xref: /openbmc/linux/arch/x86/kvm/i8254.c (revision a09d2831)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31 
32 #define pr_fmt(fmt) "pit: " fmt
33 
34 #include <linux/kvm_host.h>
35 
36 #include "irq.h"
37 #include "i8254.h"
38 
39 #ifndef CONFIG_X86_64
40 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
41 #else
42 #define mod_64(x, y) ((x) % (y))
43 #endif
44 
45 #define RW_STATE_LSB 1
46 #define RW_STATE_MSB 2
47 #define RW_STATE_WORD0 3
48 #define RW_STATE_WORD1 4
49 
50 /* Compute with 96 bit intermediate result: (a*b)/c */
51 static u64 muldiv64(u64 a, u32 b, u32 c)
52 {
53 	union {
54 		u64 ll;
55 		struct {
56 			u32 low, high;
57 		} l;
58 	} u, res;
59 	u64 rl, rh;
60 
61 	u.ll = a;
62 	rl = (u64)u.l.low * (u64)b;
63 	rh = (u64)u.l.high * (u64)b;
64 	rh += (rl >> 32);
65 	res.l.high = div64_u64(rh, c);
66 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
67 	return res.ll;
68 }
69 
70 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
71 {
72 	struct kvm_kpit_channel_state *c =
73 		&kvm->arch.vpit->pit_state.channels[channel];
74 
75 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
76 
77 	switch (c->mode) {
78 	default:
79 	case 0:
80 	case 4:
81 		/* XXX: just disable/enable counting */
82 		break;
83 	case 1:
84 	case 2:
85 	case 3:
86 	case 5:
87 		/* Restart counting on rising edge. */
88 		if (c->gate < val)
89 			c->count_load_time = ktime_get();
90 		break;
91 	}
92 
93 	c->gate = val;
94 }
95 
96 static int pit_get_gate(struct kvm *kvm, int channel)
97 {
98 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
99 
100 	return kvm->arch.vpit->pit_state.channels[channel].gate;
101 }
102 
103 static s64 __kpit_elapsed(struct kvm *kvm)
104 {
105 	s64 elapsed;
106 	ktime_t remaining;
107 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
108 
109 	if (!ps->pit_timer.period)
110 		return 0;
111 
112 	/*
113 	 * The Counter does not stop when it reaches zero. In
114 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
115 	 * the highest count, either FFFF hex for binary counting
116 	 * or 9999 for BCD counting, and continues counting.
117 	 * Modes 2 and 3 are periodic; the Counter reloads
118 	 * itself with the initial count and continues counting
119 	 * from there.
120 	 */
121 	remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
122 	elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
123 	elapsed = mod_64(elapsed, ps->pit_timer.period);
124 
125 	return elapsed;
126 }
127 
128 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
129 			int channel)
130 {
131 	if (channel == 0)
132 		return __kpit_elapsed(kvm);
133 
134 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
135 }
136 
137 static int pit_get_count(struct kvm *kvm, int channel)
138 {
139 	struct kvm_kpit_channel_state *c =
140 		&kvm->arch.vpit->pit_state.channels[channel];
141 	s64 d, t;
142 	int counter;
143 
144 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
145 
146 	t = kpit_elapsed(kvm, c, channel);
147 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
148 
149 	switch (c->mode) {
150 	case 0:
151 	case 1:
152 	case 4:
153 	case 5:
154 		counter = (c->count - d) & 0xffff;
155 		break;
156 	case 3:
157 		/* XXX: may be incorrect for odd counts */
158 		counter = c->count - (mod_64((2 * d), c->count));
159 		break;
160 	default:
161 		counter = c->count - mod_64(d, c->count);
162 		break;
163 	}
164 	return counter;
165 }
166 
167 static int pit_get_out(struct kvm *kvm, int channel)
168 {
169 	struct kvm_kpit_channel_state *c =
170 		&kvm->arch.vpit->pit_state.channels[channel];
171 	s64 d, t;
172 	int out;
173 
174 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
175 
176 	t = kpit_elapsed(kvm, c, channel);
177 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
178 
179 	switch (c->mode) {
180 	default:
181 	case 0:
182 		out = (d >= c->count);
183 		break;
184 	case 1:
185 		out = (d < c->count);
186 		break;
187 	case 2:
188 		out = ((mod_64(d, c->count) == 0) && (d != 0));
189 		break;
190 	case 3:
191 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
192 		break;
193 	case 4:
194 	case 5:
195 		out = (d == c->count);
196 		break;
197 	}
198 
199 	return out;
200 }
201 
202 static void pit_latch_count(struct kvm *kvm, int channel)
203 {
204 	struct kvm_kpit_channel_state *c =
205 		&kvm->arch.vpit->pit_state.channels[channel];
206 
207 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
208 
209 	if (!c->count_latched) {
210 		c->latched_count = pit_get_count(kvm, channel);
211 		c->count_latched = c->rw_mode;
212 	}
213 }
214 
215 static void pit_latch_status(struct kvm *kvm, int channel)
216 {
217 	struct kvm_kpit_channel_state *c =
218 		&kvm->arch.vpit->pit_state.channels[channel];
219 
220 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
221 
222 	if (!c->status_latched) {
223 		/* TODO: Return NULL COUNT (bit 6). */
224 		c->status = ((pit_get_out(kvm, channel) << 7) |
225 				(c->rw_mode << 4) |
226 				(c->mode << 1) |
227 				c->bcd);
228 		c->status_latched = 1;
229 	}
230 }
231 
232 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
233 {
234 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
235 
236 	if (pit && kvm_vcpu_is_bsp(vcpu) && pit->pit_state.irq_ack)
237 		return atomic_read(&pit->pit_state.pit_timer.pending);
238 	return 0;
239 }
240 
241 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
242 {
243 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
244 						 irq_ack_notifier);
245 	spin_lock(&ps->inject_lock);
246 	if (atomic_dec_return(&ps->pit_timer.pending) < 0)
247 		atomic_inc(&ps->pit_timer.pending);
248 	ps->irq_ack = 1;
249 	spin_unlock(&ps->inject_lock);
250 }
251 
252 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
253 {
254 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
255 	struct hrtimer *timer;
256 
257 	if (!kvm_vcpu_is_bsp(vcpu) || !pit)
258 		return;
259 
260 	timer = &pit->pit_state.pit_timer.timer;
261 	if (hrtimer_cancel(timer))
262 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
263 }
264 
265 static void destroy_pit_timer(struct kvm_timer *pt)
266 {
267 	pr_debug("execute del timer!\n");
268 	hrtimer_cancel(&pt->timer);
269 }
270 
271 static bool kpit_is_periodic(struct kvm_timer *ktimer)
272 {
273 	struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
274 						 pit_timer);
275 	return ps->is_periodic;
276 }
277 
278 static struct kvm_timer_ops kpit_ops = {
279 	.is_periodic = kpit_is_periodic,
280 };
281 
282 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
283 {
284 	struct kvm_timer *pt = &ps->pit_timer;
285 	s64 interval;
286 
287 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
288 
289 	pr_debug("create pit timer, interval is %llu nsec\n", interval);
290 
291 	/* TODO The new value only affected after the retriggered */
292 	hrtimer_cancel(&pt->timer);
293 	pt->period = interval;
294 	ps->is_periodic = is_period;
295 
296 	pt->timer.function = kvm_timer_fn;
297 	pt->t_ops = &kpit_ops;
298 	pt->kvm = ps->pit->kvm;
299 	pt->vcpu = pt->kvm->bsp_vcpu;
300 
301 	atomic_set(&pt->pending, 0);
302 	ps->irq_ack = 1;
303 
304 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
305 		      HRTIMER_MODE_ABS);
306 }
307 
308 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
309 {
310 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
311 
312 	WARN_ON(!mutex_is_locked(&ps->lock));
313 
314 	pr_debug("load_count val is %d, channel is %d\n", val, channel);
315 
316 	/*
317 	 * The largest possible initial count is 0; this is equivalent
318 	 * to 216 for binary counting and 104 for BCD counting.
319 	 */
320 	if (val == 0)
321 		val = 0x10000;
322 
323 	ps->channels[channel].count = val;
324 
325 	if (channel != 0) {
326 		ps->channels[channel].count_load_time = ktime_get();
327 		return;
328 	}
329 
330 	/* Two types of timer
331 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
332 	switch (ps->channels[0].mode) {
333 	case 0:
334 	case 1:
335         /* FIXME: enhance mode 4 precision */
336 	case 4:
337 		if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)) {
338 			create_pit_timer(ps, val, 0);
339 		}
340 		break;
341 	case 2:
342 	case 3:
343 		if (!(ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)){
344 			create_pit_timer(ps, val, 1);
345 		}
346 		break;
347 	default:
348 		destroy_pit_timer(&ps->pit_timer);
349 	}
350 }
351 
352 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
353 {
354 	u8 saved_mode;
355 	if (hpet_legacy_start) {
356 		/* save existing mode for later reenablement */
357 		saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
358 		kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
359 		pit_load_count(kvm, channel, val);
360 		kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
361 	} else {
362 		pit_load_count(kvm, channel, val);
363 	}
364 }
365 
366 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
367 {
368 	return container_of(dev, struct kvm_pit, dev);
369 }
370 
371 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
372 {
373 	return container_of(dev, struct kvm_pit, speaker_dev);
374 }
375 
376 static inline int pit_in_range(gpa_t addr)
377 {
378 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
379 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
380 }
381 
382 static int pit_ioport_write(struct kvm_io_device *this,
383 			    gpa_t addr, int len, const void *data)
384 {
385 	struct kvm_pit *pit = dev_to_pit(this);
386 	struct kvm_kpit_state *pit_state = &pit->pit_state;
387 	struct kvm *kvm = pit->kvm;
388 	int channel, access;
389 	struct kvm_kpit_channel_state *s;
390 	u32 val = *(u32 *) data;
391 	if (!pit_in_range(addr))
392 		return -EOPNOTSUPP;
393 
394 	val  &= 0xff;
395 	addr &= KVM_PIT_CHANNEL_MASK;
396 
397 	mutex_lock(&pit_state->lock);
398 
399 	if (val != 0)
400 		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
401 			 (unsigned int)addr, len, val);
402 
403 	if (addr == 3) {
404 		channel = val >> 6;
405 		if (channel == 3) {
406 			/* Read-Back Command. */
407 			for (channel = 0; channel < 3; channel++) {
408 				s = &pit_state->channels[channel];
409 				if (val & (2 << channel)) {
410 					if (!(val & 0x20))
411 						pit_latch_count(kvm, channel);
412 					if (!(val & 0x10))
413 						pit_latch_status(kvm, channel);
414 				}
415 			}
416 		} else {
417 			/* Select Counter <channel>. */
418 			s = &pit_state->channels[channel];
419 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
420 			if (access == 0) {
421 				pit_latch_count(kvm, channel);
422 			} else {
423 				s->rw_mode = access;
424 				s->read_state = access;
425 				s->write_state = access;
426 				s->mode = (val >> 1) & 7;
427 				if (s->mode > 5)
428 					s->mode -= 4;
429 				s->bcd = val & 1;
430 			}
431 		}
432 	} else {
433 		/* Write Count. */
434 		s = &pit_state->channels[addr];
435 		switch (s->write_state) {
436 		default:
437 		case RW_STATE_LSB:
438 			pit_load_count(kvm, addr, val);
439 			break;
440 		case RW_STATE_MSB:
441 			pit_load_count(kvm, addr, val << 8);
442 			break;
443 		case RW_STATE_WORD0:
444 			s->write_latch = val;
445 			s->write_state = RW_STATE_WORD1;
446 			break;
447 		case RW_STATE_WORD1:
448 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
449 			s->write_state = RW_STATE_WORD0;
450 			break;
451 		}
452 	}
453 
454 	mutex_unlock(&pit_state->lock);
455 	return 0;
456 }
457 
458 static int pit_ioport_read(struct kvm_io_device *this,
459 			   gpa_t addr, int len, void *data)
460 {
461 	struct kvm_pit *pit = dev_to_pit(this);
462 	struct kvm_kpit_state *pit_state = &pit->pit_state;
463 	struct kvm *kvm = pit->kvm;
464 	int ret, count;
465 	struct kvm_kpit_channel_state *s;
466 	if (!pit_in_range(addr))
467 		return -EOPNOTSUPP;
468 
469 	addr &= KVM_PIT_CHANNEL_MASK;
470 	s = &pit_state->channels[addr];
471 
472 	mutex_lock(&pit_state->lock);
473 
474 	if (s->status_latched) {
475 		s->status_latched = 0;
476 		ret = s->status;
477 	} else if (s->count_latched) {
478 		switch (s->count_latched) {
479 		default:
480 		case RW_STATE_LSB:
481 			ret = s->latched_count & 0xff;
482 			s->count_latched = 0;
483 			break;
484 		case RW_STATE_MSB:
485 			ret = s->latched_count >> 8;
486 			s->count_latched = 0;
487 			break;
488 		case RW_STATE_WORD0:
489 			ret = s->latched_count & 0xff;
490 			s->count_latched = RW_STATE_MSB;
491 			break;
492 		}
493 	} else {
494 		switch (s->read_state) {
495 		default:
496 		case RW_STATE_LSB:
497 			count = pit_get_count(kvm, addr);
498 			ret = count & 0xff;
499 			break;
500 		case RW_STATE_MSB:
501 			count = pit_get_count(kvm, addr);
502 			ret = (count >> 8) & 0xff;
503 			break;
504 		case RW_STATE_WORD0:
505 			count = pit_get_count(kvm, addr);
506 			ret = count & 0xff;
507 			s->read_state = RW_STATE_WORD1;
508 			break;
509 		case RW_STATE_WORD1:
510 			count = pit_get_count(kvm, addr);
511 			ret = (count >> 8) & 0xff;
512 			s->read_state = RW_STATE_WORD0;
513 			break;
514 		}
515 	}
516 
517 	if (len > sizeof(ret))
518 		len = sizeof(ret);
519 	memcpy(data, (char *)&ret, len);
520 
521 	mutex_unlock(&pit_state->lock);
522 	return 0;
523 }
524 
525 static int speaker_ioport_write(struct kvm_io_device *this,
526 				gpa_t addr, int len, const void *data)
527 {
528 	struct kvm_pit *pit = speaker_to_pit(this);
529 	struct kvm_kpit_state *pit_state = &pit->pit_state;
530 	struct kvm *kvm = pit->kvm;
531 	u32 val = *(u32 *) data;
532 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
533 		return -EOPNOTSUPP;
534 
535 	mutex_lock(&pit_state->lock);
536 	pit_state->speaker_data_on = (val >> 1) & 1;
537 	pit_set_gate(kvm, 2, val & 1);
538 	mutex_unlock(&pit_state->lock);
539 	return 0;
540 }
541 
542 static int speaker_ioport_read(struct kvm_io_device *this,
543 			       gpa_t addr, int len, void *data)
544 {
545 	struct kvm_pit *pit = speaker_to_pit(this);
546 	struct kvm_kpit_state *pit_state = &pit->pit_state;
547 	struct kvm *kvm = pit->kvm;
548 	unsigned int refresh_clock;
549 	int ret;
550 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
551 		return -EOPNOTSUPP;
552 
553 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
554 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
555 
556 	mutex_lock(&pit_state->lock);
557 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
558 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
559 	if (len > sizeof(ret))
560 		len = sizeof(ret);
561 	memcpy(data, (char *)&ret, len);
562 	mutex_unlock(&pit_state->lock);
563 	return 0;
564 }
565 
566 void kvm_pit_reset(struct kvm_pit *pit)
567 {
568 	int i;
569 	struct kvm_kpit_channel_state *c;
570 
571 	mutex_lock(&pit->pit_state.lock);
572 	pit->pit_state.flags = 0;
573 	for (i = 0; i < 3; i++) {
574 		c = &pit->pit_state.channels[i];
575 		c->mode = 0xff;
576 		c->gate = (i != 2);
577 		pit_load_count(pit->kvm, i, 0);
578 	}
579 	mutex_unlock(&pit->pit_state.lock);
580 
581 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
582 	pit->pit_state.irq_ack = 1;
583 }
584 
585 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
586 {
587 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
588 
589 	if (!mask) {
590 		atomic_set(&pit->pit_state.pit_timer.pending, 0);
591 		pit->pit_state.irq_ack = 1;
592 	}
593 }
594 
595 static const struct kvm_io_device_ops pit_dev_ops = {
596 	.read     = pit_ioport_read,
597 	.write    = pit_ioport_write,
598 };
599 
600 static const struct kvm_io_device_ops speaker_dev_ops = {
601 	.read     = speaker_ioport_read,
602 	.write    = speaker_ioport_write,
603 };
604 
605 /* Caller must have writers lock on slots_lock */
606 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
607 {
608 	struct kvm_pit *pit;
609 	struct kvm_kpit_state *pit_state;
610 	int ret;
611 
612 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
613 	if (!pit)
614 		return NULL;
615 
616 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
617 	if (pit->irq_source_id < 0) {
618 		kfree(pit);
619 		return NULL;
620 	}
621 
622 	mutex_init(&pit->pit_state.lock);
623 	mutex_lock(&pit->pit_state.lock);
624 	spin_lock_init(&pit->pit_state.inject_lock);
625 
626 	kvm->arch.vpit = pit;
627 	pit->kvm = kvm;
628 
629 	pit_state = &pit->pit_state;
630 	pit_state->pit = pit;
631 	hrtimer_init(&pit_state->pit_timer.timer,
632 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
633 	pit_state->irq_ack_notifier.gsi = 0;
634 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
635 	kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
636 	pit_state->pit_timer.reinject = true;
637 	mutex_unlock(&pit->pit_state.lock);
638 
639 	kvm_pit_reset(pit);
640 
641 	pit->mask_notifier.func = pit_mask_notifer;
642 	kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
643 
644 	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
645 	ret = __kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
646 	if (ret < 0)
647 		goto fail;
648 
649 	if (flags & KVM_PIT_SPEAKER_DUMMY) {
650 		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
651 		ret = __kvm_io_bus_register_dev(&kvm->pio_bus,
652 						&pit->speaker_dev);
653 		if (ret < 0)
654 			goto fail_unregister;
655 	}
656 
657 	return pit;
658 
659 fail_unregister:
660 	__kvm_io_bus_unregister_dev(&kvm->pio_bus, &pit->dev);
661 
662 fail:
663 	if (pit->irq_source_id >= 0)
664 		kvm_free_irq_source_id(kvm, pit->irq_source_id);
665 
666 	kfree(pit);
667 	return NULL;
668 }
669 
670 void kvm_free_pit(struct kvm *kvm)
671 {
672 	struct hrtimer *timer;
673 
674 	if (kvm->arch.vpit) {
675 		kvm_unregister_irq_mask_notifier(kvm, 0,
676 					       &kvm->arch.vpit->mask_notifier);
677 		kvm_unregister_irq_ack_notifier(kvm,
678 				&kvm->arch.vpit->pit_state.irq_ack_notifier);
679 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
680 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
681 		hrtimer_cancel(timer);
682 		kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
683 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
684 		kfree(kvm->arch.vpit);
685 	}
686 }
687 
688 static void __inject_pit_timer_intr(struct kvm *kvm)
689 {
690 	struct kvm_vcpu *vcpu;
691 	int i;
692 
693 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
694 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
695 
696 	/*
697 	 * Provides NMI watchdog support via Virtual Wire mode.
698 	 * The route is: PIT -> PIC -> LVT0 in NMI mode.
699 	 *
700 	 * Note: Our Virtual Wire implementation is simplified, only
701 	 * propagating PIT interrupts to all VCPUs when they have set
702 	 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
703 	 * VCPU0, and only if its LVT0 is in EXTINT mode.
704 	 */
705 	if (kvm->arch.vapics_in_nmi_mode > 0)
706 		kvm_for_each_vcpu(i, vcpu, kvm)
707 			kvm_apic_nmi_wd_deliver(vcpu);
708 }
709 
710 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
711 {
712 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
713 	struct kvm *kvm = vcpu->kvm;
714 	struct kvm_kpit_state *ps;
715 
716 	if (pit) {
717 		int inject = 0;
718 		ps = &pit->pit_state;
719 
720 		/* Try to inject pending interrupts when
721 		 * last one has been acked.
722 		 */
723 		spin_lock(&ps->inject_lock);
724 		if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
725 			ps->irq_ack = 0;
726 			inject = 1;
727 		}
728 		spin_unlock(&ps->inject_lock);
729 		if (inject)
730 			__inject_pit_timer_intr(kvm);
731 	}
732 }
733