xref: /openbmc/linux/arch/x86/kvm/i8254.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31 
32 #include <linux/kvm_host.h>
33 
34 #include "irq.h"
35 #include "i8254.h"
36 
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42 
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47 
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 	union {
52 		u64 ll;
53 		struct {
54 			u32 low, high;
55 		} l;
56 	} u, res;
57 	u64 rl, rh;
58 
59 	u.ll = a;
60 	rl = (u64)u.l.low * (u64)b;
61 	rh = (u64)u.l.high * (u64)b;
62 	rh += (rl >> 32);
63 	res.l.high = div64_u64(rh, c);
64 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 	return res.ll;
66 }
67 
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 	struct kvm_kpit_channel_state *c =
71 		&kvm->arch.vpit->pit_state.channels[channel];
72 
73 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74 
75 	switch (c->mode) {
76 	default:
77 	case 0:
78 	case 4:
79 		/* XXX: just disable/enable counting */
80 		break;
81 	case 1:
82 	case 2:
83 	case 3:
84 	case 5:
85 		/* Restart counting on rising edge. */
86 		if (c->gate < val)
87 			c->count_load_time = ktime_get();
88 		break;
89 	}
90 
91 	c->gate = val;
92 }
93 
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97 
98 	return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100 
101 static int pit_get_count(struct kvm *kvm, int channel)
102 {
103 	struct kvm_kpit_channel_state *c =
104 		&kvm->arch.vpit->pit_state.channels[channel];
105 	s64 d, t;
106 	int counter;
107 
108 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109 
110 	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112 
113 	switch (c->mode) {
114 	case 0:
115 	case 1:
116 	case 4:
117 	case 5:
118 		counter = (c->count - d) & 0xffff;
119 		break;
120 	case 3:
121 		/* XXX: may be incorrect for odd counts */
122 		counter = c->count - (mod_64((2 * d), c->count));
123 		break;
124 	default:
125 		counter = c->count - mod_64(d, c->count);
126 		break;
127 	}
128 	return counter;
129 }
130 
131 static int pit_get_out(struct kvm *kvm, int channel)
132 {
133 	struct kvm_kpit_channel_state *c =
134 		&kvm->arch.vpit->pit_state.channels[channel];
135 	s64 d, t;
136 	int out;
137 
138 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139 
140 	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142 
143 	switch (c->mode) {
144 	default:
145 	case 0:
146 		out = (d >= c->count);
147 		break;
148 	case 1:
149 		out = (d < c->count);
150 		break;
151 	case 2:
152 		out = ((mod_64(d, c->count) == 0) && (d != 0));
153 		break;
154 	case 3:
155 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 		break;
157 	case 4:
158 	case 5:
159 		out = (d == c->count);
160 		break;
161 	}
162 
163 	return out;
164 }
165 
166 static void pit_latch_count(struct kvm *kvm, int channel)
167 {
168 	struct kvm_kpit_channel_state *c =
169 		&kvm->arch.vpit->pit_state.channels[channel];
170 
171 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172 
173 	if (!c->count_latched) {
174 		c->latched_count = pit_get_count(kvm, channel);
175 		c->count_latched = c->rw_mode;
176 	}
177 }
178 
179 static void pit_latch_status(struct kvm *kvm, int channel)
180 {
181 	struct kvm_kpit_channel_state *c =
182 		&kvm->arch.vpit->pit_state.channels[channel];
183 
184 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185 
186 	if (!c->status_latched) {
187 		/* TODO: Return NULL COUNT (bit 6). */
188 		c->status = ((pit_get_out(kvm, channel) << 7) |
189 				(c->rw_mode << 4) |
190 				(c->mode << 1) |
191 				c->bcd);
192 		c->status_latched = 1;
193 	}
194 }
195 
196 static int __pit_timer_fn(struct kvm_kpit_state *ps)
197 {
198 	struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 	struct kvm_kpit_timer *pt = &ps->pit_timer;
200 
201 	if (!atomic_inc_and_test(&pt->pending))
202 		set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
203 	if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
204 		vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
205 		wake_up_interruptible(&vcpu0->wq);
206 	}
207 
208 	pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
209 	pt->scheduled = ktime_to_ns(pt->timer.expires);
210 
211 	return (pt->period == 0 ? 0 : 1);
212 }
213 
214 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
215 {
216 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
217 
218 	if (pit && vcpu->vcpu_id == 0 && pit->pit_state.inject_pending)
219 		return atomic_read(&pit->pit_state.pit_timer.pending);
220 
221 	return 0;
222 }
223 
224 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
225 {
226 	struct kvm_kpit_state *ps;
227 	int restart_timer = 0;
228 
229 	ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
230 
231 	restart_timer = __pit_timer_fn(ps);
232 
233 	if (restart_timer)
234 		return HRTIMER_RESTART;
235 	else
236 		return HRTIMER_NORESTART;
237 }
238 
239 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
240 {
241 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
242 	struct hrtimer *timer;
243 
244 	if (vcpu->vcpu_id != 0 || !pit)
245 		return;
246 
247 	timer = &pit->pit_state.pit_timer.timer;
248 	if (hrtimer_cancel(timer))
249 		hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS);
250 }
251 
252 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
253 {
254 	pr_debug("pit: execute del timer!\n");
255 	hrtimer_cancel(&pt->timer);
256 }
257 
258 static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
259 {
260 	s64 interval;
261 
262 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
263 
264 	pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
265 
266 	/* TODO The new value only affected after the retriggered */
267 	hrtimer_cancel(&pt->timer);
268 	pt->period = (is_period == 0) ? 0 : interval;
269 	pt->timer.function = pit_timer_fn;
270 	atomic_set(&pt->pending, 0);
271 
272 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
273 		      HRTIMER_MODE_ABS);
274 }
275 
276 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
277 {
278 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
279 
280 	WARN_ON(!mutex_is_locked(&ps->lock));
281 
282 	pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
283 
284 	/*
285 	 * Though spec said the state of 8254 is undefined after power-up,
286 	 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
287 	 * when booting up.
288 	 * So here setting initialize rate for it, and not a specific number
289 	 */
290 	if (val == 0)
291 		val = 0x10000;
292 
293 	ps->channels[channel].count_load_time = ktime_get();
294 	ps->channels[channel].count = val;
295 
296 	if (channel != 0)
297 		return;
298 
299 	/* Two types of timer
300 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
301 	switch (ps->channels[0].mode) {
302 	case 1:
303         /* FIXME: enhance mode 4 precision */
304 	case 4:
305 		create_pit_timer(&ps->pit_timer, val, 0);
306 		break;
307 	case 2:
308 	case 3:
309 		create_pit_timer(&ps->pit_timer, val, 1);
310 		break;
311 	default:
312 		destroy_pit_timer(&ps->pit_timer);
313 	}
314 }
315 
316 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
317 {
318 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
319 	pit_load_count(kvm, channel, val);
320 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
321 }
322 
323 static void pit_ioport_write(struct kvm_io_device *this,
324 			     gpa_t addr, int len, const void *data)
325 {
326 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
327 	struct kvm_kpit_state *pit_state = &pit->pit_state;
328 	struct kvm *kvm = pit->kvm;
329 	int channel, access;
330 	struct kvm_kpit_channel_state *s;
331 	u32 val = *(u32 *) data;
332 
333 	val  &= 0xff;
334 	addr &= KVM_PIT_CHANNEL_MASK;
335 
336 	mutex_lock(&pit_state->lock);
337 
338 	if (val != 0)
339 		pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
340 			  (unsigned int)addr, len, val);
341 
342 	if (addr == 3) {
343 		channel = val >> 6;
344 		if (channel == 3) {
345 			/* Read-Back Command. */
346 			for (channel = 0; channel < 3; channel++) {
347 				s = &pit_state->channels[channel];
348 				if (val & (2 << channel)) {
349 					if (!(val & 0x20))
350 						pit_latch_count(kvm, channel);
351 					if (!(val & 0x10))
352 						pit_latch_status(kvm, channel);
353 				}
354 			}
355 		} else {
356 			/* Select Counter <channel>. */
357 			s = &pit_state->channels[channel];
358 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
359 			if (access == 0) {
360 				pit_latch_count(kvm, channel);
361 			} else {
362 				s->rw_mode = access;
363 				s->read_state = access;
364 				s->write_state = access;
365 				s->mode = (val >> 1) & 7;
366 				if (s->mode > 5)
367 					s->mode -= 4;
368 				s->bcd = val & 1;
369 			}
370 		}
371 	} else {
372 		/* Write Count. */
373 		s = &pit_state->channels[addr];
374 		switch (s->write_state) {
375 		default:
376 		case RW_STATE_LSB:
377 			pit_load_count(kvm, addr, val);
378 			break;
379 		case RW_STATE_MSB:
380 			pit_load_count(kvm, addr, val << 8);
381 			break;
382 		case RW_STATE_WORD0:
383 			s->write_latch = val;
384 			s->write_state = RW_STATE_WORD1;
385 			break;
386 		case RW_STATE_WORD1:
387 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
388 			s->write_state = RW_STATE_WORD0;
389 			break;
390 		}
391 	}
392 
393 	mutex_unlock(&pit_state->lock);
394 }
395 
396 static void pit_ioport_read(struct kvm_io_device *this,
397 			    gpa_t addr, int len, void *data)
398 {
399 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
400 	struct kvm_kpit_state *pit_state = &pit->pit_state;
401 	struct kvm *kvm = pit->kvm;
402 	int ret, count;
403 	struct kvm_kpit_channel_state *s;
404 
405 	addr &= KVM_PIT_CHANNEL_MASK;
406 	s = &pit_state->channels[addr];
407 
408 	mutex_lock(&pit_state->lock);
409 
410 	if (s->status_latched) {
411 		s->status_latched = 0;
412 		ret = s->status;
413 	} else if (s->count_latched) {
414 		switch (s->count_latched) {
415 		default:
416 		case RW_STATE_LSB:
417 			ret = s->latched_count & 0xff;
418 			s->count_latched = 0;
419 			break;
420 		case RW_STATE_MSB:
421 			ret = s->latched_count >> 8;
422 			s->count_latched = 0;
423 			break;
424 		case RW_STATE_WORD0:
425 			ret = s->latched_count & 0xff;
426 			s->count_latched = RW_STATE_MSB;
427 			break;
428 		}
429 	} else {
430 		switch (s->read_state) {
431 		default:
432 		case RW_STATE_LSB:
433 			count = pit_get_count(kvm, addr);
434 			ret = count & 0xff;
435 			break;
436 		case RW_STATE_MSB:
437 			count = pit_get_count(kvm, addr);
438 			ret = (count >> 8) & 0xff;
439 			break;
440 		case RW_STATE_WORD0:
441 			count = pit_get_count(kvm, addr);
442 			ret = count & 0xff;
443 			s->read_state = RW_STATE_WORD1;
444 			break;
445 		case RW_STATE_WORD1:
446 			count = pit_get_count(kvm, addr);
447 			ret = (count >> 8) & 0xff;
448 			s->read_state = RW_STATE_WORD0;
449 			break;
450 		}
451 	}
452 
453 	if (len > sizeof(ret))
454 		len = sizeof(ret);
455 	memcpy(data, (char *)&ret, len);
456 
457 	mutex_unlock(&pit_state->lock);
458 }
459 
460 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
461 			int len, int is_write)
462 {
463 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
464 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
465 }
466 
467 static void speaker_ioport_write(struct kvm_io_device *this,
468 				 gpa_t addr, int len, const void *data)
469 {
470 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
471 	struct kvm_kpit_state *pit_state = &pit->pit_state;
472 	struct kvm *kvm = pit->kvm;
473 	u32 val = *(u32 *) data;
474 
475 	mutex_lock(&pit_state->lock);
476 	pit_state->speaker_data_on = (val >> 1) & 1;
477 	pit_set_gate(kvm, 2, val & 1);
478 	mutex_unlock(&pit_state->lock);
479 }
480 
481 static void speaker_ioport_read(struct kvm_io_device *this,
482 				gpa_t addr, int len, void *data)
483 {
484 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
485 	struct kvm_kpit_state *pit_state = &pit->pit_state;
486 	struct kvm *kvm = pit->kvm;
487 	unsigned int refresh_clock;
488 	int ret;
489 
490 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
491 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
492 
493 	mutex_lock(&pit_state->lock);
494 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
495 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
496 	if (len > sizeof(ret))
497 		len = sizeof(ret);
498 	memcpy(data, (char *)&ret, len);
499 	mutex_unlock(&pit_state->lock);
500 }
501 
502 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
503 			    int len, int is_write)
504 {
505 	return (addr == KVM_SPEAKER_BASE_ADDRESS);
506 }
507 
508 void kvm_pit_reset(struct kvm_pit *pit)
509 {
510 	int i;
511 	struct kvm_kpit_channel_state *c;
512 
513 	mutex_lock(&pit->pit_state.lock);
514 	for (i = 0; i < 3; i++) {
515 		c = &pit->pit_state.channels[i];
516 		c->mode = 0xff;
517 		c->gate = (i != 2);
518 		pit_load_count(pit->kvm, i, 0);
519 	}
520 	mutex_unlock(&pit->pit_state.lock);
521 
522 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
523 	pit->pit_state.inject_pending = 1;
524 }
525 
526 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
527 {
528 	struct kvm_pit *pit;
529 	struct kvm_kpit_state *pit_state;
530 
531 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
532 	if (!pit)
533 		return NULL;
534 
535 	mutex_init(&pit->pit_state.lock);
536 	mutex_lock(&pit->pit_state.lock);
537 
538 	/* Initialize PIO device */
539 	pit->dev.read = pit_ioport_read;
540 	pit->dev.write = pit_ioport_write;
541 	pit->dev.in_range = pit_in_range;
542 	pit->dev.private = pit;
543 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
544 
545 	pit->speaker_dev.read = speaker_ioport_read;
546 	pit->speaker_dev.write = speaker_ioport_write;
547 	pit->speaker_dev.in_range = speaker_in_range;
548 	pit->speaker_dev.private = pit;
549 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
550 
551 	kvm->arch.vpit = pit;
552 	pit->kvm = kvm;
553 
554 	pit_state = &pit->pit_state;
555 	pit_state->pit = pit;
556 	hrtimer_init(&pit_state->pit_timer.timer,
557 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
558 	mutex_unlock(&pit->pit_state.lock);
559 
560 	kvm_pit_reset(pit);
561 
562 	return pit;
563 }
564 
565 void kvm_free_pit(struct kvm *kvm)
566 {
567 	struct hrtimer *timer;
568 
569 	if (kvm->arch.vpit) {
570 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
571 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
572 		hrtimer_cancel(timer);
573 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
574 		kfree(kvm->arch.vpit);
575 	}
576 }
577 
578 static void __inject_pit_timer_intr(struct kvm *kvm)
579 {
580 	mutex_lock(&kvm->lock);
581 	kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
582 	kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
583 	kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
584 	kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
585 	mutex_unlock(&kvm->lock);
586 }
587 
588 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
589 {
590 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
591 	struct kvm *kvm = vcpu->kvm;
592 	struct kvm_kpit_state *ps;
593 
594 	if (vcpu && pit) {
595 		ps = &pit->pit_state;
596 
597 		/* Try to inject pending interrupts when:
598 		 * 1. Pending exists
599 		 * 2. Last interrupt was accepted or waited for too long time*/
600 		if (atomic_read(&ps->pit_timer.pending) &&
601 		    (ps->inject_pending ||
602 		    (jiffies - ps->last_injected_time
603 				>= KVM_MAX_PIT_INTR_INTERVAL))) {
604 			ps->inject_pending = 0;
605 			__inject_pit_timer_intr(kvm);
606 			ps->last_injected_time = jiffies;
607 		}
608 	}
609 }
610 
611 void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
612 {
613 	struct kvm_arch *arch = &vcpu->kvm->arch;
614 	struct kvm_kpit_state *ps;
615 
616 	if (vcpu && arch->vpit) {
617 		ps = &arch->vpit->pit_state;
618 		if (atomic_read(&ps->pit_timer.pending) &&
619 		(((arch->vpic->pics[0].imr & 1) == 0 &&
620 		  arch->vpic->pics[0].irq_base == vec) ||
621 		  (arch->vioapic->redirtbl[0].fields.vector == vec &&
622 		  arch->vioapic->redirtbl[0].fields.mask != 1))) {
623 			ps->inject_pending = 1;
624 			atomic_dec(&ps->pit_timer.pending);
625 			ps->channels[0].count_load_time = ktime_get();
626 		}
627 	}
628 }
629