNEL_ACCOUNT); 251 252 if (!new) 253 goto out; 254 255 new->max_apic_id = max_id; 256 257 kvm_for_each_vcpu(i, vcpu, kvm) { 258 struct kvm_lapic *apic = vcpu->arch.apic; 259 struct kvm_lapic **cluster; 260 u16 mask; 261 u32 ldr; 262 u8 xapic_id; 263 u32 x2apic_id; 264 265 if (!kvm_apic_present(vcpu)) 266 continue; 267 268 xapic_id = kvm_xapic_id(apic); 269 x2apic_id = kvm_x2apic_id(apic); 270 271 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 272 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 273 x2apic_id <= new->max_apic_id) 274 new->phys_map[x2apic_id] = apic; 275 /* 276 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 277 * prevent them from masking VCPUs with APIC ID <= 0xff. 278 */ 279 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 280 new->phys_map[xapic_id] = apic; 281 282 if (!kvm_apic_sw_enabled(apic)) 283 continue; 284 285 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 286 287 if (apic_x2apic_mode(apic)) { 288 new->mode |= KVM_APIC_MODE_X2APIC; 289 } else if (ldr) { 290 ldr = GET_APIC_LOGICAL_ID(ldr); 291 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 292 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 293 else 294 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 295 } 296 297 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 298 continue; 299 300 if (mask) 301 cluster[ffs(mask) - 1] = apic; 302 } 303 out: 304 old = rcu_dereference_protected(kvm->arch.apic_map, 305 lockdep_is_held(&kvm->arch.apic_map_lock)); 306 rcu_assign_pointer(kvm->arch.apic_map, new); 307 /* 308 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 309 * If another update has come in, leave it DIRTY. 310 */ 311 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 312 UPDATE_IN_PROGRESS, CLEAN); 313 mutex_unlock(&kvm->arch.apic_map_lock); 314 315 if (old) 316 call_rcu(&old->rcu, kvm_apic_map_free); 317 318 kvm_make_scan_ioapic_request(kvm); 319 } 320 321 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 322 { 323 bool enabled = val & APIC_SPIV_APIC_ENABLED; 324 325 kvm_lapic_set_reg(apic, APIC_SPIV, val); 326 327 if (enabled != apic->sw_enabled) { 328 apic->sw_enabled = enabled; 329 if (enabled) 330 static_branch_slow_dec_deferred(&apic_sw_disabled); 331 else 332 static_branch_inc(&apic_sw_disabled.key); 333 334 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 335 } 336 337 /* Check if there are APF page ready requests pending */ 338 if (enabled) 339 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 340 } 341 342 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 343 { 344 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 345 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 346 } 347 348 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 349 { 350 kvm_lapic_set_reg(apic, APIC_LDR, id); 351 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 352 } 353 354 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 355 { 356 kvm_lapic_set_reg(apic, APIC_DFR, val); 357 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 358 } 359 360 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 361 { 362 return ((id >> 4) << 16) | (1 << (id & 0xf)); 363 } 364 365 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 366 { 367 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 368 369 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 370 371 kvm_lapic_set_reg(apic, APIC_ID, id); 372 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 373 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 374 } 375 376 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 377 { 378 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 379 } 380 381 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 382 { 383 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 384 } 385 386 static inline int apic_lvtt_period(struct kvm_lapic *apic) 387 { 388 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 389 } 390 391 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 392 { 393 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 394 } 395 396 static inline int apic_lvt_nmi_mode(u32 lvt_val) 397 { 398 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 399 } 400 401 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 402 { 403 struct kvm_lapic *apic = vcpu->arch.apic; 404 u32 v = APIC_VERSION; 405 406 if (!lapic_in_kernel(vcpu)) 407 return; 408 409 /* 410 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 411 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 412 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 413 * version first and level-triggered interrupts never get EOIed in 414 * IOAPIC. 415 */ 416 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 417 !ioapic_in_kernel(vcpu->kvm)) 418 v |= APIC_LVR_DIRECTED_EOI; 419 kvm_lapic_set_reg(apic, APIC_LVR, v); 420 } 421 422 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 423 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 424 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 425 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 426 LINT_MASK, LINT_MASK, /* LVT0-1 */ 427 LVT_MASK /* LVTERR */ 428 }; 429 430 static int find_highest_vector(void *bitmap) 431 { 432 int vec; 433 u32 *reg; 434 435 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 436 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 437 reg = bitmap + REG_POS(vec); 438 if (*reg) 439 return __fls(*reg) + vec; 440 } 441 442 return -1; 443 } 444 445 static u8 count_vectors(void *bitmap) 446 { 447 int vec; 448 u32 *reg; 449 u8 count = 0; 450 451 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 452 reg = bitmap + REG_POS(vec); 453 count += hweight32(*reg); 454 } 455 456 return count; 457 } 458 459 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 460 { 461 u32 i, vec; 462 u32 pir_val, irr_val, prev_irr_val; 463 int max_updated_irr; 464 465 max_updated_irr = -1; 466 *max_irr = -1; 467 468 for (i = vec = 0; i <= 7; i++, vec += 32) { 469 pir_val = READ_ONCE(pir[i]); 470 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 471 if (pir_val) { 472 prev_irr_val = irr_val; 473 irr_val |= xchg(&pir[i], 0); 474 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 475 if (prev_irr_val != irr_val) { 476 max_updated_irr = 477 __fls(irr_val ^ prev_irr_val) + vec; 478 } 479 } 480 if (irr_val) 481 *max_irr = __fls(irr_val) + vec; 482 } 483 484 return ((max_updated_irr != -1) && 485 (max_updated_irr == *max_irr)); 486 } 487 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 488 489 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 490 { 491 struct kvm_lapic *apic = vcpu->arch.apic; 492 493 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 494 } 495 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 496 497 static inline int apic_search_irr(struct kvm_lapic *apic) 498 { 499 return find_highest_vector(apic->regs + APIC_IRR); 500 } 501 502 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 503 { 504 int result; 505 506 /* 507 * Note that irr_pending is just a hint. It will be always 508 * true with virtual interrupt delivery enabled. 509 */ 510 if (!apic->irr_pending) 511 return -1; 512 513 result = apic_search_irr(apic); 514 ASSERT(result == -1 || result >= 16); 515 516 return result; 517 } 518 519 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 520 { 521 struct kvm_vcpu *vcpu; 522 523 vcpu = apic->vcpu; 524 525 if (unlikely(vcpu->arch.apicv_active)) { 526 /* need to update RVI */ 527 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 528 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic)); 529 } else { 530 apic->irr_pending = false; 531 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 532 if (apic_search_irr(apic) != -1) 533 apic->irr_pending = true; 534 } 535 } 536 537 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 538 { 539 apic_clear_irr(vec, vcpu->arch.apic); 540 } 541 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 542 543 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 544 { 545 struct kvm_vcpu *vcpu; 546 547 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 548 return; 549 550 vcpu = apic->vcpu; 551 552 /* 553 * With APIC virtualization enabled, all caching is disabled 554 * because the processor can modify ISR under the hood. Instead 555 * just set SVI. 556 */ 557 if (unlikely(vcpu->arch.apicv_active)) 558 static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, vec); 559 else { 560 ++apic->isr_count; 561 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 562 /* 563 * ISR (in service register) bit is set when injecting an interrupt. 564 * The highest vector is injected. Thus the latest bit set matches 565 * the highest bit in ISR. 566 */ 567 apic->highest_isr_cache = vec; 568 } 569 } 570 571 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 572 { 573 int result; 574 575 /* 576 * Note that isr_count is always 1, and highest_isr_cache 577 * is always -1, with APIC virtualization enabled. 578 */ 579 if (!apic->isr_count) 580 return -1; 581 if (likely(apic->highest_isr_cache != -1)) 582 return apic->highest_isr_cache; 583 584 result = find_highest_vector(apic->regs + APIC_ISR); 585 ASSERT(result == -1 || result >= 16); 586 587 return result; 588 } 589 590 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 591 { 592 struct kvm_vcpu *vcpu; 593 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 594 return; 595 596 vcpu = apic->vcpu; 597 598 /* 599 * We do get here for APIC virtualization enabled if the guest 600 * uses the Hyper-V APIC enlightenment. In this case we may need 601 * to trigger a new interrupt delivery by writing the SVI field; 602 * on the other hand isr_count and highest_isr_cache are unused 603 * and must be left alone. 604 */ 605 if (unlikely(vcpu->arch.apicv_active)) 606 static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 607 else { 608 --apic->isr_count; 609 BUG_ON(apic->isr_count < 0); 610 apic->highest_isr_cache = -1; 611 } 612 } 613 614 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 615 { 616 /* This may race with setting of irr in __apic_accept_irq() and 617 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 618 * will cause vmexit immediately and the value will be recalculated 619 * on the next vmentry. 620 */ 621 return apic_find_highest_irr(vcpu->arch.apic); 622 } 623 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 624 625 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 626 int vector, int level, int trig_mode, 627 struct dest_map *dest_map); 628 629 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 630 struct dest_map *dest_map) 631 { 632 struct kvm_lapic *apic = vcpu->arch.apic; 633 634 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 635 irq->level, irq->trig_mode, dest_map); 636 } 637 638 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 639 struct kvm_lapic_irq *irq, u32 min) 640 { 641 int i, count = 0; 642 struct kvm_vcpu *vcpu; 643 644 if (min > map->max_apic_id) 645 return 0; 646 647 for_each_set_bit(i, ipi_bitmap, 648 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 649 if (map->phys_map[min + i]) { 650 vcpu = map->phys_map[min + i]->vcpu; 651 count += kvm_apic_set_irq(vcpu, irq, NULL); 652 } 653 } 654 655 return count; 656 } 657 658 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 659 unsigned long ipi_bitmap_high, u32 min, 660 unsigned long icr, int op_64_bit) 661 { 662 struct kvm_apic_map *map; 663 struct kvm_lapic_irq irq = {0}; 664 int cluster_size = op_64_bit ? 64 : 32; 665 int count; 666 667 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 668 return -KVM_EINVAL; 669 670 irq.vector = icr & APIC_VECTOR_MASK; 671 irq.delivery_mode = icr & APIC_MODE_MASK; 672 irq.level = (icr & APIC_INT_ASSERT) != 0; 673 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 674 675 rcu_read_lock(); 676 map = rcu_dereference(kvm->arch.apic_map); 677 678 count = -EOPNOTSUPP; 679 if (likely(map)) { 680 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 681 min += cluster_size; 682 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 683 } 684 685 rcu_read_unlock(); 686 return count; 687 } 688 689 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 690 { 691 692 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 693 sizeof(val)); 694 } 695 696 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 697 { 698 699 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 700 sizeof(*val)); 701 } 702 703 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 704 { 705 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 706 } 707 708 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 709 { 710 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) 711 return; 712 713 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 714 } 715 716 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu *vcpu) 717 { 718 u8 val; 719 720 if (pv_eoi_get_user(vcpu, &val) < 0) 721 return false; 722 723 val &= KVM_PV_EOI_ENABLED; 724 725 if (val && pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) 726 return false; 727 728 /* 729 * Clear pending bit in any case: it will be set again on vmentry. 730 * While this might not be ideal from performance point of view, 731 * this makes sure pv eoi is only enabled when we know it's safe. 732 */ 733 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 734 735 return val; 736 } 737 738 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 739 { 740 int highest_irr; 741 if (kvm_x86_ops.sync_pir_to_irr) 742 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 743 else 744 highest_irr = apic_find_highest_irr(apic); 745 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 746 return -1; 747 return highest_irr; 748 } 749 750 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 751 { 752 u32 tpr, isrv, ppr, old_ppr; 753 int isr; 754 755 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 756 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 757 isr = apic_find_highest_isr(apic); 758 isrv = (isr != -1) ? isr : 0; 759 760 if ((tpr & 0xf0) >= (isrv & 0xf0)) 761 ppr = tpr & 0xff; 762 else 763 ppr = isrv & 0xf0; 764 765 *new_ppr = ppr; 766 if (old_ppr != ppr) 767 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 768 769 return ppr < old_ppr; 770 } 771 772 static void apic_update_ppr(struct kvm_lapic *apic) 773 { 774 u32 ppr; 775 776 if (__apic_update_ppr(apic, &ppr) && 777 apic_has_interrupt_for_ppr(apic, ppr) != -1) 778 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 779 } 780 781 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 782 { 783 apic_update_ppr(vcpu->arch.apic); 784 } 785 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 786 787 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 788 { 789 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 790 apic_update_ppr(apic); 791 } 792 793 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 794 { 795 return mda == (apic_x2apic_mode(apic) ? 796 X2APIC_BROADCAST : APIC_BROADCAST); 797 } 798 799 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 800 { 801 if (kvm_apic_broadcast(apic, mda)) 802 return true; 803 804 if (apic_x2apic_mode(apic)) 805 return mda == kvm_x2apic_id(apic); 806 807 /* 808 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 809 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 810 * this allows unique addressing of VCPUs with APIC ID over 0xff. 811 * The 0xff condition is needed because writeable xAPIC ID. 812 */ 813 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 814 return true; 815 816 return mda == kvm_xapic_id(apic); 817 } 818 819 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 820 { 821 u32 logical_id; 822 823 if (kvm_apic_broadcast(apic, mda)) 824 return true; 825 826 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 827 828 if (apic_x2apic_mode(apic)) 829 return ((logical_id >> 16) == (mda >> 16)) 830 && (logical_id & mda & 0xffff) != 0; 831 832 logical_id = GET_APIC_LOGICAL_ID(logical_id); 833 834 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 835 case APIC_DFR_FLAT: 836 return (logical_id & mda) != 0; 837 case APIC_DFR_CLUSTER: 838 return ((logical_id >> 4) == (mda >> 4)) 839 && (logical_id & mda & 0xf) != 0; 840 default: 841 return false; 842 } 843 } 844 845 /* The KVM local APIC implementation has two quirks: 846 * 847 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 848 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 849 * KVM doesn't do that aliasing. 850 * 851 * - in-kernel IOAPIC messages have to be delivered directly to 852 * x2APIC, because the kernel does not support interrupt remapping. 853 * In order to support broadcast without interrupt remapping, x2APIC 854 * rewrites the destination of non-IPI messages from APIC_BROADCAST 855 * to X2APIC_BROADCAST. 856 * 857 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 858 * important when userspace wants to use x2APIC-format MSIs, because 859 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 860 */ 861 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 862 struct kvm_lapic *source, struct kvm_lapic *target) 863 { 864 bool ipi = source != NULL; 865 866 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 867 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 868 return X2APIC_BROADCAST; 869 870 return dest_id; 871 } 872 873 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 874 int shorthand, unsigned int dest, int dest_mode) 875 { 876 struct kvm_lapic *target = vcpu->arch.apic; 877 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 878 879 ASSERT(target); 880 switch (shorthand) { 881 case APIC_DEST_NOSHORT: 882 if (dest_mode == APIC_DEST_PHYSICAL) 883 return kvm_apic_match_physical_addr(target, mda); 884 else 885 return kvm_apic_match_logical_addr(target, mda); 886 case APIC_DEST_SELF: 887 return target == source; 888 case APIC_DEST_ALLINC: 889 return true; 890 case APIC_DEST_ALLBUT: 891 return target != source; 892 default: 893 return false; 894 } 895 } 896 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 897 898 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 899 const unsigned long *bitmap, u32 bitmap_size) 900 { 901 u32 mod; 902 int i, idx = -1; 903 904 mod = vector % dest_vcpus; 905 906 for (i = 0; i <= mod; i++) { 907 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 908 BUG_ON(idx == bitmap_size); 909 } 910 911 return idx; 912 } 913 914 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 915 { 916 if (!kvm->arch.disabled_lapic_found) { 917 kvm->arch.disabled_lapic_found = true; 918 printk(KERN_INFO 919 "Disabled LAPIC found during irq injection\n"); 920 } 921 } 922 923 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 924 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 925 { 926 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 927 if ((irq->dest_id == APIC_BROADCAST && 928 map->mode != KVM_APIC_MODE_X2APIC)) 929 return true; 930 if (irq->dest_id == X2APIC_BROADCAST) 931 return true; 932 } else { 933 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 934 if (irq->dest_id == (x2apic_ipi ? 935 X2APIC_BROADCAST : APIC_BROADCAST)) 936 return true; 937 } 938 939 return false; 940 } 941 942 /* Return true if the interrupt can be handled by using *bitmap as index mask 943 * for valid destinations in *dst array. 944 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 945 * Note: we may have zero kvm_lapic destinations when we return true, which 946 * means that the interrupt should be dropped. In this case, *bitmap would be 947 * zero and *dst undefined. 948 */ 949 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 950 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 951 struct kvm_apic_map *map, struct kvm_lapic ***dst, 952 unsigned long *bitmap) 953 { 954 int i, lowest; 955 956 if (irq->shorthand == APIC_DEST_SELF && src) { 957 *dst = src; 958 *bitmap = 1; 959 return true; 960 } else if (irq->shorthand) 961 return false; 962 963 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 964 return false; 965 966 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 967 if (irq->dest_id > map->max_apic_id) { 968 *bitmap = 0; 969 } else { 970 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 971 *dst = &map->phys_map[dest_id]; 972 *bitmap = 1; 973 } 974 return true; 975 } 976 977 *bitmap = 0; 978 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 979 (u16 *)bitmap)) 980 return false; 981 982 if (!kvm_lowest_prio_delivery(irq)) 983 return true; 984 985 if (!kvm_vector_hashing_enabled()) { 986 lowest = -1; 987 for_each_set_bit(i, bitmap, 16) { 988 if (!(*dst)[i]) 989 continue; 990 if (lowest < 0) 991 lowest = i; 992 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 993 (*dst)[lowest]->vcpu) < 0) 994 lowest = i; 995 } 996 } else { 997 if (!*bitmap) 998 return true; 999 1000 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 1001 bitmap, 16); 1002 1003 if (!(*dst)[lowest]) { 1004 kvm_apic_disabled_lapic_found(kvm); 1005 *bitmap = 0; 1006 return true; 1007 } 1008 } 1009 1010 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 1011 1012 return true; 1013 } 1014 1015 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 1016 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 1017 { 1018 struct kvm_apic_map *map; 1019 unsigned long bitmap; 1020 struct kvm_lapic **dst = NULL; 1021 int i; 1022 bool ret; 1023 1024 *r = -1; 1025 1026 if (irq->shorthand == APIC_DEST_SELF) { 1027 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 1028 return true; 1029 } 1030 1031 rcu_read_lock(); 1032 map = rcu_dereference(kvm->arch.apic_map); 1033 1034 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1035 if (ret) { 1036 *r = 0; 1037 for_each_set_bit(i, &bitmap, 16) { 1038 if (!dst[i]) 1039 continue; 1040 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1041 } 1042 } 1043 1044 rcu_read_unlock(); 1045 return ret; 1046 } 1047 1048 /* 1049 * This routine tries to handle interrupts in posted mode, here is how 1050 * it deals with different cases: 1051 * - For single-destination interrupts, handle it in posted mode 1052 * - Else if vector hashing is enabled and it is a lowest-priority 1053 * interrupt, handle it in posted mode and use the following mechanism 1054 * to find the destination vCPU. 1055 * 1. For lowest-priority interrupts, store all the possible 1056 * destination vCPUs in an array. 1057 * 2. Use "guest vector % max number of destination vCPUs" to find 1058 * the right destination vCPU in the array for the lowest-priority 1059 * interrupt. 1060 * - Otherwise, use remapped mode to inject the interrupt. 1061 */ 1062 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1063 struct kvm_vcpu **dest_vcpu) 1064 { 1065 struct kvm_apic_map *map; 1066 unsigned long bitmap; 1067 struct kvm_lapic **dst = NULL; 1068 bool ret = false; 1069 1070 if (irq->shorthand) 1071 return false; 1072 1073 rcu_read_lock(); 1074 map = rcu_dereference(kvm->arch.apic_map); 1075 1076 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1077 hweight16(bitmap) == 1) { 1078 unsigned long i = find_first_bit(&bitmap, 16); 1079 1080 if (dst[i]) { 1081 *dest_vcpu = dst[i]->vcpu; 1082 ret = true; 1083 } 1084 } 1085 1086 rcu_read_unlock(); 1087 return ret; 1088 } 1089 1090 /* 1091 * Add a pending IRQ into lapic. 1092 * Return 1 if successfully added and 0 if discarded. 1093 */ 1094 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1095 int vector, int level, int trig_mode, 1096 struct dest_map *dest_map) 1097 { 1098 int result = 0; 1099 struct kvm_vcpu *vcpu = apic->vcpu; 1100 1101 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1102 trig_mode, vector); 1103 switch (delivery_mode) { 1104 case APIC_DM_LOWEST: 1105 vcpu->arch.apic_arb_prio++; 1106 fallthrough; 1107 case APIC_DM_FIXED: 1108 if (unlikely(trig_mode && !level)) 1109 break; 1110 1111 /* FIXME add logic for vcpu on reset */ 1112 if (unlikely(!apic_enabled(apic))) 1113 break; 1114 1115 result = 1; 1116 1117 if (dest_map) { 1118 __set_bit(vcpu->vcpu_id, dest_map->map); 1119 dest_map->vectors[vcpu->vcpu_id] = vector; 1120 } 1121 1122 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1123 if (trig_mode) 1124 kvm_lapic_set_vector(vector, 1125 apic->regs + APIC_TMR); 1126 else 1127 kvm_lapic_clear_vector(vector, 1128 apic->regs + APIC_TMR); 1129 } 1130 1131 static_call(kvm_x86_deliver_interrupt)(apic, delivery_mode, 1132 trig_mode, vector); 1133 break; 1134 1135 case APIC_DM_REMRD: 1136 result = 1; 1137 vcpu->arch.pv.pv_unhalted = 1; 1138 kvm_make_request(KVM_REQ_EVENT, vcpu); 1139 kvm_vcpu_kick(vcpu); 1140 break; 1141 1142 case APIC_DM_SMI: 1143 result = 1; 1144 kvm_make_request(KVM_REQ_SMI, vcpu); 1145 kvm_vcpu_kick(vcpu); 1146 break; 1147 1148 case APIC_DM_NMI: 1149 result = 1; 1150 kvm_inject_nmi(vcpu); 1151 kvm_vcpu_kick(vcpu); 1152 break; 1153 1154 case APIC_DM_INIT: 1155 if (!trig_mode || level) { 1156 result = 1; 1157 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1158 apic->pending_events = (1UL << KVM_APIC_INIT); 1159 kvm_make_request(KVM_REQ_EVENT, vcpu); 1160 kvm_vcpu_kick(vcpu); 1161 } 1162 break; 1163 1164 case APIC_DM_STARTUP: 1165 result = 1; 1166 apic->sipi_vector = vector; 1167 /* make sure sipi_vector is visible for the receiver */ 1168 smp_wmb(); 1169 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1170 kvm_make_request(KVM_REQ_EVENT, vcpu); 1171 kvm_vcpu_kick(vcpu); 1172 break; 1173 1174 case APIC_DM_EXTINT: 1175 /* 1176 * Should only be called by kvm_apic_local_deliver() with LVT0, 1177 * before NMI watchdog was enabled. Already handled by 1178 * kvm_apic_accept_pic_intr(). 1179 */ 1180 break; 1181 1182 default: 1183 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1184 delivery_mode); 1185 break; 1186 } 1187 return result; 1188 } 1189 1190 /* 1191 * This routine identifies the destination vcpus mask meant to receive the 1192 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1193 * out the destination vcpus array and set the bitmap or it traverses to 1194 * each available vcpu to identify the same. 1195 */ 1196 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1197 unsigned long *vcpu_bitmap) 1198 { 1199 struct kvm_lapic **dest_vcpu = NULL; 1200 struct kvm_lapic *src = NULL; 1201 struct kvm_apic_map *map; 1202 struct kvm_vcpu *vcpu; 1203 unsigned long bitmap, i; 1204 int vcpu_idx; 1205 bool ret; 1206 1207 rcu_read_lock(); 1208 map = rcu_dereference(kvm->arch.apic_map); 1209 1210 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1211 &bitmap); 1212 if (ret) { 1213 for_each_set_bit(i, &bitmap, 16) { 1214 if (!dest_vcpu[i]) 1215 continue; 1216 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1217 __set_bit(vcpu_idx, vcpu_bitmap); 1218 } 1219 } else { 1220 kvm_for_each_vcpu(i, vcpu, kvm) { 1221 if (!kvm_apic_present(vcpu)) 1222 continue; 1223 if (!kvm_apic_match_dest(vcpu, NULL, 1224 irq->shorthand, 1225 irq->dest_id, 1226 irq->dest_mode)) 1227 continue; 1228 __set_bit(i, vcpu_bitmap); 1229 } 1230 } 1231 rcu_read_unlock(); 1232 } 1233 1234 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1235 { 1236 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1237 } 1238 1239 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1240 { 1241 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1242 } 1243 1244 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1245 { 1246 int trigger_mode; 1247 1248 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1249 if (!kvm_ioapic_handles_vector(apic, vector)) 1250 return; 1251 1252 /* Request a KVM exit to inform the userspace IOAPIC. */ 1253 if (irqchip_split(apic->vcpu->kvm)) { 1254 apic->vcpu->arch.pending_ioapic_eoi = vector; 1255 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1256 return; 1257 } 1258 1259 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1260 trigger_mode = IOAPIC_LEVEL_TRIG; 1261 else 1262 trigger_mode = IOAPIC_EDGE_TRIG; 1263 1264 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1265 } 1266 1267 static int apic_set_eoi(struct kvm_lapic *apic) 1268 { 1269 int vector = apic_find_highest_isr(apic); 1270 1271 trace_kvm_eoi(apic, vector); 1272 1273 /* 1274 * Not every write EOI will has corresponding ISR, 1275 * one example is when Kernel check timer on setup_IO_APIC 1276 */ 1277 if (vector == -1) 1278 return vector; 1279 1280 apic_clear_isr(vector, apic); 1281 apic_update_ppr(apic); 1282 1283 if (to_hv_vcpu(apic->vcpu) && 1284 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1285 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1286 1287 kvm_ioapic_send_eoi(apic, vector); 1288 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1289 return vector; 1290 } 1291 1292 /* 1293 * this interface assumes a trap-like exit, which has already finished 1294 * desired side effect including vISR and vPPR update. 1295 */ 1296 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1297 { 1298 struct kvm_lapic *apic = vcpu->arch.apic; 1299 1300 trace_kvm_eoi(apic, vector); 1301 1302 kvm_ioapic_send_eoi(apic, vector); 1303 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1304 } 1305 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1306 1307 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1308 { 1309 struct kvm_lapic_irq irq; 1310 1311 /* KVM has no delay and should always clear the BUSY/PENDING flag. */ 1312 WARN_ON_ONCE(icr_low & APIC_ICR_BUSY); 1313 1314 irq.vector = icr_low & APIC_VECTOR_MASK; 1315 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1316 irq.dest_mode = icr_low & APIC_DEST_MASK; 1317 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1318 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1319 irq.shorthand = icr_low & APIC_SHORT_MASK; 1320 irq.msi_redir_hint = false; 1321 if (apic_x2apic_mode(apic)) 1322 irq.dest_id = icr_high; 1323 else 1324 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1325 1326 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1327 1328 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1329 } 1330 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi); 1331 1332 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1333 { 1334 ktime_t remaining, now; 1335 s64 ns; 1336 u32 tmcct; 1337 1338 ASSERT(apic != NULL); 1339 1340 /* if initial count is 0, current count should also be 0 */ 1341 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1342 apic->lapic_timer.period == 0) 1343 return 0; 1344 1345 now = ktime_get(); 1346 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1347 if (ktime_to_ns(remaining) < 0) 1348 remaining = 0; 1349 1350 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1351 tmcct = div64_u64(ns, 1352 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1353 1354 return tmcct; 1355 } 1356 1357 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1358 { 1359 struct kvm_vcpu *vcpu = apic->vcpu; 1360 struct kvm_run *run = vcpu->run; 1361 1362 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1363 run->tpr_access.rip = kvm_rip_read(vcpu); 1364 run->tpr_access.is_write = write; 1365 } 1366 1367 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1368 { 1369 if (apic->vcpu->arch.tpr_access_reporting) 1370 __report_tpr_access(apic, write); 1371 } 1372 1373 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1374 { 1375 u32 val = 0; 1376 1377 if (offset >= LAPIC_MMIO_LENGTH) 1378 return 0; 1379 1380 switch (offset) { 1381 case APIC_ARBPRI: 1382 break; 1383 1384 case APIC_TMCCT: /* Timer CCR */ 1385 if (apic_lvtt_tscdeadline(apic)) 1386 return 0; 1387 1388 val = apic_get_tmcct(apic); 1389 break; 1390 case APIC_PROCPRI: 1391 apic_update_ppr(apic); 1392 val = kvm_lapic_get_reg(apic, offset); 1393 break; 1394 case APIC_TASKPRI: 1395 report_tpr_access(apic, false); 1396 fallthrough; 1397 default: 1398 val = kvm_lapic_get_reg(apic, offset); 1399 break; 1400 } 1401 1402 return val; 1403 } 1404 1405 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1406 { 1407 return container_of(dev, struct kvm_lapic, dev); 1408 } 1409 1410 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1411 #define APIC_REGS_MASK(first, count) \ 1412 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1413 1414 static int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1415 void *data) 1416 { 1417 unsigned char alignment = offset & 0xf; 1418 u32 result; 1419 /* this bitmask has a bit cleared for each reserved register */ 1420 u64 valid_reg_mask = 1421 APIC_REG_MASK(APIC_ID) | 1422 APIC_REG_MASK(APIC_LVR) | 1423 APIC_REG_MASK(APIC_TASKPRI) | 1424 APIC_REG_MASK(APIC_PROCPRI) | 1425 APIC_REG_MASK(APIC_LDR) | 1426 APIC_REG_MASK(APIC_DFR) | 1427 APIC_REG_MASK(APIC_SPIV) | 1428 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1429 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1430 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1431 APIC_REG_MASK(APIC_ESR) | 1432 APIC_REG_MASK(APIC_ICR) | 1433 APIC_REG_MASK(APIC_LVTT) | 1434 APIC_REG_MASK(APIC_LVTTHMR) | 1435 APIC_REG_MASK(APIC_LVTPC) | 1436 APIC_REG_MASK(APIC_LVT0) | 1437 APIC_REG_MASK(APIC_LVT1) | 1438 APIC_REG_MASK(APIC_LVTERR) | 1439 APIC_REG_MASK(APIC_TMICT) | 1440 APIC_REG_MASK(APIC_TMCCT) | 1441 APIC_REG_MASK(APIC_TDCR); 1442 1443 /* 1444 * ARBPRI and ICR2 are not valid in x2APIC mode. WARN if KVM reads ICR 1445 * in x2APIC mode as it's an 8-byte register in x2APIC and needs to be 1446 * manually handled by the caller. 1447 */ 1448 if (!apic_x2apic_mode(apic)) 1449 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI) | 1450 APIC_REG_MASK(APIC_ICR2); 1451 else 1452 WARN_ON_ONCE(offset == APIC_ICR); 1453 1454 if (alignment + len > 4) 1455 return 1; 1456 1457 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1458 return 1; 1459 1460 result = __apic_read(apic, offset & ~0xf); 1461 1462 trace_kvm_apic_read(offset, result); 1463 1464 switch (len) { 1465 case 1: 1466 case 2: 1467 case 4: 1468 memcpy(data, (char *)&result + alignment, len); 1469 break; 1470 default: 1471 printk(KERN_ERR "Local APIC read with len = %x, " 1472 "should be 1,2, or 4 instead\n", len); 1473 break; 1474 } 1475 return 0; 1476 } 1477 1478 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1479 { 1480 return addr >= apic->base_address && 1481 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1482 } 1483 1484 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1485 gpa_t address, int len, void *data) 1486 { 1487 struct kvm_lapic *apic = to_lapic(this); 1488 u32 offset = address - apic->base_address; 1489 1490 if (!apic_mmio_in_range(apic, address)) 1491 return -EOPNOTSUPP; 1492 1493 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1494 if (!kvm_check_has_quirk(vcpu->kvm, 1495 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1496 return -EOPNOTSUPP; 1497 1498 memset(data, 0xff, len); 1499 return 0; 1500 } 1501 1502 kvm_lapic_reg_read(apic, offset, len, data); 1503 1504 return 0; 1505 } 1506 1507 static void update_divide_count(struct kvm_lapic *apic) 1508 { 1509 u32 tmp1, tmp2, tdcr; 1510 1511 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1512 tmp1 = tdcr & 0xf; 1513 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1514 apic->divide_count = 0x1 << (tmp2 & 0x7); 1515 } 1516 1517 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1518 { 1519 /* 1520 * Do not allow the guest to program periodic timers with small 1521 * interval, since the hrtimers are not throttled by the host 1522 * scheduler. 1523 */ 1524 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1525 s64 min_period = min_timer_period_us * 1000LL; 1526 1527 if (apic->lapic_timer.period < min_period) { 1528 pr_info_ratelimited( 1529 "kvm: vcpu %i: requested %lld ns " 1530 "lapic timer period limited to %lld ns\n", 1531 apic->vcpu->vcpu_id, 1532 apic->lapic_timer.period, min_period); 1533 apic->lapic_timer.period = min_period; 1534 } 1535 } 1536 } 1537 1538 static void cancel_hv_timer(struct kvm_lapic *apic); 1539 1540 static void cancel_apic_timer(struct kvm_lapic *apic) 1541 { 1542 hrtimer_cancel(&apic->lapic_timer.timer); 1543 preempt_disable(); 1544 if (apic->lapic_timer.hv_timer_in_use) 1545 cancel_hv_timer(apic); 1546 preempt_enable(); 1547 } 1548 1549 static void apic_update_lvtt(struct kvm_lapic *apic) 1550 { 1551 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1552 apic->lapic_timer.timer_mode_mask; 1553 1554 if (apic->lapic_timer.timer_mode != timer_mode) { 1555 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1556 APIC_LVT_TIMER_TSCDEADLINE)) { 1557 cancel_apic_timer(apic); 1558 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1559 apic->lapic_timer.period = 0; 1560 apic->lapic_timer.tscdeadline = 0; 1561 } 1562 apic->lapic_timer.timer_mode = timer_mode; 1563 limit_periodic_timer_frequency(apic); 1564 } 1565 } 1566 1567 /* 1568 * On APICv, this test will cause a busy wait 1569 * during a higher-priority task. 1570 */ 1571 1572 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1573 { 1574 struct kvm_lapic *apic = vcpu->arch.apic; 1575 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1576 1577 if (kvm_apic_hw_enabled(apic)) { 1578 int vec = reg & APIC_VECTOR_MASK; 1579 void *bitmap = apic->regs + APIC_ISR; 1580 1581 if (vcpu->arch.apicv_active) 1582 bitmap = apic->regs + APIC_IRR; 1583 1584 if (apic_test_vector(vec, bitmap)) 1585 return true; 1586 } 1587 return false; 1588 } 1589 1590 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1591 { 1592 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1593 1594 /* 1595 * If the guest TSC is running at a different ratio than the host, then 1596 * convert the delay to nanoseconds to achieve an accurate delay. Note 1597 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1598 * always for VMX enabled hardware. 1599 */ 1600 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1601 __delay(min(guest_cycles, 1602 nsec_to_cycles(vcpu, timer_advance_ns))); 1603 } else { 1604 u64 delay_ns = guest_cycles * 1000000ULL; 1605 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1606 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1607 } 1608 } 1609 1610 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1611 s64 advance_expire_delta) 1612 { 1613 struct kvm_lapic *apic = vcpu->arch.apic; 1614 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1615 u64 ns; 1616 1617 /* Do not adjust for tiny fluctuations or large random spikes. */ 1618 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1619 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1620 return; 1621 1622 /* too early */ 1623 if (advance_expire_delta < 0) { 1624 ns = -advance_expire_delta * 1000000ULL; 1625 do_div(ns, vcpu->arch.virtual_tsc_khz); 1626 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1627 } else { 1628 /* too late */ 1629 ns = advance_expire_delta * 1000000ULL; 1630 do_div(ns, vcpu->arch.virtual_tsc_khz); 1631 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1632 } 1633 1634 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1635 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1636 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1637 } 1638 1639 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1640 { 1641 struct kvm_lapic *apic = vcpu->arch.apic; 1642 u64 guest_tsc, tsc_deadline; 1643 1644 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1645 apic->lapic_timer.expired_tscdeadline = 0; 1646 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1647 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1648 1649 if (lapic_timer_advance_dynamic) { 1650 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1651 /* 1652 * If the timer fired early, reread the TSC to account for the 1653 * overhead of the above adjustment to avoid waiting longer 1654 * than is necessary. 1655 */ 1656 if (guest_tsc < tsc_deadline) 1657 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1658 } 1659 1660 if (guest_tsc < tsc_deadline) 1661 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1662 } 1663 1664 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1665 { 1666 if (lapic_in_kernel(vcpu) && 1667 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1668 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1669 lapic_timer_int_injected(vcpu)) 1670 __kvm_wait_lapic_expire(vcpu); 1671 } 1672 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1673 1674 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1675 { 1676 struct kvm_timer *ktimer = &apic->lapic_timer; 1677 1678 kvm_apic_local_deliver(apic, APIC_LVTT); 1679 if (apic_lvtt_tscdeadline(apic)) { 1680 ktimer->tscdeadline = 0; 1681 } else if (apic_lvtt_oneshot(apic)) { 1682 ktimer->tscdeadline = 0; 1683 ktimer->target_expiration = 0; 1684 } 1685 } 1686 1687 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1688 { 1689 struct kvm_vcpu *vcpu = apic->vcpu; 1690 struct kvm_timer *ktimer = &apic->lapic_timer; 1691 1692 if (atomic_read(&apic->lapic_timer.pending)) 1693 return; 1694 1695 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1696 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1697 1698 if (!from_timer_fn && vcpu->arch.apicv_active) { 1699 WARN_ON(kvm_get_running_vcpu() != vcpu); 1700 kvm_apic_inject_pending_timer_irqs(apic); 1701 return; 1702 } 1703 1704 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1705 /* 1706 * Ensure the guest's timer has truly expired before posting an 1707 * interrupt. Open code the relevant checks to avoid querying 1708 * lapic_timer_int_injected(), which will be false since the 1709 * interrupt isn't yet injected. Waiting until after injecting 1710 * is not an option since that won't help a posted interrupt. 1711 */ 1712 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1713 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1714 __kvm_wait_lapic_expire(vcpu); 1715 kvm_apic_inject_pending_timer_irqs(apic); 1716 return; 1717 } 1718 1719 atomic_inc(&apic->lapic_timer.pending); 1720 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1721 if (from_timer_fn) 1722 kvm_vcpu_kick(vcpu); 1723 } 1724 1725 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1726 { 1727 struct kvm_timer *ktimer = &apic->lapic_timer; 1728 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1729 u64 ns = 0; 1730 ktime_t expire; 1731 struct kvm_vcpu *vcpu = apic->vcpu; 1732 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1733 unsigned long flags; 1734 ktime_t now; 1735 1736 if (unlikely(!tscdeadline || !this_tsc_khz)) 1737 return; 1738 1739 local_irq_save(flags); 1740 1741 now = ktime_get(); 1742 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1743 1744 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1745 do_div(ns, this_tsc_khz); 1746 1747 if (likely(tscdeadline > guest_tsc) && 1748 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1749 expire = ktime_add_ns(now, ns); 1750 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1751 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1752 } else 1753 apic_timer_expired(apic, false); 1754 1755 local_irq_restore(flags); 1756 } 1757 1758 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1759 { 1760 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1761 } 1762 1763 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1764 { 1765 ktime_t now, remaining; 1766 u64 ns_remaining_old, ns_remaining_new; 1767 1768 apic->lapic_timer.period = 1769 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1770 limit_periodic_timer_frequency(apic); 1771 1772 now = ktime_get(); 1773 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1774 if (ktime_to_ns(remaining) < 0) 1775 remaining = 0; 1776 1777 ns_remaining_old = ktime_to_ns(remaining); 1778 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1779 apic->divide_count, old_divisor); 1780 1781 apic->lapic_timer.tscdeadline += 1782 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1783 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1784 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1785 } 1786 1787 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1788 { 1789 ktime_t now; 1790 u64 tscl = rdtsc(); 1791 s64 deadline; 1792 1793 now = ktime_get(); 1794 apic->lapic_timer.period = 1795 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1796 1797 if (!apic->lapic_timer.period) { 1798 apic->lapic_timer.tscdeadline = 0; 1799 return false; 1800 } 1801 1802 limit_periodic_timer_frequency(apic); 1803 deadline = apic->lapic_timer.period; 1804 1805 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1806 if (unlikely(count_reg != APIC_TMICT)) { 1807 deadline = tmict_to_ns(apic, 1808 kvm_lapic_get_reg(apic, count_reg)); 1809 if (unlikely(deadline <= 0)) 1810 deadline = apic->lapic_timer.period; 1811 else if (unlikely(deadline > apic->lapic_timer.period)) { 1812 pr_info_ratelimited( 1813 "kvm: vcpu %i: requested lapic timer restore with " 1814 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1815 "Using initial count to start timer.\n", 1816 apic->vcpu->vcpu_id, 1817 count_reg, 1818 kvm_lapic_get_reg(apic, count_reg), 1819 deadline, apic->lapic_timer.period); 1820 kvm_lapic_set_reg(apic, count_reg, 0); 1821 deadline = apic->lapic_timer.period; 1822 } 1823 } 1824 } 1825 1826 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1827 nsec_to_cycles(apic->vcpu, deadline); 1828 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1829 1830 return true; 1831 } 1832 1833 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1834 { 1835 ktime_t now = ktime_get(); 1836 u64 tscl = rdtsc(); 1837 ktime_t delta; 1838 1839 /* 1840 * Synchronize both deadlines to the same time source or 1841 * differences in the periods (caused by differences in the 1842 * underlying clocks or numerical approximation errors) will 1843 * cause the two to drift apart over time as the errors 1844 * accumulate. 1845 */ 1846 apic->lapic_timer.target_expiration = 1847 ktime_add_ns(apic->lapic_timer.target_expiration, 1848 apic->lapic_timer.period); 1849 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1850 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1851 nsec_to_cycles(apic->vcpu, delta); 1852 } 1853 1854 static void start_sw_period(struct kvm_lapic *apic) 1855 { 1856 if (!apic->lapic_timer.period) 1857 return; 1858 1859 if (ktime_after(ktime_get(), 1860 apic->lapic_timer.target_expiration)) { 1861 apic_timer_expired(apic, false); 1862 1863 if (apic_lvtt_oneshot(apic)) 1864 return; 1865 1866 advance_periodic_target_expiration(apic); 1867 } 1868 1869 hrtimer_start(&apic->lapic_timer.timer, 1870 apic->lapic_timer.target_expiration, 1871 HRTIMER_MODE_ABS_HARD); 1872 } 1873 1874 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1875 { 1876 if (!lapic_in_kernel(vcpu)) 1877 return false; 1878 1879 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1880 } 1881 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1882 1883 static void cancel_hv_timer(struct kvm_lapic *apic) 1884 { 1885 WARN_ON(preemptible()); 1886 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1887 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 1888 apic->lapic_timer.hv_timer_in_use = false; 1889 } 1890 1891 static bool start_hv_timer(struct kvm_lapic *apic) 1892 { 1893 struct kvm_timer *ktimer = &apic->lapic_timer; 1894 struct kvm_vcpu *vcpu = apic->vcpu; 1895 bool expired; 1896 1897 WARN_ON(preemptible()); 1898 if (!kvm_can_use_hv_timer(vcpu)) 1899 return false; 1900 1901 if (!ktimer->tscdeadline) 1902 return false; 1903 1904 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 1905 return false; 1906 1907 ktimer->hv_timer_in_use = true; 1908 hrtimer_cancel(&ktimer->timer); 1909 1910 /* 1911 * To simplify handling the periodic timer, leave the hv timer running 1912 * even if the deadline timer has expired, i.e. rely on the resulting 1913 * VM-Exit to recompute the periodic timer's target expiration. 1914 */ 1915 if (!apic_lvtt_period(apic)) { 1916 /* 1917 * Cancel the hv timer if the sw timer fired while the hv timer 1918 * was being programmed, or if the hv timer itself expired. 1919 */ 1920 if (atomic_read(&ktimer->pending)) { 1921 cancel_hv_timer(apic); 1922 } else if (expired) { 1923 apic_timer_expired(apic, false); 1924 cancel_hv_timer(apic); 1925 } 1926 } 1927 1928 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1929 1930 return true; 1931 } 1932 1933 static void start_sw_timer(struct kvm_lapic *apic) 1934 { 1935 struct kvm_timer *ktimer = &apic->lapic_timer; 1936 1937 WARN_ON(preemptible()); 1938 if (apic->lapic_timer.hv_timer_in_use) 1939 cancel_hv_timer(apic); 1940 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1941 return; 1942 1943 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1944 start_sw_period(apic); 1945 else if (apic_lvtt_tscdeadline(apic)) 1946 start_sw_tscdeadline(apic); 1947 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1948 } 1949 1950 static void restart_apic_timer(struct kvm_lapic *apic) 1951 { 1952 preempt_disable(); 1953 1954 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1955 goto out; 1956 1957 if (!start_hv_timer(apic)) 1958 start_sw_timer(apic); 1959 out: 1960 preempt_enable(); 1961 } 1962 1963 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1964 { 1965 struct kvm_lapic *apic = vcpu->arch.apic; 1966 1967 preempt_disable(); 1968 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1969 if (!apic->lapic_timer.hv_timer_in_use) 1970 goto out; 1971 WARN_ON(kvm_vcpu_is_blocking(vcpu)); 1972 apic_timer_expired(apic, false); 1973 cancel_hv_timer(apic); 1974 1975 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1976 advance_periodic_target_expiration(apic); 1977 restart_apic_timer(apic); 1978 } 1979 out: 1980 preempt_enable(); 1981 } 1982 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1983 1984 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1985 { 1986 restart_apic_timer(vcpu->arch.apic); 1987 } 1988 1989 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1990 { 1991 struct kvm_lapic *apic = vcpu->arch.apic; 1992 1993 preempt_disable(); 1994 /* Possibly the TSC deadline timer is not enabled yet */ 1995 if (apic->lapic_timer.hv_timer_in_use) 1996 start_sw_timer(apic); 1997 preempt_enable(); 1998 } 1999 2000 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 2001 { 2002 struct kvm_lapic *apic = vcpu->arch.apic; 2003 2004 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 2005 restart_apic_timer(apic); 2006 } 2007 2008 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 2009 { 2010 atomic_set(&apic->lapic_timer.pending, 0); 2011 2012 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 2013 && !set_target_expiration(apic, count_reg)) 2014 return; 2015 2016 restart_apic_timer(apic); 2017 } 2018 2019 static void start_apic_timer(struct kvm_lapic *apic) 2020 { 2021 __start_apic_timer(apic, APIC_TMICT); 2022 } 2023 2024 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 2025 { 2026 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 2027 2028 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 2029 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 2030 if (lvt0_in_nmi_mode) { 2031 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2032 } else 2033 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 2034 } 2035 } 2036 2037 static int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2038 { 2039 int ret = 0; 2040 2041 trace_kvm_apic_write(reg, val); 2042 2043 switch (reg) { 2044 case APIC_ID: /* Local APIC ID */ 2045 if (!apic_x2apic_mode(apic)) 2046 kvm_apic_set_xapic_id(apic, val >> 24); 2047 else 2048 ret = 1; 2049 break; 2050 2051 case APIC_TASKPRI: 2052 report_tpr_access(apic, true); 2053 apic_set_tpr(apic, val & 0xff); 2054 break; 2055 2056 case APIC_EOI: 2057 apic_set_eoi(apic); 2058 break; 2059 2060 case APIC_LDR: 2061 if (!apic_x2apic_mode(apic)) 2062 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2063 else 2064 ret = 1; 2065 break; 2066 2067 case APIC_DFR: 2068 if (!apic_x2apic_mode(apic)) 2069 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2070 else 2071 ret = 1; 2072 break; 2073 2074 case APIC_SPIV: { 2075 u32 mask = 0x3ff; 2076 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2077 mask |= APIC_SPIV_DIRECTED_EOI; 2078 apic_set_spiv(apic, val & mask); 2079 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2080 int i; 2081 u32 lvt_val; 2082 2083 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2084 lvt_val = kvm_lapic_get_reg(apic, 2085 APIC_LVTT + 0x10 * i); 2086 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2087 lvt_val | APIC_LVT_MASKED); 2088 } 2089 apic_update_lvtt(apic); 2090 atomic_set(&apic->lapic_timer.pending, 0); 2091 2092 } 2093 break; 2094 } 2095 case APIC_ICR: 2096 WARN_ON_ONCE(apic_x2apic_mode(apic)); 2097 2098 /* No delay here, so we always clear the pending bit */ 2099 val &= ~APIC_ICR_BUSY; 2100 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2101 kvm_lapic_set_reg(apic, APIC_ICR, val); 2102 break; 2103 case APIC_ICR2: 2104 if (apic_x2apic_mode(apic)) 2105 ret = 1; 2106 else 2107 kvm_lapic_set_reg(apic, APIC_ICR2, val & 0xff000000); 2108 break; 2109 2110 case APIC_LVT0: 2111 apic_manage_nmi_watchdog(apic, val); 2112 fallthrough; 2113 case APIC_LVTTHMR: 2114 case APIC_LVTPC: 2115 case APIC_LVT1: 2116 case APIC_LVTERR: { 2117 /* TODO: Check vector */ 2118 size_t size; 2119 u32 index; 2120 2121 if (!kvm_apic_sw_enabled(apic)) 2122 val |= APIC_LVT_MASKED; 2123 size = ARRAY_SIZE(apic_lvt_mask); 2124 index = array_index_nospec( 2125 (reg - APIC_LVTT) >> 4, size); 2126 val &= apic_lvt_mask[index]; 2127 kvm_lapic_set_reg(apic, reg, val); 2128 break; 2129 } 2130 2131 case APIC_LVTT: 2132 if (!kvm_apic_sw_enabled(apic)) 2133 val |= APIC_LVT_MASKED; 2134 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2135 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2136 apic_update_lvtt(apic); 2137 break; 2138 2139 case APIC_TMICT: 2140 if (apic_lvtt_tscdeadline(apic)) 2141 break; 2142 2143 cancel_apic_timer(apic); 2144 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2145 start_apic_timer(apic); 2146 break; 2147 2148 case APIC_TDCR: { 2149 uint32_t old_divisor = apic->divide_count; 2150 2151 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2152 update_divide_count(apic); 2153 if (apic->divide_count != old_divisor && 2154 apic->lapic_timer.period) { 2155 hrtimer_cancel(&apic->lapic_timer.timer); 2156 update_target_expiration(apic, old_divisor); 2157 restart_apic_timer(apic); 2158 } 2159 break; 2160 } 2161 case APIC_ESR: 2162 if (apic_x2apic_mode(apic) && val != 0) 2163 ret = 1; 2164 break; 2165 2166 case APIC_SELF_IPI: 2167 if (apic_x2apic_mode(apic)) 2168 kvm_apic_send_ipi(apic, APIC_DEST_SELF | (val & APIC_VECTOR_MASK), 0); 2169 else 2170 ret = 1; 2171 break; 2172 default: 2173 ret = 1; 2174 break; 2175 } 2176 2177 /* 2178 * Recalculate APIC maps if necessary, e.g. if the software enable bit 2179 * was toggled, the APIC ID changed, etc... The maps are marked dirty 2180 * on relevant changes, i.e. this is a nop for most writes. 2181 */ 2182 kvm_recalculate_apic_map(apic->vcpu->kvm); 2183 2184 return ret; 2185 } 2186 2187 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2188 gpa_t address, int len, const void *data) 2189 { 2190 struct kvm_lapic *apic = to_lapic(this); 2191 unsigned int offset = address - apic->base_address; 2192 u32 val; 2193 2194 if (!apic_mmio_in_range(apic, address)) 2195 return -EOPNOTSUPP; 2196 2197 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2198 if (!kvm_check_has_quirk(vcpu->kvm, 2199 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2200 return -EOPNOTSUPP; 2201 2202 return 0; 2203 } 2204 2205 /* 2206 * APIC register must be aligned on 128-bits boundary. 2207 * 32/64/128 bits registers must be accessed thru 32 bits. 2208 * Refer SDM 8.4.1 2209 */ 2210 if (len != 4 || (offset & 0xf)) 2211 return 0; 2212 2213 val = *(u32*)data; 2214 2215 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2216 2217 return 0; 2218 } 2219 2220 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2221 { 2222 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2223 } 2224 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2225 2226 /* emulate APIC access in a trap manner */ 2227 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2228 { 2229 u32 val = kvm_lapic_get_reg(vcpu->arch.apic, offset); 2230 2231 /* TODO: optimize to just emulate side effect w/o one more write */ 2232 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2233 } 2234 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2235 2236 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2237 { 2238 struct kvm_lapic *apic = vcpu->arch.apic; 2239 2240 if (!vcpu->arch.apic) 2241 return; 2242 2243 hrtimer_cancel(&apic->lapic_timer.timer); 2244 2245 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2246 static_branch_slow_dec_deferred(&apic_hw_disabled); 2247 2248 if (!apic->sw_enabled) 2249 static_branch_slow_dec_deferred(&apic_sw_disabled); 2250 2251 if (apic->regs) 2252 free_page((unsigned long)apic->regs); 2253 2254 kfree(apic); 2255 } 2256 2257 /* 2258 *---------------------------------------------------------------------- 2259 * LAPIC interface 2260 *---------------------------------------------------------------------- 2261 */ 2262 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2263 { 2264 struct kvm_lapic *apic = vcpu->arch.apic; 2265 2266 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2267 return 0; 2268 2269 return apic->lapic_timer.tscdeadline; 2270 } 2271 2272 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2273 { 2274 struct kvm_lapic *apic = vcpu->arch.apic; 2275 2276 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2277 return; 2278 2279 hrtimer_cancel(&apic->lapic_timer.timer); 2280 apic->lapic_timer.tscdeadline = data; 2281 start_apic_timer(apic); 2282 } 2283 2284 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2285 { 2286 apic_set_tpr(vcpu->arch.apic, (cr8 & 0x0f) << 4); 2287 } 2288 2289 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2290 { 2291 u64 tpr; 2292 2293 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2294 2295 return (tpr & 0xf0) >> 4; 2296 } 2297 2298 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2299 { 2300 u64 old_value = vcpu->arch.apic_base; 2301 struct kvm_lapic *apic = vcpu->arch.apic; 2302 2303 vcpu->arch.apic_base = value; 2304 2305 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2306 kvm_update_cpuid_runtime(vcpu); 2307 2308 if (!apic) 2309 return; 2310 2311 /* update jump label if enable bit changes */ 2312 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2313 if (value & MSR_IA32_APICBASE_ENABLE) { 2314 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2315 static_branch_slow_dec_deferred(&apic_hw_disabled); 2316 /* Check if there are APF page ready requests pending */ 2317 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2318 } else { 2319 static_branch_inc(&apic_hw_disabled.key); 2320 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2321 } 2322 } 2323 2324 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2325 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2326 2327 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2328 static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu); 2329 2330 apic->base_address = apic->vcpu->arch.apic_base & 2331 MSR_IA32_APICBASE_BASE; 2332 2333 if ((value & MSR_IA32_APICBASE_ENABLE) && 2334 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2335 pr_warn_once("APIC base relocation is unsupported by KVM"); 2336 } 2337 2338 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2339 { 2340 struct kvm_lapic *apic = vcpu->arch.apic; 2341 2342 if (vcpu->arch.apicv_active) { 2343 /* irr_pending is always true when apicv is activated. */ 2344 apic->irr_pending = true; 2345 apic->isr_count = 1; 2346 } else { 2347 /* 2348 * Don't clear irr_pending, searching the IRR can race with 2349 * updates from the CPU as APICv is still active from hardware's 2350 * perspective. The flag will be cleared as appropriate when 2351 * KVM injects the interrupt. 2352 */ 2353 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2354 } 2355 } 2356 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2357 2358 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2359 { 2360 struct kvm_lapic *apic = vcpu->arch.apic; 2361 u64 msr_val; 2362 int i; 2363 2364 if (!init_event) { 2365 msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; 2366 if (kvm_vcpu_is_reset_bsp(vcpu)) 2367 msr_val |= MSR_IA32_APICBASE_BSP; 2368 kvm_lapic_set_base(vcpu, msr_val); 2369 } 2370 2371 if (!apic) 2372 return; 2373 2374 /* Stop the timer in case it's a reset to an active apic */ 2375 hrtimer_cancel(&apic->lapic_timer.timer); 2376 2377 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */ 2378 if (!init_event) 2379 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2380 kvm_apic_set_version(apic->vcpu); 2381 2382 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2383 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2384 apic_update_lvtt(apic); 2385 if (kvm_vcpu_is_reset_bsp(vcpu) && 2386 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2387 kvm_lapic_set_reg(apic, APIC_LVT0, 2388 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2389 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2390 2391 kvm_apic_set_dfr(apic, 0xffffffffU); 2392 apic_set_spiv(apic, 0xff); 2393 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2394 if (!apic_x2apic_mode(apic)) 2395 kvm_apic_set_ldr(apic, 0); 2396 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2397 if (!apic_x2apic_mode(apic)) { 2398 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2399 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2400 } else { 2401 kvm_lapic_set_reg64(apic, APIC_ICR, 0); 2402 } 2403 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2404 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2405 for (i = 0; i < 8; i++) { 2406 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2407 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2408 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2409 } 2410 kvm_apic_update_apicv(vcpu); 2411 apic->highest_isr_cache = -1; 2412 update_divide_count(apic); 2413 atomic_set(&apic->lapic_timer.pending, 0); 2414 2415 vcpu->arch.pv_eoi.msr_val = 0; 2416 apic_update_ppr(apic); 2417 if (vcpu->arch.apicv_active) { 2418 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu); 2419 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, -1); 2420 static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, -1); 2421 } 2422 2423 vcpu->arch.apic_arb_prio = 0; 2424 vcpu->arch.apic_attention = 0; 2425 2426 kvm_recalculate_apic_map(vcpu->kvm); 2427 } 2428 2429 /* 2430 *---------------------------------------------------------------------- 2431 * timer interface 2432 *---------------------------------------------------------------------- 2433 */ 2434 2435 static bool lapic_is_periodic(struct kvm_lapic *apic) 2436 { 2437 return apic_lvtt_period(apic); 2438 } 2439 2440 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2441 { 2442 struct kvm_lapic *apic = vcpu->arch.apic; 2443 2444 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2445 return atomic_read(&apic->lapic_timer.pending); 2446 2447 return 0; 2448 } 2449 2450 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2451 { 2452 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2453 int vector, mode, trig_mode; 2454 2455 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2456 vector = reg & APIC_VECTOR_MASK; 2457 mode = reg & APIC_MODE_MASK; 2458 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2459 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2460 NULL); 2461 } 2462 return 0; 2463 } 2464 2465 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2466 { 2467 struct kvm_lapic *apic = vcpu->arch.apic; 2468 2469 if (apic) 2470 kvm_apic_local_deliver(apic, APIC_LVT0); 2471 } 2472 2473 static const struct kvm_io_device_ops apic_mmio_ops = { 2474 .read = apic_mmio_read, 2475 .write = apic_mmio_write, 2476 }; 2477 2478 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2479 { 2480 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2481 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2482 2483 apic_timer_expired(apic, true); 2484 2485 if (lapic_is_periodic(apic)) { 2486 advance_periodic_target_expiration(apic); 2487 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2488 return HRTIMER_RESTART; 2489 } else 2490 return HRTIMER_NORESTART; 2491 } 2492 2493 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2494 { 2495 struct kvm_lapic *apic; 2496 2497 ASSERT(vcpu != NULL); 2498 2499 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2500 if (!apic) 2501 goto nomem; 2502 2503 vcpu->arch.apic = apic; 2504 2505 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2506 if (!apic->regs) { 2507 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2508 vcpu->vcpu_id); 2509 goto nomem_free_apic; 2510 } 2511 apic->vcpu = vcpu; 2512 2513 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2514 HRTIMER_MODE_ABS_HARD); 2515 apic->lapic_timer.timer.function = apic_timer_fn; 2516 if (timer_advance_ns == -1) { 2517 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2518 lapic_timer_advance_dynamic = true; 2519 } else { 2520 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2521 lapic_timer_advance_dynamic = false; 2522 } 2523 2524 /* 2525 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing 2526 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset(). 2527 */ 2528 vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE; 2529 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2530 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2531 2532 return 0; 2533 nomem_free_apic: 2534 kfree(apic); 2535 vcpu->arch.apic = NULL; 2536 nomem: 2537 return -ENOMEM; 2538 } 2539 2540 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2541 { 2542 struct kvm_lapic *apic = vcpu->arch.apic; 2543 u32 ppr; 2544 2545 if (!kvm_apic_present(vcpu)) 2546 return -1; 2547 2548 __apic_update_ppr(apic, &ppr); 2549 return apic_has_interrupt_for_ppr(apic, ppr); 2550 } 2551 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2552 2553 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2554 { 2555 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2556 2557 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2558 return 1; 2559 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2560 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2561 return 1; 2562 return 0; 2563 } 2564 2565 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2566 { 2567 struct kvm_lapic *apic = vcpu->arch.apic; 2568 2569 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2570 kvm_apic_inject_pending_timer_irqs(apic); 2571 atomic_set(&apic->lapic_timer.pending, 0); 2572 } 2573 } 2574 2575 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2576 { 2577 int vector = kvm_apic_has_interrupt(vcpu); 2578 struct kvm_lapic *apic = vcpu->arch.apic; 2579 u32 ppr; 2580 2581 if (vector == -1) 2582 return -1; 2583 2584 /* 2585 * We get here even with APIC virtualization enabled, if doing 2586 * nested virtualization and L1 runs with the "acknowledge interrupt 2587 * on exit" mode. Then we cannot inject the interrupt via RVI, 2588 * because the process would deliver it through the IDT. 2589 */ 2590 2591 apic_clear_irr(vector, apic); 2592 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2593 /* 2594 * For auto-EOI interrupts, there might be another pending 2595 * interrupt above PPR, so check whether to raise another 2596 * KVM_REQ_EVENT. 2597 */ 2598 apic_update_ppr(apic); 2599 } else { 2600 /* 2601 * For normal interrupts, PPR has been raised and there cannot 2602 * be a higher-priority pending interrupt---except if there was 2603 * a concurrent interrupt injection, but that would have 2604 * triggered KVM_REQ_EVENT already. 2605 */ 2606 apic_set_isr(vector, apic); 2607 __apic_update_ppr(apic, &ppr); 2608 } 2609 2610 return vector; 2611 } 2612 2613 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2614 struct kvm_lapic_state *s, bool set) 2615 { 2616 if (apic_x2apic_mode(vcpu->arch.apic)) { 2617 u32 *id = (u32 *)(s->regs + APIC_ID); 2618 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2619 u64 icr; 2620 2621 if (vcpu->kvm->arch.x2apic_format) { 2622 if (*id != vcpu->vcpu_id) 2623 return -EINVAL; 2624 } else { 2625 if (set) 2626 *id >>= 24; 2627 else 2628 *id <<= 24; 2629 } 2630 2631 /* 2632 * In x2APIC mode, the LDR is fixed and based on the id. And 2633 * ICR is internally a single 64-bit register, but needs to be 2634 * split to ICR+ICR2 in userspace for backwards compatibility. 2635 */ 2636 if (set) { 2637 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2638 2639 icr = __kvm_lapic_get_reg(s->regs, APIC_ICR) | 2640 (u64)__kvm_lapic_get_reg(s->regs, APIC_ICR2) << 32; 2641 __kvm_lapic_set_reg64(s->regs, APIC_ICR, icr); 2642 } else { 2643 icr = __kvm_lapic_get_reg64(s->regs, APIC_ICR); 2644 __kvm_lapic_set_reg(s->regs, APIC_ICR2, icr >> 32); 2645 } 2646 } 2647 2648 return 0; 2649 } 2650 2651 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2652 { 2653 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2654 2655 /* 2656 * Get calculated timer current count for remaining timer period (if 2657 * any) and store it in the returned register set. 2658 */ 2659 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2660 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2661 2662 return kvm_apic_state_fixup(vcpu, s, false); 2663 } 2664 2665 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2666 { 2667 struct kvm_lapic *apic = vcpu->arch.apic; 2668 int r; 2669 2670 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2671 /* set SPIV separately to get count of SW disabled APICs right */ 2672 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2673 2674 r = kvm_apic_state_fixup(vcpu, s, true); 2675 if (r) { 2676 kvm_recalculate_apic_map(vcpu->kvm); 2677 return r; 2678 } 2679 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2680 2681 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2682 kvm_recalculate_apic_map(vcpu->kvm); 2683 kvm_apic_set_version(vcpu); 2684 2685 apic_update_ppr(apic); 2686 cancel_apic_timer(apic); 2687 apic->lapic_timer.expired_tscdeadline = 0; 2688 apic_update_lvtt(apic); 2689 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2690 update_divide_count(apic); 2691 __start_apic_timer(apic, APIC_TMCCT); 2692 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 2693 kvm_apic_update_apicv(vcpu); 2694 apic->highest_isr_cache = -1; 2695 if (vcpu->arch.apicv_active) { 2696 static_call_cond(kvm_x86_apicv_post_state_restore)(vcpu); 2697 static_call_cond(kvm_x86_hwapic_irr_update)(vcpu, apic_find_highest_irr(apic)); 2698 static_call_cond(kvm_x86_hwapic_isr_update)(vcpu, apic_find_highest_isr(apic)); 2699 } 2700 kvm_make_request(KVM_REQ_EVENT, vcpu); 2701 if (ioapic_in_kernel(vcpu->kvm)) 2702 kvm_rtc_eoi_tracking_restore_one(vcpu); 2703 2704 vcpu->arch.apic_arb_prio = 0; 2705 2706 return 0; 2707 } 2708 2709 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2710 { 2711 struct hrtimer *timer; 2712 2713 if (!lapic_in_kernel(vcpu) || 2714 kvm_can_post_timer_interrupt(vcpu)) 2715 return; 2716 2717 timer = &vcpu->arch.apic->lapic_timer.timer; 2718 if (hrtimer_cancel(timer)) 2719 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2720 } 2721 2722 /* 2723 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2724 * 2725 * Detect whether guest triggered PV EOI since the 2726 * last entry. If yes, set EOI on guests's behalf. 2727 * Clear PV EOI in guest memory in any case. 2728 */ 2729 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2730 struct kvm_lapic *apic) 2731 { 2732 int vector; 2733 /* 2734 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2735 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2736 * 2737 * KVM_APIC_PV_EOI_PENDING is unset: 2738 * -> host disabled PV EOI. 2739 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2740 * -> host enabled PV EOI, guest did not execute EOI yet. 2741 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2742 * -> host enabled PV EOI, guest executed EOI. 2743 */ 2744 BUG_ON(!pv_eoi_enabled(vcpu)); 2745 2746 if (pv_eoi_test_and_clr_pending(vcpu)) 2747 return; 2748 vector = apic_set_eoi(apic); 2749 trace_kvm_pv_eoi(apic, vector); 2750 } 2751 2752 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2753 { 2754 u32 data; 2755 2756 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2757 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2758 2759 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2760 return; 2761 2762 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2763 sizeof(u32))) 2764 return; 2765 2766 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2767 } 2768 2769 /* 2770 * apic_sync_pv_eoi_to_guest - called before vmentry 2771 * 2772 * Detect whether it's safe to enable PV EOI and 2773 * if yes do so. 2774 */ 2775 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2776 struct kvm_lapic *apic) 2777 { 2778 if (!pv_eoi_enabled(vcpu) || 2779 /* IRR set or many bits in ISR: could be nested. */ 2780 apic->irr_pending || 2781 /* Cache not set: could be safe but we don't bother. */ 2782 apic->highest_isr_cache == -1 || 2783 /* Need EOI to update ioapic. */ 2784 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2785 /* 2786 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2787 * so we need not do anything here. 2788 */ 2789 return; 2790 } 2791 2792 pv_eoi_set_pending(apic->vcpu); 2793 } 2794 2795 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2796 { 2797 u32 data, tpr; 2798 int max_irr, max_isr; 2799 struct kvm_lapic *apic = vcpu->arch.apic; 2800 2801 apic_sync_pv_eoi_to_guest(vcpu, apic); 2802 2803 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2804 return; 2805 2806 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2807 max_irr = apic_find_highest_irr(apic); 2808 if (max_irr < 0) 2809 max_irr = 0; 2810 max_isr = apic_find_highest_isr(apic); 2811 if (max_isr < 0) 2812 max_isr = 0; 2813 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2814 2815 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2816 sizeof(u32)); 2817 } 2818 2819 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2820 { 2821 if (vapic_addr) { 2822 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2823 &vcpu->arch.apic->vapic_cache, 2824 vapic_addr, sizeof(u32))) 2825 return -EINVAL; 2826 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2827 } else { 2828 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2829 } 2830 2831 vcpu->arch.apic->vapic_addr = vapic_addr; 2832 return 0; 2833 } 2834 2835 int kvm_x2apic_icr_write(struct kvm_lapic *apic, u64 data) 2836 { 2837 data &= ~APIC_ICR_BUSY; 2838 2839 kvm_apic_send_ipi(apic, (u32)data, (u32)(data >> 32)); 2840 kvm_lapic_set_reg64(apic, APIC_ICR, data); 2841 trace_kvm_apic_write(APIC_ICR, data); 2842 return 0; 2843 } 2844 2845 static int kvm_lapic_msr_read(struct kvm_lapic *apic, u32 reg, u64 *data) 2846 { 2847 u32 low; 2848 2849 if (reg == APIC_ICR) { 2850 *data = kvm_lapic_get_reg64(apic, APIC_ICR); 2851 return 0; 2852 } 2853 2854 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2855 return 1; 2856 2857 *data = low; 2858 2859 return 0; 2860 } 2861 2862 static int kvm_lapic_msr_write(struct kvm_lapic *apic, u32 reg, u64 data) 2863 { 2864 /* 2865 * ICR is a 64-bit register in x2APIC mode (and Hyper'v PV vAPIC) and 2866 * can be written as such, all other registers remain accessible only 2867 * through 32-bit reads/writes. 2868 */ 2869 if (reg == APIC_ICR) 2870 return kvm_x2apic_icr_write(apic, data); 2871 2872 return kvm_lapic_reg_write(apic, reg, (u32)data); 2873 } 2874 2875 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2876 { 2877 struct kvm_lapic *apic = vcpu->arch.apic; 2878 u32 reg = (msr - APIC_BASE_MSR) << 4; 2879 2880 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2881 return 1; 2882 2883 return kvm_lapic_msr_write(apic, reg, data); 2884 } 2885 2886 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2887 { 2888 struct kvm_lapic *apic = vcpu->arch.apic; 2889 u32 reg = (msr - APIC_BASE_MSR) << 4; 2890 2891 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2892 return 1; 2893 2894 if (reg == APIC_DFR) 2895 return 1; 2896 2897 return kvm_lapic_msr_read(apic, reg, data); 2898 } 2899 2900 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2901 { 2902 if (!lapic_in_kernel(vcpu)) 2903 return 1; 2904 2905 return kvm_lapic_msr_write(vcpu->arch.apic, reg, data); 2906 } 2907 2908 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2909 { 2910 if (!lapic_in_kernel(vcpu)) 2911 return 1; 2912 2913 return kvm_lapic_msr_read(vcpu->arch.apic, reg, data); 2914 } 2915 2916 int kvm_lapic_set_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2917 { 2918 u64 addr = data & ~KVM_MSR_ENABLED; 2919 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2920 unsigned long new_len; 2921 int ret; 2922 2923 if (!IS_ALIGNED(addr, 4)) 2924 return 1; 2925 2926 if (data & KVM_MSR_ENABLED) { 2927 if (addr == ghc->gpa && len <= ghc->len) 2928 new_len = ghc->len; 2929 else 2930 new_len = len; 2931 2932 ret = kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2933 if (ret) 2934 return ret; 2935 } 2936 2937 vcpu->arch.pv_eoi.msr_val = data; 2938 2939 return 0; 2940 } 2941 2942 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2943 { 2944 struct kvm_lapic *apic = vcpu->arch.apic; 2945 u8 sipi_vector; 2946 int r; 2947 unsigned long pe; 2948 2949 if (!lapic_in_kernel(vcpu)) 2950 return 0; 2951 2952 /* 2953 * Read pending events before calling the check_events 2954 * callback. 2955 */ 2956 pe = smp_load_acquire(&apic->pending_events); 2957 if (!pe) 2958 return 0; 2959 2960 if (is_guest_mode(vcpu)) { 2961 r = kvm_check_nested_events(vcpu); 2962 if (r < 0) 2963 return r == -EBUSY ? 0 : r; 2964 /* 2965 * If an event has happened and caused a vmexit, 2966 * we know INITs are latched and therefore 2967 * we will not incorrectly deliver an APIC 2968 * event instead of a vmexit. 2969 */ 2970 } 2971 2972 /* 2973 * INITs are latched while CPU is in specific states 2974 * (SMM, VMX root mode, SVM with GIF=0). 2975 * Because a CPU cannot be in these states immediately 2976 * after it has processed an INIT signal (and thus in 2977 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2978 * and leave the INIT pending. 2979 */ 2980 if (kvm_vcpu_latch_init(vcpu)) { 2981 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2982 if (test_bit(KVM_APIC_SIPI, &pe)) 2983 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2984 return 0; 2985 } 2986 2987 if (test_bit(KVM_APIC_INIT, &pe)) { 2988 clear_bit(KVM_APIC_INIT, &apic->pending_events); 2989 kvm_vcpu_reset(vcpu, true); 2990 if (kvm_vcpu_is_bsp(apic->vcpu)) 2991 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2992 else 2993 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2994 } 2995 if (test_bit(KVM_APIC_SIPI, &pe)) { 2996 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2997 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2998 /* evaluate pending_events before reading the vector */ 2999 smp_rmb(); 3000 sipi_vector = apic->sipi_vector; 3001 static_call(kvm_x86_vcpu_deliver_sipi_vector)(vcpu, sipi_vector); 3002 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3003 } 3004 } 3005 return 0; 3006 } 3007 3008 void kvm_lapic_exit(void) 3009 { 3010 static_key_deferred_flush(&apic_hw_disabled); 3011 WARN_ON(static_branch_unlikely(&apic_hw_disabled.key)); 3012 static_key_deferred_flush(&apic_sw_disabled); 3013 WARN_ON(static_branch_unlikely(&apic_sw_disabled.key)); 3014 } 3015