xref: /openbmc/linux/arch/x86/kvm/lapic.c (revision 0679d29d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * Local APIC virtualization
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2007 Novell
8  * Copyright (C) 2007 Intel
9  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Dor Laor <dor.laor@qumranet.com>
13  *   Gregory Haskins <ghaskins@novell.com>
14  *   Yaozu (Eddie) Dong <eddie.dong@intel.com>
15  *
16  * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
17  */
18 
19 #include <linux/kvm_host.h>
20 #include <linux/kvm.h>
21 #include <linux/mm.h>
22 #include <linux/highmem.h>
23 #include <linux/smp.h>
24 #include <linux/hrtimer.h>
25 #include <linux/io.h>
26 #include <linux/export.h>
27 #include <linux/math64.h>
28 #include <linux/slab.h>
29 #include <asm/processor.h>
30 #include <asm/msr.h>
31 #include <asm/page.h>
32 #include <asm/current.h>
33 #include <asm/apicdef.h>
34 #include <asm/delay.h>
35 #include <linux/atomic.h>
36 #include <linux/jump_label.h>
37 #include "kvm_cache_regs.h"
38 #include "irq.h"
39 #include "ioapic.h"
40 #include "trace.h"
41 #include "x86.h"
42 #include "cpuid.h"
43 #include "hyperv.h"
44 
45 #ifndef CONFIG_X86_64
46 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
47 #else
48 #define mod_64(x, y) ((x) % (y))
49 #endif
50 
51 #define PRId64 "d"
52 #define PRIx64 "llx"
53 #define PRIu64 "u"
54 #define PRIo64 "o"
55 
56 /* 14 is the version for Xeon and Pentium 8.4.8*/
57 #define APIC_VERSION			(0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
58 #define LAPIC_MMIO_LENGTH		(1 << 12)
59 /* followed define is not in apicdef.h */
60 #define MAX_APIC_VECTOR			256
61 #define APIC_VECTORS_PER_REG		32
62 
63 static bool lapic_timer_advance_dynamic __read_mostly;
64 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN	100	/* clock cycles */
65 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX	10000	/* clock cycles */
66 #define LAPIC_TIMER_ADVANCE_NS_INIT	1000
67 #define LAPIC_TIMER_ADVANCE_NS_MAX     5000
68 /* step-by-step approximation to mitigate fluctuation */
69 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
70 
71 static inline int apic_test_vector(int vec, void *bitmap)
72 {
73 	return test_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
74 }
75 
76 bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector)
77 {
78 	struct kvm_lapic *apic = vcpu->arch.apic;
79 
80 	return apic_test_vector(vector, apic->regs + APIC_ISR) ||
81 		apic_test_vector(vector, apic->regs + APIC_IRR);
82 }
83 
84 static inline int __apic_test_and_set_vector(int vec, void *bitmap)
85 {
86 	return __test_and_set_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
87 }
88 
89 static inline int __apic_test_and_clear_vector(int vec, void *bitmap)
90 {
91 	return __test_and_clear_bit(VEC_POS(vec), (bitmap) + REG_POS(vec));
92 }
93 
94 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled, HZ);
95 __read_mostly DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled, HZ);
96 
97 static inline int apic_enabled(struct kvm_lapic *apic)
98 {
99 	return kvm_apic_sw_enabled(apic) &&	kvm_apic_hw_enabled(apic);
100 }
101 
102 #define LVT_MASK	\
103 	(APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
104 
105 #define LINT_MASK	\
106 	(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
107 	 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
108 
109 static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
110 {
111 	return apic->vcpu->vcpu_id;
112 }
113 
114 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu *vcpu)
115 {
116 	return pi_inject_timer && kvm_vcpu_apicv_active(vcpu);
117 }
118 
119 bool kvm_can_use_hv_timer(struct kvm_vcpu *vcpu)
120 {
121 	return kvm_x86_ops.set_hv_timer
122 	       && !(kvm_mwait_in_guest(vcpu->kvm) ||
123 		    kvm_can_post_timer_interrupt(vcpu));
124 }
125 EXPORT_SYMBOL_GPL(kvm_can_use_hv_timer);
126 
127 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu *vcpu)
128 {
129 	return kvm_can_post_timer_interrupt(vcpu) && vcpu->mode == IN_GUEST_MODE;
130 }
131 
132 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
133 		u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
134 	switch (map->mode) {
135 	case KVM_APIC_MODE_X2APIC: {
136 		u32 offset = (dest_id >> 16) * 16;
137 		u32 max_apic_id = map->max_apic_id;
138 
139 		if (offset <= max_apic_id) {
140 			u8 cluster_size = min(max_apic_id - offset + 1, 16U);
141 
142 			offset = array_index_nospec(offset, map->max_apic_id + 1);
143 			*cluster = &map->phys_map[offset];
144 			*mask = dest_id & (0xffff >> (16 - cluster_size));
145 		} else {
146 			*mask = 0;
147 		}
148 
149 		return true;
150 		}
151 	case KVM_APIC_MODE_XAPIC_FLAT:
152 		*cluster = map->xapic_flat_map;
153 		*mask = dest_id & 0xff;
154 		return true;
155 	case KVM_APIC_MODE_XAPIC_CLUSTER:
156 		*cluster = map->xapic_cluster_map[(dest_id >> 4) & 0xf];
157 		*mask = dest_id & 0xf;
158 		return true;
159 	default:
160 		/* Not optimized. */
161 		return false;
162 	}
163 }
164 
165 static void kvm_apic_map_free(struct rcu_head *rcu)
166 {
167 	struct kvm_apic_map *map = container_of(rcu, struct kvm_apic_map, rcu);
168 
169 	kvfree(map);
170 }
171 
172 /*
173  * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
174  *
175  * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
176  * apic_map_lock_held.
177  */
178 enum {
179 	CLEAN,
180 	UPDATE_IN_PROGRESS,
181 	DIRTY
182 };
183 
184 void kvm_recalculate_apic_map(struct kvm *kvm)
185 {
186 	struct kvm_apic_map *new, *old = NULL;
187 	struct kvm_vcpu *vcpu;
188 	int i;
189 	u32 max_id = 255; /* enough space for any xAPIC ID */
190 
191 	/* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map.  */
192 	if (atomic_read_acquire(&kvm->arch.apic_map_dirty) == CLEAN)
193 		return;
194 
195 	mutex_lock(&kvm->arch.apic_map_lock);
196 	/*
197 	 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map
198 	 * (if clean) or the APIC registers (if dirty).
199 	 */
200 	if (atomic_cmpxchg_acquire(&kvm->arch.apic_map_dirty,
201 				   DIRTY, UPDATE_IN_PROGRESS) == CLEAN) {
202 		/* Someone else has updated the map. */
203 		mutex_unlock(&kvm->arch.apic_map_lock);
204 		return;
205 	}
206 
207 	kvm_for_each_vcpu(i, vcpu, kvm)
208 		if (kvm_apic_present(vcpu))
209 			max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
210 
211 	new = kvzalloc(sizeof(struct kvm_apic_map) +
212 	                   sizeof(struct kvm_lapic *) * ((u64)max_id + 1),
213 			   GFP_KERNEL_ACCOUNT);
214 
215 	if (!new)
216 		goto out;
217 
218 	new->max_apic_id = max_id;
219 
220 	kvm_for_each_vcpu(i, vcpu, kvm) {
221 		struct kvm_lapic *apic = vcpu->arch.apic;
222 		struct kvm_lapic **cluster;
223 		u16 mask;
224 		u32 ldr;
225 		u8 xapic_id;
226 		u32 x2apic_id;
227 
228 		if (!kvm_apic_present(vcpu))
229 			continue;
230 
231 		xapic_id = kvm_xapic_id(apic);
232 		x2apic_id = kvm_x2apic_id(apic);
233 
234 		/* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
235 		if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
236 				x2apic_id <= new->max_apic_id)
237 			new->phys_map[x2apic_id] = apic;
238 		/*
239 		 * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
240 		 * prevent them from masking VCPUs with APIC ID <= 0xff.
241 		 */
242 		if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
243 			new->phys_map[xapic_id] = apic;
244 
245 		if (!kvm_apic_sw_enabled(apic))
246 			continue;
247 
248 		ldr = kvm_lapic_get_reg(apic, APIC_LDR);
249 
250 		if (apic_x2apic_mode(apic)) {
251 			new->mode |= KVM_APIC_MODE_X2APIC;
252 		} else if (ldr) {
253 			ldr = GET_APIC_LOGICAL_ID(ldr);
254 			if (kvm_lapic_get_reg(apic, APIC_DFR) == APIC_DFR_FLAT)
255 				new->mode |= KVM_APIC_MODE_XAPIC_FLAT;
256 			else
257 				new->mode |= KVM_APIC_MODE_XAPIC_CLUSTER;
258 		}
259 
260 		if (!kvm_apic_map_get_logical_dest(new, ldr, &cluster, &mask))
261 			continue;
262 
263 		if (mask)
264 			cluster[ffs(mask) - 1] = apic;
265 	}
266 out:
267 	old = rcu_dereference_protected(kvm->arch.apic_map,
268 			lockdep_is_held(&kvm->arch.apic_map_lock));
269 	rcu_assign_pointer(kvm->arch.apic_map, new);
270 	/*
271 	 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
272 	 * If another update has come in, leave it DIRTY.
273 	 */
274 	atomic_cmpxchg_release(&kvm->arch.apic_map_dirty,
275 			       UPDATE_IN_PROGRESS, CLEAN);
276 	mutex_unlock(&kvm->arch.apic_map_lock);
277 
278 	if (old)
279 		call_rcu(&old->rcu, kvm_apic_map_free);
280 
281 	kvm_make_scan_ioapic_request(kvm);
282 }
283 
284 static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
285 {
286 	bool enabled = val & APIC_SPIV_APIC_ENABLED;
287 
288 	kvm_lapic_set_reg(apic, APIC_SPIV, val);
289 
290 	if (enabled != apic->sw_enabled) {
291 		apic->sw_enabled = enabled;
292 		if (enabled)
293 			static_branch_slow_dec_deferred(&apic_sw_disabled);
294 		else
295 			static_branch_inc(&apic_sw_disabled.key);
296 
297 		atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
298 	}
299 }
300 
301 static inline void kvm_apic_set_xapic_id(struct kvm_lapic *apic, u8 id)
302 {
303 	kvm_lapic_set_reg(apic, APIC_ID, id << 24);
304 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
305 }
306 
307 static inline void kvm_apic_set_ldr(struct kvm_lapic *apic, u32 id)
308 {
309 	kvm_lapic_set_reg(apic, APIC_LDR, id);
310 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
311 }
312 
313 static inline void kvm_apic_set_dfr(struct kvm_lapic *apic, u32 val)
314 {
315 	kvm_lapic_set_reg(apic, APIC_DFR, val);
316 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
317 }
318 
319 static inline u32 kvm_apic_calc_x2apic_ldr(u32 id)
320 {
321 	return ((id >> 4) << 16) | (1 << (id & 0xf));
322 }
323 
324 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
325 {
326 	u32 ldr = kvm_apic_calc_x2apic_ldr(id);
327 
328 	WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
329 
330 	kvm_lapic_set_reg(apic, APIC_ID, id);
331 	kvm_lapic_set_reg(apic, APIC_LDR, ldr);
332 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
333 }
334 
335 static inline int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type)
336 {
337 	return !(kvm_lapic_get_reg(apic, lvt_type) & APIC_LVT_MASKED);
338 }
339 
340 static inline int apic_lvtt_oneshot(struct kvm_lapic *apic)
341 {
342 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_ONESHOT;
343 }
344 
345 static inline int apic_lvtt_period(struct kvm_lapic *apic)
346 {
347 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_PERIODIC;
348 }
349 
350 static inline int apic_lvtt_tscdeadline(struct kvm_lapic *apic)
351 {
352 	return apic->lapic_timer.timer_mode == APIC_LVT_TIMER_TSCDEADLINE;
353 }
354 
355 static inline int apic_lvt_nmi_mode(u32 lvt_val)
356 {
357 	return (lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI;
358 }
359 
360 void kvm_apic_set_version(struct kvm_vcpu *vcpu)
361 {
362 	struct kvm_lapic *apic = vcpu->arch.apic;
363 	u32 v = APIC_VERSION;
364 
365 	if (!lapic_in_kernel(vcpu))
366 		return;
367 
368 	/*
369 	 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
370 	 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
371 	 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
372 	 * version first and level-triggered interrupts never get EOIed in
373 	 * IOAPIC.
374 	 */
375 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) &&
376 	    !ioapic_in_kernel(vcpu->kvm))
377 		v |= APIC_LVR_DIRECTED_EOI;
378 	kvm_lapic_set_reg(apic, APIC_LVR, v);
379 }
380 
381 static const unsigned int apic_lvt_mask[KVM_APIC_LVT_NUM] = {
382 	LVT_MASK ,      /* part LVTT mask, timer mode mask added at runtime */
383 	LVT_MASK | APIC_MODE_MASK,	/* LVTTHMR */
384 	LVT_MASK | APIC_MODE_MASK,	/* LVTPC */
385 	LINT_MASK, LINT_MASK,	/* LVT0-1 */
386 	LVT_MASK		/* LVTERR */
387 };
388 
389 static int find_highest_vector(void *bitmap)
390 {
391 	int vec;
392 	u32 *reg;
393 
394 	for (vec = MAX_APIC_VECTOR - APIC_VECTORS_PER_REG;
395 	     vec >= 0; vec -= APIC_VECTORS_PER_REG) {
396 		reg = bitmap + REG_POS(vec);
397 		if (*reg)
398 			return __fls(*reg) + vec;
399 	}
400 
401 	return -1;
402 }
403 
404 static u8 count_vectors(void *bitmap)
405 {
406 	int vec;
407 	u32 *reg;
408 	u8 count = 0;
409 
410 	for (vec = 0; vec < MAX_APIC_VECTOR; vec += APIC_VECTORS_PER_REG) {
411 		reg = bitmap + REG_POS(vec);
412 		count += hweight32(*reg);
413 	}
414 
415 	return count;
416 }
417 
418 bool __kvm_apic_update_irr(u32 *pir, void *regs, int *max_irr)
419 {
420 	u32 i, vec;
421 	u32 pir_val, irr_val, prev_irr_val;
422 	int max_updated_irr;
423 
424 	max_updated_irr = -1;
425 	*max_irr = -1;
426 
427 	for (i = vec = 0; i <= 7; i++, vec += 32) {
428 		pir_val = READ_ONCE(pir[i]);
429 		irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
430 		if (pir_val) {
431 			prev_irr_val = irr_val;
432 			irr_val |= xchg(&pir[i], 0);
433 			*((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
434 			if (prev_irr_val != irr_val) {
435 				max_updated_irr =
436 					__fls(irr_val ^ prev_irr_val) + vec;
437 			}
438 		}
439 		if (irr_val)
440 			*max_irr = __fls(irr_val) + vec;
441 	}
442 
443 	return ((max_updated_irr != -1) &&
444 		(max_updated_irr == *max_irr));
445 }
446 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
447 
448 bool kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir, int *max_irr)
449 {
450 	struct kvm_lapic *apic = vcpu->arch.apic;
451 
452 	return __kvm_apic_update_irr(pir, apic->regs, max_irr);
453 }
454 EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
455 
456 static inline int apic_search_irr(struct kvm_lapic *apic)
457 {
458 	return find_highest_vector(apic->regs + APIC_IRR);
459 }
460 
461 static inline int apic_find_highest_irr(struct kvm_lapic *apic)
462 {
463 	int result;
464 
465 	/*
466 	 * Note that irr_pending is just a hint. It will be always
467 	 * true with virtual interrupt delivery enabled.
468 	 */
469 	if (!apic->irr_pending)
470 		return -1;
471 
472 	result = apic_search_irr(apic);
473 	ASSERT(result == -1 || result >= 16);
474 
475 	return result;
476 }
477 
478 static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
479 {
480 	struct kvm_vcpu *vcpu;
481 
482 	vcpu = apic->vcpu;
483 
484 	if (unlikely(vcpu->arch.apicv_active)) {
485 		/* need to update RVI */
486 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
487 		static_call(kvm_x86_hwapic_irr_update)(vcpu,
488 				apic_find_highest_irr(apic));
489 	} else {
490 		apic->irr_pending = false;
491 		kvm_lapic_clear_vector(vec, apic->regs + APIC_IRR);
492 		if (apic_search_irr(apic) != -1)
493 			apic->irr_pending = true;
494 	}
495 }
496 
497 void kvm_apic_clear_irr(struct kvm_vcpu *vcpu, int vec)
498 {
499 	apic_clear_irr(vec, vcpu->arch.apic);
500 }
501 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr);
502 
503 static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
504 {
505 	struct kvm_vcpu *vcpu;
506 
507 	if (__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
508 		return;
509 
510 	vcpu = apic->vcpu;
511 
512 	/*
513 	 * With APIC virtualization enabled, all caching is disabled
514 	 * because the processor can modify ISR under the hood.  Instead
515 	 * just set SVI.
516 	 */
517 	if (unlikely(vcpu->arch.apicv_active))
518 		static_call(kvm_x86_hwapic_isr_update)(vcpu, vec);
519 	else {
520 		++apic->isr_count;
521 		BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
522 		/*
523 		 * ISR (in service register) bit is set when injecting an interrupt.
524 		 * The highest vector is injected. Thus the latest bit set matches
525 		 * the highest bit in ISR.
526 		 */
527 		apic->highest_isr_cache = vec;
528 	}
529 }
530 
531 static inline int apic_find_highest_isr(struct kvm_lapic *apic)
532 {
533 	int result;
534 
535 	/*
536 	 * Note that isr_count is always 1, and highest_isr_cache
537 	 * is always -1, with APIC virtualization enabled.
538 	 */
539 	if (!apic->isr_count)
540 		return -1;
541 	if (likely(apic->highest_isr_cache != -1))
542 		return apic->highest_isr_cache;
543 
544 	result = find_highest_vector(apic->regs + APIC_ISR);
545 	ASSERT(result == -1 || result >= 16);
546 
547 	return result;
548 }
549 
550 static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
551 {
552 	struct kvm_vcpu *vcpu;
553 	if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
554 		return;
555 
556 	vcpu = apic->vcpu;
557 
558 	/*
559 	 * We do get here for APIC virtualization enabled if the guest
560 	 * uses the Hyper-V APIC enlightenment.  In this case we may need
561 	 * to trigger a new interrupt delivery by writing the SVI field;
562 	 * on the other hand isr_count and highest_isr_cache are unused
563 	 * and must be left alone.
564 	 */
565 	if (unlikely(vcpu->arch.apicv_active))
566 		static_call(kvm_x86_hwapic_isr_update)(vcpu,
567 						apic_find_highest_isr(apic));
568 	else {
569 		--apic->isr_count;
570 		BUG_ON(apic->isr_count < 0);
571 		apic->highest_isr_cache = -1;
572 	}
573 }
574 
575 int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
576 {
577 	/* This may race with setting of irr in __apic_accept_irq() and
578 	 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
579 	 * will cause vmexit immediately and the value will be recalculated
580 	 * on the next vmentry.
581 	 */
582 	return apic_find_highest_irr(vcpu->arch.apic);
583 }
584 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
585 
586 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
587 			     int vector, int level, int trig_mode,
588 			     struct dest_map *dest_map);
589 
590 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
591 		     struct dest_map *dest_map)
592 {
593 	struct kvm_lapic *apic = vcpu->arch.apic;
594 
595 	return __apic_accept_irq(apic, irq->delivery_mode, irq->vector,
596 			irq->level, irq->trig_mode, dest_map);
597 }
598 
599 static int __pv_send_ipi(unsigned long *ipi_bitmap, struct kvm_apic_map *map,
600 			 struct kvm_lapic_irq *irq, u32 min)
601 {
602 	int i, count = 0;
603 	struct kvm_vcpu *vcpu;
604 
605 	if (min > map->max_apic_id)
606 		return 0;
607 
608 	for_each_set_bit(i, ipi_bitmap,
609 		min((u32)BITS_PER_LONG, (map->max_apic_id - min + 1))) {
610 		if (map->phys_map[min + i]) {
611 			vcpu = map->phys_map[min + i]->vcpu;
612 			count += kvm_apic_set_irq(vcpu, irq, NULL);
613 		}
614 	}
615 
616 	return count;
617 }
618 
619 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
620 		    unsigned long ipi_bitmap_high, u32 min,
621 		    unsigned long icr, int op_64_bit)
622 {
623 	struct kvm_apic_map *map;
624 	struct kvm_lapic_irq irq = {0};
625 	int cluster_size = op_64_bit ? 64 : 32;
626 	int count;
627 
628 	if (icr & (APIC_DEST_MASK | APIC_SHORT_MASK))
629 		return -KVM_EINVAL;
630 
631 	irq.vector = icr & APIC_VECTOR_MASK;
632 	irq.delivery_mode = icr & APIC_MODE_MASK;
633 	irq.level = (icr & APIC_INT_ASSERT) != 0;
634 	irq.trig_mode = icr & APIC_INT_LEVELTRIG;
635 
636 	rcu_read_lock();
637 	map = rcu_dereference(kvm->arch.apic_map);
638 
639 	count = -EOPNOTSUPP;
640 	if (likely(map)) {
641 		count = __pv_send_ipi(&ipi_bitmap_low, map, &irq, min);
642 		min += cluster_size;
643 		count += __pv_send_ipi(&ipi_bitmap_high, map, &irq, min);
644 	}
645 
646 	rcu_read_unlock();
647 	return count;
648 }
649 
650 static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
651 {
652 
653 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
654 				      sizeof(val));
655 }
656 
657 static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
658 {
659 
660 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
661 				      sizeof(*val));
662 }
663 
664 static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
665 {
666 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
667 }
668 
669 static bool pv_eoi_get_pending(struct kvm_vcpu *vcpu)
670 {
671 	u8 val;
672 	if (pv_eoi_get_user(vcpu, &val) < 0) {
673 		printk(KERN_WARNING "Can't read EOI MSR value: 0x%llx\n",
674 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
675 		return false;
676 	}
677 	return val & KVM_PV_EOI_ENABLED;
678 }
679 
680 static void pv_eoi_set_pending(struct kvm_vcpu *vcpu)
681 {
682 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_ENABLED) < 0) {
683 		printk(KERN_WARNING "Can't set EOI MSR value: 0x%llx\n",
684 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
685 		return;
686 	}
687 	__set_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
688 }
689 
690 static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
691 {
692 	if (pv_eoi_put_user(vcpu, KVM_PV_EOI_DISABLED) < 0) {
693 		printk(KERN_WARNING "Can't clear EOI MSR value: 0x%llx\n",
694 			   (unsigned long long)vcpu->arch.pv_eoi.msr_val);
695 		return;
696 	}
697 	__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
698 }
699 
700 static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
701 {
702 	int highest_irr;
703 	if (apic->vcpu->arch.apicv_active)
704 		highest_irr = static_call(kvm_x86_sync_pir_to_irr)(apic->vcpu);
705 	else
706 		highest_irr = apic_find_highest_irr(apic);
707 	if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
708 		return -1;
709 	return highest_irr;
710 }
711 
712 static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
713 {
714 	u32 tpr, isrv, ppr, old_ppr;
715 	int isr;
716 
717 	old_ppr = kvm_lapic_get_reg(apic, APIC_PROCPRI);
718 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI);
719 	isr = apic_find_highest_isr(apic);
720 	isrv = (isr != -1) ? isr : 0;
721 
722 	if ((tpr & 0xf0) >= (isrv & 0xf0))
723 		ppr = tpr & 0xff;
724 	else
725 		ppr = isrv & 0xf0;
726 
727 	*new_ppr = ppr;
728 	if (old_ppr != ppr)
729 		kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
730 
731 	return ppr < old_ppr;
732 }
733 
734 static void apic_update_ppr(struct kvm_lapic *apic)
735 {
736 	u32 ppr;
737 
738 	if (__apic_update_ppr(apic, &ppr) &&
739 	    apic_has_interrupt_for_ppr(apic, ppr) != -1)
740 		kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
741 }
742 
743 void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
744 {
745 	apic_update_ppr(vcpu->arch.apic);
746 }
747 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
748 
749 static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
750 {
751 	kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
752 	apic_update_ppr(apic);
753 }
754 
755 static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
756 {
757 	return mda == (apic_x2apic_mode(apic) ?
758 			X2APIC_BROADCAST : APIC_BROADCAST);
759 }
760 
761 static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
762 {
763 	if (kvm_apic_broadcast(apic, mda))
764 		return true;
765 
766 	if (apic_x2apic_mode(apic))
767 		return mda == kvm_x2apic_id(apic);
768 
769 	/*
770 	 * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
771 	 * it were in x2APIC mode.  Hotplugged VCPUs start in xAPIC mode and
772 	 * this allows unique addressing of VCPUs with APIC ID over 0xff.
773 	 * The 0xff condition is needed because writeable xAPIC ID.
774 	 */
775 	if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
776 		return true;
777 
778 	return mda == kvm_xapic_id(apic);
779 }
780 
781 static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
782 {
783 	u32 logical_id;
784 
785 	if (kvm_apic_broadcast(apic, mda))
786 		return true;
787 
788 	logical_id = kvm_lapic_get_reg(apic, APIC_LDR);
789 
790 	if (apic_x2apic_mode(apic))
791 		return ((logical_id >> 16) == (mda >> 16))
792 		       && (logical_id & mda & 0xffff) != 0;
793 
794 	logical_id = GET_APIC_LOGICAL_ID(logical_id);
795 
796 	switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
797 	case APIC_DFR_FLAT:
798 		return (logical_id & mda) != 0;
799 	case APIC_DFR_CLUSTER:
800 		return ((logical_id >> 4) == (mda >> 4))
801 		       && (logical_id & mda & 0xf) != 0;
802 	default:
803 		return false;
804 	}
805 }
806 
807 /* The KVM local APIC implementation has two quirks:
808  *
809  *  - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
810  *    in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
811  *    KVM doesn't do that aliasing.
812  *
813  *  - in-kernel IOAPIC messages have to be delivered directly to
814  *    x2APIC, because the kernel does not support interrupt remapping.
815  *    In order to support broadcast without interrupt remapping, x2APIC
816  *    rewrites the destination of non-IPI messages from APIC_BROADCAST
817  *    to X2APIC_BROADCAST.
818  *
819  * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API.  This is
820  * important when userspace wants to use x2APIC-format MSIs, because
821  * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
822  */
823 static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
824 		struct kvm_lapic *source, struct kvm_lapic *target)
825 {
826 	bool ipi = source != NULL;
827 
828 	if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
829 	    !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
830 		return X2APIC_BROADCAST;
831 
832 	return dest_id;
833 }
834 
835 bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
836 			   int shorthand, unsigned int dest, int dest_mode)
837 {
838 	struct kvm_lapic *target = vcpu->arch.apic;
839 	u32 mda = kvm_apic_mda(vcpu, dest, source, target);
840 
841 	ASSERT(target);
842 	switch (shorthand) {
843 	case APIC_DEST_NOSHORT:
844 		if (dest_mode == APIC_DEST_PHYSICAL)
845 			return kvm_apic_match_physical_addr(target, mda);
846 		else
847 			return kvm_apic_match_logical_addr(target, mda);
848 	case APIC_DEST_SELF:
849 		return target == source;
850 	case APIC_DEST_ALLINC:
851 		return true;
852 	case APIC_DEST_ALLBUT:
853 		return target != source;
854 	default:
855 		return false;
856 	}
857 }
858 EXPORT_SYMBOL_GPL(kvm_apic_match_dest);
859 
860 int kvm_vector_to_index(u32 vector, u32 dest_vcpus,
861 		       const unsigned long *bitmap, u32 bitmap_size)
862 {
863 	u32 mod;
864 	int i, idx = -1;
865 
866 	mod = vector % dest_vcpus;
867 
868 	for (i = 0; i <= mod; i++) {
869 		idx = find_next_bit(bitmap, bitmap_size, idx + 1);
870 		BUG_ON(idx == bitmap_size);
871 	}
872 
873 	return idx;
874 }
875 
876 static void kvm_apic_disabled_lapic_found(struct kvm *kvm)
877 {
878 	if (!kvm->arch.disabled_lapic_found) {
879 		kvm->arch.disabled_lapic_found = true;
880 		printk(KERN_INFO
881 		       "Disabled LAPIC found during irq injection\n");
882 	}
883 }
884 
885 static bool kvm_apic_is_broadcast_dest(struct kvm *kvm, struct kvm_lapic **src,
886 		struct kvm_lapic_irq *irq, struct kvm_apic_map *map)
887 {
888 	if (kvm->arch.x2apic_broadcast_quirk_disabled) {
889 		if ((irq->dest_id == APIC_BROADCAST &&
890 				map->mode != KVM_APIC_MODE_X2APIC))
891 			return true;
892 		if (irq->dest_id == X2APIC_BROADCAST)
893 			return true;
894 	} else {
895 		bool x2apic_ipi = src && *src && apic_x2apic_mode(*src);
896 		if (irq->dest_id == (x2apic_ipi ?
897 		                     X2APIC_BROADCAST : APIC_BROADCAST))
898 			return true;
899 	}
900 
901 	return false;
902 }
903 
904 /* Return true if the interrupt can be handled by using *bitmap as index mask
905  * for valid destinations in *dst array.
906  * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
907  * Note: we may have zero kvm_lapic destinations when we return true, which
908  * means that the interrupt should be dropped.  In this case, *bitmap would be
909  * zero and *dst undefined.
910  */
911 static inline bool kvm_apic_map_get_dest_lapic(struct kvm *kvm,
912 		struct kvm_lapic **src, struct kvm_lapic_irq *irq,
913 		struct kvm_apic_map *map, struct kvm_lapic ***dst,
914 		unsigned long *bitmap)
915 {
916 	int i, lowest;
917 
918 	if (irq->shorthand == APIC_DEST_SELF && src) {
919 		*dst = src;
920 		*bitmap = 1;
921 		return true;
922 	} else if (irq->shorthand)
923 		return false;
924 
925 	if (!map || kvm_apic_is_broadcast_dest(kvm, src, irq, map))
926 		return false;
927 
928 	if (irq->dest_mode == APIC_DEST_PHYSICAL) {
929 		if (irq->dest_id > map->max_apic_id) {
930 			*bitmap = 0;
931 		} else {
932 			u32 dest_id = array_index_nospec(irq->dest_id, map->max_apic_id + 1);
933 			*dst = &map->phys_map[dest_id];
934 			*bitmap = 1;
935 		}
936 		return true;
937 	}
938 
939 	*bitmap = 0;
940 	if (!kvm_apic_map_get_logical_dest(map, irq->dest_id, dst,
941 				(u16 *)bitmap))
942 		return false;
943 
944 	if (!kvm_lowest_prio_delivery(irq))
945 		return true;
946 
947 	if (!kvm_vector_hashing_enabled()) {
948 		lowest = -1;
949 		for_each_set_bit(i, bitmap, 16) {
950 			if (!(*dst)[i])
951 				continue;
952 			if (lowest < 0)
953 				lowest = i;
954 			else if (kvm_apic_compare_prio((*dst)[i]->vcpu,
955 						(*dst)[lowest]->vcpu) < 0)
956 				lowest = i;
957 		}
958 	} else {
959 		if (!*bitmap)
960 			return true;
961 
962 		lowest = kvm_vector_to_index(irq->vector, hweight16(*bitmap),
963 				bitmap, 16);
964 
965 		if (!(*dst)[lowest]) {
966 			kvm_apic_disabled_lapic_found(kvm);
967 			*bitmap = 0;
968 			return true;
969 		}
970 	}
971 
972 	*bitmap = (lowest >= 0) ? 1 << lowest : 0;
973 
974 	return true;
975 }
976 
977 bool kvm_irq_delivery_to_apic_fast(struct kvm *kvm, struct kvm_lapic *src,
978 		struct kvm_lapic_irq *irq, int *r, struct dest_map *dest_map)
979 {
980 	struct kvm_apic_map *map;
981 	unsigned long bitmap;
982 	struct kvm_lapic **dst = NULL;
983 	int i;
984 	bool ret;
985 
986 	*r = -1;
987 
988 	if (irq->shorthand == APIC_DEST_SELF) {
989 		*r = kvm_apic_set_irq(src->vcpu, irq, dest_map);
990 		return true;
991 	}
992 
993 	rcu_read_lock();
994 	map = rcu_dereference(kvm->arch.apic_map);
995 
996 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dst, &bitmap);
997 	if (ret) {
998 		*r = 0;
999 		for_each_set_bit(i, &bitmap, 16) {
1000 			if (!dst[i])
1001 				continue;
1002 			*r += kvm_apic_set_irq(dst[i]->vcpu, irq, dest_map);
1003 		}
1004 	}
1005 
1006 	rcu_read_unlock();
1007 	return ret;
1008 }
1009 
1010 /*
1011  * This routine tries to handle interrupts in posted mode, here is how
1012  * it deals with different cases:
1013  * - For single-destination interrupts, handle it in posted mode
1014  * - Else if vector hashing is enabled and it is a lowest-priority
1015  *   interrupt, handle it in posted mode and use the following mechanism
1016  *   to find the destination vCPU.
1017  *	1. For lowest-priority interrupts, store all the possible
1018  *	   destination vCPUs in an array.
1019  *	2. Use "guest vector % max number of destination vCPUs" to find
1020  *	   the right destination vCPU in the array for the lowest-priority
1021  *	   interrupt.
1022  * - Otherwise, use remapped mode to inject the interrupt.
1023  */
1024 bool kvm_intr_is_single_vcpu_fast(struct kvm *kvm, struct kvm_lapic_irq *irq,
1025 			struct kvm_vcpu **dest_vcpu)
1026 {
1027 	struct kvm_apic_map *map;
1028 	unsigned long bitmap;
1029 	struct kvm_lapic **dst = NULL;
1030 	bool ret = false;
1031 
1032 	if (irq->shorthand)
1033 		return false;
1034 
1035 	rcu_read_lock();
1036 	map = rcu_dereference(kvm->arch.apic_map);
1037 
1038 	if (kvm_apic_map_get_dest_lapic(kvm, NULL, irq, map, &dst, &bitmap) &&
1039 			hweight16(bitmap) == 1) {
1040 		unsigned long i = find_first_bit(&bitmap, 16);
1041 
1042 		if (dst[i]) {
1043 			*dest_vcpu = dst[i]->vcpu;
1044 			ret = true;
1045 		}
1046 	}
1047 
1048 	rcu_read_unlock();
1049 	return ret;
1050 }
1051 
1052 /*
1053  * Add a pending IRQ into lapic.
1054  * Return 1 if successfully added and 0 if discarded.
1055  */
1056 static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
1057 			     int vector, int level, int trig_mode,
1058 			     struct dest_map *dest_map)
1059 {
1060 	int result = 0;
1061 	struct kvm_vcpu *vcpu = apic->vcpu;
1062 
1063 	trace_kvm_apic_accept_irq(vcpu->vcpu_id, delivery_mode,
1064 				  trig_mode, vector);
1065 	switch (delivery_mode) {
1066 	case APIC_DM_LOWEST:
1067 		vcpu->arch.apic_arb_prio++;
1068 		fallthrough;
1069 	case APIC_DM_FIXED:
1070 		if (unlikely(trig_mode && !level))
1071 			break;
1072 
1073 		/* FIXME add logic for vcpu on reset */
1074 		if (unlikely(!apic_enabled(apic)))
1075 			break;
1076 
1077 		result = 1;
1078 
1079 		if (dest_map) {
1080 			__set_bit(vcpu->vcpu_id, dest_map->map);
1081 			dest_map->vectors[vcpu->vcpu_id] = vector;
1082 		}
1083 
1084 		if (apic_test_vector(vector, apic->regs + APIC_TMR) != !!trig_mode) {
1085 			if (trig_mode)
1086 				kvm_lapic_set_vector(vector,
1087 						     apic->regs + APIC_TMR);
1088 			else
1089 				kvm_lapic_clear_vector(vector,
1090 						       apic->regs + APIC_TMR);
1091 		}
1092 
1093 		if (static_call(kvm_x86_deliver_posted_interrupt)(vcpu, vector)) {
1094 			kvm_lapic_set_irr(vector, apic);
1095 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1096 			kvm_vcpu_kick(vcpu);
1097 		}
1098 		break;
1099 
1100 	case APIC_DM_REMRD:
1101 		result = 1;
1102 		vcpu->arch.pv.pv_unhalted = 1;
1103 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1104 		kvm_vcpu_kick(vcpu);
1105 		break;
1106 
1107 	case APIC_DM_SMI:
1108 		result = 1;
1109 		kvm_make_request(KVM_REQ_SMI, vcpu);
1110 		kvm_vcpu_kick(vcpu);
1111 		break;
1112 
1113 	case APIC_DM_NMI:
1114 		result = 1;
1115 		kvm_inject_nmi(vcpu);
1116 		kvm_vcpu_kick(vcpu);
1117 		break;
1118 
1119 	case APIC_DM_INIT:
1120 		if (!trig_mode || level) {
1121 			result = 1;
1122 			/* assumes that there are only KVM_APIC_INIT/SIPI */
1123 			apic->pending_events = (1UL << KVM_APIC_INIT);
1124 			kvm_make_request(KVM_REQ_EVENT, vcpu);
1125 			kvm_vcpu_kick(vcpu);
1126 		}
1127 		break;
1128 
1129 	case APIC_DM_STARTUP:
1130 		result = 1;
1131 		apic->sipi_vector = vector;
1132 		/* make sure sipi_vector is visible for the receiver */
1133 		smp_wmb();
1134 		set_bit(KVM_APIC_SIPI, &apic->pending_events);
1135 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1136 		kvm_vcpu_kick(vcpu);
1137 		break;
1138 
1139 	case APIC_DM_EXTINT:
1140 		/*
1141 		 * Should only be called by kvm_apic_local_deliver() with LVT0,
1142 		 * before NMI watchdog was enabled. Already handled by
1143 		 * kvm_apic_accept_pic_intr().
1144 		 */
1145 		break;
1146 
1147 	default:
1148 		printk(KERN_ERR "TODO: unsupported delivery mode %x\n",
1149 		       delivery_mode);
1150 		break;
1151 	}
1152 	return result;
1153 }
1154 
1155 /*
1156  * This routine identifies the destination vcpus mask meant to receive the
1157  * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1158  * out the destination vcpus array and set the bitmap or it traverses to
1159  * each available vcpu to identify the same.
1160  */
1161 void kvm_bitmap_or_dest_vcpus(struct kvm *kvm, struct kvm_lapic_irq *irq,
1162 			      unsigned long *vcpu_bitmap)
1163 {
1164 	struct kvm_lapic **dest_vcpu = NULL;
1165 	struct kvm_lapic *src = NULL;
1166 	struct kvm_apic_map *map;
1167 	struct kvm_vcpu *vcpu;
1168 	unsigned long bitmap;
1169 	int i, vcpu_idx;
1170 	bool ret;
1171 
1172 	rcu_read_lock();
1173 	map = rcu_dereference(kvm->arch.apic_map);
1174 
1175 	ret = kvm_apic_map_get_dest_lapic(kvm, &src, irq, map, &dest_vcpu,
1176 					  &bitmap);
1177 	if (ret) {
1178 		for_each_set_bit(i, &bitmap, 16) {
1179 			if (!dest_vcpu[i])
1180 				continue;
1181 			vcpu_idx = dest_vcpu[i]->vcpu->vcpu_idx;
1182 			__set_bit(vcpu_idx, vcpu_bitmap);
1183 		}
1184 	} else {
1185 		kvm_for_each_vcpu(i, vcpu, kvm) {
1186 			if (!kvm_apic_present(vcpu))
1187 				continue;
1188 			if (!kvm_apic_match_dest(vcpu, NULL,
1189 						 irq->shorthand,
1190 						 irq->dest_id,
1191 						 irq->dest_mode))
1192 				continue;
1193 			__set_bit(i, vcpu_bitmap);
1194 		}
1195 	}
1196 	rcu_read_unlock();
1197 }
1198 
1199 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1200 {
1201 	return vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio;
1202 }
1203 
1204 static bool kvm_ioapic_handles_vector(struct kvm_lapic *apic, int vector)
1205 {
1206 	return test_bit(vector, apic->vcpu->arch.ioapic_handled_vectors);
1207 }
1208 
1209 static void kvm_ioapic_send_eoi(struct kvm_lapic *apic, int vector)
1210 {
1211 	int trigger_mode;
1212 
1213 	/* Eoi the ioapic only if the ioapic doesn't own the vector. */
1214 	if (!kvm_ioapic_handles_vector(apic, vector))
1215 		return;
1216 
1217 	/* Request a KVM exit to inform the userspace IOAPIC. */
1218 	if (irqchip_split(apic->vcpu->kvm)) {
1219 		apic->vcpu->arch.pending_ioapic_eoi = vector;
1220 		kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT, apic->vcpu);
1221 		return;
1222 	}
1223 
1224 	if (apic_test_vector(vector, apic->regs + APIC_TMR))
1225 		trigger_mode = IOAPIC_LEVEL_TRIG;
1226 	else
1227 		trigger_mode = IOAPIC_EDGE_TRIG;
1228 
1229 	kvm_ioapic_update_eoi(apic->vcpu, vector, trigger_mode);
1230 }
1231 
1232 static int apic_set_eoi(struct kvm_lapic *apic)
1233 {
1234 	int vector = apic_find_highest_isr(apic);
1235 
1236 	trace_kvm_eoi(apic, vector);
1237 
1238 	/*
1239 	 * Not every write EOI will has corresponding ISR,
1240 	 * one example is when Kernel check timer on setup_IO_APIC
1241 	 */
1242 	if (vector == -1)
1243 		return vector;
1244 
1245 	apic_clear_isr(vector, apic);
1246 	apic_update_ppr(apic);
1247 
1248 	if (to_hv_vcpu(apic->vcpu) &&
1249 	    test_bit(vector, to_hv_synic(apic->vcpu)->vec_bitmap))
1250 		kvm_hv_synic_send_eoi(apic->vcpu, vector);
1251 
1252 	kvm_ioapic_send_eoi(apic, vector);
1253 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1254 	return vector;
1255 }
1256 
1257 /*
1258  * this interface assumes a trap-like exit, which has already finished
1259  * desired side effect including vISR and vPPR update.
1260  */
1261 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu *vcpu, int vector)
1262 {
1263 	struct kvm_lapic *apic = vcpu->arch.apic;
1264 
1265 	trace_kvm_eoi(apic, vector);
1266 
1267 	kvm_ioapic_send_eoi(apic, vector);
1268 	kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
1269 }
1270 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated);
1271 
1272 void kvm_apic_send_ipi(struct kvm_lapic *apic, u32 icr_low, u32 icr_high)
1273 {
1274 	struct kvm_lapic_irq irq;
1275 
1276 	irq.vector = icr_low & APIC_VECTOR_MASK;
1277 	irq.delivery_mode = icr_low & APIC_MODE_MASK;
1278 	irq.dest_mode = icr_low & APIC_DEST_MASK;
1279 	irq.level = (icr_low & APIC_INT_ASSERT) != 0;
1280 	irq.trig_mode = icr_low & APIC_INT_LEVELTRIG;
1281 	irq.shorthand = icr_low & APIC_SHORT_MASK;
1282 	irq.msi_redir_hint = false;
1283 	if (apic_x2apic_mode(apic))
1284 		irq.dest_id = icr_high;
1285 	else
1286 		irq.dest_id = GET_APIC_DEST_FIELD(icr_high);
1287 
1288 	trace_kvm_apic_ipi(icr_low, irq.dest_id);
1289 
1290 	kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq, NULL);
1291 }
1292 
1293 static u32 apic_get_tmcct(struct kvm_lapic *apic)
1294 {
1295 	ktime_t remaining, now;
1296 	s64 ns;
1297 	u32 tmcct;
1298 
1299 	ASSERT(apic != NULL);
1300 
1301 	/* if initial count is 0, current count should also be 0 */
1302 	if (kvm_lapic_get_reg(apic, APIC_TMICT) == 0 ||
1303 		apic->lapic_timer.period == 0)
1304 		return 0;
1305 
1306 	now = ktime_get();
1307 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1308 	if (ktime_to_ns(remaining) < 0)
1309 		remaining = 0;
1310 
1311 	ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
1312 	tmcct = div64_u64(ns,
1313 			 (APIC_BUS_CYCLE_NS * apic->divide_count));
1314 
1315 	return tmcct;
1316 }
1317 
1318 static void __report_tpr_access(struct kvm_lapic *apic, bool write)
1319 {
1320 	struct kvm_vcpu *vcpu = apic->vcpu;
1321 	struct kvm_run *run = vcpu->run;
1322 
1323 	kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu);
1324 	run->tpr_access.rip = kvm_rip_read(vcpu);
1325 	run->tpr_access.is_write = write;
1326 }
1327 
1328 static inline void report_tpr_access(struct kvm_lapic *apic, bool write)
1329 {
1330 	if (apic->vcpu->arch.tpr_access_reporting)
1331 		__report_tpr_access(apic, write);
1332 }
1333 
1334 static u32 __apic_read(struct kvm_lapic *apic, unsigned int offset)
1335 {
1336 	u32 val = 0;
1337 
1338 	if (offset >= LAPIC_MMIO_LENGTH)
1339 		return 0;
1340 
1341 	switch (offset) {
1342 	case APIC_ARBPRI:
1343 		break;
1344 
1345 	case APIC_TMCCT:	/* Timer CCR */
1346 		if (apic_lvtt_tscdeadline(apic))
1347 			return 0;
1348 
1349 		val = apic_get_tmcct(apic);
1350 		break;
1351 	case APIC_PROCPRI:
1352 		apic_update_ppr(apic);
1353 		val = kvm_lapic_get_reg(apic, offset);
1354 		break;
1355 	case APIC_TASKPRI:
1356 		report_tpr_access(apic, false);
1357 		fallthrough;
1358 	default:
1359 		val = kvm_lapic_get_reg(apic, offset);
1360 		break;
1361 	}
1362 
1363 	return val;
1364 }
1365 
1366 static inline struct kvm_lapic *to_lapic(struct kvm_io_device *dev)
1367 {
1368 	return container_of(dev, struct kvm_lapic, dev);
1369 }
1370 
1371 #define APIC_REG_MASK(reg)	(1ull << ((reg) >> 4))
1372 #define APIC_REGS_MASK(first, count) \
1373 	(APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1374 
1375 int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
1376 		void *data)
1377 {
1378 	unsigned char alignment = offset & 0xf;
1379 	u32 result;
1380 	/* this bitmask has a bit cleared for each reserved register */
1381 	u64 valid_reg_mask =
1382 		APIC_REG_MASK(APIC_ID) |
1383 		APIC_REG_MASK(APIC_LVR) |
1384 		APIC_REG_MASK(APIC_TASKPRI) |
1385 		APIC_REG_MASK(APIC_PROCPRI) |
1386 		APIC_REG_MASK(APIC_LDR) |
1387 		APIC_REG_MASK(APIC_DFR) |
1388 		APIC_REG_MASK(APIC_SPIV) |
1389 		APIC_REGS_MASK(APIC_ISR, APIC_ISR_NR) |
1390 		APIC_REGS_MASK(APIC_TMR, APIC_ISR_NR) |
1391 		APIC_REGS_MASK(APIC_IRR, APIC_ISR_NR) |
1392 		APIC_REG_MASK(APIC_ESR) |
1393 		APIC_REG_MASK(APIC_ICR) |
1394 		APIC_REG_MASK(APIC_ICR2) |
1395 		APIC_REG_MASK(APIC_LVTT) |
1396 		APIC_REG_MASK(APIC_LVTTHMR) |
1397 		APIC_REG_MASK(APIC_LVTPC) |
1398 		APIC_REG_MASK(APIC_LVT0) |
1399 		APIC_REG_MASK(APIC_LVT1) |
1400 		APIC_REG_MASK(APIC_LVTERR) |
1401 		APIC_REG_MASK(APIC_TMICT) |
1402 		APIC_REG_MASK(APIC_TMCCT) |
1403 		APIC_REG_MASK(APIC_TDCR);
1404 
1405 	/* ARBPRI is not valid on x2APIC */
1406 	if (!apic_x2apic_mode(apic))
1407 		valid_reg_mask |= APIC_REG_MASK(APIC_ARBPRI);
1408 
1409 	if (offset > 0x3f0 || !(valid_reg_mask & APIC_REG_MASK(offset)))
1410 		return 1;
1411 
1412 	result = __apic_read(apic, offset & ~0xf);
1413 
1414 	trace_kvm_apic_read(offset, result);
1415 
1416 	switch (len) {
1417 	case 1:
1418 	case 2:
1419 	case 4:
1420 		memcpy(data, (char *)&result + alignment, len);
1421 		break;
1422 	default:
1423 		printk(KERN_ERR "Local APIC read with len = %x, "
1424 		       "should be 1,2, or 4 instead\n", len);
1425 		break;
1426 	}
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(kvm_lapic_reg_read);
1430 
1431 static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr)
1432 {
1433 	return addr >= apic->base_address &&
1434 		addr < apic->base_address + LAPIC_MMIO_LENGTH;
1435 }
1436 
1437 static int apic_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
1438 			   gpa_t address, int len, void *data)
1439 {
1440 	struct kvm_lapic *apic = to_lapic(this);
1441 	u32 offset = address - apic->base_address;
1442 
1443 	if (!apic_mmio_in_range(apic, address))
1444 		return -EOPNOTSUPP;
1445 
1446 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
1447 		if (!kvm_check_has_quirk(vcpu->kvm,
1448 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
1449 			return -EOPNOTSUPP;
1450 
1451 		memset(data, 0xff, len);
1452 		return 0;
1453 	}
1454 
1455 	kvm_lapic_reg_read(apic, offset, len, data);
1456 
1457 	return 0;
1458 }
1459 
1460 static void update_divide_count(struct kvm_lapic *apic)
1461 {
1462 	u32 tmp1, tmp2, tdcr;
1463 
1464 	tdcr = kvm_lapic_get_reg(apic, APIC_TDCR);
1465 	tmp1 = tdcr & 0xf;
1466 	tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1;
1467 	apic->divide_count = 0x1 << (tmp2 & 0x7);
1468 }
1469 
1470 static void limit_periodic_timer_frequency(struct kvm_lapic *apic)
1471 {
1472 	/*
1473 	 * Do not allow the guest to program periodic timers with small
1474 	 * interval, since the hrtimers are not throttled by the host
1475 	 * scheduler.
1476 	 */
1477 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1478 		s64 min_period = min_timer_period_us * 1000LL;
1479 
1480 		if (apic->lapic_timer.period < min_period) {
1481 			pr_info_ratelimited(
1482 			    "kvm: vcpu %i: requested %lld ns "
1483 			    "lapic timer period limited to %lld ns\n",
1484 			    apic->vcpu->vcpu_id,
1485 			    apic->lapic_timer.period, min_period);
1486 			apic->lapic_timer.period = min_period;
1487 		}
1488 	}
1489 }
1490 
1491 static void cancel_hv_timer(struct kvm_lapic *apic);
1492 
1493 static void apic_update_lvtt(struct kvm_lapic *apic)
1494 {
1495 	u32 timer_mode = kvm_lapic_get_reg(apic, APIC_LVTT) &
1496 			apic->lapic_timer.timer_mode_mask;
1497 
1498 	if (apic->lapic_timer.timer_mode != timer_mode) {
1499 		if (apic_lvtt_tscdeadline(apic) != (timer_mode ==
1500 				APIC_LVT_TIMER_TSCDEADLINE)) {
1501 			hrtimer_cancel(&apic->lapic_timer.timer);
1502 			preempt_disable();
1503 			if (apic->lapic_timer.hv_timer_in_use)
1504 				cancel_hv_timer(apic);
1505 			preempt_enable();
1506 			kvm_lapic_set_reg(apic, APIC_TMICT, 0);
1507 			apic->lapic_timer.period = 0;
1508 			apic->lapic_timer.tscdeadline = 0;
1509 		}
1510 		apic->lapic_timer.timer_mode = timer_mode;
1511 		limit_periodic_timer_frequency(apic);
1512 	}
1513 }
1514 
1515 /*
1516  * On APICv, this test will cause a busy wait
1517  * during a higher-priority task.
1518  */
1519 
1520 static bool lapic_timer_int_injected(struct kvm_vcpu *vcpu)
1521 {
1522 	struct kvm_lapic *apic = vcpu->arch.apic;
1523 	u32 reg = kvm_lapic_get_reg(apic, APIC_LVTT);
1524 
1525 	if (kvm_apic_hw_enabled(apic)) {
1526 		int vec = reg & APIC_VECTOR_MASK;
1527 		void *bitmap = apic->regs + APIC_ISR;
1528 
1529 		if (vcpu->arch.apicv_active)
1530 			bitmap = apic->regs + APIC_IRR;
1531 
1532 		if (apic_test_vector(vec, bitmap))
1533 			return true;
1534 	}
1535 	return false;
1536 }
1537 
1538 static inline void __wait_lapic_expire(struct kvm_vcpu *vcpu, u64 guest_cycles)
1539 {
1540 	u64 timer_advance_ns = vcpu->arch.apic->lapic_timer.timer_advance_ns;
1541 
1542 	/*
1543 	 * If the guest TSC is running at a different ratio than the host, then
1544 	 * convert the delay to nanoseconds to achieve an accurate delay.  Note
1545 	 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1546 	 * always for VMX enabled hardware.
1547 	 */
1548 	if (vcpu->arch.tsc_scaling_ratio == kvm_default_tsc_scaling_ratio) {
1549 		__delay(min(guest_cycles,
1550 			nsec_to_cycles(vcpu, timer_advance_ns)));
1551 	} else {
1552 		u64 delay_ns = guest_cycles * 1000000ULL;
1553 		do_div(delay_ns, vcpu->arch.virtual_tsc_khz);
1554 		ndelay(min_t(u32, delay_ns, timer_advance_ns));
1555 	}
1556 }
1557 
1558 static inline void adjust_lapic_timer_advance(struct kvm_vcpu *vcpu,
1559 					      s64 advance_expire_delta)
1560 {
1561 	struct kvm_lapic *apic = vcpu->arch.apic;
1562 	u32 timer_advance_ns = apic->lapic_timer.timer_advance_ns;
1563 	u64 ns;
1564 
1565 	/* Do not adjust for tiny fluctuations or large random spikes. */
1566 	if (abs(advance_expire_delta) > LAPIC_TIMER_ADVANCE_ADJUST_MAX ||
1567 	    abs(advance_expire_delta) < LAPIC_TIMER_ADVANCE_ADJUST_MIN)
1568 		return;
1569 
1570 	/* too early */
1571 	if (advance_expire_delta < 0) {
1572 		ns = -advance_expire_delta * 1000000ULL;
1573 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1574 		timer_advance_ns -= ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1575 	} else {
1576 	/* too late */
1577 		ns = advance_expire_delta * 1000000ULL;
1578 		do_div(ns, vcpu->arch.virtual_tsc_khz);
1579 		timer_advance_ns += ns/LAPIC_TIMER_ADVANCE_ADJUST_STEP;
1580 	}
1581 
1582 	if (unlikely(timer_advance_ns > LAPIC_TIMER_ADVANCE_NS_MAX))
1583 		timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
1584 	apic->lapic_timer.timer_advance_ns = timer_advance_ns;
1585 }
1586 
1587 static void __kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1588 {
1589 	struct kvm_lapic *apic = vcpu->arch.apic;
1590 	u64 guest_tsc, tsc_deadline;
1591 
1592 	tsc_deadline = apic->lapic_timer.expired_tscdeadline;
1593 	apic->lapic_timer.expired_tscdeadline = 0;
1594 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1595 	apic->lapic_timer.advance_expire_delta = guest_tsc - tsc_deadline;
1596 
1597 	if (guest_tsc < tsc_deadline)
1598 		__wait_lapic_expire(vcpu, tsc_deadline - guest_tsc);
1599 
1600 	if (lapic_timer_advance_dynamic)
1601 		adjust_lapic_timer_advance(vcpu, apic->lapic_timer.advance_expire_delta);
1602 }
1603 
1604 void kvm_wait_lapic_expire(struct kvm_vcpu *vcpu)
1605 {
1606 	if (lapic_in_kernel(vcpu) &&
1607 	    vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1608 	    vcpu->arch.apic->lapic_timer.timer_advance_ns &&
1609 	    lapic_timer_int_injected(vcpu))
1610 		__kvm_wait_lapic_expire(vcpu);
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire);
1613 
1614 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic *apic)
1615 {
1616 	struct kvm_timer *ktimer = &apic->lapic_timer;
1617 
1618 	kvm_apic_local_deliver(apic, APIC_LVTT);
1619 	if (apic_lvtt_tscdeadline(apic)) {
1620 		ktimer->tscdeadline = 0;
1621 	} else if (apic_lvtt_oneshot(apic)) {
1622 		ktimer->tscdeadline = 0;
1623 		ktimer->target_expiration = 0;
1624 	}
1625 }
1626 
1627 static void apic_timer_expired(struct kvm_lapic *apic, bool from_timer_fn)
1628 {
1629 	struct kvm_vcpu *vcpu = apic->vcpu;
1630 	struct kvm_timer *ktimer = &apic->lapic_timer;
1631 
1632 	if (atomic_read(&apic->lapic_timer.pending))
1633 		return;
1634 
1635 	if (apic_lvtt_tscdeadline(apic) || ktimer->hv_timer_in_use)
1636 		ktimer->expired_tscdeadline = ktimer->tscdeadline;
1637 
1638 	if (!from_timer_fn && vcpu->arch.apicv_active) {
1639 		WARN_ON(kvm_get_running_vcpu() != vcpu);
1640 		kvm_apic_inject_pending_timer_irqs(apic);
1641 		return;
1642 	}
1643 
1644 	if (kvm_use_posted_timer_interrupt(apic->vcpu)) {
1645 		/*
1646 		 * Ensure the guest's timer has truly expired before posting an
1647 		 * interrupt.  Open code the relevant checks to avoid querying
1648 		 * lapic_timer_int_injected(), which will be false since the
1649 		 * interrupt isn't yet injected.  Waiting until after injecting
1650 		 * is not an option since that won't help a posted interrupt.
1651 		 */
1652 		if (vcpu->arch.apic->lapic_timer.expired_tscdeadline &&
1653 		    vcpu->arch.apic->lapic_timer.timer_advance_ns)
1654 			__kvm_wait_lapic_expire(vcpu);
1655 		kvm_apic_inject_pending_timer_irqs(apic);
1656 		return;
1657 	}
1658 
1659 	atomic_inc(&apic->lapic_timer.pending);
1660 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1661 	if (from_timer_fn)
1662 		kvm_vcpu_kick(vcpu);
1663 }
1664 
1665 static void start_sw_tscdeadline(struct kvm_lapic *apic)
1666 {
1667 	struct kvm_timer *ktimer = &apic->lapic_timer;
1668 	u64 guest_tsc, tscdeadline = ktimer->tscdeadline;
1669 	u64 ns = 0;
1670 	ktime_t expire;
1671 	struct kvm_vcpu *vcpu = apic->vcpu;
1672 	unsigned long this_tsc_khz = vcpu->arch.virtual_tsc_khz;
1673 	unsigned long flags;
1674 	ktime_t now;
1675 
1676 	if (unlikely(!tscdeadline || !this_tsc_khz))
1677 		return;
1678 
1679 	local_irq_save(flags);
1680 
1681 	now = ktime_get();
1682 	guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1683 
1684 	ns = (tscdeadline - guest_tsc) * 1000000ULL;
1685 	do_div(ns, this_tsc_khz);
1686 
1687 	if (likely(tscdeadline > guest_tsc) &&
1688 	    likely(ns > apic->lapic_timer.timer_advance_ns)) {
1689 		expire = ktime_add_ns(now, ns);
1690 		expire = ktime_sub_ns(expire, ktimer->timer_advance_ns);
1691 		hrtimer_start(&ktimer->timer, expire, HRTIMER_MODE_ABS_HARD);
1692 	} else
1693 		apic_timer_expired(apic, false);
1694 
1695 	local_irq_restore(flags);
1696 }
1697 
1698 static inline u64 tmict_to_ns(struct kvm_lapic *apic, u32 tmict)
1699 {
1700 	return (u64)tmict * APIC_BUS_CYCLE_NS * (u64)apic->divide_count;
1701 }
1702 
1703 static void update_target_expiration(struct kvm_lapic *apic, uint32_t old_divisor)
1704 {
1705 	ktime_t now, remaining;
1706 	u64 ns_remaining_old, ns_remaining_new;
1707 
1708 	apic->lapic_timer.period =
1709 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1710 	limit_periodic_timer_frequency(apic);
1711 
1712 	now = ktime_get();
1713 	remaining = ktime_sub(apic->lapic_timer.target_expiration, now);
1714 	if (ktime_to_ns(remaining) < 0)
1715 		remaining = 0;
1716 
1717 	ns_remaining_old = ktime_to_ns(remaining);
1718 	ns_remaining_new = mul_u64_u32_div(ns_remaining_old,
1719 	                                   apic->divide_count, old_divisor);
1720 
1721 	apic->lapic_timer.tscdeadline +=
1722 		nsec_to_cycles(apic->vcpu, ns_remaining_new) -
1723 		nsec_to_cycles(apic->vcpu, ns_remaining_old);
1724 	apic->lapic_timer.target_expiration = ktime_add_ns(now, ns_remaining_new);
1725 }
1726 
1727 static bool set_target_expiration(struct kvm_lapic *apic, u32 count_reg)
1728 {
1729 	ktime_t now;
1730 	u64 tscl = rdtsc();
1731 	s64 deadline;
1732 
1733 	now = ktime_get();
1734 	apic->lapic_timer.period =
1735 			tmict_to_ns(apic, kvm_lapic_get_reg(apic, APIC_TMICT));
1736 
1737 	if (!apic->lapic_timer.period) {
1738 		apic->lapic_timer.tscdeadline = 0;
1739 		return false;
1740 	}
1741 
1742 	limit_periodic_timer_frequency(apic);
1743 	deadline = apic->lapic_timer.period;
1744 
1745 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic)) {
1746 		if (unlikely(count_reg != APIC_TMICT)) {
1747 			deadline = tmict_to_ns(apic,
1748 				     kvm_lapic_get_reg(apic, count_reg));
1749 			if (unlikely(deadline <= 0))
1750 				deadline = apic->lapic_timer.period;
1751 			else if (unlikely(deadline > apic->lapic_timer.period)) {
1752 				pr_info_ratelimited(
1753 				    "kvm: vcpu %i: requested lapic timer restore with "
1754 				    "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
1755 				    "Using initial count to start timer.\n",
1756 				    apic->vcpu->vcpu_id,
1757 				    count_reg,
1758 				    kvm_lapic_get_reg(apic, count_reg),
1759 				    deadline, apic->lapic_timer.period);
1760 				kvm_lapic_set_reg(apic, count_reg, 0);
1761 				deadline = apic->lapic_timer.period;
1762 			}
1763 		}
1764 	}
1765 
1766 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1767 		nsec_to_cycles(apic->vcpu, deadline);
1768 	apic->lapic_timer.target_expiration = ktime_add_ns(now, deadline);
1769 
1770 	return true;
1771 }
1772 
1773 static void advance_periodic_target_expiration(struct kvm_lapic *apic)
1774 {
1775 	ktime_t now = ktime_get();
1776 	u64 tscl = rdtsc();
1777 	ktime_t delta;
1778 
1779 	/*
1780 	 * Synchronize both deadlines to the same time source or
1781 	 * differences in the periods (caused by differences in the
1782 	 * underlying clocks or numerical approximation errors) will
1783 	 * cause the two to drift apart over time as the errors
1784 	 * accumulate.
1785 	 */
1786 	apic->lapic_timer.target_expiration =
1787 		ktime_add_ns(apic->lapic_timer.target_expiration,
1788 				apic->lapic_timer.period);
1789 	delta = ktime_sub(apic->lapic_timer.target_expiration, now);
1790 	apic->lapic_timer.tscdeadline = kvm_read_l1_tsc(apic->vcpu, tscl) +
1791 		nsec_to_cycles(apic->vcpu, delta);
1792 }
1793 
1794 static void start_sw_period(struct kvm_lapic *apic)
1795 {
1796 	if (!apic->lapic_timer.period)
1797 		return;
1798 
1799 	if (ktime_after(ktime_get(),
1800 			apic->lapic_timer.target_expiration)) {
1801 		apic_timer_expired(apic, false);
1802 
1803 		if (apic_lvtt_oneshot(apic))
1804 			return;
1805 
1806 		advance_periodic_target_expiration(apic);
1807 	}
1808 
1809 	hrtimer_start(&apic->lapic_timer.timer,
1810 		apic->lapic_timer.target_expiration,
1811 		HRTIMER_MODE_ABS_HARD);
1812 }
1813 
1814 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu *vcpu)
1815 {
1816 	if (!lapic_in_kernel(vcpu))
1817 		return false;
1818 
1819 	return vcpu->arch.apic->lapic_timer.hv_timer_in_use;
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_lapic_hv_timer_in_use);
1822 
1823 static void cancel_hv_timer(struct kvm_lapic *apic)
1824 {
1825 	WARN_ON(preemptible());
1826 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1827 	static_call(kvm_x86_cancel_hv_timer)(apic->vcpu);
1828 	apic->lapic_timer.hv_timer_in_use = false;
1829 }
1830 
1831 static bool start_hv_timer(struct kvm_lapic *apic)
1832 {
1833 	struct kvm_timer *ktimer = &apic->lapic_timer;
1834 	struct kvm_vcpu *vcpu = apic->vcpu;
1835 	bool expired;
1836 
1837 	WARN_ON(preemptible());
1838 	if (!kvm_can_use_hv_timer(vcpu))
1839 		return false;
1840 
1841 	if (!ktimer->tscdeadline)
1842 		return false;
1843 
1844 	if (static_call(kvm_x86_set_hv_timer)(vcpu, ktimer->tscdeadline, &expired))
1845 		return false;
1846 
1847 	ktimer->hv_timer_in_use = true;
1848 	hrtimer_cancel(&ktimer->timer);
1849 
1850 	/*
1851 	 * To simplify handling the periodic timer, leave the hv timer running
1852 	 * even if the deadline timer has expired, i.e. rely on the resulting
1853 	 * VM-Exit to recompute the periodic timer's target expiration.
1854 	 */
1855 	if (!apic_lvtt_period(apic)) {
1856 		/*
1857 		 * Cancel the hv timer if the sw timer fired while the hv timer
1858 		 * was being programmed, or if the hv timer itself expired.
1859 		 */
1860 		if (atomic_read(&ktimer->pending)) {
1861 			cancel_hv_timer(apic);
1862 		} else if (expired) {
1863 			apic_timer_expired(apic, false);
1864 			cancel_hv_timer(apic);
1865 		}
1866 	}
1867 
1868 	trace_kvm_hv_timer_state(vcpu->vcpu_id, ktimer->hv_timer_in_use);
1869 
1870 	return true;
1871 }
1872 
1873 static void start_sw_timer(struct kvm_lapic *apic)
1874 {
1875 	struct kvm_timer *ktimer = &apic->lapic_timer;
1876 
1877 	WARN_ON(preemptible());
1878 	if (apic->lapic_timer.hv_timer_in_use)
1879 		cancel_hv_timer(apic);
1880 	if (!apic_lvtt_period(apic) && atomic_read(&ktimer->pending))
1881 		return;
1882 
1883 	if (apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1884 		start_sw_period(apic);
1885 	else if (apic_lvtt_tscdeadline(apic))
1886 		start_sw_tscdeadline(apic);
1887 	trace_kvm_hv_timer_state(apic->vcpu->vcpu_id, false);
1888 }
1889 
1890 static void restart_apic_timer(struct kvm_lapic *apic)
1891 {
1892 	preempt_disable();
1893 
1894 	if (!apic_lvtt_period(apic) && atomic_read(&apic->lapic_timer.pending))
1895 		goto out;
1896 
1897 	if (!start_hv_timer(apic))
1898 		start_sw_timer(apic);
1899 out:
1900 	preempt_enable();
1901 }
1902 
1903 void kvm_lapic_expired_hv_timer(struct kvm_vcpu *vcpu)
1904 {
1905 	struct kvm_lapic *apic = vcpu->arch.apic;
1906 
1907 	preempt_disable();
1908 	/* If the preempt notifier has already run, it also called apic_timer_expired */
1909 	if (!apic->lapic_timer.hv_timer_in_use)
1910 		goto out;
1911 	WARN_ON(rcuwait_active(&vcpu->wait));
1912 	cancel_hv_timer(apic);
1913 	apic_timer_expired(apic, false);
1914 
1915 	if (apic_lvtt_period(apic) && apic->lapic_timer.period) {
1916 		advance_periodic_target_expiration(apic);
1917 		restart_apic_timer(apic);
1918 	}
1919 out:
1920 	preempt_enable();
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer);
1923 
1924 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu *vcpu)
1925 {
1926 	restart_apic_timer(vcpu->arch.apic);
1927 }
1928 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_hv_timer);
1929 
1930 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu *vcpu)
1931 {
1932 	struct kvm_lapic *apic = vcpu->arch.apic;
1933 
1934 	preempt_disable();
1935 	/* Possibly the TSC deadline timer is not enabled yet */
1936 	if (apic->lapic_timer.hv_timer_in_use)
1937 		start_sw_timer(apic);
1938 	preempt_enable();
1939 }
1940 EXPORT_SYMBOL_GPL(kvm_lapic_switch_to_sw_timer);
1941 
1942 void kvm_lapic_restart_hv_timer(struct kvm_vcpu *vcpu)
1943 {
1944 	struct kvm_lapic *apic = vcpu->arch.apic;
1945 
1946 	WARN_ON(!apic->lapic_timer.hv_timer_in_use);
1947 	restart_apic_timer(apic);
1948 }
1949 
1950 static void __start_apic_timer(struct kvm_lapic *apic, u32 count_reg)
1951 {
1952 	atomic_set(&apic->lapic_timer.pending, 0);
1953 
1954 	if ((apic_lvtt_period(apic) || apic_lvtt_oneshot(apic))
1955 	    && !set_target_expiration(apic, count_reg))
1956 		return;
1957 
1958 	restart_apic_timer(apic);
1959 }
1960 
1961 static void start_apic_timer(struct kvm_lapic *apic)
1962 {
1963 	__start_apic_timer(apic, APIC_TMICT);
1964 }
1965 
1966 static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, u32 lvt0_val)
1967 {
1968 	bool lvt0_in_nmi_mode = apic_lvt_nmi_mode(lvt0_val);
1969 
1970 	if (apic->lvt0_in_nmi_mode != lvt0_in_nmi_mode) {
1971 		apic->lvt0_in_nmi_mode = lvt0_in_nmi_mode;
1972 		if (lvt0_in_nmi_mode) {
1973 			atomic_inc(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1974 		} else
1975 			atomic_dec(&apic->vcpu->kvm->arch.vapics_in_nmi_mode);
1976 	}
1977 }
1978 
1979 int kvm_lapic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val)
1980 {
1981 	int ret = 0;
1982 
1983 	trace_kvm_apic_write(reg, val);
1984 
1985 	switch (reg) {
1986 	case APIC_ID:		/* Local APIC ID */
1987 		if (!apic_x2apic_mode(apic))
1988 			kvm_apic_set_xapic_id(apic, val >> 24);
1989 		else
1990 			ret = 1;
1991 		break;
1992 
1993 	case APIC_TASKPRI:
1994 		report_tpr_access(apic, true);
1995 		apic_set_tpr(apic, val & 0xff);
1996 		break;
1997 
1998 	case APIC_EOI:
1999 		apic_set_eoi(apic);
2000 		break;
2001 
2002 	case APIC_LDR:
2003 		if (!apic_x2apic_mode(apic))
2004 			kvm_apic_set_ldr(apic, val & APIC_LDR_MASK);
2005 		else
2006 			ret = 1;
2007 		break;
2008 
2009 	case APIC_DFR:
2010 		if (!apic_x2apic_mode(apic))
2011 			kvm_apic_set_dfr(apic, val | 0x0FFFFFFF);
2012 		else
2013 			ret = 1;
2014 		break;
2015 
2016 	case APIC_SPIV: {
2017 		u32 mask = 0x3ff;
2018 		if (kvm_lapic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI)
2019 			mask |= APIC_SPIV_DIRECTED_EOI;
2020 		apic_set_spiv(apic, val & mask);
2021 		if (!(val & APIC_SPIV_APIC_ENABLED)) {
2022 			int i;
2023 			u32 lvt_val;
2024 
2025 			for (i = 0; i < KVM_APIC_LVT_NUM; i++) {
2026 				lvt_val = kvm_lapic_get_reg(apic,
2027 						       APIC_LVTT + 0x10 * i);
2028 				kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i,
2029 					     lvt_val | APIC_LVT_MASKED);
2030 			}
2031 			apic_update_lvtt(apic);
2032 			atomic_set(&apic->lapic_timer.pending, 0);
2033 
2034 		}
2035 		break;
2036 	}
2037 	case APIC_ICR:
2038 		/* No delay here, so we always clear the pending bit */
2039 		val &= ~(1 << 12);
2040 		kvm_apic_send_ipi(apic, val, kvm_lapic_get_reg(apic, APIC_ICR2));
2041 		kvm_lapic_set_reg(apic, APIC_ICR, val);
2042 		break;
2043 
2044 	case APIC_ICR2:
2045 		if (!apic_x2apic_mode(apic))
2046 			val &= 0xff000000;
2047 		kvm_lapic_set_reg(apic, APIC_ICR2, val);
2048 		break;
2049 
2050 	case APIC_LVT0:
2051 		apic_manage_nmi_watchdog(apic, val);
2052 		fallthrough;
2053 	case APIC_LVTTHMR:
2054 	case APIC_LVTPC:
2055 	case APIC_LVT1:
2056 	case APIC_LVTERR: {
2057 		/* TODO: Check vector */
2058 		size_t size;
2059 		u32 index;
2060 
2061 		if (!kvm_apic_sw_enabled(apic))
2062 			val |= APIC_LVT_MASKED;
2063 		size = ARRAY_SIZE(apic_lvt_mask);
2064 		index = array_index_nospec(
2065 				(reg - APIC_LVTT) >> 4, size);
2066 		val &= apic_lvt_mask[index];
2067 		kvm_lapic_set_reg(apic, reg, val);
2068 		break;
2069 	}
2070 
2071 	case APIC_LVTT:
2072 		if (!kvm_apic_sw_enabled(apic))
2073 			val |= APIC_LVT_MASKED;
2074 		val &= (apic_lvt_mask[0] | apic->lapic_timer.timer_mode_mask);
2075 		kvm_lapic_set_reg(apic, APIC_LVTT, val);
2076 		apic_update_lvtt(apic);
2077 		break;
2078 
2079 	case APIC_TMICT:
2080 		if (apic_lvtt_tscdeadline(apic))
2081 			break;
2082 
2083 		hrtimer_cancel(&apic->lapic_timer.timer);
2084 		kvm_lapic_set_reg(apic, APIC_TMICT, val);
2085 		start_apic_timer(apic);
2086 		break;
2087 
2088 	case APIC_TDCR: {
2089 		uint32_t old_divisor = apic->divide_count;
2090 
2091 		kvm_lapic_set_reg(apic, APIC_TDCR, val & 0xb);
2092 		update_divide_count(apic);
2093 		if (apic->divide_count != old_divisor &&
2094 				apic->lapic_timer.period) {
2095 			hrtimer_cancel(&apic->lapic_timer.timer);
2096 			update_target_expiration(apic, old_divisor);
2097 			restart_apic_timer(apic);
2098 		}
2099 		break;
2100 	}
2101 	case APIC_ESR:
2102 		if (apic_x2apic_mode(apic) && val != 0)
2103 			ret = 1;
2104 		break;
2105 
2106 	case APIC_SELF_IPI:
2107 		if (apic_x2apic_mode(apic)) {
2108 			kvm_lapic_reg_write(apic, APIC_ICR,
2109 					    APIC_DEST_SELF | (val & APIC_VECTOR_MASK));
2110 		} else
2111 			ret = 1;
2112 		break;
2113 	default:
2114 		ret = 1;
2115 		break;
2116 	}
2117 
2118 	kvm_recalculate_apic_map(apic->vcpu->kvm);
2119 
2120 	return ret;
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_lapic_reg_write);
2123 
2124 static int apic_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this,
2125 			    gpa_t address, int len, const void *data)
2126 {
2127 	struct kvm_lapic *apic = to_lapic(this);
2128 	unsigned int offset = address - apic->base_address;
2129 	u32 val;
2130 
2131 	if (!apic_mmio_in_range(apic, address))
2132 		return -EOPNOTSUPP;
2133 
2134 	if (!kvm_apic_hw_enabled(apic) || apic_x2apic_mode(apic)) {
2135 		if (!kvm_check_has_quirk(vcpu->kvm,
2136 					 KVM_X86_QUIRK_LAPIC_MMIO_HOLE))
2137 			return -EOPNOTSUPP;
2138 
2139 		return 0;
2140 	}
2141 
2142 	/*
2143 	 * APIC register must be aligned on 128-bits boundary.
2144 	 * 32/64/128 bits registers must be accessed thru 32 bits.
2145 	 * Refer SDM 8.4.1
2146 	 */
2147 	if (len != 4 || (offset & 0xf))
2148 		return 0;
2149 
2150 	val = *(u32*)data;
2151 
2152 	kvm_lapic_reg_write(apic, offset & 0xff0, val);
2153 
2154 	return 0;
2155 }
2156 
2157 void kvm_lapic_set_eoi(struct kvm_vcpu *vcpu)
2158 {
2159 	kvm_lapic_reg_write(vcpu->arch.apic, APIC_EOI, 0);
2160 }
2161 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi);
2162 
2163 /* emulate APIC access in a trap manner */
2164 void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset)
2165 {
2166 	u32 val = 0;
2167 
2168 	/* hw has done the conditional check and inst decode */
2169 	offset &= 0xff0;
2170 
2171 	kvm_lapic_reg_read(vcpu->arch.apic, offset, 4, &val);
2172 
2173 	/* TODO: optimize to just emulate side effect w/o one more write */
2174 	kvm_lapic_reg_write(vcpu->arch.apic, offset, val);
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode);
2177 
2178 void kvm_free_lapic(struct kvm_vcpu *vcpu)
2179 {
2180 	struct kvm_lapic *apic = vcpu->arch.apic;
2181 
2182 	if (!vcpu->arch.apic)
2183 		return;
2184 
2185 	hrtimer_cancel(&apic->lapic_timer.timer);
2186 
2187 	if (!(vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE))
2188 		static_branch_slow_dec_deferred(&apic_hw_disabled);
2189 
2190 	if (!apic->sw_enabled)
2191 		static_branch_slow_dec_deferred(&apic_sw_disabled);
2192 
2193 	if (apic->regs)
2194 		free_page((unsigned long)apic->regs);
2195 
2196 	kfree(apic);
2197 }
2198 
2199 /*
2200  *----------------------------------------------------------------------
2201  * LAPIC interface
2202  *----------------------------------------------------------------------
2203  */
2204 u64 kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu)
2205 {
2206 	struct kvm_lapic *apic = vcpu->arch.apic;
2207 
2208 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2209 		return 0;
2210 
2211 	return apic->lapic_timer.tscdeadline;
2212 }
2213 
2214 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu *vcpu, u64 data)
2215 {
2216 	struct kvm_lapic *apic = vcpu->arch.apic;
2217 
2218 	if (!kvm_apic_present(vcpu) || !apic_lvtt_tscdeadline(apic))
2219 		return;
2220 
2221 	hrtimer_cancel(&apic->lapic_timer.timer);
2222 	apic->lapic_timer.tscdeadline = data;
2223 	start_apic_timer(apic);
2224 }
2225 
2226 void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8)
2227 {
2228 	struct kvm_lapic *apic = vcpu->arch.apic;
2229 
2230 	apic_set_tpr(apic, ((cr8 & 0x0f) << 4)
2231 		     | (kvm_lapic_get_reg(apic, APIC_TASKPRI) & 4));
2232 }
2233 
2234 u64 kvm_lapic_get_cr8(struct kvm_vcpu *vcpu)
2235 {
2236 	u64 tpr;
2237 
2238 	tpr = (u64) kvm_lapic_get_reg(vcpu->arch.apic, APIC_TASKPRI);
2239 
2240 	return (tpr & 0xf0) >> 4;
2241 }
2242 
2243 void kvm_lapic_set_base(struct kvm_vcpu *vcpu, u64 value)
2244 {
2245 	u64 old_value = vcpu->arch.apic_base;
2246 	struct kvm_lapic *apic = vcpu->arch.apic;
2247 
2248 	if (!apic)
2249 		value |= MSR_IA32_APICBASE_BSP;
2250 
2251 	vcpu->arch.apic_base = value;
2252 
2253 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE)
2254 		kvm_update_cpuid_runtime(vcpu);
2255 
2256 	if (!apic)
2257 		return;
2258 
2259 	/* update jump label if enable bit changes */
2260 	if ((old_value ^ value) & MSR_IA32_APICBASE_ENABLE) {
2261 		if (value & MSR_IA32_APICBASE_ENABLE) {
2262 			kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2263 			static_branch_slow_dec_deferred(&apic_hw_disabled);
2264 		} else {
2265 			static_branch_inc(&apic_hw_disabled.key);
2266 			atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2267 		}
2268 	}
2269 
2270 	if (((old_value ^ value) & X2APIC_ENABLE) && (value & X2APIC_ENABLE))
2271 		kvm_apic_set_x2apic_id(apic, vcpu->vcpu_id);
2272 
2273 	if ((old_value ^ value) & (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE))
2274 		static_call(kvm_x86_set_virtual_apic_mode)(vcpu);
2275 
2276 	apic->base_address = apic->vcpu->arch.apic_base &
2277 			     MSR_IA32_APICBASE_BASE;
2278 
2279 	if ((value & MSR_IA32_APICBASE_ENABLE) &&
2280 	     apic->base_address != APIC_DEFAULT_PHYS_BASE)
2281 		pr_warn_once("APIC base relocation is unsupported by KVM");
2282 }
2283 
2284 void kvm_apic_update_apicv(struct kvm_vcpu *vcpu)
2285 {
2286 	struct kvm_lapic *apic = vcpu->arch.apic;
2287 
2288 	if (vcpu->arch.apicv_active) {
2289 		/* irr_pending is always true when apicv is activated. */
2290 		apic->irr_pending = true;
2291 		apic->isr_count = 1;
2292 	} else {
2293 		apic->irr_pending = (apic_search_irr(apic) != -1);
2294 		apic->isr_count = count_vectors(apic->regs + APIC_ISR);
2295 	}
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_apic_update_apicv);
2298 
2299 void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
2300 {
2301 	struct kvm_lapic *apic = vcpu->arch.apic;
2302 	int i;
2303 
2304 	if (!apic)
2305 		return;
2306 
2307 	/* Stop the timer in case it's a reset to an active apic */
2308 	hrtimer_cancel(&apic->lapic_timer.timer);
2309 
2310 	if (!init_event) {
2311 		kvm_lapic_set_base(vcpu, APIC_DEFAULT_PHYS_BASE |
2312 		                         MSR_IA32_APICBASE_ENABLE);
2313 		kvm_apic_set_xapic_id(apic, vcpu->vcpu_id);
2314 	}
2315 	kvm_apic_set_version(apic->vcpu);
2316 
2317 	for (i = 0; i < KVM_APIC_LVT_NUM; i++)
2318 		kvm_lapic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED);
2319 	apic_update_lvtt(apic);
2320 	if (kvm_vcpu_is_reset_bsp(vcpu) &&
2321 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED))
2322 		kvm_lapic_set_reg(apic, APIC_LVT0,
2323 			     SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT));
2324 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2325 
2326 	kvm_apic_set_dfr(apic, 0xffffffffU);
2327 	apic_set_spiv(apic, 0xff);
2328 	kvm_lapic_set_reg(apic, APIC_TASKPRI, 0);
2329 	if (!apic_x2apic_mode(apic))
2330 		kvm_apic_set_ldr(apic, 0);
2331 	kvm_lapic_set_reg(apic, APIC_ESR, 0);
2332 	kvm_lapic_set_reg(apic, APIC_ICR, 0);
2333 	kvm_lapic_set_reg(apic, APIC_ICR2, 0);
2334 	kvm_lapic_set_reg(apic, APIC_TDCR, 0);
2335 	kvm_lapic_set_reg(apic, APIC_TMICT, 0);
2336 	for (i = 0; i < 8; i++) {
2337 		kvm_lapic_set_reg(apic, APIC_IRR + 0x10 * i, 0);
2338 		kvm_lapic_set_reg(apic, APIC_ISR + 0x10 * i, 0);
2339 		kvm_lapic_set_reg(apic, APIC_TMR + 0x10 * i, 0);
2340 	}
2341 	kvm_apic_update_apicv(vcpu);
2342 	apic->highest_isr_cache = -1;
2343 	update_divide_count(apic);
2344 	atomic_set(&apic->lapic_timer.pending, 0);
2345 	if (kvm_vcpu_is_bsp(vcpu))
2346 		kvm_lapic_set_base(vcpu,
2347 				vcpu->arch.apic_base | MSR_IA32_APICBASE_BSP);
2348 	vcpu->arch.pv_eoi.msr_val = 0;
2349 	apic_update_ppr(apic);
2350 	if (vcpu->arch.apicv_active) {
2351 		static_call(kvm_x86_apicv_post_state_restore)(vcpu);
2352 		static_call(kvm_x86_hwapic_irr_update)(vcpu, -1);
2353 		static_call(kvm_x86_hwapic_isr_update)(vcpu, -1);
2354 	}
2355 
2356 	vcpu->arch.apic_arb_prio = 0;
2357 	vcpu->arch.apic_attention = 0;
2358 
2359 	kvm_recalculate_apic_map(vcpu->kvm);
2360 }
2361 
2362 /*
2363  *----------------------------------------------------------------------
2364  * timer interface
2365  *----------------------------------------------------------------------
2366  */
2367 
2368 static bool lapic_is_periodic(struct kvm_lapic *apic)
2369 {
2370 	return apic_lvtt_period(apic);
2371 }
2372 
2373 int apic_has_pending_timer(struct kvm_vcpu *vcpu)
2374 {
2375 	struct kvm_lapic *apic = vcpu->arch.apic;
2376 
2377 	if (apic_enabled(apic) && apic_lvt_enabled(apic, APIC_LVTT))
2378 		return atomic_read(&apic->lapic_timer.pending);
2379 
2380 	return 0;
2381 }
2382 
2383 int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type)
2384 {
2385 	u32 reg = kvm_lapic_get_reg(apic, lvt_type);
2386 	int vector, mode, trig_mode;
2387 
2388 	if (kvm_apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) {
2389 		vector = reg & APIC_VECTOR_MASK;
2390 		mode = reg & APIC_MODE_MASK;
2391 		trig_mode = reg & APIC_LVT_LEVEL_TRIGGER;
2392 		return __apic_accept_irq(apic, mode, vector, 1, trig_mode,
2393 					NULL);
2394 	}
2395 	return 0;
2396 }
2397 
2398 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu)
2399 {
2400 	struct kvm_lapic *apic = vcpu->arch.apic;
2401 
2402 	if (apic)
2403 		kvm_apic_local_deliver(apic, APIC_LVT0);
2404 }
2405 
2406 static const struct kvm_io_device_ops apic_mmio_ops = {
2407 	.read     = apic_mmio_read,
2408 	.write    = apic_mmio_write,
2409 };
2410 
2411 static enum hrtimer_restart apic_timer_fn(struct hrtimer *data)
2412 {
2413 	struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
2414 	struct kvm_lapic *apic = container_of(ktimer, struct kvm_lapic, lapic_timer);
2415 
2416 	apic_timer_expired(apic, true);
2417 
2418 	if (lapic_is_periodic(apic)) {
2419 		advance_periodic_target_expiration(apic);
2420 		hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
2421 		return HRTIMER_RESTART;
2422 	} else
2423 		return HRTIMER_NORESTART;
2424 }
2425 
2426 int kvm_create_lapic(struct kvm_vcpu *vcpu, int timer_advance_ns)
2427 {
2428 	struct kvm_lapic *apic;
2429 
2430 	ASSERT(vcpu != NULL);
2431 
2432 	apic = kzalloc(sizeof(*apic), GFP_KERNEL_ACCOUNT);
2433 	if (!apic)
2434 		goto nomem;
2435 
2436 	vcpu->arch.apic = apic;
2437 
2438 	apic->regs = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
2439 	if (!apic->regs) {
2440 		printk(KERN_ERR "malloc apic regs error for vcpu %x\n",
2441 		       vcpu->vcpu_id);
2442 		goto nomem_free_apic;
2443 	}
2444 	apic->vcpu = vcpu;
2445 
2446 	hrtimer_init(&apic->lapic_timer.timer, CLOCK_MONOTONIC,
2447 		     HRTIMER_MODE_ABS_HARD);
2448 	apic->lapic_timer.timer.function = apic_timer_fn;
2449 	if (timer_advance_ns == -1) {
2450 		apic->lapic_timer.timer_advance_ns = LAPIC_TIMER_ADVANCE_NS_INIT;
2451 		lapic_timer_advance_dynamic = true;
2452 	} else {
2453 		apic->lapic_timer.timer_advance_ns = timer_advance_ns;
2454 		lapic_timer_advance_dynamic = false;
2455 	}
2456 
2457 	/*
2458 	 * APIC is created enabled. This will prevent kvm_lapic_set_base from
2459 	 * thinking that APIC state has changed.
2460 	 */
2461 	vcpu->arch.apic_base = MSR_IA32_APICBASE_ENABLE;
2462 	static_branch_inc(&apic_sw_disabled.key); /* sw disabled at reset */
2463 	kvm_iodevice_init(&apic->dev, &apic_mmio_ops);
2464 
2465 	return 0;
2466 nomem_free_apic:
2467 	kfree(apic);
2468 	vcpu->arch.apic = NULL;
2469 nomem:
2470 	return -ENOMEM;
2471 }
2472 
2473 int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
2474 {
2475 	struct kvm_lapic *apic = vcpu->arch.apic;
2476 	u32 ppr;
2477 
2478 	if (!kvm_apic_present(vcpu))
2479 		return -1;
2480 
2481 	__apic_update_ppr(apic, &ppr);
2482 	return apic_has_interrupt_for_ppr(apic, ppr);
2483 }
2484 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt);
2485 
2486 int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
2487 {
2488 	u32 lvt0 = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVT0);
2489 
2490 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
2491 		return 1;
2492 	if ((lvt0 & APIC_LVT_MASKED) == 0 &&
2493 	    GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT)
2494 		return 1;
2495 	return 0;
2496 }
2497 
2498 void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu)
2499 {
2500 	struct kvm_lapic *apic = vcpu->arch.apic;
2501 
2502 	if (atomic_read(&apic->lapic_timer.pending) > 0) {
2503 		kvm_apic_inject_pending_timer_irqs(apic);
2504 		atomic_set(&apic->lapic_timer.pending, 0);
2505 	}
2506 }
2507 
2508 int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
2509 {
2510 	int vector = kvm_apic_has_interrupt(vcpu);
2511 	struct kvm_lapic *apic = vcpu->arch.apic;
2512 	u32 ppr;
2513 
2514 	if (vector == -1)
2515 		return -1;
2516 
2517 	/*
2518 	 * We get here even with APIC virtualization enabled, if doing
2519 	 * nested virtualization and L1 runs with the "acknowledge interrupt
2520 	 * on exit" mode.  Then we cannot inject the interrupt via RVI,
2521 	 * because the process would deliver it through the IDT.
2522 	 */
2523 
2524 	apic_clear_irr(vector, apic);
2525 	if (to_hv_vcpu(vcpu) && test_bit(vector, to_hv_synic(vcpu)->auto_eoi_bitmap)) {
2526 		/*
2527 		 * For auto-EOI interrupts, there might be another pending
2528 		 * interrupt above PPR, so check whether to raise another
2529 		 * KVM_REQ_EVENT.
2530 		 */
2531 		apic_update_ppr(apic);
2532 	} else {
2533 		/*
2534 		 * For normal interrupts, PPR has been raised and there cannot
2535 		 * be a higher-priority pending interrupt---except if there was
2536 		 * a concurrent interrupt injection, but that would have
2537 		 * triggered KVM_REQ_EVENT already.
2538 		 */
2539 		apic_set_isr(vector, apic);
2540 		__apic_update_ppr(apic, &ppr);
2541 	}
2542 
2543 	return vector;
2544 }
2545 
2546 static int kvm_apic_state_fixup(struct kvm_vcpu *vcpu,
2547 		struct kvm_lapic_state *s, bool set)
2548 {
2549 	if (apic_x2apic_mode(vcpu->arch.apic)) {
2550 		u32 *id = (u32 *)(s->regs + APIC_ID);
2551 		u32 *ldr = (u32 *)(s->regs + APIC_LDR);
2552 
2553 		if (vcpu->kvm->arch.x2apic_format) {
2554 			if (*id != vcpu->vcpu_id)
2555 				return -EINVAL;
2556 		} else {
2557 			if (set)
2558 				*id >>= 24;
2559 			else
2560 				*id <<= 24;
2561 		}
2562 
2563 		/* In x2APIC mode, the LDR is fixed and based on the id */
2564 		if (set)
2565 			*ldr = kvm_apic_calc_x2apic_ldr(*id);
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 int kvm_apic_get_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2572 {
2573 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof(*s));
2574 
2575 	/*
2576 	 * Get calculated timer current count for remaining timer period (if
2577 	 * any) and store it in the returned register set.
2578 	 */
2579 	__kvm_lapic_set_reg(s->regs, APIC_TMCCT,
2580 			    __apic_read(vcpu->arch.apic, APIC_TMCCT));
2581 
2582 	return kvm_apic_state_fixup(vcpu, s, false);
2583 }
2584 
2585 int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
2586 {
2587 	struct kvm_lapic *apic = vcpu->arch.apic;
2588 	int r;
2589 
2590 	kvm_lapic_set_base(vcpu, vcpu->arch.apic_base);
2591 	/* set SPIV separately to get count of SW disabled APICs right */
2592 	apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV)));
2593 
2594 	r = kvm_apic_state_fixup(vcpu, s, true);
2595 	if (r) {
2596 		kvm_recalculate_apic_map(vcpu->kvm);
2597 		return r;
2598 	}
2599 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof(*s));
2600 
2601 	atomic_set_release(&apic->vcpu->kvm->arch.apic_map_dirty, DIRTY);
2602 	kvm_recalculate_apic_map(vcpu->kvm);
2603 	kvm_apic_set_version(vcpu);
2604 
2605 	apic_update_ppr(apic);
2606 	hrtimer_cancel(&apic->lapic_timer.timer);
2607 	apic->lapic_timer.expired_tscdeadline = 0;
2608 	apic_update_lvtt(apic);
2609 	apic_manage_nmi_watchdog(apic, kvm_lapic_get_reg(apic, APIC_LVT0));
2610 	update_divide_count(apic);
2611 	__start_apic_timer(apic, APIC_TMCCT);
2612 	kvm_apic_update_apicv(vcpu);
2613 	apic->highest_isr_cache = -1;
2614 	if (vcpu->arch.apicv_active) {
2615 		static_call(kvm_x86_apicv_post_state_restore)(vcpu);
2616 		static_call(kvm_x86_hwapic_irr_update)(vcpu,
2617 				apic_find_highest_irr(apic));
2618 		static_call(kvm_x86_hwapic_isr_update)(vcpu,
2619 				apic_find_highest_isr(apic));
2620 	}
2621 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2622 	if (ioapic_in_kernel(vcpu->kvm))
2623 		kvm_rtc_eoi_tracking_restore_one(vcpu);
2624 
2625 	vcpu->arch.apic_arb_prio = 0;
2626 
2627 	return 0;
2628 }
2629 
2630 void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
2631 {
2632 	struct hrtimer *timer;
2633 
2634 	if (!lapic_in_kernel(vcpu) ||
2635 		kvm_can_post_timer_interrupt(vcpu))
2636 		return;
2637 
2638 	timer = &vcpu->arch.apic->lapic_timer.timer;
2639 	if (hrtimer_cancel(timer))
2640 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_HARD);
2641 }
2642 
2643 /*
2644  * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
2645  *
2646  * Detect whether guest triggered PV EOI since the
2647  * last entry. If yes, set EOI on guests's behalf.
2648  * Clear PV EOI in guest memory in any case.
2649  */
2650 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu *vcpu,
2651 					struct kvm_lapic *apic)
2652 {
2653 	bool pending;
2654 	int vector;
2655 	/*
2656 	 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
2657 	 * and KVM_PV_EOI_ENABLED in guest memory as follows:
2658 	 *
2659 	 * KVM_APIC_PV_EOI_PENDING is unset:
2660 	 * 	-> host disabled PV EOI.
2661 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
2662 	 * 	-> host enabled PV EOI, guest did not execute EOI yet.
2663 	 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
2664 	 * 	-> host enabled PV EOI, guest executed EOI.
2665 	 */
2666 	BUG_ON(!pv_eoi_enabled(vcpu));
2667 	pending = pv_eoi_get_pending(vcpu);
2668 	/*
2669 	 * Clear pending bit in any case: it will be set again on vmentry.
2670 	 * While this might not be ideal from performance point of view,
2671 	 * this makes sure pv eoi is only enabled when we know it's safe.
2672 	 */
2673 	pv_eoi_clr_pending(vcpu);
2674 	if (pending)
2675 		return;
2676 	vector = apic_set_eoi(apic);
2677 	trace_kvm_pv_eoi(apic, vector);
2678 }
2679 
2680 void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
2681 {
2682 	u32 data;
2683 
2684 	if (test_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention))
2685 		apic_sync_pv_eoi_from_guest(vcpu, vcpu->arch.apic);
2686 
2687 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2688 		return;
2689 
2690 	if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2691 				  sizeof(u32)))
2692 		return;
2693 
2694 	apic_set_tpr(vcpu->arch.apic, data & 0xff);
2695 }
2696 
2697 /*
2698  * apic_sync_pv_eoi_to_guest - called before vmentry
2699  *
2700  * Detect whether it's safe to enable PV EOI and
2701  * if yes do so.
2702  */
2703 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu *vcpu,
2704 					struct kvm_lapic *apic)
2705 {
2706 	if (!pv_eoi_enabled(vcpu) ||
2707 	    /* IRR set or many bits in ISR: could be nested. */
2708 	    apic->irr_pending ||
2709 	    /* Cache not set: could be safe but we don't bother. */
2710 	    apic->highest_isr_cache == -1 ||
2711 	    /* Need EOI to update ioapic. */
2712 	    kvm_ioapic_handles_vector(apic, apic->highest_isr_cache)) {
2713 		/*
2714 		 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
2715 		 * so we need not do anything here.
2716 		 */
2717 		return;
2718 	}
2719 
2720 	pv_eoi_set_pending(apic->vcpu);
2721 }
2722 
2723 void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
2724 {
2725 	u32 data, tpr;
2726 	int max_irr, max_isr;
2727 	struct kvm_lapic *apic = vcpu->arch.apic;
2728 
2729 	apic_sync_pv_eoi_to_guest(vcpu, apic);
2730 
2731 	if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
2732 		return;
2733 
2734 	tpr = kvm_lapic_get_reg(apic, APIC_TASKPRI) & 0xff;
2735 	max_irr = apic_find_highest_irr(apic);
2736 	if (max_irr < 0)
2737 		max_irr = 0;
2738 	max_isr = apic_find_highest_isr(apic);
2739 	if (max_isr < 0)
2740 		max_isr = 0;
2741 	data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
2742 
2743 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
2744 				sizeof(u32));
2745 }
2746 
2747 int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
2748 {
2749 	if (vapic_addr) {
2750 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2751 					&vcpu->arch.apic->vapic_cache,
2752 					vapic_addr, sizeof(u32)))
2753 			return -EINVAL;
2754 		__set_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2755 	} else {
2756 		__clear_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention);
2757 	}
2758 
2759 	vcpu->arch.apic->vapic_addr = vapic_addr;
2760 	return 0;
2761 }
2762 
2763 int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2764 {
2765 	struct kvm_lapic *apic = vcpu->arch.apic;
2766 	u32 reg = (msr - APIC_BASE_MSR) << 4;
2767 
2768 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2769 		return 1;
2770 
2771 	if (reg == APIC_ICR2)
2772 		return 1;
2773 
2774 	/* if this is ICR write vector before command */
2775 	if (reg == APIC_ICR)
2776 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2777 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2778 }
2779 
2780 int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, u32 msr, u64 *data)
2781 {
2782 	struct kvm_lapic *apic = vcpu->arch.apic;
2783 	u32 reg = (msr - APIC_BASE_MSR) << 4, low, high = 0;
2784 
2785 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(apic))
2786 		return 1;
2787 
2788 	if (reg == APIC_DFR || reg == APIC_ICR2)
2789 		return 1;
2790 
2791 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2792 		return 1;
2793 	if (reg == APIC_ICR)
2794 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2795 
2796 	*data = (((u64)high) << 32) | low;
2797 
2798 	return 0;
2799 }
2800 
2801 int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, u32 reg, u64 data)
2802 {
2803 	struct kvm_lapic *apic = vcpu->arch.apic;
2804 
2805 	if (!lapic_in_kernel(vcpu))
2806 		return 1;
2807 
2808 	/* if this is ICR write vector before command */
2809 	if (reg == APIC_ICR)
2810 		kvm_lapic_reg_write(apic, APIC_ICR2, (u32)(data >> 32));
2811 	return kvm_lapic_reg_write(apic, reg, (u32)data);
2812 }
2813 
2814 int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, u32 reg, u64 *data)
2815 {
2816 	struct kvm_lapic *apic = vcpu->arch.apic;
2817 	u32 low, high = 0;
2818 
2819 	if (!lapic_in_kernel(vcpu))
2820 		return 1;
2821 
2822 	if (kvm_lapic_reg_read(apic, reg, 4, &low))
2823 		return 1;
2824 	if (reg == APIC_ICR)
2825 		kvm_lapic_reg_read(apic, APIC_ICR2, 4, &high);
2826 
2827 	*data = (((u64)high) << 32) | low;
2828 
2829 	return 0;
2830 }
2831 
2832 int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data, unsigned long len)
2833 {
2834 	u64 addr = data & ~KVM_MSR_ENABLED;
2835 	struct gfn_to_hva_cache *ghc = &vcpu->arch.pv_eoi.data;
2836 	unsigned long new_len;
2837 
2838 	if (!IS_ALIGNED(addr, 4))
2839 		return 1;
2840 
2841 	vcpu->arch.pv_eoi.msr_val = data;
2842 	if (!pv_eoi_enabled(vcpu))
2843 		return 0;
2844 
2845 	if (addr == ghc->gpa && len <= ghc->len)
2846 		new_len = ghc->len;
2847 	else
2848 		new_len = len;
2849 
2850 	return kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, addr, new_len);
2851 }
2852 
2853 void kvm_apic_accept_events(struct kvm_vcpu *vcpu)
2854 {
2855 	struct kvm_lapic *apic = vcpu->arch.apic;
2856 	u8 sipi_vector;
2857 	int r;
2858 	unsigned long pe;
2859 
2860 	if (!lapic_in_kernel(vcpu))
2861 		return;
2862 
2863 	/*
2864 	 * Read pending events before calling the check_events
2865 	 * callback.
2866 	 */
2867 	pe = smp_load_acquire(&apic->pending_events);
2868 	if (!pe)
2869 		return;
2870 
2871 	if (is_guest_mode(vcpu)) {
2872 		r = kvm_x86_ops.nested_ops->check_events(vcpu);
2873 		if (r < 0)
2874 			return;
2875 		/*
2876 		 * If an event has happened and caused a vmexit,
2877 		 * we know INITs are latched and therefore
2878 		 * we will not incorrectly deliver an APIC
2879 		 * event instead of a vmexit.
2880 		 */
2881 	}
2882 
2883 	/*
2884 	 * INITs are latched while CPU is in specific states
2885 	 * (SMM, VMX root mode, SVM with GIF=0).
2886 	 * Because a CPU cannot be in these states immediately
2887 	 * after it has processed an INIT signal (and thus in
2888 	 * KVM_MP_STATE_INIT_RECEIVED state), just eat SIPIs
2889 	 * and leave the INIT pending.
2890 	 */
2891 	if (kvm_vcpu_latch_init(vcpu)) {
2892 		WARN_ON_ONCE(vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED);
2893 		if (test_bit(KVM_APIC_SIPI, &pe))
2894 			clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2895 		return;
2896 	}
2897 
2898 	if (test_bit(KVM_APIC_INIT, &pe)) {
2899 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
2900 		kvm_vcpu_reset(vcpu, true);
2901 		if (kvm_vcpu_is_bsp(apic->vcpu))
2902 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2903 		else
2904 			vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
2905 	}
2906 	if (test_bit(KVM_APIC_SIPI, &pe)) {
2907 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
2908 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
2909 			/* evaluate pending_events before reading the vector */
2910 			smp_rmb();
2911 			sipi_vector = apic->sipi_vector;
2912 			kvm_x86_ops.vcpu_deliver_sipi_vector(vcpu, sipi_vector);
2913 			vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2914 		}
2915 	}
2916 }
2917 
2918 void kvm_lapic_exit(void)
2919 {
2920 	static_key_deferred_flush(&apic_hw_disabled);
2921 	static_key_deferred_flush(&apic_sw_disabled);
2922 }
2923