xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision 2127c01b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "trace.h"
40 #include "x86.h"
41 #include "cpuid.h"
42 #include "hyperv.h"
43 
44 #ifndef CONFIG_X86_64
45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
46 #else
47 #define mod_64(x, y) ((x) % (y))
48 #endif
49 
50 #define PRId64 "d"
51 #define PRIx64 "llx"
52 #define PRIu64 "u"
53 #define PRIo64 "o"
54 
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION			(0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
57 #define LAPIC_MMIO_LENGTH		(1 << 12)
58 /* followed define is not in apicdef.h */
59 #define APIC_SHORT_MASK			0xc0000
60 #define APIC_DEST_NOSHORT		0x0
61 #define APIC_DEST_MASK			0x800
62 #define MAX_APIC_VECTOR			256
63 #define APIC_VECTORS_PER_REG		32
64 
65 #define APIC_BROADCAST			0xFF
66 #define X2APIC_BROADCAST		0xFFFFFFFFul
67 
68 #define LAPIC_TIMER_ADVANCE_ADJUST_DONE 100
69 #define LAPIC_TIMER_ADVANCE_ADJUST_INIT 1000
70 /* step-by-step approximation to mitigate fluctuation */
71 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
72 
73 static inline int apic_test_vector(int vec, void *bitmap)
74 {
75 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
76 }
77 
78 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
79 {
80 	struct kvm_lapic *apic = vcpu->arch.apic;
81 
82 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
83 		apic_test_vector(vector, apic->regs + APIC_IRR);
84 }
85 
86 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
87 {
88 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
89 }
90 
91 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
92 {
93 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
94 }
95 
96 struct static_key_deferred apic_hw_disabled __read_mostly;
97 struct static_key_deferred apic_sw_disabled __read_mostly;
98 
99 static inline int apic_enabled(struct kvm_lapic *apic)
100 {
101 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
102 }
103 
104 #define LVT_MASK	\
105 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
106 
107 #define LINT_MASK	\
108 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
109 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
110 
111 static inline u8 kvm_xapic_id(struct kvm_lapic *apic)
112 {
113 	return kvm_lapic_get_reg(apic, APIC_ID) >> 24;
114 }
115 
116 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
117 {
118 	return apic->vcpu->vcpu_id;
119 }
120 
121 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
122 {
123 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
124 }
125 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt);
126 
127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
128 {
129 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
130 }
131 
132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
133 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
134 	switch (map->mode) {
135 	case KVM_APIC_MODE_X2APIC: {
136 		u32 offset = (dest_id >> 16) * 16;
137 		u32 max_apic_id = map->max_apic_id;
138 
139 		if (offset <= max_apic_id) {
140 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
141 
142 			offset = array_index_nospec(offset, map->max_apic_id + 1);
143 			*cluster = &map->phys_map[offset];
144 			*mask = dest_id & (0xffff >> (16 - cluster_size));
145 		} else {
146 			*mask = 0;
147 		}
148 
149 		return true;
150 		}
151 	case KVM_APIC_MODE_XAPIC_FLAT:
152 		*cluster = map->xapic_flat_map;
153 		*mask = dest_id & 0xff;
154 		return true;
155 	case KVM_APIC_MODE_XAPIC_CLUSTER:
156 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
157 		*mask = dest_id & 0xf;
158 		return true;
159 	default:
160 		/* Not optimized. */
161 		return false;
162 	}
163 }
164 
165 static void kvm_apic_map_free(struct rcu_head *rcu)
166 {
167 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
168 
169 	kvfree(map);
170 }
171 
172 static void recalculate_apic_map(struct kvm *kvm)
173 {
174 	struct kvm_apic_map *new, *old = NULL;
175 	struct kvm_vcpu *vcpu;
176 	int i;
177 	u32 max_id = 255; /* enough space for any xAPIC ID */
178 
179 	mutex_lock(&kvm->arch.apic_map_lock);
180 
181 	kvm_for_each_vcpu(i, vcpu, kvm)
182 		if (kvm_apic_present(vcpu))
183 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
184 
185 	new = kvzalloc(sizeof(struct kvm_apic_map) +
186 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
187 			   GFP_KERNEL_ACCOUNT);
188 
189 	if (!new)
190 		goto out;
191 
192 	new->max_apic_id = max_id;
193 
194 	kvm_for_each_vcpu(i, vcpu, kvm) {
195 		struct kvm_lapic *apic = vcpu->arch.apic;
196 		struct kvm_lapic **cluster;
197 		u16 mask;
198 		u32 ldr;
199 		u8 xapic_id;
200 		u32 x2apic_id;
201 
202 		if (!kvm_apic_present(vcpu))
203 			continue;
204 
205 		xapic_id = kvm_xapic_id(apic);
206 		x2apic_id = kvm_x2apic_id(apic);
207 
208 		/* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
209 		if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
210 				x2apic_id <= new->max_apic_id)
211 			new->phys_map[x2apic_id] = apic;
212 		/*
213 		 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
214 		 * prevent them from masking VCPUs with APIC ID <= 0xff.
215 		 */
216 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
217 			new->phys_map[xapic_id] = apic;
218 
219 		ldr = kvm_lapic_get_reg(apic, APIC_LDR);
220 
221 		if (apic_x2apic_mode(apic)) {
222 			new->mode |= KVM_APIC_MODE_X2APIC;
223 		} else if (ldr) {
224 			ldr = GET_APIC_LOGICAL_ID(ldr);
225 			if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
226 				new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
227 			else
228 				new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
229 		}
230 
231 		if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
232 			continue;
233 
234 		if (mask)
235 			cluster[ffs(mask) - 1] = apic;
236 	}
237 out:
238 	old = rcu_dereference_protected(kvm->arch.apic_map,
239 			lockdep_is_held(&kvm->arch.apic_map_lock));
240 	rcu_assign_pointer(kvm->arch.apic_map, new);
241 	mutex_unlock(&kvm->arch.apic_map_lock);
242 
243 	if (old)
244 		call_rcu(&old->rcu, kvm_apic_map_free);
245 
246 	kvm_make_scan_ioapic_request(kvm);
247 }
248 
249 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
250 {
251 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
252 
253 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
254 
255 	if (enabled != apic->sw_enabled) {
256 		apic->sw_enabled = enabled;
257 		if (enabled)
258 			static_key_slow_dec_deferred(&apic_sw_disabled);
259 		else
260 			static_key_slow_inc(&apic_sw_disabled.key);
261 	}
262 }
263 
264 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
265 {
266 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
267 	recalculate_apic_map(apic->vcpu->kvm);
268 }
269 
270 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
271 {
272 	kvm_lapic_set_reg(apic, APIC_LDR, id);
273 	recalculate_apic_map(apic->vcpu->kvm);
274 }
275 
276 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
277 {
278 	return ((id >> 4) << 16) | (1 << (id & 0xf));
279 }
280 
281 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
282 {
283 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
284 
285 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
286 
287 	kvm_lapic_set_reg(apic, APIC_ID, id);
288 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
289 	recalculate_apic_map(apic->vcpu->kvm);
290 }
291 
292 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
293 {
294 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
295 }
296 
297 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type)
298 {
299 	return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK;
300 }
301 
302 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
303 {
304 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
305 }
306 
307 static inline int apic_lvtt_period(struct kvm_lapic *apic)
308 {
309 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
310 }
311 
312 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
313 {
314 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
315 }
316 
317 static inline int apic_lvt_nmi_mode(u32 lvt_val)
318 {
319 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
320 }
321 
322 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
323 {
324 	struct kvm_lapic *apic = vcpu->arch.apic;
325 	struct kvm_cpuid_entry2 *feat;
326 	u32 v = APIC_VERSION;
327 
328 	if (!lapic_in_kernel(vcpu))
329 		return;
330 
331 	/*
332 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
333 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
334 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
335 	 * version first and level-triggered interrupts never get EOIed in
336 	 * IOAPIC.
337 	 */
338 	feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0);
339 	if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) &&
340 	    !ioapic_in_kernel(vcpu->kvm))
341 		v |= APIC_LVR_DIRECTED_EOI;
342 	kvm_lapic_set_reg(apic, APIC_LVR, v);
343 }
344 
345 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
346 	LVT_MASK ,      /* part LVTT mask, timer mode mask added at runtime */
347 	LVT_MASK | APIC_MODE_MASK,	/* LVTTHMR */
348 	LVT_MASK | APIC_MODE_MASK,	/* LVTPC */
349 	LINT_MASK, LINT_MASK,	/* LVT0-1 */
350 	LVT_MASK		/* LVTERR */
351 };
352 
353 static int find_highest_vector(void *bitmap)
354 {
355 	int vec;
356 	u32 *reg;
357 
358 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
359 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
360 		reg = bitmap + REG_POS(vec);
361 		if (*reg)
362 			return __fls(*reg) + vec;
363 	}
364 
365 	return -1;
366 }
367 
368 static u8 count_vectors(void *bitmap)
369 {
370 	int vec;
371 	u32 *reg;
372 	u8 count = 0;
373 
374 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
375 		reg = bitmap + REG_POS(vec);
376 		count += hweight32(*reg);
377 	}
378 
379 	return count;
380 }
381 
382 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
383 {
384 	u32 i, vec;
385 	u32 pir_val, irr_val, prev_irr_val;
386 	int max_updated_irr;
387 
388 	max_updated_irr = -1;
389 	*max_irr = -1;
390 
391 	for (i = vec = 0; i <= 7; i++, vec += 32) {
392 		pir_val = READ_ONCE(pir[i]);
393 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
394 		if (pir_val) {
395 			prev_irr_val = irr_val;
396 			irr_val |= xchg(&pir[i], 0);
397 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
398 			if (prev_irr_val != irr_val) {
399 				max_updated_irr =
400 					__fls(irr_val ^ prev_irr_val) + vec;
401 			}
402 		}
403 		if (irr_val)
404 			*max_irr = __fls(irr_val) + vec;
405 	}
406 
407 	return ((max_updated_irr != -1) &&
408 		(max_updated_irr == *max_irr));
409 }
410 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
411 
412 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
413 {
414 	struct kvm_lapic *apic = vcpu->arch.apic;
415 
416 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
417 }
418 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
419 
420 static inline int apic_search_irr(struct kvm_lapic *apic)
421 {
422 	return find_highest_vector(apic->regs + APIC_IRR);
423 }
424 
425 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
426 {
427 	int result;
428 
429 	/*
430 	 * Note that irr_pending is just a hint. It will be always
431 	 * true with virtual interrupt delivery enabled.
432 	 */
433 	if (!apic->irr_pending)
434 		return -1;
435 
436 	result = apic_search_irr(apic);
437 	ASSERT(result == -1 || result >= 16);
438 
439 	return result;
440 }
441 
442 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
443 {
444 	struct kvm_vcpu *vcpu;
445 
446 	vcpu = apic->vcpu;
447 
448 	if (unlikely(vcpu->arch.apicv_active)) {
449 		/* need to update RVI */
450 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
451 		kvm_x86_ops->hwapic_irr_update(vcpu,
452 				apic_find_highest_irr(apic));
453 	} else {
454 		apic->irr_pending = false;
455 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
456 		if (apic_search_irr(apic) != -1)
457 			apic->irr_pending = true;
458 	}
459 }
460 
461 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
462 {
463 	struct kvm_vcpu *vcpu;
464 
465 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
466 		return;
467 
468 	vcpu = apic->vcpu;
469 
470 	/*
471 	 * With APIC virtualization enabled, all caching is disabled
472 	 * because the processor can modify ISR under the hood.  Instead
473 	 * just set SVI.
474 	 */
475 	if (unlikely(vcpu->arch.apicv_active))
476 		kvm_x86_ops->hwapic_isr_update(vcpu, vec);
477 	else {
478 		++apic->isr_count;
479 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
480 		/*
481 		 * ISR (in service register) bit is set when injecting an interrupt.
482 		 * The highest vector is injected. Thus the latest bit set matches
483 		 * the highest bit in ISR.
484 		 */
485 		apic->highest_isr_cache = vec;
486 	}
487 }
488 
489 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
490 {
491 	int result;
492 
493 	/*
494 	 * Note that isr_count is always 1, and highest_isr_cache
495 	 * is always -1, with APIC virtualization enabled.
496 	 */
497 	if (!apic->isr_count)
498 		return -1;
499 	if (likely(apic->highest_isr_cache != -1))
500 		return apic->highest_isr_cache;
501 
502 	result = find_highest_vector(apic->regs + APIC_ISR);
503 	ASSERT(result == -1 || result >= 16);
504 
505 	return result;
506 }
507 
508 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
509 {
510 	struct kvm_vcpu *vcpu;
511 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
512 		return;
513 
514 	vcpu = apic->vcpu;
515 
516 	/*
517 	 * We do get here for APIC virtualization enabled if the guest
518 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
519 	 * to trigger a new interrupt delivery by writing the SVI field;
520 	 * on the other hand isr_count and highest_isr_cache are unused
521 	 * and must be left alone.
522 	 */
523 	if (unlikely(vcpu->arch.apicv_active))
524 		kvm_x86_ops->hwapic_isr_update(vcpu,
525 					       apic_find_highest_isr(apic));
526 	else {
527 		--apic->isr_count;
528 		BUG_ON(apic->isr_count < 0);
529 		apic->highest_isr_cache = -1;
530 	}
531 }
532 
533 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
534 {
535 	/* This may race with setting of irr in __apic_accept_irq() and
536 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
537 	 * will cause vmexit immediately and the value will be recalculated
538 	 * on the next vmentry.
539 	 */
540 	return apic_find_highest_irr(vcpu->arch.apic);
541 }
542 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
543 
544 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
545 			     int vector, int level, int trig_mode,
546 			     struct dest_map *dest_map);
547 
548 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
549 		     struct dest_map *dest_map)
550 {
551 	struct kvm_lapic *apic = vcpu->arch.apic;
552 
553 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
554 			irq->level, irq->trig_mode, dest_map);
555 }
556 
557 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
558 		    unsigned long ipi_bitmap_high, u32 min,
559 		    unsigned long icr, int op_64_bit)
560 {
561 	int i;
562 	struct kvm_apic_map *map;
563 	struct kvm_vcpu *vcpu;
564 	struct kvm_lapic_irq irq = {0};
565 	int cluster_size = op_64_bit ? 64 : 32;
566 	int count = 0;
567 
568 	irq.vector = icr & APIC_VECTOR_MASK;
569 	irq.delivery_mode = icr & APIC_MODE_MASK;
570 	irq.level = (icr & APIC_INT_ASSERT) != 0;
571 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
572 
573 	if (icr & APIC_DEST_MASK)
574 		return -KVM_EINVAL;
575 	if (icr & APIC_SHORT_MASK)
576 		return -KVM_EINVAL;
577 
578 	rcu_read_lock();
579 	map = rcu_dereference(kvm->arch.apic_map);
580 
581 	if (unlikely(!map)) {
582 		count = -EOPNOTSUPP;
583 		goto out;
584 	}
585 
586 	if (min > map->max_apic_id)
587 		goto out;
588 	/* Bits above cluster_size are masked in the caller.  */
589 	for_each_set_bit(i, &ipi_bitmap_low,
590 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
591 		if (map->phys_map[min + i]) {
592 			vcpu = map->phys_map[min + i]->vcpu;
593 			count += kvm_apic_set_irq(vcpu, &irq, NULL);
594 		}
595 	}
596 
597 	min += cluster_size;
598 
599 	if (min > map->max_apic_id)
600 		goto out;
601 
602 	for_each_set_bit(i, &ipi_bitmap_high,
603 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
604 		if (map->phys_map[min + i]) {
605 			vcpu = map->phys_map[min + i]->vcpu;
606 			count += kvm_apic_set_irq(vcpu, &irq, NULL);
607 		}
608 	}
609 
610 out:
611 	rcu_read_unlock();
612 	return count;
613 }
614 
615 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
616 {
617 
618 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
619 				      sizeof(val));
620 }
621 
622 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
623 {
624 
625 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
626 				      sizeof(*val));
627 }
628 
629 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
630 {
631 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
632 }
633 
634 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
635 {
636 	u8 val;
637 	if (pv_eoi_get_user(vcpu, &val) < 0)
638 		printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n",
639 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
640 	return val & 0x1;
641 }
642 
643 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
644 {
645 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
646 		printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n",
647 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
648 		return;
649 	}
650 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
651 }
652 
653 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
654 {
655 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
656 		printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n",
657 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
658 		return;
659 	}
660 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
661 }
662 
663 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
664 {
665 	int highest_irr;
666 	if (apic->vcpu->arch.apicv_active)
667 		highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu);
668 	else
669 		highest_irr = apic_find_highest_irr(apic);
670 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
671 		return -1;
672 	return highest_irr;
673 }
674 
675 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
676 {
677 	u32 tpr, isrv, ppr, old_ppr;
678 	int isr;
679 
680 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
681 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
682 	isr = apic_find_highest_isr(apic);
683 	isrv = (isr != -1) ? isr : 0;
684 
685 	if ((tpr & 0xf0) >= (isrv & 0xf0))
686 		ppr = tpr & 0xff;
687 	else
688 		ppr = isrv & 0xf0;
689 
690 	*new_ppr = ppr;
691 	if (old_ppr != ppr)
692 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
693 
694 	return ppr < old_ppr;
695 }
696 
697 static void apic_update_ppr(struct kvm_lapic *apic)
698 {
699 	u32 ppr;
700 
701 	if (__apic_update_ppr(apic, &ppr) &&
702 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
703 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
704 }
705 
706 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
707 {
708 	apic_update_ppr(vcpu->arch.apic);
709 }
710 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
711 
712 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
713 {
714 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
715 	apic_update_ppr(apic);
716 }
717 
718 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
719 {
720 	return mda == (apic_x2apic_mode(apic) ?
721 			X2APIC_BROADCAST : APIC_BROADCAST);
722 }
723 
724 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
725 {
726 	if (kvm_apic_broadcast(apic, mda))
727 		return true;
728 
729 	if (apic_x2apic_mode(apic))
730 		return mda == kvm_x2apic_id(apic);
731 
732 	/*
733 	 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
734 	 * it were in x2APIC mode.  Hotplugged VCPUs start in xAPIC mode and
735 	 * this allows unique addressing of VCPUs with APIC ID over 0xff.
736 	 * The 0xff condition is needed because writeable xAPIC ID.
737 	 */
738 	if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
739 		return true;
740 
741 	return mda == kvm_xapic_id(apic);
742 }
743 
744 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
745 {
746 	u32 logical_id;
747 
748 	if (kvm_apic_broadcast(apic, mda))
749 		return true;
750 
751 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
752 
753 	if (apic_x2apic_mode(apic))
754 		return ((logical_id >> 16) == (mda >> 16))
755 		       && (logical_id & mda & 0xffff) != 0;
756 
757 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
758 
759 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
760 	case APIC_DFR_FLAT:
761 		return (logical_id & mda) != 0;
762 	case APIC_DFR_CLUSTER:
763 		return ((logical_id >> 4) == (mda >> 4))
764 		       && (logical_id & mda & 0xf) != 0;
765 	default:
766 		return false;
767 	}
768 }
769 
770 /* The KVM local APIC implementation has two quirks:
771  *
772  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
773  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
774  *    KVM doesn't do that aliasing.
775  *
776  *  - in-kernel IOAPIC messages have to be delivered directly to
777  *    x2APIC, because the kernel does not support interrupt remapping.
778  *    In order to support broadcast without interrupt remapping, x2APIC
779  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
780  *    to X2APIC_BROADCAST.
781  *
782  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
783  * important when userspace wants to use x2APIC-format MSIs, because
784  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
785  */
786 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
787 		struct kvm_lapic *source, struct kvm_lapic *target)
788 {
789 	bool ipi = source != NULL;
790 
791 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
792 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
793 		return X2APIC_BROADCAST;
794 
795 	return dest_id;
796 }
797 
798 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
799 			   int short_hand, unsigned int dest, int dest_mode)
800 {
801 	struct kvm_lapic *target = vcpu->arch.apic;
802 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
803 
804 	ASSERT(target);
805 	switch (short_hand) {
806 	case APIC_DEST_NOSHORT:
807 		if (dest_mode == APIC_DEST_PHYSICAL)
808 			return kvm_apic_match_physical_addr(target, mda);
809 		else
810 			return kvm_apic_match_logical_addr(target, mda);
811 	case APIC_DEST_SELF:
812 		return target == source;
813 	case APIC_DEST_ALLINC:
814 		return true;
815 	case APIC_DEST_ALLBUT:
816 		return target != source;
817 	default:
818 		return false;
819 	}
820 }
821 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
822 
823 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
824 		       const unsigned long *bitmap, u32 bitmap_size)
825 {
826 	u32 mod;
827 	int i, idx = -1;
828 
829 	mod = vector % dest_vcpus;
830 
831 	for (i = 0; i <= mod; i++) {
832 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
833 		BUG_ON(idx == bitmap_size);
834 	}
835 
836 	return idx;
837 }
838 
839 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
840 {
841 	if (!kvm->arch.disabled_lapic_found) {
842 		kvm->arch.disabled_lapic_found = true;
843 		printk(KERN_INFO
844 		       "Disabled LAPIC found during irq injection\n");
845 	}
846 }
847 
848 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
849 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
850 {
851 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
852 		if ((irq->dest_id == APIC_BROADCAST &&
853 				map->mode != KVM_APIC_MODE_X2APIC))
854 			return true;
855 		if (irq->dest_id == X2APIC_BROADCAST)
856 			return true;
857 	} else {
858 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
859 		if (irq->dest_id == (x2apic_ipi ?
860 		                     X2APIC_BROADCAST : APIC_BROADCAST))
861 			return true;
862 	}
863 
864 	return false;
865 }
866 
867 /* Return true if the interrupt can be handled by using *bitmap as index mask
868  * for valid destinations in *dst array.
869  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
870  * Note: we may have zero kvm_lapic destinations when we return true, which
871  * means that the interrupt should be dropped.  In this case, *bitmap would be
872  * zero and *dst undefined.
873  */
874 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
875 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
876 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
877 		unsigned long *bitmap)
878 {
879 	int i, lowest;
880 
881 	if (irq->shorthand == APIC_DEST_SELF && src) {
882 		*dst = src;
883 		*bitmap = 1;
884 		return true;
885 	} else if (irq->shorthand)
886 		return false;
887 
888 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
889 		return false;
890 
891 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
892 		if (irq->dest_id > map->max_apic_id) {
893 			*bitmap = 0;
894 		} else {
895 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
896 			*dst = &map->phys_map[dest_id];
897 			*bitmap = 1;
898 		}
899 		return true;
900 	}
901 
902 	*bitmap = 0;
903 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
904 				(u16 *)bitmap))
905 		return false;
906 
907 	if (!kvm_lowest_prio_delivery(irq))
908 		return true;
909 
910 	if (!kvm_vector_hashing_enabled()) {
911 		lowest = -1;
912 		for_each_set_bit(i, bitmap, 16) {
913 			if (!(*dst)[i])
914 				continue;
915 			if (lowest < 0)
916 				lowest = i;
917 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
918 						(*dst)[lowest]->vcpu) < 0)
919 				lowest = i;
920 		}
921 	} else {
922 		if (!*bitmap)
923 			return true;
924 
925 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
926 				bitmap, 16);
927 
928 		if (!(*dst)[lowest]) {
929 			kvm_apic_disabled_lapic_found(kvm);
930 			*bitmap = 0;
931 			return true;
932 		}
933 	}
934 
935 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
936 
937 	return true;
938 }
939 
940 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
941 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
942 {
943 	struct kvm_apic_map *map;
944 	unsigned long bitmap;
945 	struct kvm_lapic **dst = NULL;
946 	int i;
947 	bool ret;
948 
949 	*r = -1;
950 
951 	if (irq->shorthand == APIC_DEST_SELF) {
952 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
953 		return true;
954 	}
955 
956 	rcu_read_lock();
957 	map = rcu_dereference(kvm->arch.apic_map);
958 
959 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
960 	if (ret) {
961 		*r = 0;
962 		for_each_set_bit(i, &bitmap, 16) {
963 			if (!dst[i])
964 				continue;
965 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
966 		}
967 	}
968 
969 	rcu_read_unlock();
970 	return ret;
971 }
972 
973 /*
974  * This routine tries to handler interrupts in posted mode, here is how
975  * it deals with different cases:
976  * - For single-destination interrupts, handle it in posted mode
977  * - Else if vector hashing is enabled and it is a lowest-priority
978  *   interrupt, handle it in posted mode and use the following mechanism
979  *   to find the destinaiton vCPU.
980  *	1. For lowest-priority interrupts, store all the possible
981  *	   destination vCPUs in an array.
982  *	2. Use "guest vector % max number of destination vCPUs" to find
983  *	   the right destination vCPU in the array for the lowest-priority
984  *	   interrupt.
985  * - Otherwise, use remapped mode to inject the interrupt.
986  */
987 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
988 			struct kvm_vcpu **dest_vcpu)
989 {
990 	struct kvm_apic_map *map;
991 	unsigned long bitmap;
992 	struct kvm_lapic **dst = NULL;
993 	bool ret = false;
994 
995 	if (irq->shorthand)
996 		return false;
997 
998 	rcu_read_lock();
999 	map = rcu_dereference(kvm->arch.apic_map);
1000 
1001 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1002 			hweight16(bitmap) == 1) {
1003 		unsigned long i = find_first_bit(&bitmap, 16);
1004 
1005 		if (dst[i]) {
1006 			*dest_vcpu = dst[i]->vcpu;
1007 			ret = true;
1008 		}
1009 	}
1010 
1011 	rcu_read_unlock();
1012 	return ret;
1013 }
1014 
1015 /*
1016  * Add a pending IRQ into lapic.
1017  * Return 1 if successfully added and 0 if discarded.
1018  */
1019 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1020 			     int vector, int level, int trig_mode,
1021 			     struct dest_map *dest_map)
1022 {
1023 	int result = 0;
1024 	struct kvm_vcpu *vcpu = apic->vcpu;
1025 
1026 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1027 				  trig_mode, vector);
1028 	switch (delivery_mode) {
1029 	case APIC_DM_LOWEST:
1030 		vcpu->arch.apic_arb_prio++;
1031 		/* fall through */
1032 	case APIC_DM_FIXED:
1033 		if (unlikely(trig_mode && !level))
1034 			break;
1035 
1036 		/* FIXME add logic for vcpu on reset */
1037 		if (unlikely(!apic_enabled(apic)))
1038 			break;
1039 
1040 		result = 1;
1041 
1042 		if (dest_map) {
1043 			__set_bit(vcpu->vcpu_id, dest_map->map);
1044 			dest_map->vectors[vcpu->vcpu_id] = vector;
1045 		}
1046 
1047 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1048 			if (trig_mode)
1049 				kvm_lapic_set_vector(vector,
1050 						     apic->regs + APIC_TMR);
1051 			else
1052 				kvm_lapic_clear_vector(vector,
1053 						       apic->regs + APIC_TMR);
1054 		}
1055 
1056 		if (vcpu->arch.apicv_active)
1057 			kvm_x86_ops->deliver_posted_interrupt(vcpu, vector);
1058 		else {
1059 			kvm_lapic_set_irr(vector, apic);
1060 
1061 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1062 			kvm_vcpu_kick(vcpu);
1063 		}
1064 		break;
1065 
1066 	case APIC_DM_REMRD:
1067 		result = 1;
1068 		vcpu->arch.pv.pv_unhalted = 1;
1069 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1070 		kvm_vcpu_kick(vcpu);
1071 		break;
1072 
1073 	case APIC_DM_SMI:
1074 		result = 1;
1075 		kvm_make_request(KVM_REQ_SMI, vcpu);
1076 		kvm_vcpu_kick(vcpu);
1077 		break;
1078 
1079 	case APIC_DM_NMI:
1080 		result = 1;
1081 		kvm_inject_nmi(vcpu);
1082 		kvm_vcpu_kick(vcpu);
1083 		break;
1084 
1085 	case APIC_DM_INIT:
1086 		if (!trig_mode || level) {
1087 			result = 1;
1088 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1089 			apic->pending_events = (1UL << KVM_APIC_INIT);
1090 			/* make sure pending_events is visible before sending
1091 			 * the request */
1092 			smp_wmb();
1093 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1094 			kvm_vcpu_kick(vcpu);
1095 		}
1096 		break;
1097 
1098 	case APIC_DM_STARTUP:
1099 		result = 1;
1100 		apic->sipi_vector = vector;
1101 		/* make sure sipi_vector is visible for the receiver */
1102 		smp_wmb();
1103 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1104 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1105 		kvm_vcpu_kick(vcpu);
1106 		break;
1107 
1108 	case APIC_DM_EXTINT:
1109 		/*
1110 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1111 		 * before NMI watchdog was enabled. Already handled by
1112 		 * kvm_apic_accept_pic_intr().
1113 		 */
1114 		break;
1115 
1116 	default:
1117 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1118 		       delivery_mode);
1119 		break;
1120 	}
1121 	return result;
1122 }
1123 
1124 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1125 {
1126 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1127 }
1128 
1129 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1130 {
1131 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1132 }
1133 
1134 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1135 {
1136 	int trigger_mode;
1137 
1138 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1139 	if (!kvm_ioapic_handles_vector(apic, vector))
1140 		return;
1141 
1142 	/* Request a KVM exit to inform the userspace IOAPIC. */
1143 	if (irqchip_split(apic->vcpu->kvm)) {
1144 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1145 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1146 		return;
1147 	}
1148 
1149 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1150 		trigger_mode = IOAPIC_LEVEL_TRIG;
1151 	else
1152 		trigger_mode = IOAPIC_EDGE_TRIG;
1153 
1154 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1155 }
1156 
1157 static int apic_set_eoi(struct kvm_lapic *apic)
1158 {
1159 	int vector = apic_find_highest_isr(apic);
1160 
1161 	trace_kvm_eoi(apic, vector);
1162 
1163 	/*
1164 	 * Not every write EOI will has corresponding ISR,
1165 	 * one example is when Kernel check timer on setup_IO_APIC
1166 	 */
1167 	if (vector == -1)
1168 		return vector;
1169 
1170 	apic_clear_isr(vector, apic);
1171 	apic_update_ppr(apic);
1172 
1173 	if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap))
1174 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1175 
1176 	kvm_ioapic_send_eoi(apic, vector);
1177 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1178 	return vector;
1179 }
1180 
1181 /*
1182  * this interface assumes a trap-like exit, which has already finished
1183  * desired side effect including vISR and vPPR update.
1184  */
1185 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1186 {
1187 	struct kvm_lapic *apic = vcpu->arch.apic;
1188 
1189 	trace_kvm_eoi(apic, vector);
1190 
1191 	kvm_ioapic_send_eoi(apic, vector);
1192 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1195 
1196 static void apic_send_ipi(struct kvm_lapic *apic)
1197 {
1198 	u32 icr_low = kvm_lapic_get_reg(apic, APIC_ICR);
1199 	u32 icr_high = kvm_lapic_get_reg(apic, APIC_ICR2);
1200 	struct kvm_lapic_irq irq;
1201 
1202 	irq.vector = icr_low & APIC_VECTOR_MASK;
1203 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1204 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1205 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1206 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1207 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1208 	irq.msi_redir_hint = false;
1209 	if (apic_x2apic_mode(apic))
1210 		irq.dest_id = icr_high;
1211 	else
1212 		irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1213 
1214 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1215 
1216 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1217 }
1218 
1219 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1220 {
1221 	ktime_t remaining, now;
1222 	s64 ns;
1223 	u32 tmcct;
1224 
1225 	ASSERT(apic != NULL);
1226 
1227 	/* if initial count is 0, current count should also be 0 */
1228 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1229 		apic->lapic_timer.period == 0)
1230 		return 0;
1231 
1232 	now = ktime_get();
1233 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1234 	if (ktime_to_ns(remaining) < 0)
1235 		remaining = 0;
1236 
1237 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1238 	tmcct = div64_u64(ns,
1239 			 (APIC_BUS_CYCLE_NS * apic->divide_count));
1240 
1241 	return tmcct;
1242 }
1243 
1244 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1245 {
1246 	struct kvm_vcpu *vcpu = apic->vcpu;
1247 	struct kvm_run *run = vcpu->run;
1248 
1249 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1250 	run->tpr_access.rip = kvm_rip_read(vcpu);
1251 	run->tpr_access.is_write = write;
1252 }
1253 
1254 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1255 {
1256 	if (apic->vcpu->arch.tpr_access_reporting)
1257 		__report_tpr_access(apic, write);
1258 }
1259 
1260 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1261 {
1262 	u32 val = 0;
1263 
1264 	if (offset >= LAPIC_MMIO_LENGTH)
1265 		return 0;
1266 
1267 	switch (offset) {
1268 	case APIC_ARBPRI:
1269 		break;
1270 
1271 	case APIC_TMCCT:	/* Timer CCR */
1272 		if (apic_lvtt_tscdeadline(apic))
1273 			return 0;
1274 
1275 		val = apic_get_tmcct(apic);
1276 		break;
1277 	case APIC_PROCPRI:
1278 		apic_update_ppr(apic);
1279 		val = kvm_lapic_get_reg(apic, offset);
1280 		break;
1281 	case APIC_TASKPRI:
1282 		report_tpr_access(apic, false);
1283 		/* fall thru */
1284 	default:
1285 		val = kvm_lapic_get_reg(apic, offset);
1286 		break;
1287 	}
1288 
1289 	return val;
1290 }
1291 
1292 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1293 {
1294 	return container_of(dev, struct kvm_lapic, dev);
1295 }
1296 
1297 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1298 #define APIC_REGS_MASK(first, count) \
1299 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1300 
1301 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1302 		void *data)
1303 {
1304 	unsigned char alignment = offset & 0xf;
1305 	u32 result;
1306 	/* this bitmask has a bit cleared for each reserved register */
1307 	u64 valid_reg_mask =
1308 		APIC_REG_MASK(APIC_ID) |
1309 		APIC_REG_MASK(APIC_LVR) |
1310 		APIC_REG_MASK(APIC_TASKPRI) |
1311 		APIC_REG_MASK(APIC_PROCPRI) |
1312 		APIC_REG_MASK(APIC_LDR) |
1313 		APIC_REG_MASK(APIC_DFR) |
1314 		APIC_REG_MASK(APIC_SPIV) |
1315 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1316 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1317 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1318 		APIC_REG_MASK(APIC_ESR) |
1319 		APIC_REG_MASK(APIC_ICR) |
1320 		APIC_REG_MASK(APIC_ICR2) |
1321 		APIC_REG_MASK(APIC_LVTT) |
1322 		APIC_REG_MASK(APIC_LVTTHMR) |
1323 		APIC_REG_MASK(APIC_LVTPC) |
1324 		APIC_REG_MASK(APIC_LVT0) |
1325 		APIC_REG_MASK(APIC_LVT1) |
1326 		APIC_REG_MASK(APIC_LVTERR) |
1327 		APIC_REG_MASK(APIC_TMICT) |
1328 		APIC_REG_MASK(APIC_TMCCT) |
1329 		APIC_REG_MASK(APIC_TDCR);
1330 
1331 	/* ARBPRI is not valid on x2APIC */
1332 	if (!apic_x2apic_mode(apic))
1333 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1334 
1335 	if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1336 		return 1;
1337 
1338 	result = __apic_read(apic, offset & ~0xf);
1339 
1340 	trace_kvm_apic_read(offset, result);
1341 
1342 	switch (len) {
1343 	case 1:
1344 	case 2:
1345 	case 4:
1346 		memcpy(data, (char *)&result + alignment, len);
1347 		break;
1348 	default:
1349 		printk(KERN_ERR "Local APIC read with len = %x, "
1350 		       "should be 1,2, or 4 instead\n", len);
1351 		break;
1352 	}
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1356 
1357 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1358 {
1359 	return addr >= apic->base_address &&
1360 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1361 }
1362 
1363 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1364 			   gpa_t address, int len, void *data)
1365 {
1366 	struct kvm_lapic *apic = to_lapic(this);
1367 	u32 offset = address - apic->base_address;
1368 
1369 	if (!apic_mmio_in_range(apic, address))
1370 		return -EOPNOTSUPP;
1371 
1372 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1373 		if (!kvm_check_has_quirk(vcpu->kvm,
1374 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1375 			return -EOPNOTSUPP;
1376 
1377 		memset(data, 0xff, len);
1378 		return 0;
1379 	}
1380 
1381 	kvm_lapic_reg_read(apic, offset, len, data);
1382 
1383 	return 0;
1384 }
1385 
1386 static void update_divide_count(struct kvm_lapic *apic)
1387 {
1388 	u32 tmp1, tmp2, tdcr;
1389 
1390 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1391 	tmp1 = tdcr & 0xf;
1392 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1393 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1394 }
1395 
1396 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1397 {
1398 	/*
1399 	 * Do not allow the guest to program periodic timers with small
1400 	 * interval, since the hrtimers are not throttled by the host
1401 	 * scheduler.
1402 	 */
1403 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1404 		s64 min_period = min_timer_period_us * 1000LL;
1405 
1406 		if (apic->lapic_timer.period < min_period) {
1407 			pr_info_ratelimited(
1408 			    "kvm: vcpu %i: requested %lld ns "
1409 			    "lapic timer period limited to %lld ns\n",
1410 			    apic->vcpu->vcpu_id,
1411 			    apic->lapic_timer.period, min_period);
1412 			apic->lapic_timer.period = min_period;
1413 		}
1414 	}
1415 }
1416 
1417 static void apic_update_lvtt(struct kvm_lapic *apic)
1418 {
1419 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1420 			apic->lapic_timer.timer_mode_mask;
1421 
1422 	if (apic->lapic_timer.timer_mode != timer_mode) {
1423 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1424 				APIC_LVT_TIMER_TSCDEADLINE)) {
1425 			hrtimer_cancel(&apic->lapic_timer.timer);
1426 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1427 			apic->lapic_timer.period = 0;
1428 			apic->lapic_timer.tscdeadline = 0;
1429 		}
1430 		apic->lapic_timer.timer_mode = timer_mode;
1431 		limit_periodic_timer_frequency(apic);
1432 	}
1433 }
1434 
1435 /*
1436  * On APICv, this test will cause a busy wait
1437  * during a higher-priority task.
1438  */
1439 
1440 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1441 {
1442 	struct kvm_lapic *apic = vcpu->arch.apic;
1443 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1444 
1445 	if (kvm_apic_hw_enabled(apic)) {
1446 		int vec = reg & APIC_VECTOR_MASK;
1447 		void *bitmap = apic->regs + APIC_ISR;
1448 
1449 		if (vcpu->arch.apicv_active)
1450 			bitmap = apic->regs + APIC_IRR;
1451 
1452 		if (apic_test_vector(vec, bitmap))
1453 			return true;
1454 	}
1455 	return false;
1456 }
1457 
1458 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1459 {
1460 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1461 
1462 	/*
1463 	 * If the guest TSC is running at a different ratio than the host, then
1464 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1465 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1466 	 * always for VMX enabled hardware.
1467 	 */
1468 	if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1469 		__delay(min(guest_cycles,
1470 			nsec_to_cycles(vcpu, timer_advance_ns)));
1471 	} else {
1472 		u64 delay_ns = guest_cycles * 1000000ULL;
1473 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1474 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1475 	}
1476 }
1477 
1478 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1479 					      s64 advance_expire_delta)
1480 {
1481 	struct kvm_lapic *apic = vcpu->arch.apic;
1482 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1483 	u64 ns;
1484 
1485 	/* too early */
1486 	if (advance_expire_delta < 0) {
1487 		ns = -advance_expire_delta * 1000000ULL;
1488 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1489 		timer_advance_ns -= min((u32)ns,
1490 			timer_advance_ns / LAPIC_TIMER_ADVANCE_ADJUST_STEP);
1491 	} else {
1492 	/* too late */
1493 		ns = advance_expire_delta * 1000000ULL;
1494 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1495 		timer_advance_ns += min((u32)ns,
1496 			timer_advance_ns / LAPIC_TIMER_ADVANCE_ADJUST_STEP);
1497 	}
1498 
1499 	if (abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_DONE)
1500 		apic->lapic_timer.timer_advance_adjust_done = true;
1501 	if (unlikely(timer_advance_ns > 5000)) {
1502 		timer_advance_ns = LAPIC_TIMER_ADVANCE_ADJUST_INIT;
1503 		apic->lapic_timer.timer_advance_adjust_done = false;
1504 	}
1505 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1506 }
1507 
1508 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1509 {
1510 	struct kvm_lapic *apic = vcpu->arch.apic;
1511 	u64 guest_tsc, tsc_deadline;
1512 
1513 	if (apic->lapic_timer.expired_tscdeadline == 0)
1514 		return;
1515 
1516 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1517 	apic->lapic_timer.expired_tscdeadline = 0;
1518 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1519 	apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1520 
1521 	if (guest_tsc < tsc_deadline)
1522 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1523 
1524 	if (unlikely(!apic->lapic_timer.timer_advance_adjust_done))
1525 		adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1526 }
1527 
1528 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1529 {
1530 	if (lapic_timer_int_injected(vcpu))
1531 		__kvm_wait_lapic_expire(vcpu);
1532 }
1533 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1534 
1535 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1536 {
1537 	struct kvm_timer *ktimer = &apic->lapic_timer;
1538 
1539 	kvm_apic_local_deliver(apic, APIC_LVTT);
1540 	if (apic_lvtt_tscdeadline(apic))
1541 		ktimer->tscdeadline = 0;
1542 	if (apic_lvtt_oneshot(apic)) {
1543 		ktimer->tscdeadline = 0;
1544 		ktimer->target_expiration = 0;
1545 	}
1546 }
1547 
1548 static void apic_timer_expired(struct kvm_lapic *apic)
1549 {
1550 	struct kvm_vcpu *vcpu = apic->vcpu;
1551 	struct swait_queue_head *q = &vcpu->wq;
1552 	struct kvm_timer *ktimer = &apic->lapic_timer;
1553 
1554 	if (atomic_read(&apic->lapic_timer.pending))
1555 		return;
1556 
1557 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1558 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1559 
1560 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1561 		if (apic->lapic_timer.timer_advance_ns)
1562 			__kvm_wait_lapic_expire(vcpu);
1563 		kvm_apic_inject_pending_timer_irqs(apic);
1564 		return;
1565 	}
1566 
1567 	atomic_inc(&apic->lapic_timer.pending);
1568 	kvm_set_pending_timer(vcpu);
1569 
1570 	/*
1571 	 * For x86, the atomic_inc() is serialized, thus
1572 	 * using swait_active() is safe.
1573 	 */
1574 	if (swait_active(q))
1575 		swake_up_one(q);
1576 }
1577 
1578 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1579 {
1580 	struct kvm_timer *ktimer = &apic->lapic_timer;
1581 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1582 	u64 ns = 0;
1583 	ktime_t expire;
1584 	struct kvm_vcpu *vcpu = apic->vcpu;
1585 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1586 	unsigned long flags;
1587 	ktime_t now;
1588 
1589 	if (unlikely(!tscdeadline || !this_tsc_khz))
1590 		return;
1591 
1592 	local_irq_save(flags);
1593 
1594 	now = ktime_get();
1595 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1596 
1597 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1598 	do_div(ns, this_tsc_khz);
1599 
1600 	if (likely(tscdeadline > guest_tsc) &&
1601 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1602 		expire = ktime_add_ns(now, ns);
1603 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1604 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS);
1605 	} else
1606 		apic_timer_expired(apic);
1607 
1608 	local_irq_restore(flags);
1609 }
1610 
1611 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1612 {
1613 	ktime_t now, remaining;
1614 	u64 ns_remaining_old, ns_remaining_new;
1615 
1616 	apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1617 		* APIC_BUS_CYCLE_NS * apic->divide_count;
1618 	limit_periodic_timer_frequency(apic);
1619 
1620 	now = ktime_get();
1621 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1622 	if (ktime_to_ns(remaining) < 0)
1623 		remaining = 0;
1624 
1625 	ns_remaining_old = ktime_to_ns(remaining);
1626 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1627 	                                   apic->divide_count, old_divisor);
1628 
1629 	apic->lapic_timer.tscdeadline +=
1630 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1631 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1632 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1633 }
1634 
1635 static bool set_target_expiration(struct kvm_lapic *apic)
1636 {
1637 	ktime_t now;
1638 	u64 tscl = rdtsc();
1639 
1640 	now = ktime_get();
1641 	apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1642 		* APIC_BUS_CYCLE_NS * apic->divide_count;
1643 
1644 	if (!apic->lapic_timer.period) {
1645 		apic->lapic_timer.tscdeadline = 0;
1646 		return false;
1647 	}
1648 
1649 	limit_periodic_timer_frequency(apic);
1650 
1651 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1652 		nsec_to_cycles(apic->vcpu, apic->lapic_timer.period);
1653 	apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period);
1654 
1655 	return true;
1656 }
1657 
1658 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1659 {
1660 	ktime_t now = ktime_get();
1661 	u64 tscl = rdtsc();
1662 	ktime_t delta;
1663 
1664 	/*
1665 	 * Synchronize both deadlines to the same time source or
1666 	 * differences in the periods (caused by differences in the
1667 	 * underlying clocks or numerical approximation errors) will
1668 	 * cause the two to drift apart over time as the errors
1669 	 * accumulate.
1670 	 */
1671 	apic->lapic_timer.target_expiration =
1672 		ktime_add_ns(apic->lapic_timer.target_expiration,
1673 				apic->lapic_timer.period);
1674 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1675 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1676 		nsec_to_cycles(apic->vcpu, delta);
1677 }
1678 
1679 static void start_sw_period(struct kvm_lapic *apic)
1680 {
1681 	if (!apic->lapic_timer.period)
1682 		return;
1683 
1684 	if (ktime_after(ktime_get(),
1685 			apic->lapic_timer.target_expiration)) {
1686 		apic_timer_expired(apic);
1687 
1688 		if (apic_lvtt_oneshot(apic))
1689 			return;
1690 
1691 		advance_periodic_target_expiration(apic);
1692 	}
1693 
1694 	hrtimer_start(&apic->lapic_timer.timer,
1695 		apic->lapic_timer.target_expiration,
1696 		HRTIMER_MODE_ABS);
1697 }
1698 
1699 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1700 {
1701 	if (!lapic_in_kernel(vcpu))
1702 		return false;
1703 
1704 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1707 
1708 static void cancel_hv_timer(struct kvm_lapic *apic)
1709 {
1710 	WARN_ON(preemptible());
1711 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1712 	kvm_x86_ops->cancel_hv_timer(apic->vcpu);
1713 	apic->lapic_timer.hv_timer_in_use = false;
1714 }
1715 
1716 static bool start_hv_timer(struct kvm_lapic *apic)
1717 {
1718 	struct kvm_timer *ktimer = &apic->lapic_timer;
1719 	struct kvm_vcpu *vcpu = apic->vcpu;
1720 	bool expired;
1721 
1722 	WARN_ON(preemptible());
1723 	if (!kvm_x86_ops->set_hv_timer)
1724 		return false;
1725 
1726 	if (!ktimer->tscdeadline)
1727 		return false;
1728 
1729 	if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired))
1730 		return false;
1731 
1732 	ktimer->hv_timer_in_use = true;
1733 	hrtimer_cancel(&ktimer->timer);
1734 
1735 	/*
1736 	 * To simplify handling the periodic timer, leave the hv timer running
1737 	 * even if the deadline timer has expired, i.e. rely on the resulting
1738 	 * VM-Exit to recompute the periodic timer's target expiration.
1739 	 */
1740 	if (!apic_lvtt_period(apic)) {
1741 		/*
1742 		 * Cancel the hv timer if the sw timer fired while the hv timer
1743 		 * was being programmed, or if the hv timer itself expired.
1744 		 */
1745 		if (atomic_read(&ktimer->pending)) {
1746 			cancel_hv_timer(apic);
1747 		} else if (expired) {
1748 			apic_timer_expired(apic);
1749 			cancel_hv_timer(apic);
1750 		}
1751 	}
1752 
1753 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1754 
1755 	return true;
1756 }
1757 
1758 static void start_sw_timer(struct kvm_lapic *apic)
1759 {
1760 	struct kvm_timer *ktimer = &apic->lapic_timer;
1761 
1762 	WARN_ON(preemptible());
1763 	if (apic->lapic_timer.hv_timer_in_use)
1764 		cancel_hv_timer(apic);
1765 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1766 		return;
1767 
1768 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1769 		start_sw_period(apic);
1770 	else if (apic_lvtt_tscdeadline(apic))
1771 		start_sw_tscdeadline(apic);
1772 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1773 }
1774 
1775 static void restart_apic_timer(struct kvm_lapic *apic)
1776 {
1777 	preempt_disable();
1778 
1779 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1780 		goto out;
1781 
1782 	if (!start_hv_timer(apic))
1783 		start_sw_timer(apic);
1784 out:
1785 	preempt_enable();
1786 }
1787 
1788 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1789 {
1790 	struct kvm_lapic *apic = vcpu->arch.apic;
1791 
1792 	preempt_disable();
1793 	/* If the preempt notifier has already run, it also called apic_timer_expired */
1794 	if (!apic->lapic_timer.hv_timer_in_use)
1795 		goto out;
1796 	WARN_ON(swait_active(&vcpu->wq));
1797 	cancel_hv_timer(apic);
1798 	apic_timer_expired(apic);
1799 
1800 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1801 		advance_periodic_target_expiration(apic);
1802 		restart_apic_timer(apic);
1803 	}
1804 out:
1805 	preempt_enable();
1806 }
1807 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1808 
1809 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1810 {
1811 	restart_apic_timer(vcpu->arch.apic);
1812 }
1813 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1814 
1815 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1816 {
1817 	struct kvm_lapic *apic = vcpu->arch.apic;
1818 
1819 	preempt_disable();
1820 	/* Possibly the TSC deadline timer is not enabled yet */
1821 	if (apic->lapic_timer.hv_timer_in_use)
1822 		start_sw_timer(apic);
1823 	preempt_enable();
1824 }
1825 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1826 
1827 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1828 {
1829 	struct kvm_lapic *apic = vcpu->arch.apic;
1830 
1831 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1832 	restart_apic_timer(apic);
1833 }
1834 
1835 static void start_apic_timer(struct kvm_lapic *apic)
1836 {
1837 	atomic_set(&apic->lapic_timer.pending, 0);
1838 
1839 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1840 	    && !set_target_expiration(apic))
1841 		return;
1842 
1843 	restart_apic_timer(apic);
1844 }
1845 
1846 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1847 {
1848 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1849 
1850 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1851 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1852 		if (lvt0_in_nmi_mode) {
1853 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1854 		} else
1855 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1856 	}
1857 }
1858 
1859 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1860 {
1861 	int ret = 0;
1862 
1863 	trace_kvm_apic_write(reg, val);
1864 
1865 	switch (reg) {
1866 	case APIC_ID:		/* Local APIC ID */
1867 		if (!apic_x2apic_mode(apic))
1868 			kvm_apic_set_xapic_id(apic, val >> 24);
1869 		else
1870 			ret = 1;
1871 		break;
1872 
1873 	case APIC_TASKPRI:
1874 		report_tpr_access(apic, true);
1875 		apic_set_tpr(apic, val & 0xff);
1876 		break;
1877 
1878 	case APIC_EOI:
1879 		apic_set_eoi(apic);
1880 		break;
1881 
1882 	case APIC_LDR:
1883 		if (!apic_x2apic_mode(apic))
1884 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
1885 		else
1886 			ret = 1;
1887 		break;
1888 
1889 	case APIC_DFR:
1890 		if (!apic_x2apic_mode(apic)) {
1891 			kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
1892 			recalculate_apic_map(apic->vcpu->kvm);
1893 		} else
1894 			ret = 1;
1895 		break;
1896 
1897 	case APIC_SPIV: {
1898 		u32 mask = 0x3ff;
1899 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
1900 			mask |= APIC_SPIV_DIRECTED_EOI;
1901 		apic_set_spiv(apic, val & mask);
1902 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
1903 			int i;
1904 			u32 lvt_val;
1905 
1906 			for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
1907 				lvt_val = kvm_lapic_get_reg(apic,
1908 						       APIC_LVTT + 0x10 * i);
1909 				kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
1910 					     lvt_val | APIC_LVT_MASKED);
1911 			}
1912 			apic_update_lvtt(apic);
1913 			atomic_set(&apic->lapic_timer.pending, 0);
1914 
1915 		}
1916 		break;
1917 	}
1918 	case APIC_ICR:
1919 		/* No delay here, so we always clear the pending bit */
1920 		kvm_lapic_set_reg(apic, APIC_ICR, val & ~(1 << 12));
1921 		apic_send_ipi(apic);
1922 		break;
1923 
1924 	case APIC_ICR2:
1925 		if (!apic_x2apic_mode(apic))
1926 			val &= 0xff000000;
1927 		kvm_lapic_set_reg(apic, APIC_ICR2, val);
1928 		break;
1929 
1930 	case APIC_LVT0:
1931 		apic_manage_nmi_watchdog(apic, val);
1932 		/* fall through */
1933 	case APIC_LVTTHMR:
1934 	case APIC_LVTPC:
1935 	case APIC_LVT1:
1936 	case APIC_LVTERR:
1937 		/* TODO: Check vector */
1938 		if (!kvm_apic_sw_enabled(apic))
1939 			val |= APIC_LVT_MASKED;
1940 
1941 		val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4];
1942 		kvm_lapic_set_reg(apic, reg, val);
1943 
1944 		break;
1945 
1946 	case APIC_LVTT:
1947 		if (!kvm_apic_sw_enabled(apic))
1948 			val |= APIC_LVT_MASKED;
1949 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
1950 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
1951 		apic_update_lvtt(apic);
1952 		break;
1953 
1954 	case APIC_TMICT:
1955 		if (apic_lvtt_tscdeadline(apic))
1956 			break;
1957 
1958 		hrtimer_cancel(&apic->lapic_timer.timer);
1959 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
1960 		start_apic_timer(apic);
1961 		break;
1962 
1963 	case APIC_TDCR: {
1964 		uint32_t old_divisor = apic->divide_count;
1965 
1966 		kvm_lapic_set_reg(apic, APIC_TDCR, val);
1967 		update_divide_count(apic);
1968 		if (apic->divide_count != old_divisor &&
1969 				apic->lapic_timer.period) {
1970 			hrtimer_cancel(&apic->lapic_timer.timer);
1971 			update_target_expiration(apic, old_divisor);
1972 			restart_apic_timer(apic);
1973 		}
1974 		break;
1975 	}
1976 	case APIC_ESR:
1977 		if (apic_x2apic_mode(apic) && val != 0)
1978 			ret = 1;
1979 		break;
1980 
1981 	case APIC_SELF_IPI:
1982 		if (apic_x2apic_mode(apic)) {
1983 			kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff));
1984 		} else
1985 			ret = 1;
1986 		break;
1987 	default:
1988 		ret = 1;
1989 		break;
1990 	}
1991 
1992 	return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
1995 
1996 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1997 			    gpa_t address, int len, const void *data)
1998 {
1999 	struct kvm_lapic *apic = to_lapic(this);
2000 	unsigned int offset = address - apic->base_address;
2001 	u32 val;
2002 
2003 	if (!apic_mmio_in_range(apic, address))
2004 		return -EOPNOTSUPP;
2005 
2006 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2007 		if (!kvm_check_has_quirk(vcpu->kvm,
2008 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2009 			return -EOPNOTSUPP;
2010 
2011 		return 0;
2012 	}
2013 
2014 	/*
2015 	 * APIC register must be aligned on 128-bits boundary.
2016 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2017 	 * Refer SDM 8.4.1
2018 	 */
2019 	if (len != 4 || (offset & 0xf))
2020 		return 0;
2021 
2022 	val = *(u32*)data;
2023 
2024 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2025 
2026 	return 0;
2027 }
2028 
2029 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2030 {
2031 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2032 }
2033 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2034 
2035 /* emulate APIC access in a trap manner */
2036 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2037 {
2038 	u32 val = 0;
2039 
2040 	/* hw has done the conditional check and inst decode */
2041 	offset &= 0xff0;
2042 
2043 	kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2044 
2045 	/* TODO: optimize to just emulate side effect w/o one more write */
2046 	kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2049 
2050 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2051 {
2052 	struct kvm_lapic *apic = vcpu->arch.apic;
2053 
2054 	if (!vcpu->arch.apic)
2055 		return;
2056 
2057 	hrtimer_cancel(&apic->lapic_timer.timer);
2058 
2059 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2060 		static_key_slow_dec_deferred(&apic_hw_disabled);
2061 
2062 	if (!apic->sw_enabled)
2063 		static_key_slow_dec_deferred(&apic_sw_disabled);
2064 
2065 	if (apic->regs)
2066 		free_page((unsigned long)apic->regs);
2067 
2068 	kfree(apic);
2069 }
2070 
2071 /*
2072  *----------------------------------------------------------------------
2073  * LAPIC interface
2074  *----------------------------------------------------------------------
2075  */
2076 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2077 {
2078 	struct kvm_lapic *apic = vcpu->arch.apic;
2079 
2080 	if (!lapic_in_kernel(vcpu) ||
2081 		!apic_lvtt_tscdeadline(apic))
2082 		return 0;
2083 
2084 	return apic->lapic_timer.tscdeadline;
2085 }
2086 
2087 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2088 {
2089 	struct kvm_lapic *apic = vcpu->arch.apic;
2090 
2091 	if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) ||
2092 			apic_lvtt_period(apic))
2093 		return;
2094 
2095 	hrtimer_cancel(&apic->lapic_timer.timer);
2096 	apic->lapic_timer.tscdeadline = data;
2097 	start_apic_timer(apic);
2098 }
2099 
2100 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2101 {
2102 	struct kvm_lapic *apic = vcpu->arch.apic;
2103 
2104 	apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2105 		     | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2106 }
2107 
2108 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2109 {
2110 	u64 tpr;
2111 
2112 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2113 
2114 	return (tpr & 0xf0) >> 4;
2115 }
2116 
2117 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2118 {
2119 	u64 old_value = vcpu->arch.apic_base;
2120 	struct kvm_lapic *apic = vcpu->arch.apic;
2121 
2122 	if (!apic)
2123 		value |= MSR_IA32_APICBASE_BSP;
2124 
2125 	vcpu->arch.apic_base = value;
2126 
2127 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2128 		kvm_update_cpuid(vcpu);
2129 
2130 	if (!apic)
2131 		return;
2132 
2133 	/* update jump label if enable bit changes */
2134 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2135 		if (value & MSR_IA32_APICBASE_ENABLE) {
2136 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2137 			static_key_slow_dec_deferred(&apic_hw_disabled);
2138 		} else {
2139 			static_key_slow_inc(&apic_hw_disabled.key);
2140 			recalculate_apic_map(vcpu->kvm);
2141 		}
2142 	}
2143 
2144 	if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2145 		kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2146 
2147 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2148 		kvm_x86_ops->set_virtual_apic_mode(vcpu);
2149 
2150 	apic->base_address = apic->vcpu->arch.apic_base &
2151 			     MSR_IA32_APICBASE_BASE;
2152 
2153 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2154 	     apic->base_address != APIC_DEFAULT_PHYS_BASE)
2155 		pr_warn_once("APIC base relocation is unsupported by KVM");
2156 }
2157 
2158 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2159 {
2160 	struct kvm_lapic *apic = vcpu->arch.apic;
2161 	int i;
2162 
2163 	if (!apic)
2164 		return;
2165 
2166 	/* Stop the timer in case it's a reset to an active apic */
2167 	hrtimer_cancel(&apic->lapic_timer.timer);
2168 
2169 	if (!init_event) {
2170 		kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
2171 		                         MSR_IA32_APICBASE_ENABLE);
2172 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2173 	}
2174 	kvm_apic_set_version(apic->vcpu);
2175 
2176 	for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2177 		kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2178 	apic_update_lvtt(apic);
2179 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2180 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2181 		kvm_lapic_set_reg(apic, APIC_LVT0,
2182 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2183 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2184 
2185 	kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU);
2186 	apic_set_spiv(apic, 0xff);
2187 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2188 	if (!apic_x2apic_mode(apic))
2189 		kvm_apic_set_ldr(apic, 0);
2190 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2191 	kvm_lapic_set_reg(apic, APIC_ICR, 0);
2192 	kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2193 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2194 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2195 	for (i = 0; i < 8; i++) {
2196 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2197 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2198 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2199 	}
2200 	apic->irr_pending = vcpu->arch.apicv_active;
2201 	apic->isr_count = vcpu->arch.apicv_active ? 1 : 0;
2202 	apic->highest_isr_cache = -1;
2203 	update_divide_count(apic);
2204 	atomic_set(&apic->lapic_timer.pending, 0);
2205 	if (kvm_vcpu_is_bsp(vcpu))
2206 		kvm_lapic_set_base(vcpu,
2207 				vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
2208 	vcpu->arch.pv_eoi.msr_val = 0;
2209 	apic_update_ppr(apic);
2210 	if (vcpu->arch.apicv_active) {
2211 		kvm_x86_ops->apicv_post_state_restore(vcpu);
2212 		kvm_x86_ops->hwapic_irr_update(vcpu, -1);
2213 		kvm_x86_ops->hwapic_isr_update(vcpu, -1);
2214 	}
2215 
2216 	vcpu->arch.apic_arb_prio = 0;
2217 	vcpu->arch.apic_attention = 0;
2218 }
2219 
2220 /*
2221  *----------------------------------------------------------------------
2222  * timer interface
2223  *----------------------------------------------------------------------
2224  */
2225 
2226 static bool lapic_is_periodic(struct kvm_lapic *apic)
2227 {
2228 	return apic_lvtt_period(apic);
2229 }
2230 
2231 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2232 {
2233 	struct kvm_lapic *apic = vcpu->arch.apic;
2234 
2235 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2236 		return atomic_read(&apic->lapic_timer.pending);
2237 
2238 	return 0;
2239 }
2240 
2241 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2242 {
2243 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2244 	int vector, mode, trig_mode;
2245 
2246 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2247 		vector = reg & APIC_VECTOR_MASK;
2248 		mode = reg & APIC_MODE_MASK;
2249 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2250 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2251 					NULL);
2252 	}
2253 	return 0;
2254 }
2255 
2256 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2257 {
2258 	struct kvm_lapic *apic = vcpu->arch.apic;
2259 
2260 	if (apic)
2261 		kvm_apic_local_deliver(apic, APIC_LVT0);
2262 }
2263 
2264 static const struct kvm_io_device_ops apic_mmio_ops = {
2265 	.read     = apic_mmio_read,
2266 	.write    = apic_mmio_write,
2267 };
2268 
2269 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2270 {
2271 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2272 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2273 
2274 	apic_timer_expired(apic);
2275 
2276 	if (lapic_is_periodic(apic)) {
2277 		advance_periodic_target_expiration(apic);
2278 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2279 		return HRTIMER_RESTART;
2280 	} else
2281 		return HRTIMER_NORESTART;
2282 }
2283 
2284 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2285 {
2286 	struct kvm_lapic *apic;
2287 
2288 	ASSERT(vcpu != NULL);
2289 
2290 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2291 	if (!apic)
2292 		goto nomem;
2293 
2294 	vcpu->arch.apic = apic;
2295 
2296 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2297 	if (!apic->regs) {
2298 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2299 		       vcpu->vcpu_id);
2300 		goto nomem_free_apic;
2301 	}
2302 	apic->vcpu = vcpu;
2303 
2304 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2305 		     HRTIMER_MODE_ABS);
2306 	apic->lapic_timer.timer.function = apic_timer_fn;
2307 	if (timer_advance_ns == -1) {
2308 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_ADJUST_INIT;
2309 		apic->lapic_timer.timer_advance_adjust_done = false;
2310 	} else {
2311 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2312 		apic->lapic_timer.timer_advance_adjust_done = true;
2313 	}
2314 
2315 
2316 	/*
2317 	 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2318 	 * thinking that APIC state has changed.
2319 	 */
2320 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2321 	static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2322 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2323 
2324 	return 0;
2325 nomem_free_apic:
2326 	kfree(apic);
2327 	vcpu->arch.apic = NULL;
2328 nomem:
2329 	return -ENOMEM;
2330 }
2331 
2332 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2333 {
2334 	struct kvm_lapic *apic = vcpu->arch.apic;
2335 	u32 ppr;
2336 
2337 	if (!kvm_apic_hw_enabled(apic))
2338 		return -1;
2339 
2340 	__apic_update_ppr(apic, &ppr);
2341 	return apic_has_interrupt_for_ppr(apic, ppr);
2342 }
2343 
2344 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2345 {
2346 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2347 	int r = 0;
2348 
2349 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2350 		r = 1;
2351 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2352 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2353 		r = 1;
2354 	return r;
2355 }
2356 
2357 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2358 {
2359 	struct kvm_lapic *apic = vcpu->arch.apic;
2360 
2361 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2362 		kvm_apic_inject_pending_timer_irqs(apic);
2363 		atomic_set(&apic->lapic_timer.pending, 0);
2364 	}
2365 }
2366 
2367 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2368 {
2369 	int vector = kvm_apic_has_interrupt(vcpu);
2370 	struct kvm_lapic *apic = vcpu->arch.apic;
2371 	u32 ppr;
2372 
2373 	if (vector == -1)
2374 		return -1;
2375 
2376 	/*
2377 	 * We get here even with APIC virtualization enabled, if doing
2378 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2379 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2380 	 * because the process would deliver it through the IDT.
2381 	 */
2382 
2383 	apic_clear_irr(vector, apic);
2384 	if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
2385 		/*
2386 		 * For auto-EOI interrupts, there might be another pending
2387 		 * interrupt above PPR, so check whether to raise another
2388 		 * KVM_REQ_EVENT.
2389 		 */
2390 		apic_update_ppr(apic);
2391 	} else {
2392 		/*
2393 		 * For normal interrupts, PPR has been raised and there cannot
2394 		 * be a higher-priority pending interrupt---except if there was
2395 		 * a concurrent interrupt injection, but that would have
2396 		 * triggered KVM_REQ_EVENT already.
2397 		 */
2398 		apic_set_isr(vector, apic);
2399 		__apic_update_ppr(apic, &ppr);
2400 	}
2401 
2402 	return vector;
2403 }
2404 
2405 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2406 		struct kvm_lapic_state *s, bool set)
2407 {
2408 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2409 		u32 *id = (u32 *)(s->regs + APIC_ID);
2410 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2411 
2412 		if (vcpu->kvm->arch.x2apic_format) {
2413 			if (*id != vcpu->vcpu_id)
2414 				return -EINVAL;
2415 		} else {
2416 			if (set)
2417 				*id >>= 24;
2418 			else
2419 				*id <<= 24;
2420 		}
2421 
2422 		/* In x2APIC mode, the LDR is fixed and based on the id */
2423 		if (set)
2424 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2431 {
2432 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2433 	return kvm_apic_state_fixup(vcpu, s, false);
2434 }
2435 
2436 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2437 {
2438 	struct kvm_lapic *apic = vcpu->arch.apic;
2439 	int r;
2440 
2441 
2442 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2443 	/* set SPIV separately to get count of SW disabled APICs right */
2444 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2445 
2446 	r = kvm_apic_state_fixup(vcpu, s, true);
2447 	if (r)
2448 		return r;
2449 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2450 
2451 	recalculate_apic_map(vcpu->kvm);
2452 	kvm_apic_set_version(vcpu);
2453 
2454 	apic_update_ppr(apic);
2455 	hrtimer_cancel(&apic->lapic_timer.timer);
2456 	apic_update_lvtt(apic);
2457 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2458 	update_divide_count(apic);
2459 	start_apic_timer(apic);
2460 	apic->irr_pending = true;
2461 	apic->isr_count = vcpu->arch.apicv_active ?
2462 				1 : count_vectors(apic->regs + APIC_ISR);
2463 	apic->highest_isr_cache = -1;
2464 	if (vcpu->arch.apicv_active) {
2465 		kvm_x86_ops->apicv_post_state_restore(vcpu);
2466 		kvm_x86_ops->hwapic_irr_update(vcpu,
2467 				apic_find_highest_irr(apic));
2468 		kvm_x86_ops->hwapic_isr_update(vcpu,
2469 				apic_find_highest_isr(apic));
2470 	}
2471 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2472 	if (ioapic_in_kernel(vcpu->kvm))
2473 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2474 
2475 	vcpu->arch.apic_arb_prio = 0;
2476 
2477 	return 0;
2478 }
2479 
2480 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2481 {
2482 	struct hrtimer *timer;
2483 
2484 	if (!lapic_in_kernel(vcpu) ||
2485 		kvm_can_post_timer_interrupt(vcpu))
2486 		return;
2487 
2488 	timer = &vcpu->arch.apic->lapic_timer.timer;
2489 	if (hrtimer_cancel(timer))
2490 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
2491 }
2492 
2493 /*
2494  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2495  *
2496  * Detect whether guest triggered PV EOI since the
2497  * last entry. If yes, set EOI on guests's behalf.
2498  * Clear PV EOI in guest memory in any case.
2499  */
2500 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2501 					struct kvm_lapic *apic)
2502 {
2503 	bool pending;
2504 	int vector;
2505 	/*
2506 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2507 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2508 	 *
2509 	 * KVM_APIC_PV_EOI_PENDING is unset:
2510 	 * 	-> host disabled PV EOI.
2511 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2512 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
2513 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2514 	 * 	-> host enabled PV EOI, guest executed EOI.
2515 	 */
2516 	BUG_ON(!pv_eoi_enabled(vcpu));
2517 	pending = pv_eoi_get_pending(vcpu);
2518 	/*
2519 	 * Clear pending bit in any case: it will be set again on vmentry.
2520 	 * While this might not be ideal from performance point of view,
2521 	 * this makes sure pv eoi is only enabled when we know it's safe.
2522 	 */
2523 	pv_eoi_clr_pending(vcpu);
2524 	if (pending)
2525 		return;
2526 	vector = apic_set_eoi(apic);
2527 	trace_kvm_pv_eoi(apic, vector);
2528 }
2529 
2530 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2531 {
2532 	u32 data;
2533 
2534 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2535 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2536 
2537 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2538 		return;
2539 
2540 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2541 				  sizeof(u32)))
2542 		return;
2543 
2544 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
2545 }
2546 
2547 /*
2548  * apic_sync_pv_eoi_to_guest - called before vmentry
2549  *
2550  * Detect whether it's safe to enable PV EOI and
2551  * if yes do so.
2552  */
2553 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2554 					struct kvm_lapic *apic)
2555 {
2556 	if (!pv_eoi_enabled(vcpu) ||
2557 	    /* IRR set or many bits in ISR: could be nested. */
2558 	    apic->irr_pending ||
2559 	    /* Cache not set: could be safe but we don't bother. */
2560 	    apic->highest_isr_cache == -1 ||
2561 	    /* Need EOI to update ioapic. */
2562 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2563 		/*
2564 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2565 		 * so we need not do anything here.
2566 		 */
2567 		return;
2568 	}
2569 
2570 	pv_eoi_set_pending(apic->vcpu);
2571 }
2572 
2573 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2574 {
2575 	u32 data, tpr;
2576 	int max_irr, max_isr;
2577 	struct kvm_lapic *apic = vcpu->arch.apic;
2578 
2579 	apic_sync_pv_eoi_to_guest(vcpu, apic);
2580 
2581 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2582 		return;
2583 
2584 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2585 	max_irr = apic_find_highest_irr(apic);
2586 	if (max_irr < 0)
2587 		max_irr = 0;
2588 	max_isr = apic_find_highest_isr(apic);
2589 	if (max_isr < 0)
2590 		max_isr = 0;
2591 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2592 
2593 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2594 				sizeof(u32));
2595 }
2596 
2597 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2598 {
2599 	if (vapic_addr) {
2600 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2601 					&vcpu->arch.apic->vapic_cache,
2602 					vapic_addr, sizeof(u32)))
2603 			return -EINVAL;
2604 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2605 	} else {
2606 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2607 	}
2608 
2609 	vcpu->arch.apic->vapic_addr = vapic_addr;
2610 	return 0;
2611 }
2612 
2613 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2614 {
2615 	struct kvm_lapic *apic = vcpu->arch.apic;
2616 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2617 
2618 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2619 		return 1;
2620 
2621 	if (reg == APIC_ICR2)
2622 		return 1;
2623 
2624 	/* if this is ICR write vector before command */
2625 	if (reg == APIC_ICR)
2626 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2627 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2628 }
2629 
2630 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2631 {
2632 	struct kvm_lapic *apic = vcpu->arch.apic;
2633 	u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2634 
2635 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2636 		return 1;
2637 
2638 	if (reg == APIC_DFR || reg == APIC_ICR2)
2639 		return 1;
2640 
2641 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2642 		return 1;
2643 	if (reg == APIC_ICR)
2644 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2645 
2646 	*data = (((u64)high) << 32) | low;
2647 
2648 	return 0;
2649 }
2650 
2651 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2652 {
2653 	struct kvm_lapic *apic = vcpu->arch.apic;
2654 
2655 	if (!lapic_in_kernel(vcpu))
2656 		return 1;
2657 
2658 	/* if this is ICR write vector before command */
2659 	if (reg == APIC_ICR)
2660 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2661 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2662 }
2663 
2664 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2665 {
2666 	struct kvm_lapic *apic = vcpu->arch.apic;
2667 	u32 low, high = 0;
2668 
2669 	if (!lapic_in_kernel(vcpu))
2670 		return 1;
2671 
2672 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2673 		return 1;
2674 	if (reg == APIC_ICR)
2675 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2676 
2677 	*data = (((u64)high) << 32) | low;
2678 
2679 	return 0;
2680 }
2681 
2682 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2683 {
2684 	u64 addr = data & ~KVM_MSR_ENABLED;
2685 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2686 	unsigned long new_len;
2687 
2688 	if (!IS_ALIGNED(addr, 4))
2689 		return 1;
2690 
2691 	vcpu->arch.pv_eoi.msr_val = data;
2692 	if (!pv_eoi_enabled(vcpu))
2693 		return 0;
2694 
2695 	if (addr == ghc->gpa && len <= ghc->len)
2696 		new_len = ghc->len;
2697 	else
2698 		new_len = len;
2699 
2700 	return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2701 }
2702 
2703 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2704 {
2705 	struct kvm_lapic *apic = vcpu->arch.apic;
2706 	u8 sipi_vector;
2707 	unsigned long pe;
2708 
2709 	if (!lapic_in_kernel(vcpu) || !apic->pending_events)
2710 		return;
2711 
2712 	/*
2713 	 * INITs are latched while in SMM.  Because an SMM CPU cannot
2714 	 * be in KVM_MP_STATE_INIT_RECEIVED state, just eat SIPIs
2715 	 * and delay processing of INIT until the next RSM.
2716 	 */
2717 	if (is_smm(vcpu)) {
2718 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2719 		if (test_bit(KVM_APIC_SIPI, &apic->pending_events))
2720 			clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2721 		return;
2722 	}
2723 
2724 	pe = xchg(&apic->pending_events, 0);
2725 	if (test_bit(KVM_APIC_INIT, &pe)) {
2726 		kvm_vcpu_reset(vcpu, true);
2727 		if (kvm_vcpu_is_bsp(apic->vcpu))
2728 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2729 		else
2730 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2731 	}
2732 	if (test_bit(KVM_APIC_SIPI, &pe) &&
2733 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2734 		/* evaluate pending_events before reading the vector */
2735 		smp_rmb();
2736 		sipi_vector = apic->sipi_vector;
2737 		kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2738 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2739 	}
2740 }
2741 
2742 void kvm_lapic_init(void)
2743 {
2744 	/* do not patch jump label more than once per second */
2745 	jump_label_rate_limit(&apic_hw_disabled, HZ);
2746 	jump_label_rate_limit(&apic_sw_disabled, HZ);
2747 }
2748 
2749 void kvm_lapic_exit(void)
2750 {
2751 	static_key_deferred_flush(&apic_hw_disabled);
2752 	static_key_deferred_flush(&apic_sw_disabled);
2753 }
2754