1 // SPDX-License-Identifier: GPL-2.0-only 2 3 /* 4 * Local APIC virtualization 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2007 Novell 8 * Copyright (C) 2007 Intel 9 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Dor Laor <dor.laor@qumranet.com> 13 * Gregory Haskins <ghaskins@novell.com> 14 * Yaozu (Eddie) Dong <eddie.dong@intel.com> 15 * 16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. 17 */ 18 19 #include <linux/kvm_host.h> 20 #include <linux/kvm.h> 21 #include <linux/mm.h> 22 #include <linux/highmem.h> 23 #include <linux/smp.h> 24 #include <linux/hrtimer.h> 25 #include <linux/io.h> 26 #include <linux/export.h> 27 #include <linux/math64.h> 28 #include <linux/slab.h> 29 #include <asm/processor.h> 30 #include <asm/msr.h> 31 #include <asm/page.h> 32 #include <asm/current.h> 33 #include <asm/apicdef.h> 34 #include <asm/delay.h> 35 #include <linux/atomic.h> 36 #include <linux/jump_label.h> 37 #include "kvm_cache_regs.h" 38 #include "irq.h" 39 #include "ioapic.h" 40 #include "trace.h" 41 #include "x86.h" 42 #include "cpuid.h" 43 #include "hyperv.h" 44 45 #ifndef CONFIG_X86_64 46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 47 #else 48 #define mod_64(x, y) ((x) % (y)) 49 #endif 50 51 #define PRId64 "d" 52 #define PRIx64 "llx" 53 #define PRIu64 "u" 54 #define PRIo64 "o" 55 56 /* 14 is the version for Xeon and Pentium 8.4.8*/ 57 #define APIC_VERSION (0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16)) 58 #define LAPIC_MMIO_LENGTH (1 << 12) 59 /* followed define is not in apicdef.h */ 60 #define MAX_APIC_VECTOR 256 61 #define APIC_VECTORS_PER_REG 32 62 63 static bool lapic_timer_advance_dynamic __read_mostly; 64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */ 65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */ 66 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000 67 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000 68 /* step-by-step approximation to mitigate fluctuation */ 69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8 70 71 static inline int apic_test_vector(int vec, void *bitmap) 72 { 73 return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 74 } 75 76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector) 77 { 78 struct kvm_lapic *apic = vcpu->arch.apic; 79 80 return apic_test_vector(vector, apic->regs + APIC_ISR) || 81 apic_test_vector(vector, apic->regs + APIC_IRR); 82 } 83 84 static inline int __apic_test_and_set_vector(int vec, void *bitmap) 85 { 86 return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 87 } 88 89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap) 90 { 91 return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec)); 92 } 93 94 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ); 95 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ); 96 97 static inline int apic_enabled(struct kvm_lapic *apic) 98 { 99 return kvm_apic_sw_enabled(apic) && kvm_apic_hw_enabled(apic); 100 } 101 102 #define LVT_MASK \ 103 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) 104 105 #define LINT_MASK \ 106 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ 107 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) 108 109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) 110 { 111 return apic->vcpu->vcpu_id; 112 } 113 114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu) 115 { 116 return pi_inject_timer && kvm_vcpu_apicv_active(vcpu); 117 } 118 119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu) 120 { 121 return kvm_x86_ops.set_hv_timer 122 && !(kvm_mwait_in_guest(vcpu->kvm) || 123 kvm_can_post_timer_interrupt(vcpu)); 124 } 125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer); 126 127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu) 128 { 129 return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE; 130 } 131 132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, 133 u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { 134 switch (map->mode) { 135 case KVM_APIC_MODE_X2APIC: { 136 u32 offset = (dest_id >> 16) * 16; 137 u32 max_apic_id = map->max_apic_id; 138 139 if (offset <= max_apic_id) { 140 u8 cluster_size = min(max_apic_id - offset + 1, 16U); 141 142 offset = array_index_nospec(offset, map->max_apic_id + 1); 143 *cluster = &map->phys_map[offset]; 144 *mask = dest_id & (0xffff >> (16 - cluster_size)); 145 } else { 146 *mask = 0; 147 } 148 149 return true; 150 } 151 case KVM_APIC_MODE_XAPIC_FLAT: 152 *cluster = map->xapic_flat_map; 153 *mask = dest_id & 0xff; 154 return true; 155 case KVM_APIC_MODE_XAPIC_CLUSTER: 156 *cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf]; 157 *mask = dest_id & 0xf; 158 return true; 159 default: 160 /* Not optimized. */ 161 return false; 162 } 163 } 164 165 static void kvm_apic_map_free(struct rcu_head *rcu) 166 { 167 struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu); 168 169 kvfree(map); 170 } 171 172 /* 173 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock. 174 * 175 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with 176 * apic_map_lock_held. 177 */ 178 enum { 179 CLEAN, 180 UPDATE_IN_PROGRESS, 181 DIRTY 182 }; 183 184 void kvm_recalculate_apic_map(struct kvm *kvm) 185 { 186 struct kvm_apic_map *new, *old = NULL; 187 struct kvm_vcpu *vcpu; 188 int i; 189 u32 max_id = 255; /* enough space for any xAPIC ID */ 190 191 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */ 192 if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN) 193 return; 194 195 WARN_ONCE(!irqchip_in_kernel(kvm), 196 "Dirty APIC map without an in-kernel local APIC"); 197 198 mutex_lock(&kvm->arch.apic_map_lock); 199 /* 200 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map 201 * (if clean) or the APIC registers (if dirty). 202 */ 203 if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty, 204 DIRTY, UPDATE_IN_PROGRESS) == CLEAN) { 205 /* Someone else has updated the map. */ 206 mutex_unlock(&kvm->arch.apic_map_lock); 207 return; 208 } 209 210 kvm_for_each_vcpu(i, vcpu, kvm) 211 if (kvm_apic_present(vcpu)) 212 max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); 213 214 new = kvzalloc(sizeof(struct kvm_apic_map) + 215 sizeof(struct kvm_lapic *) * ((u64)max_id + 1), 216 GFP_KERNEL_ACCOUNT); 217 218 if (!new) 219 goto out; 220 221 new->max_apic_id = max_id; 222 223 kvm_for_each_vcpu(i, vcpu, kvm) { 224 struct kvm_lapic *apic = vcpu->arch.apic; 225 struct kvm_lapic **cluster; 226 u16 mask; 227 u32 ldr; 228 u8 xapic_id; 229 u32 x2apic_id; 230 231 if (!kvm_apic_present(vcpu)) 232 continue; 233 234 xapic_id = kvm_xapic_id(apic); 235 x2apic_id = kvm_x2apic_id(apic); 236 237 /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ 238 if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && 239 x2apic_id <= new->max_apic_id) 240 new->phys_map[x2apic_id] = apic; 241 /* 242 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, 243 * prevent them from masking VCPUs with APIC ID <= 0xff. 244 */ 245 if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) 246 new->phys_map[xapic_id] = apic; 247 248 if (!kvm_apic_sw_enabled(apic)) 249 continue; 250 251 ldr = kvm_lapic_get_reg(apic, APIC_LDR); 252 253 if (apic_x2apic_mode(apic)) { 254 new->mode |= KVM_APIC_MODE_X2APIC; 255 } else if (ldr) { 256 ldr = GET_APIC_LOGICAL_ID(ldr); 257 if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT) 258 new->mode |= KVM_APIC_MODE_XAPIC_FLAT; 259 else 260 new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER; 261 } 262 263 if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask)) 264 continue; 265 266 if (mask) 267 cluster[ffs(mask) - 1] = apic; 268 } 269 out: 270 old = rcu_dereference_protected(kvm->arch.apic_map, 271 lockdep_is_held(&kvm->arch.apic_map_lock)); 272 rcu_assign_pointer(kvm->arch.apic_map, new); 273 /* 274 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty. 275 * If another update has come in, leave it DIRTY. 276 */ 277 atomic_cmpxchg_release(&kvm->arch.apic_map_dirty, 278 UPDATE_IN_PROGRESS, CLEAN); 279 mutex_unlock(&kvm->arch.apic_map_lock); 280 281 if (old) 282 call_rcu(&old->rcu, kvm_apic_map_free); 283 284 kvm_make_scan_ioapic_request(kvm); 285 } 286 287 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) 288 { 289 bool enabled = val & APIC_SPIV_APIC_ENABLED; 290 291 kvm_lapic_set_reg(apic, APIC_SPIV, val); 292 293 if (enabled != apic->sw_enabled) { 294 apic->sw_enabled = enabled; 295 if (enabled) 296 static_branch_slow_dec_deferred(&apic_sw_disabled); 297 else 298 static_branch_inc(&apic_sw_disabled.key); 299 300 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 301 } 302 303 /* Check if there are APF page ready requests pending */ 304 if (enabled) 305 kvm_make_request(KVM_REQ_APF_READY, apic->vcpu); 306 } 307 308 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id) 309 { 310 kvm_lapic_set_reg(apic, APIC_ID, id << 24); 311 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 312 } 313 314 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id) 315 { 316 kvm_lapic_set_reg(apic, APIC_LDR, id); 317 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 318 } 319 320 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val) 321 { 322 kvm_lapic_set_reg(apic, APIC_DFR, val); 323 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 324 } 325 326 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id) 327 { 328 return ((id >> 4) << 16) | (1 << (id & 0xf)); 329 } 330 331 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) 332 { 333 u32 ldr = kvm_apic_calc_x2apic_ldr(id); 334 335 WARN_ON_ONCE(id != apic->vcpu->vcpu_id); 336 337 kvm_lapic_set_reg(apic, APIC_ID, id); 338 kvm_lapic_set_reg(apic, APIC_LDR, ldr); 339 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 340 } 341 342 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) 343 { 344 return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED); 345 } 346 347 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic) 348 { 349 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT; 350 } 351 352 static inline int apic_lvtt_period(struct kvm_lapic *apic) 353 { 354 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC; 355 } 356 357 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic) 358 { 359 return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE; 360 } 361 362 static inline int apic_lvt_nmi_mode(u32 lvt_val) 363 { 364 return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI; 365 } 366 367 void kvm_apic_set_version(struct kvm_vcpu *vcpu) 368 { 369 struct kvm_lapic *apic = vcpu->arch.apic; 370 u32 v = APIC_VERSION; 371 372 if (!lapic_in_kernel(vcpu)) 373 return; 374 375 /* 376 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation) 377 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with 378 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC 379 * version first and level-triggered interrupts never get EOIed in 380 * IOAPIC. 381 */ 382 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) && 383 !ioapic_in_kernel(vcpu->kvm)) 384 v |= APIC_LVR_DIRECTED_EOI; 385 kvm_lapic_set_reg(apic, APIC_LVR, v); 386 } 387 388 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = { 389 LVT_MASK , /* part LVTT mask, timer mode mask added at runtime */ 390 LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ 391 LVT_MASK | APIC_MODE_MASK, /* LVTPC */ 392 LINT_MASK, LINT_MASK, /* LVT0-1 */ 393 LVT_MASK /* LVTERR */ 394 }; 395 396 static int find_highest_vector(void *bitmap) 397 { 398 int vec; 399 u32 *reg; 400 401 for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG; 402 vec >= 0; vec -= APIC_VECTORS_PER_REG) { 403 reg = bitmap + REG_POS(vec); 404 if (*reg) 405 return __fls(*reg) + vec; 406 } 407 408 return -1; 409 } 410 411 static u8 count_vectors(void *bitmap) 412 { 413 int vec; 414 u32 *reg; 415 u8 count = 0; 416 417 for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) { 418 reg = bitmap + REG_POS(vec); 419 count += hweight32(*reg); 420 } 421 422 return count; 423 } 424 425 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr) 426 { 427 u32 i, vec; 428 u32 pir_val, irr_val, prev_irr_val; 429 int max_updated_irr; 430 431 max_updated_irr = -1; 432 *max_irr = -1; 433 434 for (i = vec = 0; i <= 7; i++, vec += 32) { 435 pir_val = READ_ONCE(pir[i]); 436 irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); 437 if (pir_val) { 438 prev_irr_val = irr_val; 439 irr_val |= xchg(&pir[i], 0); 440 *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; 441 if (prev_irr_val != irr_val) { 442 max_updated_irr = 443 __fls(irr_val ^ prev_irr_val) + vec; 444 } 445 } 446 if (irr_val) 447 *max_irr = __fls(irr_val) + vec; 448 } 449 450 return ((max_updated_irr != -1) && 451 (max_updated_irr == *max_irr)); 452 } 453 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); 454 455 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr) 456 { 457 struct kvm_lapic *apic = vcpu->arch.apic; 458 459 return __kvm_apic_update_irr(pir, apic->regs, max_irr); 460 } 461 EXPORT_SYMBOL_GPL(kvm_apic_update_irr); 462 463 static inline int apic_search_irr(struct kvm_lapic *apic) 464 { 465 return find_highest_vector(apic->regs + APIC_IRR); 466 } 467 468 static inline int apic_find_highest_irr(struct kvm_lapic *apic) 469 { 470 int result; 471 472 /* 473 * Note that irr_pending is just a hint. It will be always 474 * true with virtual interrupt delivery enabled. 475 */ 476 if (!apic->irr_pending) 477 return -1; 478 479 result = apic_search_irr(apic); 480 ASSERT(result == -1 || result >= 16); 481 482 return result; 483 } 484 485 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) 486 { 487 struct kvm_vcpu *vcpu; 488 489 vcpu = apic->vcpu; 490 491 if (unlikely(vcpu->arch.apicv_active)) { 492 /* need to update RVI */ 493 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 494 static_call(kvm_x86_hwapic_irr_update)(vcpu, 495 apic_find_highest_irr(apic)); 496 } else { 497 apic->irr_pending = false; 498 kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR); 499 if (apic_search_irr(apic) != -1) 500 apic->irr_pending = true; 501 } 502 } 503 504 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec) 505 { 506 apic_clear_irr(vec, vcpu->arch.apic); 507 } 508 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr); 509 510 static inline void apic_set_isr(int vec, struct kvm_lapic *apic) 511 { 512 struct kvm_vcpu *vcpu; 513 514 if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR)) 515 return; 516 517 vcpu = apic->vcpu; 518 519 /* 520 * With APIC virtualization enabled, all caching is disabled 521 * because the processor can modify ISR under the hood. Instead 522 * just set SVI. 523 */ 524 if (unlikely(vcpu->arch.apicv_active)) 525 static_call(kvm_x86_hwapic_isr_update)(vcpu, vec); 526 else { 527 ++apic->isr_count; 528 BUG_ON(apic->isr_count > MAX_APIC_VECTOR); 529 /* 530 * ISR (in service register) bit is set when injecting an interrupt. 531 * The highest vector is injected. Thus the latest bit set matches 532 * the highest bit in ISR. 533 */ 534 apic->highest_isr_cache = vec; 535 } 536 } 537 538 static inline int apic_find_highest_isr(struct kvm_lapic *apic) 539 { 540 int result; 541 542 /* 543 * Note that isr_count is always 1, and highest_isr_cache 544 * is always -1, with APIC virtualization enabled. 545 */ 546 if (!apic->isr_count) 547 return -1; 548 if (likely(apic->highest_isr_cache != -1)) 549 return apic->highest_isr_cache; 550 551 result = find_highest_vector(apic->regs + APIC_ISR); 552 ASSERT(result == -1 || result >= 16); 553 554 return result; 555 } 556 557 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic) 558 { 559 struct kvm_vcpu *vcpu; 560 if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR)) 561 return; 562 563 vcpu = apic->vcpu; 564 565 /* 566 * We do get here for APIC virtualization enabled if the guest 567 * uses the Hyper-V APIC enlightenment. In this case we may need 568 * to trigger a new interrupt delivery by writing the SVI field; 569 * on the other hand isr_count and highest_isr_cache are unused 570 * and must be left alone. 571 */ 572 if (unlikely(vcpu->arch.apicv_active)) 573 static_call(kvm_x86_hwapic_isr_update)(vcpu, 574 apic_find_highest_isr(apic)); 575 else { 576 --apic->isr_count; 577 BUG_ON(apic->isr_count < 0); 578 apic->highest_isr_cache = -1; 579 } 580 } 581 582 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) 583 { 584 /* This may race with setting of irr in __apic_accept_irq() and 585 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq 586 * will cause vmexit immediately and the value will be recalculated 587 * on the next vmentry. 588 */ 589 return apic_find_highest_irr(vcpu->arch.apic); 590 } 591 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); 592 593 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 594 int vector, int level, int trig_mode, 595 struct dest_map *dest_map); 596 597 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, 598 struct dest_map *dest_map) 599 { 600 struct kvm_lapic *apic = vcpu->arch.apic; 601 602 return __apic_accept_irq(apic, irq->delivery_mode, irq->vector, 603 irq->level, irq->trig_mode, dest_map); 604 } 605 606 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map, 607 struct kvm_lapic_irq *irq, u32 min) 608 { 609 int i, count = 0; 610 struct kvm_vcpu *vcpu; 611 612 if (min > map->max_apic_id) 613 return 0; 614 615 for_each_set_bit(i, ipi_bitmap, 616 min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) { 617 if (map->phys_map[min + i]) { 618 vcpu = map->phys_map[min + i]->vcpu; 619 count += kvm_apic_set_irq(vcpu, irq, NULL); 620 } 621 } 622 623 return count; 624 } 625 626 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low, 627 unsigned long ipi_bitmap_high, u32 min, 628 unsigned long icr, int op_64_bit) 629 { 630 struct kvm_apic_map *map; 631 struct kvm_lapic_irq irq = {0}; 632 int cluster_size = op_64_bit ? 64 : 32; 633 int count; 634 635 if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK)) 636 return -KVM_EINVAL; 637 638 irq.vector = icr & APIC_VECTOR_MASK; 639 irq.delivery_mode = icr & APIC_MODE_MASK; 640 irq.level = (icr & APIC_INT_ASSERT) != 0; 641 irq.trig_mode = icr & APIC_INT_LEVELTRIG; 642 643 rcu_read_lock(); 644 map = rcu_dereference(kvm->arch.apic_map); 645 646 count = -EOPNOTSUPP; 647 if (likely(map)) { 648 count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min); 649 min += cluster_size; 650 count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min); 651 } 652 653 rcu_read_unlock(); 654 return count; 655 } 656 657 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) 658 { 659 660 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, 661 sizeof(val)); 662 } 663 664 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) 665 { 666 667 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, 668 sizeof(*val)); 669 } 670 671 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) 672 { 673 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 674 } 675 676 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu) 677 { 678 u8 val; 679 if (pv_eoi_get_user(vcpu, &val) < 0) { 680 printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n", 681 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 682 return false; 683 } 684 return val & KVM_PV_EOI_ENABLED; 685 } 686 687 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu) 688 { 689 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) { 690 printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n", 691 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 692 return; 693 } 694 __set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 695 } 696 697 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) 698 { 699 if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) { 700 printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n", 701 (unsigned long long)vcpu->arch.pv_eoi.msr_val); 702 return; 703 } 704 __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); 705 } 706 707 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) 708 { 709 int highest_irr; 710 if (apic->vcpu->arch.apicv_active) 711 highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu); 712 else 713 highest_irr = apic_find_highest_irr(apic); 714 if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) 715 return -1; 716 return highest_irr; 717 } 718 719 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) 720 { 721 u32 tpr, isrv, ppr, old_ppr; 722 int isr; 723 724 old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI); 725 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI); 726 isr = apic_find_highest_isr(apic); 727 isrv = (isr != -1) ? isr : 0; 728 729 if ((tpr & 0xf0) >= (isrv & 0xf0)) 730 ppr = tpr & 0xff; 731 else 732 ppr = isrv & 0xf0; 733 734 *new_ppr = ppr; 735 if (old_ppr != ppr) 736 kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); 737 738 return ppr < old_ppr; 739 } 740 741 static void apic_update_ppr(struct kvm_lapic *apic) 742 { 743 u32 ppr; 744 745 if (__apic_update_ppr(apic, &ppr) && 746 apic_has_interrupt_for_ppr(apic, ppr) != -1) 747 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 748 } 749 750 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) 751 { 752 apic_update_ppr(vcpu->arch.apic); 753 } 754 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); 755 756 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) 757 { 758 kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); 759 apic_update_ppr(apic); 760 } 761 762 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) 763 { 764 return mda == (apic_x2apic_mode(apic) ? 765 X2APIC_BROADCAST : APIC_BROADCAST); 766 } 767 768 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) 769 { 770 if (kvm_apic_broadcast(apic, mda)) 771 return true; 772 773 if (apic_x2apic_mode(apic)) 774 return mda == kvm_x2apic_id(apic); 775 776 /* 777 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if 778 * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and 779 * this allows unique addressing of VCPUs with APIC ID over 0xff. 780 * The 0xff condition is needed because writeable xAPIC ID. 781 */ 782 if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) 783 return true; 784 785 return mda == kvm_xapic_id(apic); 786 } 787 788 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) 789 { 790 u32 logical_id; 791 792 if (kvm_apic_broadcast(apic, mda)) 793 return true; 794 795 logical_id = kvm_lapic_get_reg(apic, APIC_LDR); 796 797 if (apic_x2apic_mode(apic)) 798 return ((logical_id >> 16) == (mda >> 16)) 799 && (logical_id & mda & 0xffff) != 0; 800 801 logical_id = GET_APIC_LOGICAL_ID(logical_id); 802 803 switch (kvm_lapic_get_reg(apic, APIC_DFR)) { 804 case APIC_DFR_FLAT: 805 return (logical_id & mda) != 0; 806 case APIC_DFR_CLUSTER: 807 return ((logical_id >> 4) == (mda >> 4)) 808 && (logical_id & mda & 0xf) != 0; 809 default: 810 return false; 811 } 812 } 813 814 /* The KVM local APIC implementation has two quirks: 815 * 816 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs 817 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. 818 * KVM doesn't do that aliasing. 819 * 820 * - in-kernel IOAPIC messages have to be delivered directly to 821 * x2APIC, because the kernel does not support interrupt remapping. 822 * In order to support broadcast without interrupt remapping, x2APIC 823 * rewrites the destination of non-IPI messages from APIC_BROADCAST 824 * to X2APIC_BROADCAST. 825 * 826 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is 827 * important when userspace wants to use x2APIC-format MSIs, because 828 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7". 829 */ 830 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, 831 struct kvm_lapic *source, struct kvm_lapic *target) 832 { 833 bool ipi = source != NULL; 834 835 if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && 836 !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) 837 return X2APIC_BROADCAST; 838 839 return dest_id; 840 } 841 842 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, 843 int shorthand, unsigned int dest, int dest_mode) 844 { 845 struct kvm_lapic *target = vcpu->arch.apic; 846 u32 mda = kvm_apic_mda(vcpu, dest, source, target); 847 848 ASSERT(target); 849 switch (shorthand) { 850 case APIC_DEST_NOSHORT: 851 if (dest_mode == APIC_DEST_PHYSICAL) 852 return kvm_apic_match_physical_addr(target, mda); 853 else 854 return kvm_apic_match_logical_addr(target, mda); 855 case APIC_DEST_SELF: 856 return target == source; 857 case APIC_DEST_ALLINC: 858 return true; 859 case APIC_DEST_ALLBUT: 860 return target != source; 861 default: 862 return false; 863 } 864 } 865 EXPORT_SYMBOL_GPL(kvm_apic_match_dest); 866 867 int kvm_vector_to_index(u32 vector, u32 dest_vcpus, 868 const unsigned long *bitmap, u32 bitmap_size) 869 { 870 u32 mod; 871 int i, idx = -1; 872 873 mod = vector % dest_vcpus; 874 875 for (i = 0; i <= mod; i++) { 876 idx = find_next_bit(bitmap, bitmap_size, idx + 1); 877 BUG_ON(idx == bitmap_size); 878 } 879 880 return idx; 881 } 882 883 static void kvm_apic_disabled_lapic_found(struct kvm *kvm) 884 { 885 if (!kvm->arch.disabled_lapic_found) { 886 kvm->arch.disabled_lapic_found = true; 887 printk(KERN_INFO 888 "Disabled LAPIC found during irq injection\n"); 889 } 890 } 891 892 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src, 893 struct kvm_lapic_irq *irq, struct kvm_apic_map *map) 894 { 895 if (kvm->arch.x2apic_broadcast_quirk_disabled) { 896 if ((irq->dest_id == APIC_BROADCAST && 897 map->mode != KVM_APIC_MODE_X2APIC)) 898 return true; 899 if (irq->dest_id == X2APIC_BROADCAST) 900 return true; 901 } else { 902 bool x2apic_ipi = src && *src && apic_x2apic_mode(*src); 903 if (irq->dest_id == (x2apic_ipi ? 904 X2APIC_BROADCAST : APIC_BROADCAST)) 905 return true; 906 } 907 908 return false; 909 } 910 911 /* Return true if the interrupt can be handled by using *bitmap as index mask 912 * for valid destinations in *dst array. 913 * Return false if kvm_apic_map_get_dest_lapic did nothing useful. 914 * Note: we may have zero kvm_lapic destinations when we return true, which 915 * means that the interrupt should be dropped. In this case, *bitmap would be 916 * zero and *dst undefined. 917 */ 918 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm, 919 struct kvm_lapic **src, struct kvm_lapic_irq *irq, 920 struct kvm_apic_map *map, struct kvm_lapic ***dst, 921 unsigned long *bitmap) 922 { 923 int i, lowest; 924 925 if (irq->shorthand == APIC_DEST_SELF && src) { 926 *dst = src; 927 *bitmap = 1; 928 return true; 929 } else if (irq->shorthand) 930 return false; 931 932 if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map)) 933 return false; 934 935 if (irq->dest_mode == APIC_DEST_PHYSICAL) { 936 if (irq->dest_id > map->max_apic_id) { 937 *bitmap = 0; 938 } else { 939 u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1); 940 *dst = &map->phys_map[dest_id]; 941 *bitmap = 1; 942 } 943 return true; 944 } 945 946 *bitmap = 0; 947 if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst, 948 (u16 *)bitmap)) 949 return false; 950 951 if (!kvm_lowest_prio_delivery(irq)) 952 return true; 953 954 if (!kvm_vector_hashing_enabled()) { 955 lowest = -1; 956 for_each_set_bit(i, bitmap, 16) { 957 if (!(*dst)[i]) 958 continue; 959 if (lowest < 0) 960 lowest = i; 961 else if (kvm_apic_compare_prio((*dst)[i]->vcpu, 962 (*dst)[lowest]->vcpu) < 0) 963 lowest = i; 964 } 965 } else { 966 if (!*bitmap) 967 return true; 968 969 lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap), 970 bitmap, 16); 971 972 if (!(*dst)[lowest]) { 973 kvm_apic_disabled_lapic_found(kvm); 974 *bitmap = 0; 975 return true; 976 } 977 } 978 979 *bitmap = (lowest >= 0) ? 1 << lowest : 0; 980 981 return true; 982 } 983 984 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src, 985 struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map) 986 { 987 struct kvm_apic_map *map; 988 unsigned long bitmap; 989 struct kvm_lapic **dst = NULL; 990 int i; 991 bool ret; 992 993 *r = -1; 994 995 if (irq->shorthand == APIC_DEST_SELF) { 996 *r = kvm_apic_set_irq(src->vcpu, irq, dest_map); 997 return true; 998 } 999 1000 rcu_read_lock(); 1001 map = rcu_dereference(kvm->arch.apic_map); 1002 1003 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap); 1004 if (ret) { 1005 *r = 0; 1006 for_each_set_bit(i, &bitmap, 16) { 1007 if (!dst[i]) 1008 continue; 1009 *r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map); 1010 } 1011 } 1012 1013 rcu_read_unlock(); 1014 return ret; 1015 } 1016 1017 /* 1018 * This routine tries to handle interrupts in posted mode, here is how 1019 * it deals with different cases: 1020 * - For single-destination interrupts, handle it in posted mode 1021 * - Else if vector hashing is enabled and it is a lowest-priority 1022 * interrupt, handle it in posted mode and use the following mechanism 1023 * to find the destination vCPU. 1024 * 1. For lowest-priority interrupts, store all the possible 1025 * destination vCPUs in an array. 1026 * 2. Use "guest vector % max number of destination vCPUs" to find 1027 * the right destination vCPU in the array for the lowest-priority 1028 * interrupt. 1029 * - Otherwise, use remapped mode to inject the interrupt. 1030 */ 1031 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq, 1032 struct kvm_vcpu **dest_vcpu) 1033 { 1034 struct kvm_apic_map *map; 1035 unsigned long bitmap; 1036 struct kvm_lapic **dst = NULL; 1037 bool ret = false; 1038 1039 if (irq->shorthand) 1040 return false; 1041 1042 rcu_read_lock(); 1043 map = rcu_dereference(kvm->arch.apic_map); 1044 1045 if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) && 1046 hweight16(bitmap) == 1) { 1047 unsigned long i = find_first_bit(&bitmap, 16); 1048 1049 if (dst[i]) { 1050 *dest_vcpu = dst[i]->vcpu; 1051 ret = true; 1052 } 1053 } 1054 1055 rcu_read_unlock(); 1056 return ret; 1057 } 1058 1059 /* 1060 * Add a pending IRQ into lapic. 1061 * Return 1 if successfully added and 0 if discarded. 1062 */ 1063 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, 1064 int vector, int level, int trig_mode, 1065 struct dest_map *dest_map) 1066 { 1067 int result = 0; 1068 struct kvm_vcpu *vcpu = apic->vcpu; 1069 1070 trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode, 1071 trig_mode, vector); 1072 switch (delivery_mode) { 1073 case APIC_DM_LOWEST: 1074 vcpu->arch.apic_arb_prio++; 1075 fallthrough; 1076 case APIC_DM_FIXED: 1077 if (unlikely(trig_mode && !level)) 1078 break; 1079 1080 /* FIXME add logic for vcpu on reset */ 1081 if (unlikely(!apic_enabled(apic))) 1082 break; 1083 1084 result = 1; 1085 1086 if (dest_map) { 1087 __set_bit(vcpu->vcpu_id, dest_map->map); 1088 dest_map->vectors[vcpu->vcpu_id] = vector; 1089 } 1090 1091 if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) { 1092 if (trig_mode) 1093 kvm_lapic_set_vector(vector, 1094 apic->regs + APIC_TMR); 1095 else 1096 kvm_lapic_clear_vector(vector, 1097 apic->regs + APIC_TMR); 1098 } 1099 1100 if (static_call(kvm_x86_deliver_posted_interrupt)(vcpu, vector)) { 1101 kvm_lapic_set_irr(vector, apic); 1102 kvm_make_request(KVM_REQ_EVENT, vcpu); 1103 kvm_vcpu_kick(vcpu); 1104 } 1105 break; 1106 1107 case APIC_DM_REMRD: 1108 result = 1; 1109 vcpu->arch.pv.pv_unhalted = 1; 1110 kvm_make_request(KVM_REQ_EVENT, vcpu); 1111 kvm_vcpu_kick(vcpu); 1112 break; 1113 1114 case APIC_DM_SMI: 1115 result = 1; 1116 kvm_make_request(KVM_REQ_SMI, vcpu); 1117 kvm_vcpu_kick(vcpu); 1118 break; 1119 1120 case APIC_DM_NMI: 1121 result = 1; 1122 kvm_inject_nmi(vcpu); 1123 kvm_vcpu_kick(vcpu); 1124 break; 1125 1126 case APIC_DM_INIT: 1127 if (!trig_mode || level) { 1128 result = 1; 1129 /* assumes that there are only KVM_APIC_INIT/SIPI */ 1130 apic->pending_events = (1UL << KVM_APIC_INIT); 1131 kvm_make_request(KVM_REQ_EVENT, vcpu); 1132 kvm_vcpu_kick(vcpu); 1133 } 1134 break; 1135 1136 case APIC_DM_STARTUP: 1137 result = 1; 1138 apic->sipi_vector = vector; 1139 /* make sure sipi_vector is visible for the receiver */ 1140 smp_wmb(); 1141 set_bit(KVM_APIC_SIPI, &apic->pending_events); 1142 kvm_make_request(KVM_REQ_EVENT, vcpu); 1143 kvm_vcpu_kick(vcpu); 1144 break; 1145 1146 case APIC_DM_EXTINT: 1147 /* 1148 * Should only be called by kvm_apic_local_deliver() with LVT0, 1149 * before NMI watchdog was enabled. Already handled by 1150 * kvm_apic_accept_pic_intr(). 1151 */ 1152 break; 1153 1154 default: 1155 printk(KERN_ERR "TODO: unsupported delivery mode %x\n", 1156 delivery_mode); 1157 break; 1158 } 1159 return result; 1160 } 1161 1162 /* 1163 * This routine identifies the destination vcpus mask meant to receive the 1164 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find 1165 * out the destination vcpus array and set the bitmap or it traverses to 1166 * each available vcpu to identify the same. 1167 */ 1168 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq, 1169 unsigned long *vcpu_bitmap) 1170 { 1171 struct kvm_lapic **dest_vcpu = NULL; 1172 struct kvm_lapic *src = NULL; 1173 struct kvm_apic_map *map; 1174 struct kvm_vcpu *vcpu; 1175 unsigned long bitmap; 1176 int i, vcpu_idx; 1177 bool ret; 1178 1179 rcu_read_lock(); 1180 map = rcu_dereference(kvm->arch.apic_map); 1181 1182 ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu, 1183 &bitmap); 1184 if (ret) { 1185 for_each_set_bit(i, &bitmap, 16) { 1186 if (!dest_vcpu[i]) 1187 continue; 1188 vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx; 1189 __set_bit(vcpu_idx, vcpu_bitmap); 1190 } 1191 } else { 1192 kvm_for_each_vcpu(i, vcpu, kvm) { 1193 if (!kvm_apic_present(vcpu)) 1194 continue; 1195 if (!kvm_apic_match_dest(vcpu, NULL, 1196 irq->shorthand, 1197 irq->dest_id, 1198 irq->dest_mode)) 1199 continue; 1200 __set_bit(i, vcpu_bitmap); 1201 } 1202 } 1203 rcu_read_unlock(); 1204 } 1205 1206 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) 1207 { 1208 return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio; 1209 } 1210 1211 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector) 1212 { 1213 return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors); 1214 } 1215 1216 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector) 1217 { 1218 int trigger_mode; 1219 1220 /* Eoi the ioapic only if the ioapic doesn't own the vector. */ 1221 if (!kvm_ioapic_handles_vector(apic, vector)) 1222 return; 1223 1224 /* Request a KVM exit to inform the userspace IOAPIC. */ 1225 if (irqchip_split(apic->vcpu->kvm)) { 1226 apic->vcpu->arch.pending_ioapic_eoi = vector; 1227 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu); 1228 return; 1229 } 1230 1231 if (apic_test_vector(vector, apic->regs + APIC_TMR)) 1232 trigger_mode = IOAPIC_LEVEL_TRIG; 1233 else 1234 trigger_mode = IOAPIC_EDGE_TRIG; 1235 1236 kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode); 1237 } 1238 1239 static int apic_set_eoi(struct kvm_lapic *apic) 1240 { 1241 int vector = apic_find_highest_isr(apic); 1242 1243 trace_kvm_eoi(apic, vector); 1244 1245 /* 1246 * Not every write EOI will has corresponding ISR, 1247 * one example is when Kernel check timer on setup_IO_APIC 1248 */ 1249 if (vector == -1) 1250 return vector; 1251 1252 apic_clear_isr(vector, apic); 1253 apic_update_ppr(apic); 1254 1255 if (to_hv_vcpu(apic->vcpu) && 1256 test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap)) 1257 kvm_hv_synic_send_eoi(apic->vcpu, vector); 1258 1259 kvm_ioapic_send_eoi(apic, vector); 1260 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1261 return vector; 1262 } 1263 1264 /* 1265 * this interface assumes a trap-like exit, which has already finished 1266 * desired side effect including vISR and vPPR update. 1267 */ 1268 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector) 1269 { 1270 struct kvm_lapic *apic = vcpu->arch.apic; 1271 1272 trace_kvm_eoi(apic, vector); 1273 1274 kvm_ioapic_send_eoi(apic, vector); 1275 kvm_make_request(KVM_REQ_EVENT, apic->vcpu); 1276 } 1277 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated); 1278 1279 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high) 1280 { 1281 struct kvm_lapic_irq irq; 1282 1283 irq.vector = icr_low & APIC_VECTOR_MASK; 1284 irq.delivery_mode = icr_low & APIC_MODE_MASK; 1285 irq.dest_mode = icr_low & APIC_DEST_MASK; 1286 irq.level = (icr_low & APIC_INT_ASSERT) != 0; 1287 irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; 1288 irq.shorthand = icr_low & APIC_SHORT_MASK; 1289 irq.msi_redir_hint = false; 1290 if (apic_x2apic_mode(apic)) 1291 irq.dest_id = icr_high; 1292 else 1293 irq.dest_id = GET_APIC_DEST_FIELD(icr_high); 1294 1295 trace_kvm_apic_ipi(icr_low, irq.dest_id); 1296 1297 kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL); 1298 } 1299 1300 static u32 apic_get_tmcct(struct kvm_lapic *apic) 1301 { 1302 ktime_t remaining, now; 1303 s64 ns; 1304 u32 tmcct; 1305 1306 ASSERT(apic != NULL); 1307 1308 /* if initial count is 0, current count should also be 0 */ 1309 if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 || 1310 apic->lapic_timer.period == 0) 1311 return 0; 1312 1313 now = ktime_get(); 1314 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1315 if (ktime_to_ns(remaining) < 0) 1316 remaining = 0; 1317 1318 ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period); 1319 tmcct = div64_u64(ns, 1320 (APIC_BUS_CYCLE_NS * apic->divide_count)); 1321 1322 return tmcct; 1323 } 1324 1325 static void __report_tpr_access(struct kvm_lapic *apic, bool write) 1326 { 1327 struct kvm_vcpu *vcpu = apic->vcpu; 1328 struct kvm_run *run = vcpu->run; 1329 1330 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu); 1331 run->tpr_access.rip = kvm_rip_read(vcpu); 1332 run->tpr_access.is_write = write; 1333 } 1334 1335 static inline void report_tpr_access(struct kvm_lapic *apic, bool write) 1336 { 1337 if (apic->vcpu->arch.tpr_access_reporting) 1338 __report_tpr_access(apic, write); 1339 } 1340 1341 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset) 1342 { 1343 u32 val = 0; 1344 1345 if (offset >= LAPIC_MMIO_LENGTH) 1346 return 0; 1347 1348 switch (offset) { 1349 case APIC_ARBPRI: 1350 break; 1351 1352 case APIC_TMCCT: /* Timer CCR */ 1353 if (apic_lvtt_tscdeadline(apic)) 1354 return 0; 1355 1356 val = apic_get_tmcct(apic); 1357 break; 1358 case APIC_PROCPRI: 1359 apic_update_ppr(apic); 1360 val = kvm_lapic_get_reg(apic, offset); 1361 break; 1362 case APIC_TASKPRI: 1363 report_tpr_access(apic, false); 1364 fallthrough; 1365 default: 1366 val = kvm_lapic_get_reg(apic, offset); 1367 break; 1368 } 1369 1370 return val; 1371 } 1372 1373 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev) 1374 { 1375 return container_of(dev, struct kvm_lapic, dev); 1376 } 1377 1378 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4)) 1379 #define APIC_REGS_MASK(first, count) \ 1380 (APIC_REG_MASK(first) * ((1ull << (count)) - 1)) 1381 1382 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, 1383 void *data) 1384 { 1385 unsigned char alignment = offset & 0xf; 1386 u32 result; 1387 /* this bitmask has a bit cleared for each reserved register */ 1388 u64 valid_reg_mask = 1389 APIC_REG_MASK(APIC_ID) | 1390 APIC_REG_MASK(APIC_LVR) | 1391 APIC_REG_MASK(APIC_TASKPRI) | 1392 APIC_REG_MASK(APIC_PROCPRI) | 1393 APIC_REG_MASK(APIC_LDR) | 1394 APIC_REG_MASK(APIC_DFR) | 1395 APIC_REG_MASK(APIC_SPIV) | 1396 APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) | 1397 APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) | 1398 APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) | 1399 APIC_REG_MASK(APIC_ESR) | 1400 APIC_REG_MASK(APIC_ICR) | 1401 APIC_REG_MASK(APIC_ICR2) | 1402 APIC_REG_MASK(APIC_LVTT) | 1403 APIC_REG_MASK(APIC_LVTTHMR) | 1404 APIC_REG_MASK(APIC_LVTPC) | 1405 APIC_REG_MASK(APIC_LVT0) | 1406 APIC_REG_MASK(APIC_LVT1) | 1407 APIC_REG_MASK(APIC_LVTERR) | 1408 APIC_REG_MASK(APIC_TMICT) | 1409 APIC_REG_MASK(APIC_TMCCT) | 1410 APIC_REG_MASK(APIC_TDCR); 1411 1412 /* ARBPRI is not valid on x2APIC */ 1413 if (!apic_x2apic_mode(apic)) 1414 valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI); 1415 1416 if (alignment + len > 4) 1417 return 1; 1418 1419 if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset))) 1420 return 1; 1421 1422 result = __apic_read(apic, offset & ~0xf); 1423 1424 trace_kvm_apic_read(offset, result); 1425 1426 switch (len) { 1427 case 1: 1428 case 2: 1429 case 4: 1430 memcpy(data, (char *)&result + alignment, len); 1431 break; 1432 default: 1433 printk(KERN_ERR "Local APIC read with len = %x, " 1434 "should be 1,2, or 4 instead\n", len); 1435 break; 1436 } 1437 return 0; 1438 } 1439 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read); 1440 1441 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) 1442 { 1443 return addr >= apic->base_address && 1444 addr < apic->base_address + LAPIC_MMIO_LENGTH; 1445 } 1446 1447 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 1448 gpa_t address, int len, void *data) 1449 { 1450 struct kvm_lapic *apic = to_lapic(this); 1451 u32 offset = address - apic->base_address; 1452 1453 if (!apic_mmio_in_range(apic, address)) 1454 return -EOPNOTSUPP; 1455 1456 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 1457 if (!kvm_check_has_quirk(vcpu->kvm, 1458 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 1459 return -EOPNOTSUPP; 1460 1461 memset(data, 0xff, len); 1462 return 0; 1463 } 1464 1465 kvm_lapic_reg_read(apic, offset, len, data); 1466 1467 return 0; 1468 } 1469 1470 static void update_divide_count(struct kvm_lapic *apic) 1471 { 1472 u32 tmp1, tmp2, tdcr; 1473 1474 tdcr = kvm_lapic_get_reg(apic, APIC_TDCR); 1475 tmp1 = tdcr & 0xf; 1476 tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; 1477 apic->divide_count = 0x1 << (tmp2 & 0x7); 1478 } 1479 1480 static void limit_periodic_timer_frequency(struct kvm_lapic *apic) 1481 { 1482 /* 1483 * Do not allow the guest to program periodic timers with small 1484 * interval, since the hrtimers are not throttled by the host 1485 * scheduler. 1486 */ 1487 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1488 s64 min_period = min_timer_period_us * 1000LL; 1489 1490 if (apic->lapic_timer.period < min_period) { 1491 pr_info_ratelimited( 1492 "kvm: vcpu %i: requested %lld ns " 1493 "lapic timer period limited to %lld ns\n", 1494 apic->vcpu->vcpu_id, 1495 apic->lapic_timer.period, min_period); 1496 apic->lapic_timer.period = min_period; 1497 } 1498 } 1499 } 1500 1501 static void cancel_hv_timer(struct kvm_lapic *apic); 1502 1503 static void cancel_apic_timer(struct kvm_lapic *apic) 1504 { 1505 hrtimer_cancel(&apic->lapic_timer.timer); 1506 preempt_disable(); 1507 if (apic->lapic_timer.hv_timer_in_use) 1508 cancel_hv_timer(apic); 1509 preempt_enable(); 1510 } 1511 1512 static void apic_update_lvtt(struct kvm_lapic *apic) 1513 { 1514 u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) & 1515 apic->lapic_timer.timer_mode_mask; 1516 1517 if (apic->lapic_timer.timer_mode != timer_mode) { 1518 if (apic_lvtt_tscdeadline(apic) != (timer_mode == 1519 APIC_LVT_TIMER_TSCDEADLINE)) { 1520 cancel_apic_timer(apic); 1521 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 1522 apic->lapic_timer.period = 0; 1523 apic->lapic_timer.tscdeadline = 0; 1524 } 1525 apic->lapic_timer.timer_mode = timer_mode; 1526 limit_periodic_timer_frequency(apic); 1527 } 1528 } 1529 1530 /* 1531 * On APICv, this test will cause a busy wait 1532 * during a higher-priority task. 1533 */ 1534 1535 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu) 1536 { 1537 struct kvm_lapic *apic = vcpu->arch.apic; 1538 u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT); 1539 1540 if (kvm_apic_hw_enabled(apic)) { 1541 int vec = reg & APIC_VECTOR_MASK; 1542 void *bitmap = apic->regs + APIC_ISR; 1543 1544 if (vcpu->arch.apicv_active) 1545 bitmap = apic->regs + APIC_IRR; 1546 1547 if (apic_test_vector(vec, bitmap)) 1548 return true; 1549 } 1550 return false; 1551 } 1552 1553 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles) 1554 { 1555 u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns; 1556 1557 /* 1558 * If the guest TSC is running at a different ratio than the host, then 1559 * convert the delay to nanoseconds to achieve an accurate delay. Note 1560 * that __delay() uses delay_tsc whenever the hardware has TSC, thus 1561 * always for VMX enabled hardware. 1562 */ 1563 if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) { 1564 __delay(min(guest_cycles, 1565 nsec_to_cycles(vcpu, timer_advance_ns))); 1566 } else { 1567 u64 delay_ns = guest_cycles * 1000000ULL; 1568 do_div(delay_ns, vcpu->arch.virtual_tsc_khz); 1569 ndelay(min_t(u32, delay_ns, timer_advance_ns)); 1570 } 1571 } 1572 1573 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu, 1574 s64 advance_expire_delta) 1575 { 1576 struct kvm_lapic *apic = vcpu->arch.apic; 1577 u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns; 1578 u64 ns; 1579 1580 /* Do not adjust for tiny fluctuations or large random spikes. */ 1581 if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX || 1582 abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN) 1583 return; 1584 1585 /* too early */ 1586 if (advance_expire_delta < 0) { 1587 ns = -advance_expire_delta * 1000000ULL; 1588 do_div(ns, vcpu->arch.virtual_tsc_khz); 1589 timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1590 } else { 1591 /* too late */ 1592 ns = advance_expire_delta * 1000000ULL; 1593 do_div(ns, vcpu->arch.virtual_tsc_khz); 1594 timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP; 1595 } 1596 1597 if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX)) 1598 timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 1599 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 1600 } 1601 1602 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1603 { 1604 struct kvm_lapic *apic = vcpu->arch.apic; 1605 u64 guest_tsc, tsc_deadline; 1606 1607 tsc_deadline = apic->lapic_timer.expired_tscdeadline; 1608 apic->lapic_timer.expired_tscdeadline = 0; 1609 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1610 apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline; 1611 1612 if (lapic_timer_advance_dynamic) { 1613 adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta); 1614 /* 1615 * If the timer fired early, reread the TSC to account for the 1616 * overhead of the above adjustment to avoid waiting longer 1617 * than is necessary. 1618 */ 1619 if (guest_tsc < tsc_deadline) 1620 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1621 } 1622 1623 if (guest_tsc < tsc_deadline) 1624 __wait_lapic_expire(vcpu, tsc_deadline - guest_tsc); 1625 } 1626 1627 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu) 1628 { 1629 if (lapic_in_kernel(vcpu) && 1630 vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1631 vcpu->arch.apic->lapic_timer.timer_advance_ns && 1632 lapic_timer_int_injected(vcpu)) 1633 __kvm_wait_lapic_expire(vcpu); 1634 } 1635 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire); 1636 1637 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic) 1638 { 1639 struct kvm_timer *ktimer = &apic->lapic_timer; 1640 1641 kvm_apic_local_deliver(apic, APIC_LVTT); 1642 if (apic_lvtt_tscdeadline(apic)) { 1643 ktimer->tscdeadline = 0; 1644 } else if (apic_lvtt_oneshot(apic)) { 1645 ktimer->tscdeadline = 0; 1646 ktimer->target_expiration = 0; 1647 } 1648 } 1649 1650 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn) 1651 { 1652 struct kvm_vcpu *vcpu = apic->vcpu; 1653 struct kvm_timer *ktimer = &apic->lapic_timer; 1654 1655 if (atomic_read(&apic->lapic_timer.pending)) 1656 return; 1657 1658 if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use) 1659 ktimer->expired_tscdeadline = ktimer->tscdeadline; 1660 1661 if (!from_timer_fn && vcpu->arch.apicv_active) { 1662 WARN_ON(kvm_get_running_vcpu() != vcpu); 1663 kvm_apic_inject_pending_timer_irqs(apic); 1664 return; 1665 } 1666 1667 if (kvm_use_posted_timer_interrupt(apic->vcpu)) { 1668 /* 1669 * Ensure the guest's timer has truly expired before posting an 1670 * interrupt. Open code the relevant checks to avoid querying 1671 * lapic_timer_int_injected(), which will be false since the 1672 * interrupt isn't yet injected. Waiting until after injecting 1673 * is not an option since that won't help a posted interrupt. 1674 */ 1675 if (vcpu->arch.apic->lapic_timer.expired_tscdeadline && 1676 vcpu->arch.apic->lapic_timer.timer_advance_ns) 1677 __kvm_wait_lapic_expire(vcpu); 1678 kvm_apic_inject_pending_timer_irqs(apic); 1679 return; 1680 } 1681 1682 atomic_inc(&apic->lapic_timer.pending); 1683 kvm_make_request(KVM_REQ_UNBLOCK, vcpu); 1684 if (from_timer_fn) 1685 kvm_vcpu_kick(vcpu); 1686 } 1687 1688 static void start_sw_tscdeadline(struct kvm_lapic *apic) 1689 { 1690 struct kvm_timer *ktimer = &apic->lapic_timer; 1691 u64 guest_tsc, tscdeadline = ktimer->tscdeadline; 1692 u64 ns = 0; 1693 ktime_t expire; 1694 struct kvm_vcpu *vcpu = apic->vcpu; 1695 unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz; 1696 unsigned long flags; 1697 ktime_t now; 1698 1699 if (unlikely(!tscdeadline || !this_tsc_khz)) 1700 return; 1701 1702 local_irq_save(flags); 1703 1704 now = ktime_get(); 1705 guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 1706 1707 ns = (tscdeadline - guest_tsc) * 1000000ULL; 1708 do_div(ns, this_tsc_khz); 1709 1710 if (likely(tscdeadline > guest_tsc) && 1711 likely(ns > apic->lapic_timer.timer_advance_ns)) { 1712 expire = ktime_add_ns(now, ns); 1713 expire = ktime_sub_ns(expire, ktimer->timer_advance_ns); 1714 hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD); 1715 } else 1716 apic_timer_expired(apic, false); 1717 1718 local_irq_restore(flags); 1719 } 1720 1721 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict) 1722 { 1723 return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count; 1724 } 1725 1726 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor) 1727 { 1728 ktime_t now, remaining; 1729 u64 ns_remaining_old, ns_remaining_new; 1730 1731 apic->lapic_timer.period = 1732 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1733 limit_periodic_timer_frequency(apic); 1734 1735 now = ktime_get(); 1736 remaining = ktime_sub(apic->lapic_timer.target_expiration, now); 1737 if (ktime_to_ns(remaining) < 0) 1738 remaining = 0; 1739 1740 ns_remaining_old = ktime_to_ns(remaining); 1741 ns_remaining_new = mul_u64_u32_div(ns_remaining_old, 1742 apic->divide_count, old_divisor); 1743 1744 apic->lapic_timer.tscdeadline += 1745 nsec_to_cycles(apic->vcpu, ns_remaining_new) - 1746 nsec_to_cycles(apic->vcpu, ns_remaining_old); 1747 apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new); 1748 } 1749 1750 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg) 1751 { 1752 ktime_t now; 1753 u64 tscl = rdtsc(); 1754 s64 deadline; 1755 1756 now = ktime_get(); 1757 apic->lapic_timer.period = 1758 tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT)); 1759 1760 if (!apic->lapic_timer.period) { 1761 apic->lapic_timer.tscdeadline = 0; 1762 return false; 1763 } 1764 1765 limit_periodic_timer_frequency(apic); 1766 deadline = apic->lapic_timer.period; 1767 1768 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) { 1769 if (unlikely(count_reg != APIC_TMICT)) { 1770 deadline = tmict_to_ns(apic, 1771 kvm_lapic_get_reg(apic, count_reg)); 1772 if (unlikely(deadline <= 0)) 1773 deadline = apic->lapic_timer.period; 1774 else if (unlikely(deadline > apic->lapic_timer.period)) { 1775 pr_info_ratelimited( 1776 "kvm: vcpu %i: requested lapic timer restore with " 1777 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). " 1778 "Using initial count to start timer.\n", 1779 apic->vcpu->vcpu_id, 1780 count_reg, 1781 kvm_lapic_get_reg(apic, count_reg), 1782 deadline, apic->lapic_timer.period); 1783 kvm_lapic_set_reg(apic, count_reg, 0); 1784 deadline = apic->lapic_timer.period; 1785 } 1786 } 1787 } 1788 1789 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1790 nsec_to_cycles(apic->vcpu, deadline); 1791 apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline); 1792 1793 return true; 1794 } 1795 1796 static void advance_periodic_target_expiration(struct kvm_lapic *apic) 1797 { 1798 ktime_t now = ktime_get(); 1799 u64 tscl = rdtsc(); 1800 ktime_t delta; 1801 1802 /* 1803 * Synchronize both deadlines to the same time source or 1804 * differences in the periods (caused by differences in the 1805 * underlying clocks or numerical approximation errors) will 1806 * cause the two to drift apart over time as the errors 1807 * accumulate. 1808 */ 1809 apic->lapic_timer.target_expiration = 1810 ktime_add_ns(apic->lapic_timer.target_expiration, 1811 apic->lapic_timer.period); 1812 delta = ktime_sub(apic->lapic_timer.target_expiration, now); 1813 apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) + 1814 nsec_to_cycles(apic->vcpu, delta); 1815 } 1816 1817 static void start_sw_period(struct kvm_lapic *apic) 1818 { 1819 if (!apic->lapic_timer.period) 1820 return; 1821 1822 if (ktime_after(ktime_get(), 1823 apic->lapic_timer.target_expiration)) { 1824 apic_timer_expired(apic, false); 1825 1826 if (apic_lvtt_oneshot(apic)) 1827 return; 1828 1829 advance_periodic_target_expiration(apic); 1830 } 1831 1832 hrtimer_start(&apic->lapic_timer.timer, 1833 apic->lapic_timer.target_expiration, 1834 HRTIMER_MODE_ABS_HARD); 1835 } 1836 1837 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu) 1838 { 1839 if (!lapic_in_kernel(vcpu)) 1840 return false; 1841 1842 return vcpu->arch.apic->lapic_timer.hv_timer_in_use; 1843 } 1844 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use); 1845 1846 static void cancel_hv_timer(struct kvm_lapic *apic) 1847 { 1848 WARN_ON(preemptible()); 1849 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1850 static_call(kvm_x86_cancel_hv_timer)(apic->vcpu); 1851 apic->lapic_timer.hv_timer_in_use = false; 1852 } 1853 1854 static bool start_hv_timer(struct kvm_lapic *apic) 1855 { 1856 struct kvm_timer *ktimer = &apic->lapic_timer; 1857 struct kvm_vcpu *vcpu = apic->vcpu; 1858 bool expired; 1859 1860 WARN_ON(preemptible()); 1861 if (!kvm_can_use_hv_timer(vcpu)) 1862 return false; 1863 1864 if (!ktimer->tscdeadline) 1865 return false; 1866 1867 if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired)) 1868 return false; 1869 1870 ktimer->hv_timer_in_use = true; 1871 hrtimer_cancel(&ktimer->timer); 1872 1873 /* 1874 * To simplify handling the periodic timer, leave the hv timer running 1875 * even if the deadline timer has expired, i.e. rely on the resulting 1876 * VM-Exit to recompute the periodic timer's target expiration. 1877 */ 1878 if (!apic_lvtt_period(apic)) { 1879 /* 1880 * Cancel the hv timer if the sw timer fired while the hv timer 1881 * was being programmed, or if the hv timer itself expired. 1882 */ 1883 if (atomic_read(&ktimer->pending)) { 1884 cancel_hv_timer(apic); 1885 } else if (expired) { 1886 apic_timer_expired(apic, false); 1887 cancel_hv_timer(apic); 1888 } 1889 } 1890 1891 trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use); 1892 1893 return true; 1894 } 1895 1896 static void start_sw_timer(struct kvm_lapic *apic) 1897 { 1898 struct kvm_timer *ktimer = &apic->lapic_timer; 1899 1900 WARN_ON(preemptible()); 1901 if (apic->lapic_timer.hv_timer_in_use) 1902 cancel_hv_timer(apic); 1903 if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending)) 1904 return; 1905 1906 if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1907 start_sw_period(apic); 1908 else if (apic_lvtt_tscdeadline(apic)) 1909 start_sw_tscdeadline(apic); 1910 trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false); 1911 } 1912 1913 static void restart_apic_timer(struct kvm_lapic *apic) 1914 { 1915 preempt_disable(); 1916 1917 if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending)) 1918 goto out; 1919 1920 if (!start_hv_timer(apic)) 1921 start_sw_timer(apic); 1922 out: 1923 preempt_enable(); 1924 } 1925 1926 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu) 1927 { 1928 struct kvm_lapic *apic = vcpu->arch.apic; 1929 1930 preempt_disable(); 1931 /* If the preempt notifier has already run, it also called apic_timer_expired */ 1932 if (!apic->lapic_timer.hv_timer_in_use) 1933 goto out; 1934 WARN_ON(rcuwait_active(&vcpu->wait)); 1935 apic_timer_expired(apic, false); 1936 cancel_hv_timer(apic); 1937 1938 if (apic_lvtt_period(apic) && apic->lapic_timer.period) { 1939 advance_periodic_target_expiration(apic); 1940 restart_apic_timer(apic); 1941 } 1942 out: 1943 preempt_enable(); 1944 } 1945 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer); 1946 1947 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu) 1948 { 1949 restart_apic_timer(vcpu->arch.apic); 1950 } 1951 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer); 1952 1953 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu) 1954 { 1955 struct kvm_lapic *apic = vcpu->arch.apic; 1956 1957 preempt_disable(); 1958 /* Possibly the TSC deadline timer is not enabled yet */ 1959 if (apic->lapic_timer.hv_timer_in_use) 1960 start_sw_timer(apic); 1961 preempt_enable(); 1962 } 1963 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer); 1964 1965 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu) 1966 { 1967 struct kvm_lapic *apic = vcpu->arch.apic; 1968 1969 WARN_ON(!apic->lapic_timer.hv_timer_in_use); 1970 restart_apic_timer(apic); 1971 } 1972 1973 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg) 1974 { 1975 atomic_set(&apic->lapic_timer.pending, 0); 1976 1977 if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) 1978 && !set_target_expiration(apic, count_reg)) 1979 return; 1980 1981 restart_apic_timer(apic); 1982 } 1983 1984 static void start_apic_timer(struct kvm_lapic *apic) 1985 { 1986 __start_apic_timer(apic, APIC_TMICT); 1987 } 1988 1989 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val) 1990 { 1991 bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val); 1992 1993 if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) { 1994 apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode; 1995 if (lvt0_in_nmi_mode) { 1996 atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1997 } else 1998 atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode); 1999 } 2000 } 2001 2002 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) 2003 { 2004 int ret = 0; 2005 2006 trace_kvm_apic_write(reg, val); 2007 2008 switch (reg) { 2009 case APIC_ID: /* Local APIC ID */ 2010 if (!apic_x2apic_mode(apic)) 2011 kvm_apic_set_xapic_id(apic, val >> 24); 2012 else 2013 ret = 1; 2014 break; 2015 2016 case APIC_TASKPRI: 2017 report_tpr_access(apic, true); 2018 apic_set_tpr(apic, val & 0xff); 2019 break; 2020 2021 case APIC_EOI: 2022 apic_set_eoi(apic); 2023 break; 2024 2025 case APIC_LDR: 2026 if (!apic_x2apic_mode(apic)) 2027 kvm_apic_set_ldr(apic, val & APIC_LDR_MASK); 2028 else 2029 ret = 1; 2030 break; 2031 2032 case APIC_DFR: 2033 if (!apic_x2apic_mode(apic)) 2034 kvm_apic_set_dfr(apic, val | 0x0FFFFFFF); 2035 else 2036 ret = 1; 2037 break; 2038 2039 case APIC_SPIV: { 2040 u32 mask = 0x3ff; 2041 if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) 2042 mask |= APIC_SPIV_DIRECTED_EOI; 2043 apic_set_spiv(apic, val & mask); 2044 if (!(val & APIC_SPIV_APIC_ENABLED)) { 2045 int i; 2046 u32 lvt_val; 2047 2048 for (i = 0; i < KVM_APIC_LVT_NUM; i++) { 2049 lvt_val = kvm_lapic_get_reg(apic, 2050 APIC_LVTT + 0x10 * i); 2051 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, 2052 lvt_val | APIC_LVT_MASKED); 2053 } 2054 apic_update_lvtt(apic); 2055 atomic_set(&apic->lapic_timer.pending, 0); 2056 2057 } 2058 break; 2059 } 2060 case APIC_ICR: 2061 /* No delay here, so we always clear the pending bit */ 2062 val &= ~(1 << 12); 2063 kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2)); 2064 kvm_lapic_set_reg(apic, APIC_ICR, val); 2065 break; 2066 2067 case APIC_ICR2: 2068 if (!apic_x2apic_mode(apic)) 2069 val &= 0xff000000; 2070 kvm_lapic_set_reg(apic, APIC_ICR2, val); 2071 break; 2072 2073 case APIC_LVT0: 2074 apic_manage_nmi_watchdog(apic, val); 2075 fallthrough; 2076 case APIC_LVTTHMR: 2077 case APIC_LVTPC: 2078 case APIC_LVT1: 2079 case APIC_LVTERR: { 2080 /* TODO: Check vector */ 2081 size_t size; 2082 u32 index; 2083 2084 if (!kvm_apic_sw_enabled(apic)) 2085 val |= APIC_LVT_MASKED; 2086 size = ARRAY_SIZE(apic_lvt_mask); 2087 index = array_index_nospec( 2088 (reg - APIC_LVTT) >> 4, size); 2089 val &= apic_lvt_mask[index]; 2090 kvm_lapic_set_reg(apic, reg, val); 2091 break; 2092 } 2093 2094 case APIC_LVTT: 2095 if (!kvm_apic_sw_enabled(apic)) 2096 val |= APIC_LVT_MASKED; 2097 val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask); 2098 kvm_lapic_set_reg(apic, APIC_LVTT, val); 2099 apic_update_lvtt(apic); 2100 break; 2101 2102 case APIC_TMICT: 2103 if (apic_lvtt_tscdeadline(apic)) 2104 break; 2105 2106 cancel_apic_timer(apic); 2107 kvm_lapic_set_reg(apic, APIC_TMICT, val); 2108 start_apic_timer(apic); 2109 break; 2110 2111 case APIC_TDCR: { 2112 uint32_t old_divisor = apic->divide_count; 2113 2114 kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb); 2115 update_divide_count(apic); 2116 if (apic->divide_count != old_divisor && 2117 apic->lapic_timer.period) { 2118 hrtimer_cancel(&apic->lapic_timer.timer); 2119 update_target_expiration(apic, old_divisor); 2120 restart_apic_timer(apic); 2121 } 2122 break; 2123 } 2124 case APIC_ESR: 2125 if (apic_x2apic_mode(apic) && val != 0) 2126 ret = 1; 2127 break; 2128 2129 case APIC_SELF_IPI: 2130 if (apic_x2apic_mode(apic)) { 2131 kvm_lapic_reg_write(apic, APIC_ICR, 2132 APIC_DEST_SELF | (val & APIC_VECTOR_MASK)); 2133 } else 2134 ret = 1; 2135 break; 2136 default: 2137 ret = 1; 2138 break; 2139 } 2140 2141 kvm_recalculate_apic_map(apic->vcpu->kvm); 2142 2143 return ret; 2144 } 2145 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write); 2146 2147 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, 2148 gpa_t address, int len, const void *data) 2149 { 2150 struct kvm_lapic *apic = to_lapic(this); 2151 unsigned int offset = address - apic->base_address; 2152 u32 val; 2153 2154 if (!apic_mmio_in_range(apic, address)) 2155 return -EOPNOTSUPP; 2156 2157 if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) { 2158 if (!kvm_check_has_quirk(vcpu->kvm, 2159 KVM_X86_QUIRK_LAPIC_MMIO_HOLE)) 2160 return -EOPNOTSUPP; 2161 2162 return 0; 2163 } 2164 2165 /* 2166 * APIC register must be aligned on 128-bits boundary. 2167 * 32/64/128 bits registers must be accessed thru 32 bits. 2168 * Refer SDM 8.4.1 2169 */ 2170 if (len != 4 || (offset & 0xf)) 2171 return 0; 2172 2173 val = *(u32*)data; 2174 2175 kvm_lapic_reg_write(apic, offset & 0xff0, val); 2176 2177 return 0; 2178 } 2179 2180 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu) 2181 { 2182 kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0); 2183 } 2184 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); 2185 2186 /* emulate APIC access in a trap manner */ 2187 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) 2188 { 2189 u32 val = 0; 2190 2191 /* hw has done the conditional check and inst decode */ 2192 offset &= 0xff0; 2193 2194 kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val); 2195 2196 /* TODO: optimize to just emulate side effect w/o one more write */ 2197 kvm_lapic_reg_write(vcpu->arch.apic, offset, val); 2198 } 2199 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); 2200 2201 void kvm_free_lapic(struct kvm_vcpu *vcpu) 2202 { 2203 struct kvm_lapic *apic = vcpu->arch.apic; 2204 2205 if (!vcpu->arch.apic) 2206 return; 2207 2208 hrtimer_cancel(&apic->lapic_timer.timer); 2209 2210 if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)) 2211 static_branch_slow_dec_deferred(&apic_hw_disabled); 2212 2213 if (!apic->sw_enabled) 2214 static_branch_slow_dec_deferred(&apic_sw_disabled); 2215 2216 if (apic->regs) 2217 free_page((unsigned long)apic->regs); 2218 2219 kfree(apic); 2220 } 2221 2222 /* 2223 *---------------------------------------------------------------------- 2224 * LAPIC interface 2225 *---------------------------------------------------------------------- 2226 */ 2227 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu) 2228 { 2229 struct kvm_lapic *apic = vcpu->arch.apic; 2230 2231 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2232 return 0; 2233 2234 return apic->lapic_timer.tscdeadline; 2235 } 2236 2237 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data) 2238 { 2239 struct kvm_lapic *apic = vcpu->arch.apic; 2240 2241 if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic)) 2242 return; 2243 2244 hrtimer_cancel(&apic->lapic_timer.timer); 2245 apic->lapic_timer.tscdeadline = data; 2246 start_apic_timer(apic); 2247 } 2248 2249 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) 2250 { 2251 struct kvm_lapic *apic = vcpu->arch.apic; 2252 2253 apic_set_tpr(apic, ((cr8 & 0x0f) << 4) 2254 | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4)); 2255 } 2256 2257 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) 2258 { 2259 u64 tpr; 2260 2261 tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI); 2262 2263 return (tpr & 0xf0) >> 4; 2264 } 2265 2266 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value) 2267 { 2268 u64 old_value = vcpu->arch.apic_base; 2269 struct kvm_lapic *apic = vcpu->arch.apic; 2270 2271 vcpu->arch.apic_base = value; 2272 2273 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) 2274 kvm_update_cpuid_runtime(vcpu); 2275 2276 if (!apic) 2277 return; 2278 2279 /* update jump label if enable bit changes */ 2280 if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) { 2281 if (value & MSR_IA32_APICBASE_ENABLE) { 2282 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2283 static_branch_slow_dec_deferred(&apic_hw_disabled); 2284 /* Check if there are APF page ready requests pending */ 2285 kvm_make_request(KVM_REQ_APF_READY, vcpu); 2286 } else { 2287 static_branch_inc(&apic_hw_disabled.key); 2288 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2289 } 2290 } 2291 2292 if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE)) 2293 kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id); 2294 2295 if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) 2296 static_call(kvm_x86_set_virtual_apic_mode)(vcpu); 2297 2298 apic->base_address = apic->vcpu->arch.apic_base & 2299 MSR_IA32_APICBASE_BASE; 2300 2301 if ((value & MSR_IA32_APICBASE_ENABLE) && 2302 apic->base_address != APIC_DEFAULT_PHYS_BASE) 2303 pr_warn_once("APIC base relocation is unsupported by KVM"); 2304 } 2305 2306 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu) 2307 { 2308 struct kvm_lapic *apic = vcpu->arch.apic; 2309 2310 if (vcpu->arch.apicv_active) { 2311 /* irr_pending is always true when apicv is activated. */ 2312 apic->irr_pending = true; 2313 apic->isr_count = 1; 2314 } else { 2315 apic->irr_pending = (apic_search_irr(apic) != -1); 2316 apic->isr_count = count_vectors(apic->regs + APIC_ISR); 2317 } 2318 } 2319 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv); 2320 2321 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) 2322 { 2323 struct kvm_lapic *apic = vcpu->arch.apic; 2324 int i; 2325 2326 if (!init_event) { 2327 vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE | 2328 MSR_IA32_APICBASE_ENABLE; 2329 if (kvm_vcpu_is_reset_bsp(vcpu)) 2330 vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP; 2331 } 2332 2333 if (!apic) 2334 return; 2335 2336 /* Stop the timer in case it's a reset to an active apic */ 2337 hrtimer_cancel(&apic->lapic_timer.timer); 2338 2339 if (!init_event) { 2340 apic->base_address = APIC_DEFAULT_PHYS_BASE; 2341 2342 kvm_apic_set_xapic_id(apic, vcpu->vcpu_id); 2343 } 2344 kvm_apic_set_version(apic->vcpu); 2345 2346 for (i = 0; i < KVM_APIC_LVT_NUM; i++) 2347 kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); 2348 apic_update_lvtt(apic); 2349 if (kvm_vcpu_is_reset_bsp(vcpu) && 2350 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) 2351 kvm_lapic_set_reg(apic, APIC_LVT0, 2352 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); 2353 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2354 2355 kvm_apic_set_dfr(apic, 0xffffffffU); 2356 apic_set_spiv(apic, 0xff); 2357 kvm_lapic_set_reg(apic, APIC_TASKPRI, 0); 2358 if (!apic_x2apic_mode(apic)) 2359 kvm_apic_set_ldr(apic, 0); 2360 kvm_lapic_set_reg(apic, APIC_ESR, 0); 2361 kvm_lapic_set_reg(apic, APIC_ICR, 0); 2362 kvm_lapic_set_reg(apic, APIC_ICR2, 0); 2363 kvm_lapic_set_reg(apic, APIC_TDCR, 0); 2364 kvm_lapic_set_reg(apic, APIC_TMICT, 0); 2365 for (i = 0; i < 8; i++) { 2366 kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0); 2367 kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0); 2368 kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0); 2369 } 2370 kvm_apic_update_apicv(vcpu); 2371 apic->highest_isr_cache = -1; 2372 update_divide_count(apic); 2373 atomic_set(&apic->lapic_timer.pending, 0); 2374 2375 vcpu->arch.pv_eoi.msr_val = 0; 2376 apic_update_ppr(apic); 2377 if (vcpu->arch.apicv_active) { 2378 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2379 static_call(kvm_x86_hwapic_irr_update)(vcpu, -1); 2380 static_call(kvm_x86_hwapic_isr_update)(vcpu, -1); 2381 } 2382 2383 vcpu->arch.apic_arb_prio = 0; 2384 vcpu->arch.apic_attention = 0; 2385 2386 kvm_recalculate_apic_map(vcpu->kvm); 2387 } 2388 2389 /* 2390 *---------------------------------------------------------------------- 2391 * timer interface 2392 *---------------------------------------------------------------------- 2393 */ 2394 2395 static bool lapic_is_periodic(struct kvm_lapic *apic) 2396 { 2397 return apic_lvtt_period(apic); 2398 } 2399 2400 int apic_has_pending_timer(struct kvm_vcpu *vcpu) 2401 { 2402 struct kvm_lapic *apic = vcpu->arch.apic; 2403 2404 if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT)) 2405 return atomic_read(&apic->lapic_timer.pending); 2406 2407 return 0; 2408 } 2409 2410 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) 2411 { 2412 u32 reg = kvm_lapic_get_reg(apic, lvt_type); 2413 int vector, mode, trig_mode; 2414 2415 if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { 2416 vector = reg & APIC_VECTOR_MASK; 2417 mode = reg & APIC_MODE_MASK; 2418 trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; 2419 return __apic_accept_irq(apic, mode, vector, 1, trig_mode, 2420 NULL); 2421 } 2422 return 0; 2423 } 2424 2425 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) 2426 { 2427 struct kvm_lapic *apic = vcpu->arch.apic; 2428 2429 if (apic) 2430 kvm_apic_local_deliver(apic, APIC_LVT0); 2431 } 2432 2433 static const struct kvm_io_device_ops apic_mmio_ops = { 2434 .read = apic_mmio_read, 2435 .write = apic_mmio_write, 2436 }; 2437 2438 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data) 2439 { 2440 struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer); 2441 struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer); 2442 2443 apic_timer_expired(apic, true); 2444 2445 if (lapic_is_periodic(apic)) { 2446 advance_periodic_target_expiration(apic); 2447 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period); 2448 return HRTIMER_RESTART; 2449 } else 2450 return HRTIMER_NORESTART; 2451 } 2452 2453 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns) 2454 { 2455 struct kvm_lapic *apic; 2456 2457 ASSERT(vcpu != NULL); 2458 2459 apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT); 2460 if (!apic) 2461 goto nomem; 2462 2463 vcpu->arch.apic = apic; 2464 2465 apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 2466 if (!apic->regs) { 2467 printk(KERN_ERR "malloc apic regs error for vcpu %x\n", 2468 vcpu->vcpu_id); 2469 goto nomem_free_apic; 2470 } 2471 apic->vcpu = vcpu; 2472 2473 hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC, 2474 HRTIMER_MODE_ABS_HARD); 2475 apic->lapic_timer.timer.function = apic_timer_fn; 2476 if (timer_advance_ns == -1) { 2477 apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT; 2478 lapic_timer_advance_dynamic = true; 2479 } else { 2480 apic->lapic_timer.timer_advance_ns = timer_advance_ns; 2481 lapic_timer_advance_dynamic = false; 2482 } 2483 2484 static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */ 2485 kvm_iodevice_init(&apic->dev, &apic_mmio_ops); 2486 2487 return 0; 2488 nomem_free_apic: 2489 kfree(apic); 2490 vcpu->arch.apic = NULL; 2491 nomem: 2492 return -ENOMEM; 2493 } 2494 2495 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) 2496 { 2497 struct kvm_lapic *apic = vcpu->arch.apic; 2498 u32 ppr; 2499 2500 if (!kvm_apic_present(vcpu)) 2501 return -1; 2502 2503 __apic_update_ppr(apic, &ppr); 2504 return apic_has_interrupt_for_ppr(apic, ppr); 2505 } 2506 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt); 2507 2508 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) 2509 { 2510 u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0); 2511 2512 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 2513 return 1; 2514 if ((lvt0 & APIC_LVT_MASKED) == 0 && 2515 GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) 2516 return 1; 2517 return 0; 2518 } 2519 2520 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) 2521 { 2522 struct kvm_lapic *apic = vcpu->arch.apic; 2523 2524 if (atomic_read(&apic->lapic_timer.pending) > 0) { 2525 kvm_apic_inject_pending_timer_irqs(apic); 2526 atomic_set(&apic->lapic_timer.pending, 0); 2527 } 2528 } 2529 2530 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) 2531 { 2532 int vector = kvm_apic_has_interrupt(vcpu); 2533 struct kvm_lapic *apic = vcpu->arch.apic; 2534 u32 ppr; 2535 2536 if (vector == -1) 2537 return -1; 2538 2539 /* 2540 * We get here even with APIC virtualization enabled, if doing 2541 * nested virtualization and L1 runs with the "acknowledge interrupt 2542 * on exit" mode. Then we cannot inject the interrupt via RVI, 2543 * because the process would deliver it through the IDT. 2544 */ 2545 2546 apic_clear_irr(vector, apic); 2547 if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) { 2548 /* 2549 * For auto-EOI interrupts, there might be another pending 2550 * interrupt above PPR, so check whether to raise another 2551 * KVM_REQ_EVENT. 2552 */ 2553 apic_update_ppr(apic); 2554 } else { 2555 /* 2556 * For normal interrupts, PPR has been raised and there cannot 2557 * be a higher-priority pending interrupt---except if there was 2558 * a concurrent interrupt injection, but that would have 2559 * triggered KVM_REQ_EVENT already. 2560 */ 2561 apic_set_isr(vector, apic); 2562 __apic_update_ppr(apic, &ppr); 2563 } 2564 2565 return vector; 2566 } 2567 2568 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu, 2569 struct kvm_lapic_state *s, bool set) 2570 { 2571 if (apic_x2apic_mode(vcpu->arch.apic)) { 2572 u32 *id = (u32 *)(s->regs + APIC_ID); 2573 u32 *ldr = (u32 *)(s->regs + APIC_LDR); 2574 2575 if (vcpu->kvm->arch.x2apic_format) { 2576 if (*id != vcpu->vcpu_id) 2577 return -EINVAL; 2578 } else { 2579 if (set) 2580 *id >>= 24; 2581 else 2582 *id <<= 24; 2583 } 2584 2585 /* In x2APIC mode, the LDR is fixed and based on the id */ 2586 if (set) 2587 *ldr = kvm_apic_calc_x2apic_ldr(*id); 2588 } 2589 2590 return 0; 2591 } 2592 2593 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2594 { 2595 memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s)); 2596 2597 /* 2598 * Get calculated timer current count for remaining timer period (if 2599 * any) and store it in the returned register set. 2600 */ 2601 __kvm_lapic_set_reg(s->regs, APIC_TMCCT, 2602 __apic_read(vcpu->arch.apic, APIC_TMCCT)); 2603 2604 return kvm_apic_state_fixup(vcpu, s, false); 2605 } 2606 2607 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 2608 { 2609 struct kvm_lapic *apic = vcpu->arch.apic; 2610 int r; 2611 2612 kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); 2613 /* set SPIV separately to get count of SW disabled APICs right */ 2614 apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); 2615 2616 r = kvm_apic_state_fixup(vcpu, s, true); 2617 if (r) { 2618 kvm_recalculate_apic_map(vcpu->kvm); 2619 return r; 2620 } 2621 memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s)); 2622 2623 atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY); 2624 kvm_recalculate_apic_map(vcpu->kvm); 2625 kvm_apic_set_version(vcpu); 2626 2627 apic_update_ppr(apic); 2628 hrtimer_cancel(&apic->lapic_timer.timer); 2629 apic->lapic_timer.expired_tscdeadline = 0; 2630 apic_update_lvtt(apic); 2631 apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0)); 2632 update_divide_count(apic); 2633 __start_apic_timer(apic, APIC_TMCCT); 2634 kvm_lapic_set_reg(apic, APIC_TMCCT, 0); 2635 kvm_apic_update_apicv(vcpu); 2636 apic->highest_isr_cache = -1; 2637 if (vcpu->arch.apicv_active) { 2638 static_call(kvm_x86_apicv_post_state_restore)(vcpu); 2639 static_call(kvm_x86_hwapic_irr_update)(vcpu, 2640 apic_find_highest_irr(apic)); 2641 static_call(kvm_x86_hwapic_isr_update)(vcpu, 2642 apic_find_highest_isr(apic)); 2643 } 2644 kvm_make_request(KVM_REQ_EVENT, vcpu); 2645 if (ioapic_in_kernel(vcpu->kvm)) 2646 kvm_rtc_eoi_tracking_restore_one(vcpu); 2647 2648 vcpu->arch.apic_arb_prio = 0; 2649 2650 return 0; 2651 } 2652 2653 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu) 2654 { 2655 struct hrtimer *timer; 2656 2657 if (!lapic_in_kernel(vcpu) || 2658 kvm_can_post_timer_interrupt(vcpu)) 2659 return; 2660 2661 timer = &vcpu->arch.apic->lapic_timer.timer; 2662 if (hrtimer_cancel(timer)) 2663 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD); 2664 } 2665 2666 /* 2667 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt 2668 * 2669 * Detect whether guest triggered PV EOI since the 2670 * last entry. If yes, set EOI on guests's behalf. 2671 * Clear PV EOI in guest memory in any case. 2672 */ 2673 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu, 2674 struct kvm_lapic *apic) 2675 { 2676 bool pending; 2677 int vector; 2678 /* 2679 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host 2680 * and KVM_PV_EOI_ENABLED in guest memory as follows: 2681 * 2682 * KVM_APIC_PV_EOI_PENDING is unset: 2683 * -> host disabled PV EOI. 2684 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set: 2685 * -> host enabled PV EOI, guest did not execute EOI yet. 2686 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset: 2687 * -> host enabled PV EOI, guest executed EOI. 2688 */ 2689 BUG_ON(!pv_eoi_enabled(vcpu)); 2690 pending = pv_eoi_get_pending(vcpu); 2691 /* 2692 * Clear pending bit in any case: it will be set again on vmentry. 2693 * While this might not be ideal from performance point of view, 2694 * this makes sure pv eoi is only enabled when we know it's safe. 2695 */ 2696 pv_eoi_clr_pending(vcpu); 2697 if (pending) 2698 return; 2699 vector = apic_set_eoi(apic); 2700 trace_kvm_pv_eoi(apic, vector); 2701 } 2702 2703 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) 2704 { 2705 u32 data; 2706 2707 if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention)) 2708 apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic); 2709 2710 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2711 return; 2712 2713 if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2714 sizeof(u32))) 2715 return; 2716 2717 apic_set_tpr(vcpu->arch.apic, data & 0xff); 2718 } 2719 2720 /* 2721 * apic_sync_pv_eoi_to_guest - called before vmentry 2722 * 2723 * Detect whether it's safe to enable PV EOI and 2724 * if yes do so. 2725 */ 2726 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu, 2727 struct kvm_lapic *apic) 2728 { 2729 if (!pv_eoi_enabled(vcpu) || 2730 /* IRR set or many bits in ISR: could be nested. */ 2731 apic->irr_pending || 2732 /* Cache not set: could be safe but we don't bother. */ 2733 apic->highest_isr_cache == -1 || 2734 /* Need EOI to update ioapic. */ 2735 kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) { 2736 /* 2737 * PV EOI was disabled by apic_sync_pv_eoi_from_guest 2738 * so we need not do anything here. 2739 */ 2740 return; 2741 } 2742 2743 pv_eoi_set_pending(apic->vcpu); 2744 } 2745 2746 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) 2747 { 2748 u32 data, tpr; 2749 int max_irr, max_isr; 2750 struct kvm_lapic *apic = vcpu->arch.apic; 2751 2752 apic_sync_pv_eoi_to_guest(vcpu, apic); 2753 2754 if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) 2755 return; 2756 2757 tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff; 2758 max_irr = apic_find_highest_irr(apic); 2759 if (max_irr < 0) 2760 max_irr = 0; 2761 max_isr = apic_find_highest_isr(apic); 2762 if (max_isr < 0) 2763 max_isr = 0; 2764 data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); 2765 2766 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, 2767 sizeof(u32)); 2768 } 2769 2770 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) 2771 { 2772 if (vapic_addr) { 2773 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2774 &vcpu->arch.apic->vapic_cache, 2775 vapic_addr, sizeof(u32))) 2776 return -EINVAL; 2777 __set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2778 } else { 2779 __clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention); 2780 } 2781 2782 vcpu->arch.apic->vapic_addr = vapic_addr; 2783 return 0; 2784 } 2785 2786 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data) 2787 { 2788 struct kvm_lapic *apic = vcpu->arch.apic; 2789 u32 reg = (msr - APIC_BASE_MSR) << 4; 2790 2791 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2792 return 1; 2793 2794 if (reg == APIC_ICR2) 2795 return 1; 2796 2797 /* if this is ICR write vector before command */ 2798 if (reg == APIC_ICR) 2799 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2800 return kvm_lapic_reg_write(apic, reg, (u32)data); 2801 } 2802 2803 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 2804 { 2805 struct kvm_lapic *apic = vcpu->arch.apic; 2806 u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; 2807 2808 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic)) 2809 return 1; 2810 2811 if (reg == APIC_DFR || reg == APIC_ICR2) 2812 return 1; 2813 2814 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2815 return 1; 2816 if (reg == APIC_ICR) 2817 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2818 2819 *data = (((u64)high) << 32) | low; 2820 2821 return 0; 2822 } 2823 2824 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data) 2825 { 2826 struct kvm_lapic *apic = vcpu->arch.apic; 2827 2828 if (!lapic_in_kernel(vcpu)) 2829 return 1; 2830 2831 /* if this is ICR write vector before command */ 2832 if (reg == APIC_ICR) 2833 kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32)); 2834 return kvm_lapic_reg_write(apic, reg, (u32)data); 2835 } 2836 2837 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data) 2838 { 2839 struct kvm_lapic *apic = vcpu->arch.apic; 2840 u32 low, high = 0; 2841 2842 if (!lapic_in_kernel(vcpu)) 2843 return 1; 2844 2845 if (kvm_lapic_reg_read(apic, reg, 4, &low)) 2846 return 1; 2847 if (reg == APIC_ICR) 2848 kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high); 2849 2850 *data = (((u64)high) << 32) | low; 2851 2852 return 0; 2853 } 2854 2855 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len) 2856 { 2857 u64 addr = data & ~KVM_MSR_ENABLED; 2858 struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data; 2859 unsigned long new_len; 2860 2861 if (!IS_ALIGNED(addr, 4)) 2862 return 1; 2863 2864 vcpu->arch.pv_eoi.msr_val = data; 2865 if (!pv_eoi_enabled(vcpu)) 2866 return 0; 2867 2868 if (addr == ghc->gpa && len <= ghc->len) 2869 new_len = ghc->len; 2870 else 2871 new_len = len; 2872 2873 return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len); 2874 } 2875 2876 int kvm_apic_accept_events(struct kvm_vcpu *vcpu) 2877 { 2878 struct kvm_lapic *apic = vcpu->arch.apic; 2879 u8 sipi_vector; 2880 int r; 2881 unsigned long pe; 2882 2883 if (!lapic_in_kernel(vcpu)) 2884 return 0; 2885 2886 /* 2887 * Read pending events before calling the check_events 2888 * callback. 2889 */ 2890 pe = smp_load_acquire(&apic->pending_events); 2891 if (!pe) 2892 return 0; 2893 2894 if (is_guest_mode(vcpu)) { 2895 r = kvm_check_nested_events(vcpu); 2896 if (r < 0) 2897 return r == -EBUSY ? 0 : r; 2898 /* 2899 * If an event has happened and caused a vmexit, 2900 * we know INITs are latched and therefore 2901 * we will not incorrectly deliver an APIC 2902 * event instead of a vmexit. 2903 */ 2904 } 2905 2906 /* 2907 * INITs are latched while CPU is in specific states 2908 * (SMM, VMX root mode, SVM with GIF=0). 2909 * Because a CPU cannot be in these states immediately 2910 * after it has processed an INIT signal (and thus in 2911 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs 2912 * and leave the INIT pending. 2913 */ 2914 if (kvm_vcpu_latch_init(vcpu)) { 2915 WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED); 2916 if (test_bit(KVM_APIC_SIPI, &pe)) 2917 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2918 return 0; 2919 } 2920 2921 if (test_bit(KVM_APIC_INIT, &pe)) { 2922 clear_bit(KVM_APIC_INIT, &apic->pending_events); 2923 kvm_vcpu_reset(vcpu, true); 2924 if (kvm_vcpu_is_bsp(apic->vcpu)) 2925 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2926 else 2927 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 2928 } 2929 if (test_bit(KVM_APIC_SIPI, &pe)) { 2930 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 2931 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 2932 /* evaluate pending_events before reading the vector */ 2933 smp_rmb(); 2934 sipi_vector = apic->sipi_vector; 2935 kvm_x86_ops.vcpu_deliver_sipi_vector(vcpu, sipi_vector); 2936 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2937 } 2938 } 2939 return 0; 2940 } 2941 2942 void kvm_lapic_exit(void) 2943 { 2944 static_key_deferred_flush(&apic_hw_disabled); 2945 static_key_deferred_flush(&apic_sw_disabled); 2946 } 2947