xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "trace.h"
40 #include "x86.h"
41 #include "cpuid.h"
42 #include "hyperv.h"
43 
44 #ifndef CONFIG_X86_64
45 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
46 #else
47 #define mod_64(x, y) ((x) % (y))
48 #endif
49 
50 #define PRId64 "d"
51 #define PRIx64 "llx"
52 #define PRIu64 "u"
53 #define PRIo64 "o"
54 
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION			(0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
57 #define LAPIC_MMIO_LENGTH		(1 << 12)
58 /* followed define is not in apicdef.h */
59 #define APIC_SHORT_MASK			0xc0000
60 #define APIC_DEST_NOSHORT		0x0
61 #define APIC_DEST_MASK			0x800
62 #define MAX_APIC_VECTOR			256
63 #define APIC_VECTORS_PER_REG		32
64 
65 #define APIC_BROADCAST			0xFF
66 #define X2APIC_BROADCAST		0xFFFFFFFFul
67 
68 static bool lapic_timer_advance_dynamic __read_mostly;
69 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
70 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
71 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
72 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
73 /* step-by-step approximation to mitigate fluctuation */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
75 
76 static inline int apic_test_vector(int vec, void *bitmap)
77 {
78 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
79 }
80 
81 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
82 {
83 	struct kvm_lapic *apic = vcpu->arch.apic;
84 
85 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
86 		apic_test_vector(vector, apic->regs + APIC_IRR);
87 }
88 
89 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
90 {
91 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
92 }
93 
94 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
95 {
96 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
97 }
98 
99 struct static_key_deferred apic_hw_disabled __read_mostly;
100 struct static_key_deferred apic_sw_disabled __read_mostly;
101 
102 static inline int apic_enabled(struct kvm_lapic *apic)
103 {
104 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
105 }
106 
107 #define LVT_MASK	\
108 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
109 
110 #define LINT_MASK	\
111 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
112 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
113 
114 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
115 {
116 	return apic->vcpu->vcpu_id;
117 }
118 
119 bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
120 {
121 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
122 }
123 EXPORT_SYMBOL_GPL(kvm_can_post_timer_interrupt);
124 
125 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
126 {
127 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
128 }
129 
130 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
131 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
132 	switch (map->mode) {
133 	case KVM_APIC_MODE_X2APIC: {
134 		u32 offset = (dest_id >> 16) * 16;
135 		u32 max_apic_id = map->max_apic_id;
136 
137 		if (offset <= max_apic_id) {
138 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
139 
140 			offset = array_index_nospec(offset, map->max_apic_id + 1);
141 			*cluster = &map->phys_map[offset];
142 			*mask = dest_id & (0xffff >> (16 - cluster_size));
143 		} else {
144 			*mask = 0;
145 		}
146 
147 		return true;
148 		}
149 	case KVM_APIC_MODE_XAPIC_FLAT:
150 		*cluster = map->xapic_flat_map;
151 		*mask = dest_id & 0xff;
152 		return true;
153 	case KVM_APIC_MODE_XAPIC_CLUSTER:
154 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
155 		*mask = dest_id & 0xf;
156 		return true;
157 	default:
158 		/* Not optimized. */
159 		return false;
160 	}
161 }
162 
163 static void kvm_apic_map_free(struct rcu_head *rcu)
164 {
165 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
166 
167 	kvfree(map);
168 }
169 
170 static void recalculate_apic_map(struct kvm *kvm)
171 {
172 	struct kvm_apic_map *new, *old = NULL;
173 	struct kvm_vcpu *vcpu;
174 	int i;
175 	u32 max_id = 255; /* enough space for any xAPIC ID */
176 
177 	mutex_lock(&kvm->arch.apic_map_lock);
178 
179 	kvm_for_each_vcpu(i, vcpu, kvm)
180 		if (kvm_apic_present(vcpu))
181 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
182 
183 	new = kvzalloc(sizeof(struct kvm_apic_map) +
184 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
185 			   GFP_KERNEL_ACCOUNT);
186 
187 	if (!new)
188 		goto out;
189 
190 	new->max_apic_id = max_id;
191 
192 	kvm_for_each_vcpu(i, vcpu, kvm) {
193 		struct kvm_lapic *apic = vcpu->arch.apic;
194 		struct kvm_lapic **cluster;
195 		u16 mask;
196 		u32 ldr;
197 		u8 xapic_id;
198 		u32 x2apic_id;
199 
200 		if (!kvm_apic_present(vcpu))
201 			continue;
202 
203 		xapic_id = kvm_xapic_id(apic);
204 		x2apic_id = kvm_x2apic_id(apic);
205 
206 		/* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
207 		if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
208 				x2apic_id <= new->max_apic_id)
209 			new->phys_map[x2apic_id] = apic;
210 		/*
211 		 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
212 		 * prevent them from masking VCPUs with APIC ID <= 0xff.
213 		 */
214 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
215 			new->phys_map[xapic_id] = apic;
216 
217 		if (!kvm_apic_sw_enabled(apic))
218 			continue;
219 
220 		ldr = kvm_lapic_get_reg(apic, APIC_LDR);
221 
222 		if (apic_x2apic_mode(apic)) {
223 			new->mode |= KVM_APIC_MODE_X2APIC;
224 		} else if (ldr) {
225 			ldr = GET_APIC_LOGICAL_ID(ldr);
226 			if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
227 				new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
228 			else
229 				new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
230 		}
231 
232 		if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
233 			continue;
234 
235 		if (mask)
236 			cluster[ffs(mask) - 1] = apic;
237 	}
238 out:
239 	old = rcu_dereference_protected(kvm->arch.apic_map,
240 			lockdep_is_held(&kvm->arch.apic_map_lock));
241 	rcu_assign_pointer(kvm->arch.apic_map, new);
242 	mutex_unlock(&kvm->arch.apic_map_lock);
243 
244 	if (old)
245 		call_rcu(&old->rcu, kvm_apic_map_free);
246 
247 	kvm_make_scan_ioapic_request(kvm);
248 }
249 
250 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
251 {
252 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
253 
254 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
255 
256 	if (enabled != apic->sw_enabled) {
257 		apic->sw_enabled = enabled;
258 		if (enabled)
259 			static_key_slow_dec_deferred(&apic_sw_disabled);
260 		else
261 			static_key_slow_inc(&apic_sw_disabled.key);
262 
263 		recalculate_apic_map(apic->vcpu->kvm);
264 	}
265 }
266 
267 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
268 {
269 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
270 	recalculate_apic_map(apic->vcpu->kvm);
271 }
272 
273 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
274 {
275 	kvm_lapic_set_reg(apic, APIC_LDR, id);
276 	recalculate_apic_map(apic->vcpu->kvm);
277 }
278 
279 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
280 {
281 	return ((id >> 4) << 16) | (1 << (id & 0xf));
282 }
283 
284 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
285 {
286 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
287 
288 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
289 
290 	kvm_lapic_set_reg(apic, APIC_ID, id);
291 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
292 	recalculate_apic_map(apic->vcpu->kvm);
293 }
294 
295 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
296 {
297 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
298 }
299 
300 static inline int apic_lvt_vector(struct kvm_lapic *apic, int lvt_type)
301 {
302 	return kvm_lapic_get_reg(apic, lvt_type) & APIC_VECTOR_MASK;
303 }
304 
305 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
306 {
307 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
308 }
309 
310 static inline int apic_lvtt_period(struct kvm_lapic *apic)
311 {
312 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
313 }
314 
315 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
316 {
317 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
318 }
319 
320 static inline int apic_lvt_nmi_mode(u32 lvt_val)
321 {
322 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
323 }
324 
325 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
326 {
327 	struct kvm_lapic *apic = vcpu->arch.apic;
328 	struct kvm_cpuid_entry2 *feat;
329 	u32 v = APIC_VERSION;
330 
331 	if (!lapic_in_kernel(vcpu))
332 		return;
333 
334 	/*
335 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
336 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
337 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
338 	 * version first and level-triggered interrupts never get EOIed in
339 	 * IOAPIC.
340 	 */
341 	feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0);
342 	if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31))) &&
343 	    !ioapic_in_kernel(vcpu->kvm))
344 		v |= APIC_LVR_DIRECTED_EOI;
345 	kvm_lapic_set_reg(apic, APIC_LVR, v);
346 }
347 
348 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
349 	LVT_MASK ,      /* part LVTT mask, timer mode mask added at runtime */
350 	LVT_MASK | APIC_MODE_MASK,	/* LVTTHMR */
351 	LVT_MASK | APIC_MODE_MASK,	/* LVTPC */
352 	LINT_MASK, LINT_MASK,	/* LVT0-1 */
353 	LVT_MASK		/* LVTERR */
354 };
355 
356 static int find_highest_vector(void *bitmap)
357 {
358 	int vec;
359 	u32 *reg;
360 
361 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
362 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
363 		reg = bitmap + REG_POS(vec);
364 		if (*reg)
365 			return __fls(*reg) + vec;
366 	}
367 
368 	return -1;
369 }
370 
371 static u8 count_vectors(void *bitmap)
372 {
373 	int vec;
374 	u32 *reg;
375 	u8 count = 0;
376 
377 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
378 		reg = bitmap + REG_POS(vec);
379 		count += hweight32(*reg);
380 	}
381 
382 	return count;
383 }
384 
385 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
386 {
387 	u32 i, vec;
388 	u32 pir_val, irr_val, prev_irr_val;
389 	int max_updated_irr;
390 
391 	max_updated_irr = -1;
392 	*max_irr = -1;
393 
394 	for (i = vec = 0; i <= 7; i++, vec += 32) {
395 		pir_val = READ_ONCE(pir[i]);
396 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
397 		if (pir_val) {
398 			prev_irr_val = irr_val;
399 			irr_val |= xchg(&pir[i], 0);
400 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
401 			if (prev_irr_val != irr_val) {
402 				max_updated_irr =
403 					__fls(irr_val ^ prev_irr_val) + vec;
404 			}
405 		}
406 		if (irr_val)
407 			*max_irr = __fls(irr_val) + vec;
408 	}
409 
410 	return ((max_updated_irr != -1) &&
411 		(max_updated_irr == *max_irr));
412 }
413 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
414 
415 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
416 {
417 	struct kvm_lapic *apic = vcpu->arch.apic;
418 
419 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
420 }
421 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
422 
423 static inline int apic_search_irr(struct kvm_lapic *apic)
424 {
425 	return find_highest_vector(apic->regs + APIC_IRR);
426 }
427 
428 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
429 {
430 	int result;
431 
432 	/*
433 	 * Note that irr_pending is just a hint. It will be always
434 	 * true with virtual interrupt delivery enabled.
435 	 */
436 	if (!apic->irr_pending)
437 		return -1;
438 
439 	result = apic_search_irr(apic);
440 	ASSERT(result == -1 || result >= 16);
441 
442 	return result;
443 }
444 
445 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
446 {
447 	struct kvm_vcpu *vcpu;
448 
449 	vcpu = apic->vcpu;
450 
451 	if (unlikely(vcpu->arch.apicv_active)) {
452 		/* need to update RVI */
453 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
454 		kvm_x86_ops->hwapic_irr_update(vcpu,
455 				apic_find_highest_irr(apic));
456 	} else {
457 		apic->irr_pending = false;
458 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
459 		if (apic_search_irr(apic) != -1)
460 			apic->irr_pending = true;
461 	}
462 }
463 
464 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
465 {
466 	struct kvm_vcpu *vcpu;
467 
468 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
469 		return;
470 
471 	vcpu = apic->vcpu;
472 
473 	/*
474 	 * With APIC virtualization enabled, all caching is disabled
475 	 * because the processor can modify ISR under the hood.  Instead
476 	 * just set SVI.
477 	 */
478 	if (unlikely(vcpu->arch.apicv_active))
479 		kvm_x86_ops->hwapic_isr_update(vcpu, vec);
480 	else {
481 		++apic->isr_count;
482 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
483 		/*
484 		 * ISR (in service register) bit is set when injecting an interrupt.
485 		 * The highest vector is injected. Thus the latest bit set matches
486 		 * the highest bit in ISR.
487 		 */
488 		apic->highest_isr_cache = vec;
489 	}
490 }
491 
492 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
493 {
494 	int result;
495 
496 	/*
497 	 * Note that isr_count is always 1, and highest_isr_cache
498 	 * is always -1, with APIC virtualization enabled.
499 	 */
500 	if (!apic->isr_count)
501 		return -1;
502 	if (likely(apic->highest_isr_cache != -1))
503 		return apic->highest_isr_cache;
504 
505 	result = find_highest_vector(apic->regs + APIC_ISR);
506 	ASSERT(result == -1 || result >= 16);
507 
508 	return result;
509 }
510 
511 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
512 {
513 	struct kvm_vcpu *vcpu;
514 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
515 		return;
516 
517 	vcpu = apic->vcpu;
518 
519 	/*
520 	 * We do get here for APIC virtualization enabled if the guest
521 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
522 	 * to trigger a new interrupt delivery by writing the SVI field;
523 	 * on the other hand isr_count and highest_isr_cache are unused
524 	 * and must be left alone.
525 	 */
526 	if (unlikely(vcpu->arch.apicv_active))
527 		kvm_x86_ops->hwapic_isr_update(vcpu,
528 					       apic_find_highest_isr(apic));
529 	else {
530 		--apic->isr_count;
531 		BUG_ON(apic->isr_count < 0);
532 		apic->highest_isr_cache = -1;
533 	}
534 }
535 
536 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
537 {
538 	/* This may race with setting of irr in __apic_accept_irq() and
539 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
540 	 * will cause vmexit immediately and the value will be recalculated
541 	 * on the next vmentry.
542 	 */
543 	return apic_find_highest_irr(vcpu->arch.apic);
544 }
545 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
546 
547 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
548 			     int vector, int level, int trig_mode,
549 			     struct dest_map *dest_map);
550 
551 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
552 		     struct dest_map *dest_map)
553 {
554 	struct kvm_lapic *apic = vcpu->arch.apic;
555 
556 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
557 			irq->level, irq->trig_mode, dest_map);
558 }
559 
560 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
561 		    unsigned long ipi_bitmap_high, u32 min,
562 		    unsigned long icr, int op_64_bit)
563 {
564 	int i;
565 	struct kvm_apic_map *map;
566 	struct kvm_vcpu *vcpu;
567 	struct kvm_lapic_irq irq = {0};
568 	int cluster_size = op_64_bit ? 64 : 32;
569 	int count = 0;
570 
571 	irq.vector = icr & APIC_VECTOR_MASK;
572 	irq.delivery_mode = icr & APIC_MODE_MASK;
573 	irq.level = (icr & APIC_INT_ASSERT) != 0;
574 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
575 
576 	if (icr & APIC_DEST_MASK)
577 		return -KVM_EINVAL;
578 	if (icr & APIC_SHORT_MASK)
579 		return -KVM_EINVAL;
580 
581 	rcu_read_lock();
582 	map = rcu_dereference(kvm->arch.apic_map);
583 
584 	if (unlikely(!map)) {
585 		count = -EOPNOTSUPP;
586 		goto out;
587 	}
588 
589 	if (min > map->max_apic_id)
590 		goto out;
591 	/* Bits above cluster_size are masked in the caller.  */
592 	for_each_set_bit(i, &ipi_bitmap_low,
593 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
594 		if (map->phys_map[min + i]) {
595 			vcpu = map->phys_map[min + i]->vcpu;
596 			count += kvm_apic_set_irq(vcpu, &irq, NULL);
597 		}
598 	}
599 
600 	min += cluster_size;
601 
602 	if (min > map->max_apic_id)
603 		goto out;
604 
605 	for_each_set_bit(i, &ipi_bitmap_high,
606 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
607 		if (map->phys_map[min + i]) {
608 			vcpu = map->phys_map[min + i]->vcpu;
609 			count += kvm_apic_set_irq(vcpu, &irq, NULL);
610 		}
611 	}
612 
613 out:
614 	rcu_read_unlock();
615 	return count;
616 }
617 
618 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
619 {
620 
621 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
622 				      sizeof(val));
623 }
624 
625 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
626 {
627 
628 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
629 				      sizeof(*val));
630 }
631 
632 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
633 {
634 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
635 }
636 
637 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
638 {
639 	u8 val;
640 	if (pv_eoi_get_user(vcpu, &val) < 0)
641 		printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n",
642 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
643 	return val & 0x1;
644 }
645 
646 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
647 {
648 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
649 		printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n",
650 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
651 		return;
652 	}
653 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
654 }
655 
656 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
657 {
658 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
659 		printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n",
660 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
661 		return;
662 	}
663 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
664 }
665 
666 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
667 {
668 	int highest_irr;
669 	if (apic->vcpu->arch.apicv_active)
670 		highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu);
671 	else
672 		highest_irr = apic_find_highest_irr(apic);
673 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
674 		return -1;
675 	return highest_irr;
676 }
677 
678 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
679 {
680 	u32 tpr, isrv, ppr, old_ppr;
681 	int isr;
682 
683 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
684 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
685 	isr = apic_find_highest_isr(apic);
686 	isrv = (isr != -1) ? isr : 0;
687 
688 	if ((tpr & 0xf0) >= (isrv & 0xf0))
689 		ppr = tpr & 0xff;
690 	else
691 		ppr = isrv & 0xf0;
692 
693 	*new_ppr = ppr;
694 	if (old_ppr != ppr)
695 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
696 
697 	return ppr < old_ppr;
698 }
699 
700 static void apic_update_ppr(struct kvm_lapic *apic)
701 {
702 	u32 ppr;
703 
704 	if (__apic_update_ppr(apic, &ppr) &&
705 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
706 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
707 }
708 
709 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
710 {
711 	apic_update_ppr(vcpu->arch.apic);
712 }
713 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
714 
715 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
716 {
717 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
718 	apic_update_ppr(apic);
719 }
720 
721 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
722 {
723 	return mda == (apic_x2apic_mode(apic) ?
724 			X2APIC_BROADCAST : APIC_BROADCAST);
725 }
726 
727 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
728 {
729 	if (kvm_apic_broadcast(apic, mda))
730 		return true;
731 
732 	if (apic_x2apic_mode(apic))
733 		return mda == kvm_x2apic_id(apic);
734 
735 	/*
736 	 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
737 	 * it were in x2APIC mode.  Hotplugged VCPUs start in xAPIC mode and
738 	 * this allows unique addressing of VCPUs with APIC ID over 0xff.
739 	 * The 0xff condition is needed because writeable xAPIC ID.
740 	 */
741 	if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
742 		return true;
743 
744 	return mda == kvm_xapic_id(apic);
745 }
746 
747 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
748 {
749 	u32 logical_id;
750 
751 	if (kvm_apic_broadcast(apic, mda))
752 		return true;
753 
754 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
755 
756 	if (apic_x2apic_mode(apic))
757 		return ((logical_id >> 16) == (mda >> 16))
758 		       && (logical_id & mda & 0xffff) != 0;
759 
760 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
761 
762 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
763 	case APIC_DFR_FLAT:
764 		return (logical_id & mda) != 0;
765 	case APIC_DFR_CLUSTER:
766 		return ((logical_id >> 4) == (mda >> 4))
767 		       && (logical_id & mda & 0xf) != 0;
768 	default:
769 		return false;
770 	}
771 }
772 
773 /* The KVM local APIC implementation has two quirks:
774  *
775  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
776  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
777  *    KVM doesn't do that aliasing.
778  *
779  *  - in-kernel IOAPIC messages have to be delivered directly to
780  *    x2APIC, because the kernel does not support interrupt remapping.
781  *    In order to support broadcast without interrupt remapping, x2APIC
782  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
783  *    to X2APIC_BROADCAST.
784  *
785  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
786  * important when userspace wants to use x2APIC-format MSIs, because
787  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
788  */
789 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
790 		struct kvm_lapic *source, struct kvm_lapic *target)
791 {
792 	bool ipi = source != NULL;
793 
794 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
795 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
796 		return X2APIC_BROADCAST;
797 
798 	return dest_id;
799 }
800 
801 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
802 			   int short_hand, unsigned int dest, int dest_mode)
803 {
804 	struct kvm_lapic *target = vcpu->arch.apic;
805 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
806 
807 	ASSERT(target);
808 	switch (short_hand) {
809 	case APIC_DEST_NOSHORT:
810 		if (dest_mode == APIC_DEST_PHYSICAL)
811 			return kvm_apic_match_physical_addr(target, mda);
812 		else
813 			return kvm_apic_match_logical_addr(target, mda);
814 	case APIC_DEST_SELF:
815 		return target == source;
816 	case APIC_DEST_ALLINC:
817 		return true;
818 	case APIC_DEST_ALLBUT:
819 		return target != source;
820 	default:
821 		return false;
822 	}
823 }
824 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
825 
826 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
827 		       const unsigned long *bitmap, u32 bitmap_size)
828 {
829 	u32 mod;
830 	int i, idx = -1;
831 
832 	mod = vector % dest_vcpus;
833 
834 	for (i = 0; i <= mod; i++) {
835 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
836 		BUG_ON(idx == bitmap_size);
837 	}
838 
839 	return idx;
840 }
841 
842 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
843 {
844 	if (!kvm->arch.disabled_lapic_found) {
845 		kvm->arch.disabled_lapic_found = true;
846 		printk(KERN_INFO
847 		       "Disabled LAPIC found during irq injection\n");
848 	}
849 }
850 
851 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
852 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
853 {
854 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
855 		if ((irq->dest_id == APIC_BROADCAST &&
856 				map->mode != KVM_APIC_MODE_X2APIC))
857 			return true;
858 		if (irq->dest_id == X2APIC_BROADCAST)
859 			return true;
860 	} else {
861 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
862 		if (irq->dest_id == (x2apic_ipi ?
863 		                     X2APIC_BROADCAST : APIC_BROADCAST))
864 			return true;
865 	}
866 
867 	return false;
868 }
869 
870 /* Return true if the interrupt can be handled by using *bitmap as index mask
871  * for valid destinations in *dst array.
872  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
873  * Note: we may have zero kvm_lapic destinations when we return true, which
874  * means that the interrupt should be dropped.  In this case, *bitmap would be
875  * zero and *dst undefined.
876  */
877 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
878 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
879 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
880 		unsigned long *bitmap)
881 {
882 	int i, lowest;
883 
884 	if (irq->shorthand == APIC_DEST_SELF && src) {
885 		*dst = src;
886 		*bitmap = 1;
887 		return true;
888 	} else if (irq->shorthand)
889 		return false;
890 
891 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
892 		return false;
893 
894 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
895 		if (irq->dest_id > map->max_apic_id) {
896 			*bitmap = 0;
897 		} else {
898 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
899 			*dst = &map->phys_map[dest_id];
900 			*bitmap = 1;
901 		}
902 		return true;
903 	}
904 
905 	*bitmap = 0;
906 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
907 				(u16 *)bitmap))
908 		return false;
909 
910 	if (!kvm_lowest_prio_delivery(irq))
911 		return true;
912 
913 	if (!kvm_vector_hashing_enabled()) {
914 		lowest = -1;
915 		for_each_set_bit(i, bitmap, 16) {
916 			if (!(*dst)[i])
917 				continue;
918 			if (lowest < 0)
919 				lowest = i;
920 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
921 						(*dst)[lowest]->vcpu) < 0)
922 				lowest = i;
923 		}
924 	} else {
925 		if (!*bitmap)
926 			return true;
927 
928 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
929 				bitmap, 16);
930 
931 		if (!(*dst)[lowest]) {
932 			kvm_apic_disabled_lapic_found(kvm);
933 			*bitmap = 0;
934 			return true;
935 		}
936 	}
937 
938 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
939 
940 	return true;
941 }
942 
943 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
944 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
945 {
946 	struct kvm_apic_map *map;
947 	unsigned long bitmap;
948 	struct kvm_lapic **dst = NULL;
949 	int i;
950 	bool ret;
951 
952 	*r = -1;
953 
954 	if (irq->shorthand == APIC_DEST_SELF) {
955 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
956 		return true;
957 	}
958 
959 	rcu_read_lock();
960 	map = rcu_dereference(kvm->arch.apic_map);
961 
962 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
963 	if (ret) {
964 		*r = 0;
965 		for_each_set_bit(i, &bitmap, 16) {
966 			if (!dst[i])
967 				continue;
968 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
969 		}
970 	}
971 
972 	rcu_read_unlock();
973 	return ret;
974 }
975 
976 /*
977  * This routine tries to handler interrupts in posted mode, here is how
978  * it deals with different cases:
979  * - For single-destination interrupts, handle it in posted mode
980  * - Else if vector hashing is enabled and it is a lowest-priority
981  *   interrupt, handle it in posted mode and use the following mechanism
982  *   to find the destinaiton vCPU.
983  *	1. For lowest-priority interrupts, store all the possible
984  *	   destination vCPUs in an array.
985  *	2. Use "guest vector % max number of destination vCPUs" to find
986  *	   the right destination vCPU in the array for the lowest-priority
987  *	   interrupt.
988  * - Otherwise, use remapped mode to inject the interrupt.
989  */
990 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
991 			struct kvm_vcpu **dest_vcpu)
992 {
993 	struct kvm_apic_map *map;
994 	unsigned long bitmap;
995 	struct kvm_lapic **dst = NULL;
996 	bool ret = false;
997 
998 	if (irq->shorthand)
999 		return false;
1000 
1001 	rcu_read_lock();
1002 	map = rcu_dereference(kvm->arch.apic_map);
1003 
1004 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1005 			hweight16(bitmap) == 1) {
1006 		unsigned long i = find_first_bit(&bitmap, 16);
1007 
1008 		if (dst[i]) {
1009 			*dest_vcpu = dst[i]->vcpu;
1010 			ret = true;
1011 		}
1012 	}
1013 
1014 	rcu_read_unlock();
1015 	return ret;
1016 }
1017 
1018 /*
1019  * Add a pending IRQ into lapic.
1020  * Return 1 if successfully added and 0 if discarded.
1021  */
1022 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1023 			     int vector, int level, int trig_mode,
1024 			     struct dest_map *dest_map)
1025 {
1026 	int result = 0;
1027 	struct kvm_vcpu *vcpu = apic->vcpu;
1028 
1029 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1030 				  trig_mode, vector);
1031 	switch (delivery_mode) {
1032 	case APIC_DM_LOWEST:
1033 		vcpu->arch.apic_arb_prio++;
1034 		/* fall through */
1035 	case APIC_DM_FIXED:
1036 		if (unlikely(trig_mode && !level))
1037 			break;
1038 
1039 		/* FIXME add logic for vcpu on reset */
1040 		if (unlikely(!apic_enabled(apic)))
1041 			break;
1042 
1043 		result = 1;
1044 
1045 		if (dest_map) {
1046 			__set_bit(vcpu->vcpu_id, dest_map->map);
1047 			dest_map->vectors[vcpu->vcpu_id] = vector;
1048 		}
1049 
1050 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1051 			if (trig_mode)
1052 				kvm_lapic_set_vector(vector,
1053 						     apic->regs + APIC_TMR);
1054 			else
1055 				kvm_lapic_clear_vector(vector,
1056 						       apic->regs + APIC_TMR);
1057 		}
1058 
1059 		if (vcpu->arch.apicv_active)
1060 			kvm_x86_ops->deliver_posted_interrupt(vcpu, vector);
1061 		else {
1062 			kvm_lapic_set_irr(vector, apic);
1063 
1064 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1065 			kvm_vcpu_kick(vcpu);
1066 		}
1067 		break;
1068 
1069 	case APIC_DM_REMRD:
1070 		result = 1;
1071 		vcpu->arch.pv.pv_unhalted = 1;
1072 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1073 		kvm_vcpu_kick(vcpu);
1074 		break;
1075 
1076 	case APIC_DM_SMI:
1077 		result = 1;
1078 		kvm_make_request(KVM_REQ_SMI, vcpu);
1079 		kvm_vcpu_kick(vcpu);
1080 		break;
1081 
1082 	case APIC_DM_NMI:
1083 		result = 1;
1084 		kvm_inject_nmi(vcpu);
1085 		kvm_vcpu_kick(vcpu);
1086 		break;
1087 
1088 	case APIC_DM_INIT:
1089 		if (!trig_mode || level) {
1090 			result = 1;
1091 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1092 			apic->pending_events = (1UL << KVM_APIC_INIT);
1093 			/* make sure pending_events is visible before sending
1094 			 * the request */
1095 			smp_wmb();
1096 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1097 			kvm_vcpu_kick(vcpu);
1098 		}
1099 		break;
1100 
1101 	case APIC_DM_STARTUP:
1102 		result = 1;
1103 		apic->sipi_vector = vector;
1104 		/* make sure sipi_vector is visible for the receiver */
1105 		smp_wmb();
1106 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1107 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1108 		kvm_vcpu_kick(vcpu);
1109 		break;
1110 
1111 	case APIC_DM_EXTINT:
1112 		/*
1113 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1114 		 * before NMI watchdog was enabled. Already handled by
1115 		 * kvm_apic_accept_pic_intr().
1116 		 */
1117 		break;
1118 
1119 	default:
1120 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1121 		       delivery_mode);
1122 		break;
1123 	}
1124 	return result;
1125 }
1126 
1127 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1128 {
1129 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1130 }
1131 
1132 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1133 {
1134 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1135 }
1136 
1137 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1138 {
1139 	int trigger_mode;
1140 
1141 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1142 	if (!kvm_ioapic_handles_vector(apic, vector))
1143 		return;
1144 
1145 	/* Request a KVM exit to inform the userspace IOAPIC. */
1146 	if (irqchip_split(apic->vcpu->kvm)) {
1147 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1148 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1149 		return;
1150 	}
1151 
1152 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1153 		trigger_mode = IOAPIC_LEVEL_TRIG;
1154 	else
1155 		trigger_mode = IOAPIC_EDGE_TRIG;
1156 
1157 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1158 }
1159 
1160 static int apic_set_eoi(struct kvm_lapic *apic)
1161 {
1162 	int vector = apic_find_highest_isr(apic);
1163 
1164 	trace_kvm_eoi(apic, vector);
1165 
1166 	/*
1167 	 * Not every write EOI will has corresponding ISR,
1168 	 * one example is when Kernel check timer on setup_IO_APIC
1169 	 */
1170 	if (vector == -1)
1171 		return vector;
1172 
1173 	apic_clear_isr(vector, apic);
1174 	apic_update_ppr(apic);
1175 
1176 	if (test_bit(vector, vcpu_to_synic(apic->vcpu)->vec_bitmap))
1177 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1178 
1179 	kvm_ioapic_send_eoi(apic, vector);
1180 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1181 	return vector;
1182 }
1183 
1184 /*
1185  * this interface assumes a trap-like exit, which has already finished
1186  * desired side effect including vISR and vPPR update.
1187  */
1188 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1189 {
1190 	struct kvm_lapic *apic = vcpu->arch.apic;
1191 
1192 	trace_kvm_eoi(apic, vector);
1193 
1194 	kvm_ioapic_send_eoi(apic, vector);
1195 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1196 }
1197 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1198 
1199 static void apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1200 {
1201 	struct kvm_lapic_irq irq;
1202 
1203 	irq.vector = icr_low & APIC_VECTOR_MASK;
1204 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1205 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1206 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1207 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1208 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1209 	irq.msi_redir_hint = false;
1210 	if (apic_x2apic_mode(apic))
1211 		irq.dest_id = icr_high;
1212 	else
1213 		irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1214 
1215 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1216 
1217 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1218 }
1219 
1220 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1221 {
1222 	ktime_t remaining, now;
1223 	s64 ns;
1224 	u32 tmcct;
1225 
1226 	ASSERT(apic != NULL);
1227 
1228 	/* if initial count is 0, current count should also be 0 */
1229 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1230 		apic->lapic_timer.period == 0)
1231 		return 0;
1232 
1233 	now = ktime_get();
1234 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1235 	if (ktime_to_ns(remaining) < 0)
1236 		remaining = 0;
1237 
1238 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1239 	tmcct = div64_u64(ns,
1240 			 (APIC_BUS_CYCLE_NS * apic->divide_count));
1241 
1242 	return tmcct;
1243 }
1244 
1245 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1246 {
1247 	struct kvm_vcpu *vcpu = apic->vcpu;
1248 	struct kvm_run *run = vcpu->run;
1249 
1250 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1251 	run->tpr_access.rip = kvm_rip_read(vcpu);
1252 	run->tpr_access.is_write = write;
1253 }
1254 
1255 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1256 {
1257 	if (apic->vcpu->arch.tpr_access_reporting)
1258 		__report_tpr_access(apic, write);
1259 }
1260 
1261 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1262 {
1263 	u32 val = 0;
1264 
1265 	if (offset >= LAPIC_MMIO_LENGTH)
1266 		return 0;
1267 
1268 	switch (offset) {
1269 	case APIC_ARBPRI:
1270 		break;
1271 
1272 	case APIC_TMCCT:	/* Timer CCR */
1273 		if (apic_lvtt_tscdeadline(apic))
1274 			return 0;
1275 
1276 		val = apic_get_tmcct(apic);
1277 		break;
1278 	case APIC_PROCPRI:
1279 		apic_update_ppr(apic);
1280 		val = kvm_lapic_get_reg(apic, offset);
1281 		break;
1282 	case APIC_TASKPRI:
1283 		report_tpr_access(apic, false);
1284 		/* fall thru */
1285 	default:
1286 		val = kvm_lapic_get_reg(apic, offset);
1287 		break;
1288 	}
1289 
1290 	return val;
1291 }
1292 
1293 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1294 {
1295 	return container_of(dev, struct kvm_lapic, dev);
1296 }
1297 
1298 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1299 #define APIC_REGS_MASK(first, count) \
1300 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1301 
1302 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1303 		void *data)
1304 {
1305 	unsigned char alignment = offset & 0xf;
1306 	u32 result;
1307 	/* this bitmask has a bit cleared for each reserved register */
1308 	u64 valid_reg_mask =
1309 		APIC_REG_MASK(APIC_ID) |
1310 		APIC_REG_MASK(APIC_LVR) |
1311 		APIC_REG_MASK(APIC_TASKPRI) |
1312 		APIC_REG_MASK(APIC_PROCPRI) |
1313 		APIC_REG_MASK(APIC_LDR) |
1314 		APIC_REG_MASK(APIC_DFR) |
1315 		APIC_REG_MASK(APIC_SPIV) |
1316 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1317 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1318 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1319 		APIC_REG_MASK(APIC_ESR) |
1320 		APIC_REG_MASK(APIC_ICR) |
1321 		APIC_REG_MASK(APIC_ICR2) |
1322 		APIC_REG_MASK(APIC_LVTT) |
1323 		APIC_REG_MASK(APIC_LVTTHMR) |
1324 		APIC_REG_MASK(APIC_LVTPC) |
1325 		APIC_REG_MASK(APIC_LVT0) |
1326 		APIC_REG_MASK(APIC_LVT1) |
1327 		APIC_REG_MASK(APIC_LVTERR) |
1328 		APIC_REG_MASK(APIC_TMICT) |
1329 		APIC_REG_MASK(APIC_TMCCT) |
1330 		APIC_REG_MASK(APIC_TDCR);
1331 
1332 	/* ARBPRI is not valid on x2APIC */
1333 	if (!apic_x2apic_mode(apic))
1334 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1335 
1336 	if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1337 		return 1;
1338 
1339 	result = __apic_read(apic, offset & ~0xf);
1340 
1341 	trace_kvm_apic_read(offset, result);
1342 
1343 	switch (len) {
1344 	case 1:
1345 	case 2:
1346 	case 4:
1347 		memcpy(data, (char *)&result + alignment, len);
1348 		break;
1349 	default:
1350 		printk(KERN_ERR "Local APIC read with len = %x, "
1351 		       "should be 1,2, or 4 instead\n", len);
1352 		break;
1353 	}
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1357 
1358 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1359 {
1360 	return addr >= apic->base_address &&
1361 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1362 }
1363 
1364 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1365 			   gpa_t address, int len, void *data)
1366 {
1367 	struct kvm_lapic *apic = to_lapic(this);
1368 	u32 offset = address - apic->base_address;
1369 
1370 	if (!apic_mmio_in_range(apic, address))
1371 		return -EOPNOTSUPP;
1372 
1373 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1374 		if (!kvm_check_has_quirk(vcpu->kvm,
1375 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1376 			return -EOPNOTSUPP;
1377 
1378 		memset(data, 0xff, len);
1379 		return 0;
1380 	}
1381 
1382 	kvm_lapic_reg_read(apic, offset, len, data);
1383 
1384 	return 0;
1385 }
1386 
1387 static void update_divide_count(struct kvm_lapic *apic)
1388 {
1389 	u32 tmp1, tmp2, tdcr;
1390 
1391 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1392 	tmp1 = tdcr & 0xf;
1393 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1394 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1395 }
1396 
1397 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1398 {
1399 	/*
1400 	 * Do not allow the guest to program periodic timers with small
1401 	 * interval, since the hrtimers are not throttled by the host
1402 	 * scheduler.
1403 	 */
1404 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1405 		s64 min_period = min_timer_period_us * 1000LL;
1406 
1407 		if (apic->lapic_timer.period < min_period) {
1408 			pr_info_ratelimited(
1409 			    "kvm: vcpu %i: requested %lld ns "
1410 			    "lapic timer period limited to %lld ns\n",
1411 			    apic->vcpu->vcpu_id,
1412 			    apic->lapic_timer.period, min_period);
1413 			apic->lapic_timer.period = min_period;
1414 		}
1415 	}
1416 }
1417 
1418 static void apic_update_lvtt(struct kvm_lapic *apic)
1419 {
1420 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1421 			apic->lapic_timer.timer_mode_mask;
1422 
1423 	if (apic->lapic_timer.timer_mode != timer_mode) {
1424 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1425 				APIC_LVT_TIMER_TSCDEADLINE)) {
1426 			hrtimer_cancel(&apic->lapic_timer.timer);
1427 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1428 			apic->lapic_timer.period = 0;
1429 			apic->lapic_timer.tscdeadline = 0;
1430 		}
1431 		apic->lapic_timer.timer_mode = timer_mode;
1432 		limit_periodic_timer_frequency(apic);
1433 	}
1434 }
1435 
1436 /*
1437  * On APICv, this test will cause a busy wait
1438  * during a higher-priority task.
1439  */
1440 
1441 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1442 {
1443 	struct kvm_lapic *apic = vcpu->arch.apic;
1444 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1445 
1446 	if (kvm_apic_hw_enabled(apic)) {
1447 		int vec = reg & APIC_VECTOR_MASK;
1448 		void *bitmap = apic->regs + APIC_ISR;
1449 
1450 		if (vcpu->arch.apicv_active)
1451 			bitmap = apic->regs + APIC_IRR;
1452 
1453 		if (apic_test_vector(vec, bitmap))
1454 			return true;
1455 	}
1456 	return false;
1457 }
1458 
1459 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1460 {
1461 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1462 
1463 	/*
1464 	 * If the guest TSC is running at a different ratio than the host, then
1465 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1466 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1467 	 * always for VMX enabled hardware.
1468 	 */
1469 	if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1470 		__delay(min(guest_cycles,
1471 			nsec_to_cycles(vcpu, timer_advance_ns)));
1472 	} else {
1473 		u64 delay_ns = guest_cycles * 1000000ULL;
1474 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1475 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1476 	}
1477 }
1478 
1479 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1480 					      s64 advance_expire_delta)
1481 {
1482 	struct kvm_lapic *apic = vcpu->arch.apic;
1483 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1484 	u64 ns;
1485 
1486 	/* Do not adjust for tiny fluctuations or large random spikes. */
1487 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1488 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1489 		return;
1490 
1491 	/* too early */
1492 	if (advance_expire_delta < 0) {
1493 		ns = -advance_expire_delta * 1000000ULL;
1494 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1495 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1496 	} else {
1497 	/* too late */
1498 		ns = advance_expire_delta * 1000000ULL;
1499 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1500 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1501 	}
1502 
1503 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1504 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1505 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1506 }
1507 
1508 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1509 {
1510 	struct kvm_lapic *apic = vcpu->arch.apic;
1511 	u64 guest_tsc, tsc_deadline;
1512 
1513 	if (apic->lapic_timer.expired_tscdeadline == 0)
1514 		return;
1515 
1516 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1517 	apic->lapic_timer.expired_tscdeadline = 0;
1518 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1519 	apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1520 
1521 	if (guest_tsc < tsc_deadline)
1522 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1523 
1524 	if (lapic_timer_advance_dynamic)
1525 		adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1526 }
1527 
1528 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1529 {
1530 	if (lapic_timer_int_injected(vcpu))
1531 		__kvm_wait_lapic_expire(vcpu);
1532 }
1533 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1534 
1535 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1536 {
1537 	struct kvm_timer *ktimer = &apic->lapic_timer;
1538 
1539 	kvm_apic_local_deliver(apic, APIC_LVTT);
1540 	if (apic_lvtt_tscdeadline(apic))
1541 		ktimer->tscdeadline = 0;
1542 	if (apic_lvtt_oneshot(apic)) {
1543 		ktimer->tscdeadline = 0;
1544 		ktimer->target_expiration = 0;
1545 	}
1546 }
1547 
1548 static void apic_timer_expired(struct kvm_lapic *apic)
1549 {
1550 	struct kvm_vcpu *vcpu = apic->vcpu;
1551 	struct kvm_timer *ktimer = &apic->lapic_timer;
1552 
1553 	if (atomic_read(&apic->lapic_timer.pending))
1554 		return;
1555 
1556 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1557 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1558 
1559 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1560 		if (apic->lapic_timer.timer_advance_ns)
1561 			__kvm_wait_lapic_expire(vcpu);
1562 		kvm_apic_inject_pending_timer_irqs(apic);
1563 		return;
1564 	}
1565 
1566 	atomic_inc(&apic->lapic_timer.pending);
1567 	kvm_set_pending_timer(vcpu);
1568 }
1569 
1570 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1571 {
1572 	struct kvm_timer *ktimer = &apic->lapic_timer;
1573 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1574 	u64 ns = 0;
1575 	ktime_t expire;
1576 	struct kvm_vcpu *vcpu = apic->vcpu;
1577 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1578 	unsigned long flags;
1579 	ktime_t now;
1580 
1581 	if (unlikely(!tscdeadline || !this_tsc_khz))
1582 		return;
1583 
1584 	local_irq_save(flags);
1585 
1586 	now = ktime_get();
1587 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1588 
1589 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1590 	do_div(ns, this_tsc_khz);
1591 
1592 	if (likely(tscdeadline > guest_tsc) &&
1593 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1594 		expire = ktime_add_ns(now, ns);
1595 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1596 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1597 	} else
1598 		apic_timer_expired(apic);
1599 
1600 	local_irq_restore(flags);
1601 }
1602 
1603 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1604 {
1605 	ktime_t now, remaining;
1606 	u64 ns_remaining_old, ns_remaining_new;
1607 
1608 	apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1609 		* APIC_BUS_CYCLE_NS * apic->divide_count;
1610 	limit_periodic_timer_frequency(apic);
1611 
1612 	now = ktime_get();
1613 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1614 	if (ktime_to_ns(remaining) < 0)
1615 		remaining = 0;
1616 
1617 	ns_remaining_old = ktime_to_ns(remaining);
1618 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1619 	                                   apic->divide_count, old_divisor);
1620 
1621 	apic->lapic_timer.tscdeadline +=
1622 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1623 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1624 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1625 }
1626 
1627 static bool set_target_expiration(struct kvm_lapic *apic)
1628 {
1629 	ktime_t now;
1630 	u64 tscl = rdtsc();
1631 
1632 	now = ktime_get();
1633 	apic->lapic_timer.period = (u64)kvm_lapic_get_reg(apic, APIC_TMICT)
1634 		* APIC_BUS_CYCLE_NS * apic->divide_count;
1635 
1636 	if (!apic->lapic_timer.period) {
1637 		apic->lapic_timer.tscdeadline = 0;
1638 		return false;
1639 	}
1640 
1641 	limit_periodic_timer_frequency(apic);
1642 
1643 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1644 		nsec_to_cycles(apic->vcpu, apic->lapic_timer.period);
1645 	apic->lapic_timer.target_expiration = ktime_add_ns(now, apic->lapic_timer.period);
1646 
1647 	return true;
1648 }
1649 
1650 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1651 {
1652 	ktime_t now = ktime_get();
1653 	u64 tscl = rdtsc();
1654 	ktime_t delta;
1655 
1656 	/*
1657 	 * Synchronize both deadlines to the same time source or
1658 	 * differences in the periods (caused by differences in the
1659 	 * underlying clocks or numerical approximation errors) will
1660 	 * cause the two to drift apart over time as the errors
1661 	 * accumulate.
1662 	 */
1663 	apic->lapic_timer.target_expiration =
1664 		ktime_add_ns(apic->lapic_timer.target_expiration,
1665 				apic->lapic_timer.period);
1666 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1667 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1668 		nsec_to_cycles(apic->vcpu, delta);
1669 }
1670 
1671 static void start_sw_period(struct kvm_lapic *apic)
1672 {
1673 	if (!apic->lapic_timer.period)
1674 		return;
1675 
1676 	if (ktime_after(ktime_get(),
1677 			apic->lapic_timer.target_expiration)) {
1678 		apic_timer_expired(apic);
1679 
1680 		if (apic_lvtt_oneshot(apic))
1681 			return;
1682 
1683 		advance_periodic_target_expiration(apic);
1684 	}
1685 
1686 	hrtimer_start(&apic->lapic_timer.timer,
1687 		apic->lapic_timer.target_expiration,
1688 		HRTIMER_MODE_ABS);
1689 }
1690 
1691 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1692 {
1693 	if (!lapic_in_kernel(vcpu))
1694 		return false;
1695 
1696 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1699 
1700 static void cancel_hv_timer(struct kvm_lapic *apic)
1701 {
1702 	WARN_ON(preemptible());
1703 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1704 	kvm_x86_ops->cancel_hv_timer(apic->vcpu);
1705 	apic->lapic_timer.hv_timer_in_use = false;
1706 }
1707 
1708 static bool start_hv_timer(struct kvm_lapic *apic)
1709 {
1710 	struct kvm_timer *ktimer = &apic->lapic_timer;
1711 	struct kvm_vcpu *vcpu = apic->vcpu;
1712 	bool expired;
1713 
1714 	WARN_ON(preemptible());
1715 	if (!kvm_x86_ops->set_hv_timer)
1716 		return false;
1717 
1718 	if (!ktimer->tscdeadline)
1719 		return false;
1720 
1721 	if (kvm_x86_ops->set_hv_timer(vcpu, ktimer->tscdeadline, &expired))
1722 		return false;
1723 
1724 	ktimer->hv_timer_in_use = true;
1725 	hrtimer_cancel(&ktimer->timer);
1726 
1727 	/*
1728 	 * To simplify handling the periodic timer, leave the hv timer running
1729 	 * even if the deadline timer has expired, i.e. rely on the resulting
1730 	 * VM-Exit to recompute the periodic timer's target expiration.
1731 	 */
1732 	if (!apic_lvtt_period(apic)) {
1733 		/*
1734 		 * Cancel the hv timer if the sw timer fired while the hv timer
1735 		 * was being programmed, or if the hv timer itself expired.
1736 		 */
1737 		if (atomic_read(&ktimer->pending)) {
1738 			cancel_hv_timer(apic);
1739 		} else if (expired) {
1740 			apic_timer_expired(apic);
1741 			cancel_hv_timer(apic);
1742 		}
1743 	}
1744 
1745 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1746 
1747 	return true;
1748 }
1749 
1750 static void start_sw_timer(struct kvm_lapic *apic)
1751 {
1752 	struct kvm_timer *ktimer = &apic->lapic_timer;
1753 
1754 	WARN_ON(preemptible());
1755 	if (apic->lapic_timer.hv_timer_in_use)
1756 		cancel_hv_timer(apic);
1757 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1758 		return;
1759 
1760 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1761 		start_sw_period(apic);
1762 	else if (apic_lvtt_tscdeadline(apic))
1763 		start_sw_tscdeadline(apic);
1764 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1765 }
1766 
1767 static void restart_apic_timer(struct kvm_lapic *apic)
1768 {
1769 	preempt_disable();
1770 
1771 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1772 		goto out;
1773 
1774 	if (!start_hv_timer(apic))
1775 		start_sw_timer(apic);
1776 out:
1777 	preempt_enable();
1778 }
1779 
1780 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1781 {
1782 	struct kvm_lapic *apic = vcpu->arch.apic;
1783 
1784 	preempt_disable();
1785 	/* If the preempt notifier has already run, it also called apic_timer_expired */
1786 	if (!apic->lapic_timer.hv_timer_in_use)
1787 		goto out;
1788 	WARN_ON(swait_active(&vcpu->wq));
1789 	cancel_hv_timer(apic);
1790 	apic_timer_expired(apic);
1791 
1792 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1793 		advance_periodic_target_expiration(apic);
1794 		restart_apic_timer(apic);
1795 	}
1796 out:
1797 	preempt_enable();
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1800 
1801 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1802 {
1803 	restart_apic_timer(vcpu->arch.apic);
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1806 
1807 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1808 {
1809 	struct kvm_lapic *apic = vcpu->arch.apic;
1810 
1811 	preempt_disable();
1812 	/* Possibly the TSC deadline timer is not enabled yet */
1813 	if (apic->lapic_timer.hv_timer_in_use)
1814 		start_sw_timer(apic);
1815 	preempt_enable();
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1818 
1819 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1820 {
1821 	struct kvm_lapic *apic = vcpu->arch.apic;
1822 
1823 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1824 	restart_apic_timer(apic);
1825 }
1826 
1827 static void start_apic_timer(struct kvm_lapic *apic)
1828 {
1829 	atomic_set(&apic->lapic_timer.pending, 0);
1830 
1831 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1832 	    && !set_target_expiration(apic))
1833 		return;
1834 
1835 	restart_apic_timer(apic);
1836 }
1837 
1838 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1839 {
1840 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1841 
1842 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1843 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1844 		if (lvt0_in_nmi_mode) {
1845 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1846 		} else
1847 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1848 	}
1849 }
1850 
1851 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1852 {
1853 	int ret = 0;
1854 
1855 	trace_kvm_apic_write(reg, val);
1856 
1857 	switch (reg) {
1858 	case APIC_ID:		/* Local APIC ID */
1859 		if (!apic_x2apic_mode(apic))
1860 			kvm_apic_set_xapic_id(apic, val >> 24);
1861 		else
1862 			ret = 1;
1863 		break;
1864 
1865 	case APIC_TASKPRI:
1866 		report_tpr_access(apic, true);
1867 		apic_set_tpr(apic, val & 0xff);
1868 		break;
1869 
1870 	case APIC_EOI:
1871 		apic_set_eoi(apic);
1872 		break;
1873 
1874 	case APIC_LDR:
1875 		if (!apic_x2apic_mode(apic))
1876 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
1877 		else
1878 			ret = 1;
1879 		break;
1880 
1881 	case APIC_DFR:
1882 		if (!apic_x2apic_mode(apic)) {
1883 			kvm_lapic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF);
1884 			recalculate_apic_map(apic->vcpu->kvm);
1885 		} else
1886 			ret = 1;
1887 		break;
1888 
1889 	case APIC_SPIV: {
1890 		u32 mask = 0x3ff;
1891 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
1892 			mask |= APIC_SPIV_DIRECTED_EOI;
1893 		apic_set_spiv(apic, val & mask);
1894 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
1895 			int i;
1896 			u32 lvt_val;
1897 
1898 			for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
1899 				lvt_val = kvm_lapic_get_reg(apic,
1900 						       APIC_LVTT + 0x10 * i);
1901 				kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
1902 					     lvt_val | APIC_LVT_MASKED);
1903 			}
1904 			apic_update_lvtt(apic);
1905 			atomic_set(&apic->lapic_timer.pending, 0);
1906 
1907 		}
1908 		break;
1909 	}
1910 	case APIC_ICR:
1911 		/* No delay here, so we always clear the pending bit */
1912 		val &= ~(1 << 12);
1913 		apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
1914 		kvm_lapic_set_reg(apic, APIC_ICR, val);
1915 		break;
1916 
1917 	case APIC_ICR2:
1918 		if (!apic_x2apic_mode(apic))
1919 			val &= 0xff000000;
1920 		kvm_lapic_set_reg(apic, APIC_ICR2, val);
1921 		break;
1922 
1923 	case APIC_LVT0:
1924 		apic_manage_nmi_watchdog(apic, val);
1925 		/* fall through */
1926 	case APIC_LVTTHMR:
1927 	case APIC_LVTPC:
1928 	case APIC_LVT1:
1929 	case APIC_LVTERR:
1930 		/* TODO: Check vector */
1931 		if (!kvm_apic_sw_enabled(apic))
1932 			val |= APIC_LVT_MASKED;
1933 
1934 		val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4];
1935 		kvm_lapic_set_reg(apic, reg, val);
1936 
1937 		break;
1938 
1939 	case APIC_LVTT:
1940 		if (!kvm_apic_sw_enabled(apic))
1941 			val |= APIC_LVT_MASKED;
1942 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
1943 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
1944 		apic_update_lvtt(apic);
1945 		break;
1946 
1947 	case APIC_TMICT:
1948 		if (apic_lvtt_tscdeadline(apic))
1949 			break;
1950 
1951 		hrtimer_cancel(&apic->lapic_timer.timer);
1952 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
1953 		start_apic_timer(apic);
1954 		break;
1955 
1956 	case APIC_TDCR: {
1957 		uint32_t old_divisor = apic->divide_count;
1958 
1959 		kvm_lapic_set_reg(apic, APIC_TDCR, val);
1960 		update_divide_count(apic);
1961 		if (apic->divide_count != old_divisor &&
1962 				apic->lapic_timer.period) {
1963 			hrtimer_cancel(&apic->lapic_timer.timer);
1964 			update_target_expiration(apic, old_divisor);
1965 			restart_apic_timer(apic);
1966 		}
1967 		break;
1968 	}
1969 	case APIC_ESR:
1970 		if (apic_x2apic_mode(apic) && val != 0)
1971 			ret = 1;
1972 		break;
1973 
1974 	case APIC_SELF_IPI:
1975 		if (apic_x2apic_mode(apic)) {
1976 			kvm_lapic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff));
1977 		} else
1978 			ret = 1;
1979 		break;
1980 	default:
1981 		ret = 1;
1982 		break;
1983 	}
1984 
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
1988 
1989 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1990 			    gpa_t address, int len, const void *data)
1991 {
1992 	struct kvm_lapic *apic = to_lapic(this);
1993 	unsigned int offset = address - apic->base_address;
1994 	u32 val;
1995 
1996 	if (!apic_mmio_in_range(apic, address))
1997 		return -EOPNOTSUPP;
1998 
1999 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2000 		if (!kvm_check_has_quirk(vcpu->kvm,
2001 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2002 			return -EOPNOTSUPP;
2003 
2004 		return 0;
2005 	}
2006 
2007 	/*
2008 	 * APIC register must be aligned on 128-bits boundary.
2009 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2010 	 * Refer SDM 8.4.1
2011 	 */
2012 	if (len != 4 || (offset & 0xf))
2013 		return 0;
2014 
2015 	val = *(u32*)data;
2016 
2017 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2018 
2019 	return 0;
2020 }
2021 
2022 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2023 {
2024 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2027 
2028 /* emulate APIC access in a trap manner */
2029 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2030 {
2031 	u32 val = 0;
2032 
2033 	/* hw has done the conditional check and inst decode */
2034 	offset &= 0xff0;
2035 
2036 	kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2037 
2038 	/* TODO: optimize to just emulate side effect w/o one more write */
2039 	kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2042 
2043 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2044 {
2045 	struct kvm_lapic *apic = vcpu->arch.apic;
2046 
2047 	if (!vcpu->arch.apic)
2048 		return;
2049 
2050 	hrtimer_cancel(&apic->lapic_timer.timer);
2051 
2052 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2053 		static_key_slow_dec_deferred(&apic_hw_disabled);
2054 
2055 	if (!apic->sw_enabled)
2056 		static_key_slow_dec_deferred(&apic_sw_disabled);
2057 
2058 	if (apic->regs)
2059 		free_page((unsigned long)apic->regs);
2060 
2061 	kfree(apic);
2062 }
2063 
2064 /*
2065  *----------------------------------------------------------------------
2066  * LAPIC interface
2067  *----------------------------------------------------------------------
2068  */
2069 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2070 {
2071 	struct kvm_lapic *apic = vcpu->arch.apic;
2072 
2073 	if (!lapic_in_kernel(vcpu) ||
2074 		!apic_lvtt_tscdeadline(apic))
2075 		return 0;
2076 
2077 	return apic->lapic_timer.tscdeadline;
2078 }
2079 
2080 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2081 {
2082 	struct kvm_lapic *apic = vcpu->arch.apic;
2083 
2084 	if (!lapic_in_kernel(vcpu) || apic_lvtt_oneshot(apic) ||
2085 			apic_lvtt_period(apic))
2086 		return;
2087 
2088 	hrtimer_cancel(&apic->lapic_timer.timer);
2089 	apic->lapic_timer.tscdeadline = data;
2090 	start_apic_timer(apic);
2091 }
2092 
2093 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2094 {
2095 	struct kvm_lapic *apic = vcpu->arch.apic;
2096 
2097 	apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2098 		     | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2099 }
2100 
2101 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2102 {
2103 	u64 tpr;
2104 
2105 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2106 
2107 	return (tpr & 0xf0) >> 4;
2108 }
2109 
2110 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2111 {
2112 	u64 old_value = vcpu->arch.apic_base;
2113 	struct kvm_lapic *apic = vcpu->arch.apic;
2114 
2115 	if (!apic)
2116 		value |= MSR_IA32_APICBASE_BSP;
2117 
2118 	vcpu->arch.apic_base = value;
2119 
2120 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2121 		kvm_update_cpuid(vcpu);
2122 
2123 	if (!apic)
2124 		return;
2125 
2126 	/* update jump label if enable bit changes */
2127 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2128 		if (value & MSR_IA32_APICBASE_ENABLE) {
2129 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2130 			static_key_slow_dec_deferred(&apic_hw_disabled);
2131 		} else {
2132 			static_key_slow_inc(&apic_hw_disabled.key);
2133 			recalculate_apic_map(vcpu->kvm);
2134 		}
2135 	}
2136 
2137 	if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2138 		kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2139 
2140 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2141 		kvm_x86_ops->set_virtual_apic_mode(vcpu);
2142 
2143 	apic->base_address = apic->vcpu->arch.apic_base &
2144 			     MSR_IA32_APICBASE_BASE;
2145 
2146 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2147 	     apic->base_address != APIC_DEFAULT_PHYS_BASE)
2148 		pr_warn_once("APIC base relocation is unsupported by KVM");
2149 }
2150 
2151 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2152 {
2153 	struct kvm_lapic *apic = vcpu->arch.apic;
2154 	int i;
2155 
2156 	if (!apic)
2157 		return;
2158 
2159 	/* Stop the timer in case it's a reset to an active apic */
2160 	hrtimer_cancel(&apic->lapic_timer.timer);
2161 
2162 	if (!init_event) {
2163 		kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
2164 		                         MSR_IA32_APICBASE_ENABLE);
2165 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2166 	}
2167 	kvm_apic_set_version(apic->vcpu);
2168 
2169 	for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2170 		kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2171 	apic_update_lvtt(apic);
2172 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2173 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2174 		kvm_lapic_set_reg(apic, APIC_LVT0,
2175 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2176 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2177 
2178 	kvm_lapic_set_reg(apic, APIC_DFR, 0xffffffffU);
2179 	apic_set_spiv(apic, 0xff);
2180 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2181 	if (!apic_x2apic_mode(apic))
2182 		kvm_apic_set_ldr(apic, 0);
2183 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2184 	kvm_lapic_set_reg(apic, APIC_ICR, 0);
2185 	kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2186 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2187 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2188 	for (i = 0; i < 8; i++) {
2189 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2190 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2191 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2192 	}
2193 	apic->irr_pending = vcpu->arch.apicv_active;
2194 	apic->isr_count = vcpu->arch.apicv_active ? 1 : 0;
2195 	apic->highest_isr_cache = -1;
2196 	update_divide_count(apic);
2197 	atomic_set(&apic->lapic_timer.pending, 0);
2198 	if (kvm_vcpu_is_bsp(vcpu))
2199 		kvm_lapic_set_base(vcpu,
2200 				vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
2201 	vcpu->arch.pv_eoi.msr_val = 0;
2202 	apic_update_ppr(apic);
2203 	if (vcpu->arch.apicv_active) {
2204 		kvm_x86_ops->apicv_post_state_restore(vcpu);
2205 		kvm_x86_ops->hwapic_irr_update(vcpu, -1);
2206 		kvm_x86_ops->hwapic_isr_update(vcpu, -1);
2207 	}
2208 
2209 	vcpu->arch.apic_arb_prio = 0;
2210 	vcpu->arch.apic_attention = 0;
2211 }
2212 
2213 /*
2214  *----------------------------------------------------------------------
2215  * timer interface
2216  *----------------------------------------------------------------------
2217  */
2218 
2219 static bool lapic_is_periodic(struct kvm_lapic *apic)
2220 {
2221 	return apic_lvtt_period(apic);
2222 }
2223 
2224 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2225 {
2226 	struct kvm_lapic *apic = vcpu->arch.apic;
2227 
2228 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2229 		return atomic_read(&apic->lapic_timer.pending);
2230 
2231 	return 0;
2232 }
2233 
2234 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2235 {
2236 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2237 	int vector, mode, trig_mode;
2238 
2239 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2240 		vector = reg & APIC_VECTOR_MASK;
2241 		mode = reg & APIC_MODE_MASK;
2242 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2243 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2244 					NULL);
2245 	}
2246 	return 0;
2247 }
2248 
2249 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2250 {
2251 	struct kvm_lapic *apic = vcpu->arch.apic;
2252 
2253 	if (apic)
2254 		kvm_apic_local_deliver(apic, APIC_LVT0);
2255 }
2256 
2257 static const struct kvm_io_device_ops apic_mmio_ops = {
2258 	.read     = apic_mmio_read,
2259 	.write    = apic_mmio_write,
2260 };
2261 
2262 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2263 {
2264 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2265 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2266 
2267 	apic_timer_expired(apic);
2268 
2269 	if (lapic_is_periodic(apic)) {
2270 		advance_periodic_target_expiration(apic);
2271 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2272 		return HRTIMER_RESTART;
2273 	} else
2274 		return HRTIMER_NORESTART;
2275 }
2276 
2277 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2278 {
2279 	struct kvm_lapic *apic;
2280 
2281 	ASSERT(vcpu != NULL);
2282 
2283 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2284 	if (!apic)
2285 		goto nomem;
2286 
2287 	vcpu->arch.apic = apic;
2288 
2289 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2290 	if (!apic->regs) {
2291 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2292 		       vcpu->vcpu_id);
2293 		goto nomem_free_apic;
2294 	}
2295 	apic->vcpu = vcpu;
2296 
2297 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2298 		     HRTIMER_MODE_ABS_HARD);
2299 	apic->lapic_timer.timer.function = apic_timer_fn;
2300 	if (timer_advance_ns == -1) {
2301 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2302 		lapic_timer_advance_dynamic = true;
2303 	} else {
2304 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2305 		lapic_timer_advance_dynamic = false;
2306 	}
2307 
2308 	/*
2309 	 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2310 	 * thinking that APIC state has changed.
2311 	 */
2312 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2313 	static_key_slow_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2314 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2315 
2316 	return 0;
2317 nomem_free_apic:
2318 	kfree(apic);
2319 	vcpu->arch.apic = NULL;
2320 nomem:
2321 	return -ENOMEM;
2322 }
2323 
2324 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2325 {
2326 	struct kvm_lapic *apic = vcpu->arch.apic;
2327 	u32 ppr;
2328 
2329 	if (!kvm_apic_hw_enabled(apic))
2330 		return -1;
2331 
2332 	__apic_update_ppr(apic, &ppr);
2333 	return apic_has_interrupt_for_ppr(apic, ppr);
2334 }
2335 
2336 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2337 {
2338 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2339 	int r = 0;
2340 
2341 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2342 		r = 1;
2343 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2344 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2345 		r = 1;
2346 	return r;
2347 }
2348 
2349 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2350 {
2351 	struct kvm_lapic *apic = vcpu->arch.apic;
2352 
2353 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2354 		kvm_apic_inject_pending_timer_irqs(apic);
2355 		atomic_set(&apic->lapic_timer.pending, 0);
2356 	}
2357 }
2358 
2359 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2360 {
2361 	int vector = kvm_apic_has_interrupt(vcpu);
2362 	struct kvm_lapic *apic = vcpu->arch.apic;
2363 	u32 ppr;
2364 
2365 	if (vector == -1)
2366 		return -1;
2367 
2368 	/*
2369 	 * We get here even with APIC virtualization enabled, if doing
2370 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2371 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2372 	 * because the process would deliver it through the IDT.
2373 	 */
2374 
2375 	apic_clear_irr(vector, apic);
2376 	if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
2377 		/*
2378 		 * For auto-EOI interrupts, there might be another pending
2379 		 * interrupt above PPR, so check whether to raise another
2380 		 * KVM_REQ_EVENT.
2381 		 */
2382 		apic_update_ppr(apic);
2383 	} else {
2384 		/*
2385 		 * For normal interrupts, PPR has been raised and there cannot
2386 		 * be a higher-priority pending interrupt---except if there was
2387 		 * a concurrent interrupt injection, but that would have
2388 		 * triggered KVM_REQ_EVENT already.
2389 		 */
2390 		apic_set_isr(vector, apic);
2391 		__apic_update_ppr(apic, &ppr);
2392 	}
2393 
2394 	return vector;
2395 }
2396 
2397 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2398 		struct kvm_lapic_state *s, bool set)
2399 {
2400 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2401 		u32 *id = (u32 *)(s->regs + APIC_ID);
2402 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2403 
2404 		if (vcpu->kvm->arch.x2apic_format) {
2405 			if (*id != vcpu->vcpu_id)
2406 				return -EINVAL;
2407 		} else {
2408 			if (set)
2409 				*id >>= 24;
2410 			else
2411 				*id <<= 24;
2412 		}
2413 
2414 		/* In x2APIC mode, the LDR is fixed and based on the id */
2415 		if (set)
2416 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2423 {
2424 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2425 	return kvm_apic_state_fixup(vcpu, s, false);
2426 }
2427 
2428 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2429 {
2430 	struct kvm_lapic *apic = vcpu->arch.apic;
2431 	int r;
2432 
2433 
2434 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2435 	/* set SPIV separately to get count of SW disabled APICs right */
2436 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2437 
2438 	r = kvm_apic_state_fixup(vcpu, s, true);
2439 	if (r)
2440 		return r;
2441 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2442 
2443 	recalculate_apic_map(vcpu->kvm);
2444 	kvm_apic_set_version(vcpu);
2445 
2446 	apic_update_ppr(apic);
2447 	hrtimer_cancel(&apic->lapic_timer.timer);
2448 	apic_update_lvtt(apic);
2449 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2450 	update_divide_count(apic);
2451 	start_apic_timer(apic);
2452 	apic->irr_pending = true;
2453 	apic->isr_count = vcpu->arch.apicv_active ?
2454 				1 : count_vectors(apic->regs + APIC_ISR);
2455 	apic->highest_isr_cache = -1;
2456 	if (vcpu->arch.apicv_active) {
2457 		kvm_x86_ops->apicv_post_state_restore(vcpu);
2458 		kvm_x86_ops->hwapic_irr_update(vcpu,
2459 				apic_find_highest_irr(apic));
2460 		kvm_x86_ops->hwapic_isr_update(vcpu,
2461 				apic_find_highest_isr(apic));
2462 	}
2463 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2464 	if (ioapic_in_kernel(vcpu->kvm))
2465 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2466 
2467 	vcpu->arch.apic_arb_prio = 0;
2468 
2469 	return 0;
2470 }
2471 
2472 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2473 {
2474 	struct hrtimer *timer;
2475 
2476 	if (!lapic_in_kernel(vcpu) ||
2477 		kvm_can_post_timer_interrupt(vcpu))
2478 		return;
2479 
2480 	timer = &vcpu->arch.apic->lapic_timer.timer;
2481 	if (hrtimer_cancel(timer))
2482 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2483 }
2484 
2485 /*
2486  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2487  *
2488  * Detect whether guest triggered PV EOI since the
2489  * last entry. If yes, set EOI on guests's behalf.
2490  * Clear PV EOI in guest memory in any case.
2491  */
2492 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2493 					struct kvm_lapic *apic)
2494 {
2495 	bool pending;
2496 	int vector;
2497 	/*
2498 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2499 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2500 	 *
2501 	 * KVM_APIC_PV_EOI_PENDING is unset:
2502 	 * 	-> host disabled PV EOI.
2503 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2504 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
2505 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2506 	 * 	-> host enabled PV EOI, guest executed EOI.
2507 	 */
2508 	BUG_ON(!pv_eoi_enabled(vcpu));
2509 	pending = pv_eoi_get_pending(vcpu);
2510 	/*
2511 	 * Clear pending bit in any case: it will be set again on vmentry.
2512 	 * While this might not be ideal from performance point of view,
2513 	 * this makes sure pv eoi is only enabled when we know it's safe.
2514 	 */
2515 	pv_eoi_clr_pending(vcpu);
2516 	if (pending)
2517 		return;
2518 	vector = apic_set_eoi(apic);
2519 	trace_kvm_pv_eoi(apic, vector);
2520 }
2521 
2522 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2523 {
2524 	u32 data;
2525 
2526 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2527 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2528 
2529 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2530 		return;
2531 
2532 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2533 				  sizeof(u32)))
2534 		return;
2535 
2536 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
2537 }
2538 
2539 /*
2540  * apic_sync_pv_eoi_to_guest - called before vmentry
2541  *
2542  * Detect whether it's safe to enable PV EOI and
2543  * if yes do so.
2544  */
2545 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2546 					struct kvm_lapic *apic)
2547 {
2548 	if (!pv_eoi_enabled(vcpu) ||
2549 	    /* IRR set or many bits in ISR: could be nested. */
2550 	    apic->irr_pending ||
2551 	    /* Cache not set: could be safe but we don't bother. */
2552 	    apic->highest_isr_cache == -1 ||
2553 	    /* Need EOI to update ioapic. */
2554 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2555 		/*
2556 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2557 		 * so we need not do anything here.
2558 		 */
2559 		return;
2560 	}
2561 
2562 	pv_eoi_set_pending(apic->vcpu);
2563 }
2564 
2565 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2566 {
2567 	u32 data, tpr;
2568 	int max_irr, max_isr;
2569 	struct kvm_lapic *apic = vcpu->arch.apic;
2570 
2571 	apic_sync_pv_eoi_to_guest(vcpu, apic);
2572 
2573 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2574 		return;
2575 
2576 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2577 	max_irr = apic_find_highest_irr(apic);
2578 	if (max_irr < 0)
2579 		max_irr = 0;
2580 	max_isr = apic_find_highest_isr(apic);
2581 	if (max_isr < 0)
2582 		max_isr = 0;
2583 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2584 
2585 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2586 				sizeof(u32));
2587 }
2588 
2589 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2590 {
2591 	if (vapic_addr) {
2592 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2593 					&vcpu->arch.apic->vapic_cache,
2594 					vapic_addr, sizeof(u32)))
2595 			return -EINVAL;
2596 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2597 	} else {
2598 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2599 	}
2600 
2601 	vcpu->arch.apic->vapic_addr = vapic_addr;
2602 	return 0;
2603 }
2604 
2605 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2606 {
2607 	struct kvm_lapic *apic = vcpu->arch.apic;
2608 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2609 
2610 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2611 		return 1;
2612 
2613 	if (reg == APIC_ICR2)
2614 		return 1;
2615 
2616 	/* if this is ICR write vector before command */
2617 	if (reg == APIC_ICR)
2618 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2619 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2620 }
2621 
2622 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2623 {
2624 	struct kvm_lapic *apic = vcpu->arch.apic;
2625 	u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2626 
2627 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2628 		return 1;
2629 
2630 	if (reg == APIC_DFR || reg == APIC_ICR2)
2631 		return 1;
2632 
2633 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2634 		return 1;
2635 	if (reg == APIC_ICR)
2636 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2637 
2638 	*data = (((u64)high) << 32) | low;
2639 
2640 	return 0;
2641 }
2642 
2643 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2644 {
2645 	struct kvm_lapic *apic = vcpu->arch.apic;
2646 
2647 	if (!lapic_in_kernel(vcpu))
2648 		return 1;
2649 
2650 	/* if this is ICR write vector before command */
2651 	if (reg == APIC_ICR)
2652 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2653 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2654 }
2655 
2656 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2657 {
2658 	struct kvm_lapic *apic = vcpu->arch.apic;
2659 	u32 low, high = 0;
2660 
2661 	if (!lapic_in_kernel(vcpu))
2662 		return 1;
2663 
2664 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2665 		return 1;
2666 	if (reg == APIC_ICR)
2667 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2668 
2669 	*data = (((u64)high) << 32) | low;
2670 
2671 	return 0;
2672 }
2673 
2674 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2675 {
2676 	u64 addr = data & ~KVM_MSR_ENABLED;
2677 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2678 	unsigned long new_len;
2679 
2680 	if (!IS_ALIGNED(addr, 4))
2681 		return 1;
2682 
2683 	vcpu->arch.pv_eoi.msr_val = data;
2684 	if (!pv_eoi_enabled(vcpu))
2685 		return 0;
2686 
2687 	if (addr == ghc->gpa && len <= ghc->len)
2688 		new_len = ghc->len;
2689 	else
2690 		new_len = len;
2691 
2692 	return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2693 }
2694 
2695 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2696 {
2697 	struct kvm_lapic *apic = vcpu->arch.apic;
2698 	u8 sipi_vector;
2699 	unsigned long pe;
2700 
2701 	if (!lapic_in_kernel(vcpu) || !apic->pending_events)
2702 		return;
2703 
2704 	/*
2705 	 * INITs are latched while CPU is in specific states
2706 	 * (SMM, VMX non-root mode, SVM with GIF=0).
2707 	 * Because a CPU cannot be in these states immediately
2708 	 * after it has processed an INIT signal (and thus in
2709 	 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2710 	 * and leave the INIT pending.
2711 	 */
2712 	if (is_smm(vcpu) || kvm_x86_ops->apic_init_signal_blocked(vcpu)) {
2713 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2714 		if (test_bit(KVM_APIC_SIPI, &apic->pending_events))
2715 			clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2716 		return;
2717 	}
2718 
2719 	pe = xchg(&apic->pending_events, 0);
2720 	if (test_bit(KVM_APIC_INIT, &pe)) {
2721 		kvm_vcpu_reset(vcpu, true);
2722 		if (kvm_vcpu_is_bsp(apic->vcpu))
2723 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2724 		else
2725 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2726 	}
2727 	if (test_bit(KVM_APIC_SIPI, &pe) &&
2728 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2729 		/* evaluate pending_events before reading the vector */
2730 		smp_rmb();
2731 		sipi_vector = apic->sipi_vector;
2732 		kvm_vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2733 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2734 	}
2735 }
2736 
2737 void kvm_lapic_init(void)
2738 {
2739 	/* do not patch jump label more than once per second */
2740 	jump_label_rate_limit(&apic_hw_disabled, HZ);
2741 	jump_label_rate_limit(&apic_sw_disabled, HZ);
2742 }
2743 
2744 void kvm_lapic_exit(void)
2745 {
2746 	static_key_deferred_flush(&apic_hw_disabled);
2747 	static_key_deferred_flush(&apic_sw_disabled);
2748 }
2749