xref: /openbmc/linux/arch/x86/kvm/i8254.c (revision e8e0929d)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31 
32 #include <linux/kvm_host.h>
33 
34 #include "irq.h"
35 #include "i8254.h"
36 
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42 
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47 
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 	union {
52 		u64 ll;
53 		struct {
54 			u32 low, high;
55 		} l;
56 	} u, res;
57 	u64 rl, rh;
58 
59 	u.ll = a;
60 	rl = (u64)u.l.low * (u64)b;
61 	rh = (u64)u.l.high * (u64)b;
62 	rh += (rl >> 32);
63 	res.l.high = div64_u64(rh, c);
64 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 	return res.ll;
66 }
67 
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 	struct kvm_kpit_channel_state *c =
71 		&kvm->arch.vpit->pit_state.channels[channel];
72 
73 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74 
75 	switch (c->mode) {
76 	default:
77 	case 0:
78 	case 4:
79 		/* XXX: just disable/enable counting */
80 		break;
81 	case 1:
82 	case 2:
83 	case 3:
84 	case 5:
85 		/* Restart counting on rising edge. */
86 		if (c->gate < val)
87 			c->count_load_time = ktime_get();
88 		break;
89 	}
90 
91 	c->gate = val;
92 }
93 
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97 
98 	return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100 
101 static s64 __kpit_elapsed(struct kvm *kvm)
102 {
103 	s64 elapsed;
104 	ktime_t remaining;
105 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106 
107 	if (!ps->pit_timer.period)
108 		return 0;
109 
110 	/*
111 	 * The Counter does not stop when it reaches zero. In
112 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
113 	 * the highest count, either FFFF hex for binary counting
114 	 * or 9999 for BCD counting, and continues counting.
115 	 * Modes 2 and 3 are periodic; the Counter reloads
116 	 * itself with the initial count and continues counting
117 	 * from there.
118 	 */
119 	remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
120 	elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
121 	elapsed = mod_64(elapsed, ps->pit_timer.period);
122 
123 	return elapsed;
124 }
125 
126 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
127 			int channel)
128 {
129 	if (channel == 0)
130 		return __kpit_elapsed(kvm);
131 
132 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
133 }
134 
135 static int pit_get_count(struct kvm *kvm, int channel)
136 {
137 	struct kvm_kpit_channel_state *c =
138 		&kvm->arch.vpit->pit_state.channels[channel];
139 	s64 d, t;
140 	int counter;
141 
142 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
143 
144 	t = kpit_elapsed(kvm, c, channel);
145 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
146 
147 	switch (c->mode) {
148 	case 0:
149 	case 1:
150 	case 4:
151 	case 5:
152 		counter = (c->count - d) & 0xffff;
153 		break;
154 	case 3:
155 		/* XXX: may be incorrect for odd counts */
156 		counter = c->count - (mod_64((2 * d), c->count));
157 		break;
158 	default:
159 		counter = c->count - mod_64(d, c->count);
160 		break;
161 	}
162 	return counter;
163 }
164 
165 static int pit_get_out(struct kvm *kvm, int channel)
166 {
167 	struct kvm_kpit_channel_state *c =
168 		&kvm->arch.vpit->pit_state.channels[channel];
169 	s64 d, t;
170 	int out;
171 
172 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
173 
174 	t = kpit_elapsed(kvm, c, channel);
175 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
176 
177 	switch (c->mode) {
178 	default:
179 	case 0:
180 		out = (d >= c->count);
181 		break;
182 	case 1:
183 		out = (d < c->count);
184 		break;
185 	case 2:
186 		out = ((mod_64(d, c->count) == 0) && (d != 0));
187 		break;
188 	case 3:
189 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
190 		break;
191 	case 4:
192 	case 5:
193 		out = (d == c->count);
194 		break;
195 	}
196 
197 	return out;
198 }
199 
200 static void pit_latch_count(struct kvm *kvm, int channel)
201 {
202 	struct kvm_kpit_channel_state *c =
203 		&kvm->arch.vpit->pit_state.channels[channel];
204 
205 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
206 
207 	if (!c->count_latched) {
208 		c->latched_count = pit_get_count(kvm, channel);
209 		c->count_latched = c->rw_mode;
210 	}
211 }
212 
213 static void pit_latch_status(struct kvm *kvm, int channel)
214 {
215 	struct kvm_kpit_channel_state *c =
216 		&kvm->arch.vpit->pit_state.channels[channel];
217 
218 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
219 
220 	if (!c->status_latched) {
221 		/* TODO: Return NULL COUNT (bit 6). */
222 		c->status = ((pit_get_out(kvm, channel) << 7) |
223 				(c->rw_mode << 4) |
224 				(c->mode << 1) |
225 				c->bcd);
226 		c->status_latched = 1;
227 	}
228 }
229 
230 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
231 {
232 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
233 
234 	if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
235 		return atomic_read(&pit->pit_state.pit_timer.pending);
236 	return 0;
237 }
238 
239 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
240 {
241 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
242 						 irq_ack_notifier);
243 	spin_lock(&ps->inject_lock);
244 	if (atomic_dec_return(&ps->pit_timer.pending) < 0)
245 		atomic_inc(&ps->pit_timer.pending);
246 	ps->irq_ack = 1;
247 	spin_unlock(&ps->inject_lock);
248 }
249 
250 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
251 {
252 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
253 	struct hrtimer *timer;
254 
255 	if (!kvm_vcpu_is_bsp(vcpu) || !pit)
256 		return;
257 
258 	timer = &pit->pit_state.pit_timer.timer;
259 	if (hrtimer_cancel(timer))
260 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
261 }
262 
263 static void destroy_pit_timer(struct kvm_timer *pt)
264 {
265 	pr_debug("pit: execute del timer!\n");
266 	hrtimer_cancel(&pt->timer);
267 }
268 
269 static bool kpit_is_periodic(struct kvm_timer *ktimer)
270 {
271 	struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
272 						 pit_timer);
273 	return ps->is_periodic;
274 }
275 
276 static struct kvm_timer_ops kpit_ops = {
277 	.is_periodic = kpit_is_periodic,
278 };
279 
280 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
281 {
282 	struct kvm_timer *pt = &ps->pit_timer;
283 	s64 interval;
284 
285 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
286 
287 	pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
288 
289 	/* TODO The new value only affected after the retriggered */
290 	hrtimer_cancel(&pt->timer);
291 	pt->period = interval;
292 	ps->is_periodic = is_period;
293 
294 	pt->timer.function = kvm_timer_fn;
295 	pt->t_ops = &kpit_ops;
296 	pt->kvm = ps->pit->kvm;
297 	pt->vcpu = pt->kvm->bsp_vcpu;
298 
299 	atomic_set(&pt->pending, 0);
300 	ps->irq_ack = 1;
301 
302 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
303 		      HRTIMER_MODE_ABS);
304 }
305 
306 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
307 {
308 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
309 
310 	WARN_ON(!mutex_is_locked(&ps->lock));
311 
312 	pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
313 
314 	/*
315 	 * The largest possible initial count is 0; this is equivalent
316 	 * to 216 for binary counting and 104 for BCD counting.
317 	 */
318 	if (val == 0)
319 		val = 0x10000;
320 
321 	ps->channels[channel].count = val;
322 
323 	if (channel != 0) {
324 		ps->channels[channel].count_load_time = ktime_get();
325 		return;
326 	}
327 
328 	/* Two types of timer
329 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
330 	switch (ps->channels[0].mode) {
331 	case 0:
332 	case 1:
333         /* FIXME: enhance mode 4 precision */
334 	case 4:
335 		if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
336 			create_pit_timer(ps, val, 0);
337 		}
338 		break;
339 	case 2:
340 	case 3:
341 		if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
342 			create_pit_timer(ps, val, 1);
343 		}
344 		break;
345 	default:
346 		destroy_pit_timer(&ps->pit_timer);
347 	}
348 }
349 
350 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
351 {
352 	u8 saved_mode;
353 	if (hpet_legacy_start) {
354 		/* save existing mode for later reenablement */
355 		saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
356 		kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
357 		pit_load_count(kvm, channel, val);
358 		kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
359 	} else {
360 		pit_load_count(kvm, channel, val);
361 	}
362 }
363 
364 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
365 {
366 	return container_of(dev, struct kvm_pit, dev);
367 }
368 
369 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
370 {
371 	return container_of(dev, struct kvm_pit, speaker_dev);
372 }
373 
374 static inline int pit_in_range(gpa_t addr)
375 {
376 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
377 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
378 }
379 
380 static int pit_ioport_write(struct kvm_io_device *this,
381 			    gpa_t addr, int len, const void *data)
382 {
383 	struct kvm_pit *pit = dev_to_pit(this);
384 	struct kvm_kpit_state *pit_state = &pit->pit_state;
385 	struct kvm *kvm = pit->kvm;
386 	int channel, access;
387 	struct kvm_kpit_channel_state *s;
388 	u32 val = *(u32 *) data;
389 	if (!pit_in_range(addr))
390 		return -EOPNOTSUPP;
391 
392 	val  &= 0xff;
393 	addr &= KVM_PIT_CHANNEL_MASK;
394 
395 	mutex_lock(&pit_state->lock);
396 
397 	if (val != 0)
398 		pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
399 			  (unsigned int)addr, len, val);
400 
401 	if (addr == 3) {
402 		channel = val >> 6;
403 		if (channel == 3) {
404 			/* Read-Back Command. */
405 			for (channel = 0; channel < 3; channel++) {
406 				s = &pit_state->channels[channel];
407 				if (val & (2 << channel)) {
408 					if (!(val & 0x20))
409 						pit_latch_count(kvm, channel);
410 					if (!(val & 0x10))
411 						pit_latch_status(kvm, channel);
412 				}
413 			}
414 		} else {
415 			/* Select Counter <channel>. */
416 			s = &pit_state->channels[channel];
417 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
418 			if (access == 0) {
419 				pit_latch_count(kvm, channel);
420 			} else {
421 				s->rw_mode = access;
422 				s->read_state = access;
423 				s->write_state = access;
424 				s->mode = (val >> 1) & 7;
425 				if (s->mode > 5)
426 					s->mode -= 4;
427 				s->bcd = val & 1;
428 			}
429 		}
430 	} else {
431 		/* Write Count. */
432 		s = &pit_state->channels[addr];
433 		switch (s->write_state) {
434 		default:
435 		case RW_STATE_LSB:
436 			pit_load_count(kvm, addr, val);
437 			break;
438 		case RW_STATE_MSB:
439 			pit_load_count(kvm, addr, val << 8);
440 			break;
441 		case RW_STATE_WORD0:
442 			s->write_latch = val;
443 			s->write_state = RW_STATE_WORD1;
444 			break;
445 		case RW_STATE_WORD1:
446 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
447 			s->write_state = RW_STATE_WORD0;
448 			break;
449 		}
450 	}
451 
452 	mutex_unlock(&pit_state->lock);
453 	return 0;
454 }
455 
456 static int pit_ioport_read(struct kvm_io_device *this,
457 			   gpa_t addr, int len, void *data)
458 {
459 	struct kvm_pit *pit = dev_to_pit(this);
460 	struct kvm_kpit_state *pit_state = &pit->pit_state;
461 	struct kvm *kvm = pit->kvm;
462 	int ret, count;
463 	struct kvm_kpit_channel_state *s;
464 	if (!pit_in_range(addr))
465 		return -EOPNOTSUPP;
466 
467 	addr &= KVM_PIT_CHANNEL_MASK;
468 	s = &pit_state->channels[addr];
469 
470 	mutex_lock(&pit_state->lock);
471 
472 	if (s->status_latched) {
473 		s->status_latched = 0;
474 		ret = s->status;
475 	} else if (s->count_latched) {
476 		switch (s->count_latched) {
477 		default:
478 		case RW_STATE_LSB:
479 			ret = s->latched_count & 0xff;
480 			s->count_latched = 0;
481 			break;
482 		case RW_STATE_MSB:
483 			ret = s->latched_count >> 8;
484 			s->count_latched = 0;
485 			break;
486 		case RW_STATE_WORD0:
487 			ret = s->latched_count & 0xff;
488 			s->count_latched = RW_STATE_MSB;
489 			break;
490 		}
491 	} else {
492 		switch (s->read_state) {
493 		default:
494 		case RW_STATE_LSB:
495 			count = pit_get_count(kvm, addr);
496 			ret = count & 0xff;
497 			break;
498 		case RW_STATE_MSB:
499 			count = pit_get_count(kvm, addr);
500 			ret = (count >> 8) & 0xff;
501 			break;
502 		case RW_STATE_WORD0:
503 			count = pit_get_count(kvm, addr);
504 			ret = count & 0xff;
505 			s->read_state = RW_STATE_WORD1;
506 			break;
507 		case RW_STATE_WORD1:
508 			count = pit_get_count(kvm, addr);
509 			ret = (count >> 8) & 0xff;
510 			s->read_state = RW_STATE_WORD0;
511 			break;
512 		}
513 	}
514 
515 	if (len > sizeof(ret))
516 		len = sizeof(ret);
517 	memcpy(data, (char *)&ret, len);
518 
519 	mutex_unlock(&pit_state->lock);
520 	return 0;
521 }
522 
523 static int speaker_ioport_write(struct kvm_io_device *this,
524 				gpa_t addr, int len, const void *data)
525 {
526 	struct kvm_pit *pit = speaker_to_pit(this);
527 	struct kvm_kpit_state *pit_state = &pit->pit_state;
528 	struct kvm *kvm = pit->kvm;
529 	u32 val = *(u32 *) data;
530 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
531 		return -EOPNOTSUPP;
532 
533 	mutex_lock(&pit_state->lock);
534 	pit_state->speaker_data_on = (val >> 1) & 1;
535 	pit_set_gate(kvm, 2, val & 1);
536 	mutex_unlock(&pit_state->lock);
537 	return 0;
538 }
539 
540 static int speaker_ioport_read(struct kvm_io_device *this,
541 			       gpa_t addr, int len, void *data)
542 {
543 	struct kvm_pit *pit = speaker_to_pit(this);
544 	struct kvm_kpit_state *pit_state = &pit->pit_state;
545 	struct kvm *kvm = pit->kvm;
546 	unsigned int refresh_clock;
547 	int ret;
548 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
549 		return -EOPNOTSUPP;
550 
551 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
552 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
553 
554 	mutex_lock(&pit_state->lock);
555 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
556 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
557 	if (len > sizeof(ret))
558 		len = sizeof(ret);
559 	memcpy(data, (char *)&ret, len);
560 	mutex_unlock(&pit_state->lock);
561 	return 0;
562 }
563 
564 void kvm_pit_reset(struct kvm_pit *pit)
565 {
566 	int i;
567 	struct kvm_kpit_channel_state *c;
568 
569 	mutex_lock(&pit->pit_state.lock);
570 	pit->pit_state.flags = 0;
571 	for (i = 0; i < 3; i++) {
572 		c = &pit->pit_state.channels[i];
573 		c->mode = 0xff;
574 		c->gate = (i != 2);
575 		pit_load_count(pit->kvm, i, 0);
576 	}
577 	mutex_unlock(&pit->pit_state.lock);
578 
579 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
580 	pit->pit_state.irq_ack = 1;
581 }
582 
583 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
584 {
585 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
586 
587 	if (!mask) {
588 		atomic_set(&pit->pit_state.pit_timer.pending, 0);
589 		pit->pit_state.irq_ack = 1;
590 	}
591 }
592 
593 static const struct kvm_io_device_ops pit_dev_ops = {
594 	.read     = pit_ioport_read,
595 	.write    = pit_ioport_write,
596 };
597 
598 static const struct kvm_io_device_ops speaker_dev_ops = {
599 	.read     = speaker_ioport_read,
600 	.write    = speaker_ioport_write,
601 };
602 
603 /* Caller must have writers lock on slots_lock */
604 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
605 {
606 	struct kvm_pit *pit;
607 	struct kvm_kpit_state *pit_state;
608 	int ret;
609 
610 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
611 	if (!pit)
612 		return NULL;
613 
614 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
615 	if (pit->irq_source_id < 0) {
616 		kfree(pit);
617 		return NULL;
618 	}
619 
620 	mutex_init(&pit->pit_state.lock);
621 	mutex_lock(&pit->pit_state.lock);
622 	spin_lock_init(&pit->pit_state.inject_lock);
623 
624 	kvm->arch.vpit = pit;
625 	pit->kvm = kvm;
626 
627 	pit_state = &pit->pit_state;
628 	pit_state->pit = pit;
629 	hrtimer_init(&pit_state->pit_timer.timer,
630 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
631 	pit_state->irq_ack_notifier.gsi = 0;
632 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
633 	kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
634 	pit_state->pit_timer.reinject = true;
635 	mutex_unlock(&pit->pit_state.lock);
636 
637 	kvm_pit_reset(pit);
638 
639 	pit->mask_notifier.func = pit_mask_notifer;
640 	kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
641 
642 	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
643 	ret = __kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
644 	if (ret < 0)
645 		goto fail;
646 
647 	if (flags & KVM_PIT_SPEAKER_DUMMY) {
648 		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
649 		ret = __kvm_io_bus_register_dev(&kvm->pio_bus,
650 						&pit->speaker_dev);
651 		if (ret < 0)
652 			goto fail_unregister;
653 	}
654 
655 	return pit;
656 
657 fail_unregister:
658 	__kvm_io_bus_unregister_dev(&kvm->pio_bus, &pit->dev);
659 
660 fail:
661 	if (pit->irq_source_id >= 0)
662 		kvm_free_irq_source_id(kvm, pit->irq_source_id);
663 
664 	kfree(pit);
665 	return NULL;
666 }
667 
668 void kvm_free_pit(struct kvm *kvm)
669 {
670 	struct hrtimer *timer;
671 
672 	if (kvm->arch.vpit) {
673 		kvm_unregister_irq_mask_notifier(kvm, 0,
674 					       &kvm->arch.vpit->mask_notifier);
675 		kvm_unregister_irq_ack_notifier(kvm,
676 				&kvm->arch.vpit->pit_state.irq_ack_notifier);
677 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
678 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
679 		hrtimer_cancel(timer);
680 		kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
681 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
682 		kfree(kvm->arch.vpit);
683 	}
684 }
685 
686 static void __inject_pit_timer_intr(struct kvm *kvm)
687 {
688 	struct kvm_vcpu *vcpu;
689 	int i;
690 
691 	mutex_lock(&kvm->irq_lock);
692 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
693 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
694 	mutex_unlock(&kvm->irq_lock);
695 
696 	/*
697 	 * Provides NMI watchdog support via Virtual Wire mode.
698 	 * The route is: PIT -> PIC -> LVT0 in NMI mode.
699 	 *
700 	 * Note: Our Virtual Wire implementation is simplified, only
701 	 * propagating PIT interrupts to all VCPUs when they have set
702 	 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
703 	 * VCPU0, and only if its LVT0 is in EXTINT mode.
704 	 */
705 	if (kvm->arch.vapics_in_nmi_mode > 0)
706 		kvm_for_each_vcpu(i, vcpu, kvm)
707 			kvm_apic_nmi_wd_deliver(vcpu);
708 }
709 
710 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
711 {
712 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
713 	struct kvm *kvm = vcpu->kvm;
714 	struct kvm_kpit_state *ps;
715 
716 	if (pit) {
717 		int inject = 0;
718 		ps = &pit->pit_state;
719 
720 		/* Try to inject pending interrupts when
721 		 * last one has been acked.
722 		 */
723 		spin_lock(&ps->inject_lock);
724 		if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
725 			ps->irq_ack = 0;
726 			inject = 1;
727 		}
728 		spin_unlock(&ps->inject_lock);
729 		if (inject)
730 			__inject_pit_timer_intr(kvm);
731 	}
732 }
733