xref: /openbmc/linux/arch/x86/kvm/i8254.c (revision d87c25e8)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32 
33 #define pr_fmt(fmt) "pit: " fmt
34 
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37 
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42 
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48 
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53 
54 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
55 {
56 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
57 
58 	switch (c->mode) {
59 	default:
60 	case 0:
61 	case 4:
62 		/* XXX: just disable/enable counting */
63 		break;
64 	case 1:
65 	case 2:
66 	case 3:
67 	case 5:
68 		/* Restart counting on rising edge. */
69 		if (c->gate < val)
70 			c->count_load_time = ktime_get();
71 		break;
72 	}
73 
74 	c->gate = val;
75 }
76 
77 static int pit_get_gate(struct kvm_pit *pit, int channel)
78 {
79 	return pit->pit_state.channels[channel].gate;
80 }
81 
82 static s64 __kpit_elapsed(struct kvm_pit *pit)
83 {
84 	s64 elapsed;
85 	ktime_t remaining;
86 	struct kvm_kpit_state *ps = &pit->pit_state;
87 
88 	if (!ps->period)
89 		return 0;
90 
91 	/*
92 	 * The Counter does not stop when it reaches zero. In
93 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94 	 * the highest count, either FFFF hex for binary counting
95 	 * or 9999 for BCD counting, and continues counting.
96 	 * Modes 2 and 3 are periodic; the Counter reloads
97 	 * itself with the initial count and continues counting
98 	 * from there.
99 	 */
100 	remaining = hrtimer_get_remaining(&ps->timer);
101 	elapsed = ps->period - ktime_to_ns(remaining);
102 
103 	return elapsed;
104 }
105 
106 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
107 			int channel)
108 {
109 	if (channel == 0)
110 		return __kpit_elapsed(pit);
111 
112 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
113 }
114 
115 static int pit_get_count(struct kvm_pit *pit, int channel)
116 {
117 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
118 	s64 d, t;
119 	int counter;
120 
121 	t = kpit_elapsed(pit, c, channel);
122 	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
123 
124 	switch (c->mode) {
125 	case 0:
126 	case 1:
127 	case 4:
128 	case 5:
129 		counter = (c->count - d) & 0xffff;
130 		break;
131 	case 3:
132 		/* XXX: may be incorrect for odd counts */
133 		counter = c->count - (mod_64((2 * d), c->count));
134 		break;
135 	default:
136 		counter = c->count - mod_64(d, c->count);
137 		break;
138 	}
139 	return counter;
140 }
141 
142 static int pit_get_out(struct kvm_pit *pit, int channel)
143 {
144 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
145 	s64 d, t;
146 	int out;
147 
148 	t = kpit_elapsed(pit, c, channel);
149 	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150 
151 	switch (c->mode) {
152 	default:
153 	case 0:
154 		out = (d >= c->count);
155 		break;
156 	case 1:
157 		out = (d < c->count);
158 		break;
159 	case 2:
160 		out = ((mod_64(d, c->count) == 0) && (d != 0));
161 		break;
162 	case 3:
163 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
164 		break;
165 	case 4:
166 	case 5:
167 		out = (d == c->count);
168 		break;
169 	}
170 
171 	return out;
172 }
173 
174 static void pit_latch_count(struct kvm_pit *pit, int channel)
175 {
176 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
177 
178 	if (!c->count_latched) {
179 		c->latched_count = pit_get_count(pit, channel);
180 		c->count_latched = c->rw_mode;
181 	}
182 }
183 
184 static void pit_latch_status(struct kvm_pit *pit, int channel)
185 {
186 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
187 
188 	if (!c->status_latched) {
189 		/* TODO: Return NULL COUNT (bit 6). */
190 		c->status = ((pit_get_out(pit, channel) << 7) |
191 				(c->rw_mode << 4) |
192 				(c->mode << 1) |
193 				c->bcd);
194 		c->status_latched = 1;
195 	}
196 }
197 
198 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
199 {
200 	return container_of(ps, struct kvm_pit, pit_state);
201 }
202 
203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
204 {
205 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
206 						 irq_ack_notifier);
207 	struct kvm_pit *pit = pit_state_to_pit(ps);
208 
209 	atomic_set(&ps->irq_ack, 1);
210 	/* irq_ack should be set before pending is read.  Order accesses with
211 	 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
212 	 */
213 	smp_mb();
214 	if (atomic_dec_if_positive(&ps->pending) > 0)
215 		kthread_queue_work(pit->worker, &pit->expired);
216 }
217 
218 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
219 {
220 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221 	struct hrtimer *timer;
222 
223 	/* Somewhat arbitrarily make vcpu0 the owner of the PIT. */
224 	if (vcpu->vcpu_id || !pit)
225 		return;
226 
227 	timer = &pit->pit_state.timer;
228 	mutex_lock(&pit->pit_state.lock);
229 	if (hrtimer_cancel(timer))
230 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
231 	mutex_unlock(&pit->pit_state.lock);
232 }
233 
234 static void destroy_pit_timer(struct kvm_pit *pit)
235 {
236 	hrtimer_cancel(&pit->pit_state.timer);
237 	kthread_flush_work(&pit->expired);
238 }
239 
240 static void pit_do_work(struct kthread_work *work)
241 {
242 	struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
243 	struct kvm *kvm = pit->kvm;
244 	struct kvm_vcpu *vcpu;
245 	unsigned long i;
246 	struct kvm_kpit_state *ps = &pit->pit_state;
247 
248 	if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
249 		return;
250 
251 	kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
252 	kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
253 
254 	/*
255 	 * Provides NMI watchdog support via Virtual Wire mode.
256 	 * The route is: PIT -> LVT0 in NMI mode.
257 	 *
258 	 * Note: Our Virtual Wire implementation does not follow
259 	 * the MP specification.  We propagate a PIT interrupt to all
260 	 * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
261 	 * also be simultaneously delivered through PIC and IOAPIC.
262 	 */
263 	if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
264 		kvm_for_each_vcpu(i, vcpu, kvm)
265 			kvm_apic_nmi_wd_deliver(vcpu);
266 }
267 
268 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
269 {
270 	struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
271 	struct kvm_pit *pt = pit_state_to_pit(ps);
272 
273 	if (atomic_read(&ps->reinject))
274 		atomic_inc(&ps->pending);
275 
276 	kthread_queue_work(pt->worker, &pt->expired);
277 
278 	if (ps->is_periodic) {
279 		hrtimer_add_expires_ns(&ps->timer, ps->period);
280 		return HRTIMER_RESTART;
281 	} else
282 		return HRTIMER_NORESTART;
283 }
284 
285 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
286 {
287 	atomic_set(&pit->pit_state.pending, 0);
288 	atomic_set(&pit->pit_state.irq_ack, 1);
289 }
290 
291 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
292 {
293 	struct kvm_kpit_state *ps = &pit->pit_state;
294 	struct kvm *kvm = pit->kvm;
295 
296 	if (atomic_read(&ps->reinject) == reinject)
297 		return;
298 
299 	/*
300 	 * AMD SVM AVIC accelerates EOI write and does not trap.
301 	 * This cause in-kernel PIT re-inject mode to fail
302 	 * since it checks ps->irq_ack before kvm_set_irq()
303 	 * and relies on the ack notifier to timely queue
304 	 * the pt->worker work iterm and reinject the missed tick.
305 	 * So, deactivate APICv when PIT is in reinject mode.
306 	 */
307 	if (reinject) {
308 		kvm_request_apicv_update(kvm, false,
309 					 APICV_INHIBIT_REASON_PIT_REINJ);
310 		/* The initial state is preserved while ps->reinject == 0. */
311 		kvm_pit_reset_reinject(pit);
312 		kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
313 		kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
314 	} else {
315 		kvm_request_apicv_update(kvm, true,
316 					 APICV_INHIBIT_REASON_PIT_REINJ);
317 		kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
318 		kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
319 	}
320 
321 	atomic_set(&ps->reinject, reinject);
322 }
323 
324 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
325 {
326 	struct kvm_kpit_state *ps = &pit->pit_state;
327 	struct kvm *kvm = pit->kvm;
328 	s64 interval;
329 
330 	if (!ioapic_in_kernel(kvm) ||
331 	    ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
332 		return;
333 
334 	interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
335 
336 	pr_debug("create pit timer, interval is %llu nsec\n", interval);
337 
338 	/* TODO The new value only affected after the retriggered */
339 	hrtimer_cancel(&ps->timer);
340 	kthread_flush_work(&pit->expired);
341 	ps->period = interval;
342 	ps->is_periodic = is_period;
343 
344 	kvm_pit_reset_reinject(pit);
345 
346 	/*
347 	 * Do not allow the guest to program periodic timers with small
348 	 * interval, since the hrtimers are not throttled by the host
349 	 * scheduler.
350 	 */
351 	if (ps->is_periodic) {
352 		s64 min_period = min_timer_period_us * 1000LL;
353 
354 		if (ps->period < min_period) {
355 			pr_info_ratelimited(
356 			    "kvm: requested %lld ns "
357 			    "i8254 timer period limited to %lld ns\n",
358 			    ps->period, min_period);
359 			ps->period = min_period;
360 		}
361 	}
362 
363 	hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
364 		      HRTIMER_MODE_ABS);
365 }
366 
367 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
368 {
369 	struct kvm_kpit_state *ps = &pit->pit_state;
370 
371 	pr_debug("load_count val is %u, channel is %d\n", val, channel);
372 
373 	/*
374 	 * The largest possible initial count is 0; this is equivalent
375 	 * to 216 for binary counting and 104 for BCD counting.
376 	 */
377 	if (val == 0)
378 		val = 0x10000;
379 
380 	ps->channels[channel].count = val;
381 
382 	if (channel != 0) {
383 		ps->channels[channel].count_load_time = ktime_get();
384 		return;
385 	}
386 
387 	/* Two types of timer
388 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
389 	switch (ps->channels[0].mode) {
390 	case 0:
391 	case 1:
392         /* FIXME: enhance mode 4 precision */
393 	case 4:
394 		create_pit_timer(pit, val, 0);
395 		break;
396 	case 2:
397 	case 3:
398 		create_pit_timer(pit, val, 1);
399 		break;
400 	default:
401 		destroy_pit_timer(pit);
402 	}
403 }
404 
405 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
406 		int hpet_legacy_start)
407 {
408 	u8 saved_mode;
409 
410 	WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
411 
412 	if (hpet_legacy_start) {
413 		/* save existing mode for later reenablement */
414 		WARN_ON(channel != 0);
415 		saved_mode = pit->pit_state.channels[0].mode;
416 		pit->pit_state.channels[0].mode = 0xff; /* disable timer */
417 		pit_load_count(pit, channel, val);
418 		pit->pit_state.channels[0].mode = saved_mode;
419 	} else {
420 		pit_load_count(pit, channel, val);
421 	}
422 }
423 
424 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
425 {
426 	return container_of(dev, struct kvm_pit, dev);
427 }
428 
429 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
430 {
431 	return container_of(dev, struct kvm_pit, speaker_dev);
432 }
433 
434 static inline int pit_in_range(gpa_t addr)
435 {
436 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
437 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
438 }
439 
440 static int pit_ioport_write(struct kvm_vcpu *vcpu,
441 				struct kvm_io_device *this,
442 			    gpa_t addr, int len, const void *data)
443 {
444 	struct kvm_pit *pit = dev_to_pit(this);
445 	struct kvm_kpit_state *pit_state = &pit->pit_state;
446 	int channel, access;
447 	struct kvm_kpit_channel_state *s;
448 	u32 val = *(u32 *) data;
449 	if (!pit_in_range(addr))
450 		return -EOPNOTSUPP;
451 
452 	val  &= 0xff;
453 	addr &= KVM_PIT_CHANNEL_MASK;
454 
455 	mutex_lock(&pit_state->lock);
456 
457 	if (val != 0)
458 		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
459 			 (unsigned int)addr, len, val);
460 
461 	if (addr == 3) {
462 		channel = val >> 6;
463 		if (channel == 3) {
464 			/* Read-Back Command. */
465 			for (channel = 0; channel < 3; channel++) {
466 				if (val & (2 << channel)) {
467 					if (!(val & 0x20))
468 						pit_latch_count(pit, channel);
469 					if (!(val & 0x10))
470 						pit_latch_status(pit, channel);
471 				}
472 			}
473 		} else {
474 			/* Select Counter <channel>. */
475 			s = &pit_state->channels[channel];
476 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
477 			if (access == 0) {
478 				pit_latch_count(pit, channel);
479 			} else {
480 				s->rw_mode = access;
481 				s->read_state = access;
482 				s->write_state = access;
483 				s->mode = (val >> 1) & 7;
484 				if (s->mode > 5)
485 					s->mode -= 4;
486 				s->bcd = val & 1;
487 			}
488 		}
489 	} else {
490 		/* Write Count. */
491 		s = &pit_state->channels[addr];
492 		switch (s->write_state) {
493 		default:
494 		case RW_STATE_LSB:
495 			pit_load_count(pit, addr, val);
496 			break;
497 		case RW_STATE_MSB:
498 			pit_load_count(pit, addr, val << 8);
499 			break;
500 		case RW_STATE_WORD0:
501 			s->write_latch = val;
502 			s->write_state = RW_STATE_WORD1;
503 			break;
504 		case RW_STATE_WORD1:
505 			pit_load_count(pit, addr, s->write_latch | (val << 8));
506 			s->write_state = RW_STATE_WORD0;
507 			break;
508 		}
509 	}
510 
511 	mutex_unlock(&pit_state->lock);
512 	return 0;
513 }
514 
515 static int pit_ioport_read(struct kvm_vcpu *vcpu,
516 			   struct kvm_io_device *this,
517 			   gpa_t addr, int len, void *data)
518 {
519 	struct kvm_pit *pit = dev_to_pit(this);
520 	struct kvm_kpit_state *pit_state = &pit->pit_state;
521 	int ret, count;
522 	struct kvm_kpit_channel_state *s;
523 	if (!pit_in_range(addr))
524 		return -EOPNOTSUPP;
525 
526 	addr &= KVM_PIT_CHANNEL_MASK;
527 	if (addr == 3)
528 		return 0;
529 
530 	s = &pit_state->channels[addr];
531 
532 	mutex_lock(&pit_state->lock);
533 
534 	if (s->status_latched) {
535 		s->status_latched = 0;
536 		ret = s->status;
537 	} else if (s->count_latched) {
538 		switch (s->count_latched) {
539 		default:
540 		case RW_STATE_LSB:
541 			ret = s->latched_count & 0xff;
542 			s->count_latched = 0;
543 			break;
544 		case RW_STATE_MSB:
545 			ret = s->latched_count >> 8;
546 			s->count_latched = 0;
547 			break;
548 		case RW_STATE_WORD0:
549 			ret = s->latched_count & 0xff;
550 			s->count_latched = RW_STATE_MSB;
551 			break;
552 		}
553 	} else {
554 		switch (s->read_state) {
555 		default:
556 		case RW_STATE_LSB:
557 			count = pit_get_count(pit, addr);
558 			ret = count & 0xff;
559 			break;
560 		case RW_STATE_MSB:
561 			count = pit_get_count(pit, addr);
562 			ret = (count >> 8) & 0xff;
563 			break;
564 		case RW_STATE_WORD0:
565 			count = pit_get_count(pit, addr);
566 			ret = count & 0xff;
567 			s->read_state = RW_STATE_WORD1;
568 			break;
569 		case RW_STATE_WORD1:
570 			count = pit_get_count(pit, addr);
571 			ret = (count >> 8) & 0xff;
572 			s->read_state = RW_STATE_WORD0;
573 			break;
574 		}
575 	}
576 
577 	if (len > sizeof(ret))
578 		len = sizeof(ret);
579 	memcpy(data, (char *)&ret, len);
580 
581 	mutex_unlock(&pit_state->lock);
582 	return 0;
583 }
584 
585 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
586 				struct kvm_io_device *this,
587 				gpa_t addr, int len, const void *data)
588 {
589 	struct kvm_pit *pit = speaker_to_pit(this);
590 	struct kvm_kpit_state *pit_state = &pit->pit_state;
591 	u32 val = *(u32 *) data;
592 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
593 		return -EOPNOTSUPP;
594 
595 	mutex_lock(&pit_state->lock);
596 	pit_state->speaker_data_on = (val >> 1) & 1;
597 	pit_set_gate(pit, 2, val & 1);
598 	mutex_unlock(&pit_state->lock);
599 	return 0;
600 }
601 
602 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
603 				   struct kvm_io_device *this,
604 				   gpa_t addr, int len, void *data)
605 {
606 	struct kvm_pit *pit = speaker_to_pit(this);
607 	struct kvm_kpit_state *pit_state = &pit->pit_state;
608 	unsigned int refresh_clock;
609 	int ret;
610 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
611 		return -EOPNOTSUPP;
612 
613 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
614 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
615 
616 	mutex_lock(&pit_state->lock);
617 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
618 		(pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
619 	if (len > sizeof(ret))
620 		len = sizeof(ret);
621 	memcpy(data, (char *)&ret, len);
622 	mutex_unlock(&pit_state->lock);
623 	return 0;
624 }
625 
626 static void kvm_pit_reset(struct kvm_pit *pit)
627 {
628 	int i;
629 	struct kvm_kpit_channel_state *c;
630 
631 	pit->pit_state.flags = 0;
632 	for (i = 0; i < 3; i++) {
633 		c = &pit->pit_state.channels[i];
634 		c->mode = 0xff;
635 		c->gate = (i != 2);
636 		pit_load_count(pit, i, 0);
637 	}
638 
639 	kvm_pit_reset_reinject(pit);
640 }
641 
642 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
643 {
644 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
645 
646 	if (!mask)
647 		kvm_pit_reset_reinject(pit);
648 }
649 
650 static const struct kvm_io_device_ops pit_dev_ops = {
651 	.read     = pit_ioport_read,
652 	.write    = pit_ioport_write,
653 };
654 
655 static const struct kvm_io_device_ops speaker_dev_ops = {
656 	.read     = speaker_ioport_read,
657 	.write    = speaker_ioport_write,
658 };
659 
660 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
661 {
662 	struct kvm_pit *pit;
663 	struct kvm_kpit_state *pit_state;
664 	struct pid *pid;
665 	pid_t pid_nr;
666 	int ret;
667 
668 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
669 	if (!pit)
670 		return NULL;
671 
672 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
673 	if (pit->irq_source_id < 0)
674 		goto fail_request;
675 
676 	mutex_init(&pit->pit_state.lock);
677 
678 	pid = get_pid(task_tgid(current));
679 	pid_nr = pid_vnr(pid);
680 	put_pid(pid);
681 
682 	pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
683 	if (IS_ERR(pit->worker))
684 		goto fail_kthread;
685 
686 	kthread_init_work(&pit->expired, pit_do_work);
687 
688 	pit->kvm = kvm;
689 
690 	pit_state = &pit->pit_state;
691 	hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
692 	pit_state->timer.function = pit_timer_fn;
693 
694 	pit_state->irq_ack_notifier.gsi = 0;
695 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
696 	pit->mask_notifier.func = pit_mask_notifer;
697 
698 	kvm_pit_reset(pit);
699 
700 	kvm_pit_set_reinject(pit, true);
701 
702 	mutex_lock(&kvm->slots_lock);
703 	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
704 	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
705 				      KVM_PIT_MEM_LENGTH, &pit->dev);
706 	if (ret < 0)
707 		goto fail_register_pit;
708 
709 	if (flags & KVM_PIT_SPEAKER_DUMMY) {
710 		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
711 		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
712 					      KVM_SPEAKER_BASE_ADDRESS, 4,
713 					      &pit->speaker_dev);
714 		if (ret < 0)
715 			goto fail_register_speaker;
716 	}
717 	mutex_unlock(&kvm->slots_lock);
718 
719 	return pit;
720 
721 fail_register_speaker:
722 	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
723 fail_register_pit:
724 	mutex_unlock(&kvm->slots_lock);
725 	kvm_pit_set_reinject(pit, false);
726 	kthread_destroy_worker(pit->worker);
727 fail_kthread:
728 	kvm_free_irq_source_id(kvm, pit->irq_source_id);
729 fail_request:
730 	kfree(pit);
731 	return NULL;
732 }
733 
734 void kvm_free_pit(struct kvm *kvm)
735 {
736 	struct kvm_pit *pit = kvm->arch.vpit;
737 
738 	if (pit) {
739 		mutex_lock(&kvm->slots_lock);
740 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
741 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
742 		mutex_unlock(&kvm->slots_lock);
743 		kvm_pit_set_reinject(pit, false);
744 		hrtimer_cancel(&pit->pit_state.timer);
745 		kthread_destroy_worker(pit->worker);
746 		kvm_free_irq_source_id(kvm, pit->irq_source_id);
747 		kfree(pit);
748 	}
749 }
750