1 /* 2 * 8253/8254 interval timer emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * Copyright (c) 2006 Intel Corporation 6 * Copyright (c) 2007 Keir Fraser, XenSource Inc 7 * Copyright (c) 2008 Intel Corporation 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a copy 10 * of this software and associated documentation files (the "Software"), to deal 11 * in the Software without restriction, including without limitation the rights 12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 13 * copies of the Software, and to permit persons to whom the Software is 14 * furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice shall be included in 17 * all copies or substantial portions of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 25 * THE SOFTWARE. 26 * 27 * Authors: 28 * Sheng Yang <sheng.yang@intel.com> 29 * Based on QEMU and Xen. 30 */ 31 32 #include <linux/kvm_host.h> 33 34 #include "irq.h" 35 #include "i8254.h" 36 37 #ifndef CONFIG_X86_64 38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 39 #else 40 #define mod_64(x, y) ((x) % (y)) 41 #endif 42 43 #define RW_STATE_LSB 1 44 #define RW_STATE_MSB 2 45 #define RW_STATE_WORD0 3 46 #define RW_STATE_WORD1 4 47 48 /* Compute with 96 bit intermediate result: (a*b)/c */ 49 static u64 muldiv64(u64 a, u32 b, u32 c) 50 { 51 union { 52 u64 ll; 53 struct { 54 u32 low, high; 55 } l; 56 } u, res; 57 u64 rl, rh; 58 59 u.ll = a; 60 rl = (u64)u.l.low * (u64)b; 61 rh = (u64)u.l.high * (u64)b; 62 rh += (rl >> 32); 63 res.l.high = div64_u64(rh, c); 64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); 65 return res.ll; 66 } 67 68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val) 69 { 70 struct kvm_kpit_channel_state *c = 71 &kvm->arch.vpit->pit_state.channels[channel]; 72 73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 74 75 switch (c->mode) { 76 default: 77 case 0: 78 case 4: 79 /* XXX: just disable/enable counting */ 80 break; 81 case 1: 82 case 2: 83 case 3: 84 case 5: 85 /* Restart counting on rising edge. */ 86 if (c->gate < val) 87 c->count_load_time = ktime_get(); 88 break; 89 } 90 91 c->gate = val; 92 } 93 94 static int pit_get_gate(struct kvm *kvm, int channel) 95 { 96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 97 98 return kvm->arch.vpit->pit_state.channels[channel].gate; 99 } 100 101 static int pit_get_count(struct kvm *kvm, int channel) 102 { 103 struct kvm_kpit_channel_state *c = 104 &kvm->arch.vpit->pit_state.channels[channel]; 105 s64 d, t; 106 int counter; 107 108 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 109 110 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); 111 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); 112 113 switch (c->mode) { 114 case 0: 115 case 1: 116 case 4: 117 case 5: 118 counter = (c->count - d) & 0xffff; 119 break; 120 case 3: 121 /* XXX: may be incorrect for odd counts */ 122 counter = c->count - (mod_64((2 * d), c->count)); 123 break; 124 default: 125 counter = c->count - mod_64(d, c->count); 126 break; 127 } 128 return counter; 129 } 130 131 static int pit_get_out(struct kvm *kvm, int channel) 132 { 133 struct kvm_kpit_channel_state *c = 134 &kvm->arch.vpit->pit_state.channels[channel]; 135 s64 d, t; 136 int out; 137 138 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 139 140 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); 141 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); 142 143 switch (c->mode) { 144 default: 145 case 0: 146 out = (d >= c->count); 147 break; 148 case 1: 149 out = (d < c->count); 150 break; 151 case 2: 152 out = ((mod_64(d, c->count) == 0) && (d != 0)); 153 break; 154 case 3: 155 out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); 156 break; 157 case 4: 158 case 5: 159 out = (d == c->count); 160 break; 161 } 162 163 return out; 164 } 165 166 static void pit_latch_count(struct kvm *kvm, int channel) 167 { 168 struct kvm_kpit_channel_state *c = 169 &kvm->arch.vpit->pit_state.channels[channel]; 170 171 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 172 173 if (!c->count_latched) { 174 c->latched_count = pit_get_count(kvm, channel); 175 c->count_latched = c->rw_mode; 176 } 177 } 178 179 static void pit_latch_status(struct kvm *kvm, int channel) 180 { 181 struct kvm_kpit_channel_state *c = 182 &kvm->arch.vpit->pit_state.channels[channel]; 183 184 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 185 186 if (!c->status_latched) { 187 /* TODO: Return NULL COUNT (bit 6). */ 188 c->status = ((pit_get_out(kvm, channel) << 7) | 189 (c->rw_mode << 4) | 190 (c->mode << 1) | 191 c->bcd); 192 c->status_latched = 1; 193 } 194 } 195 196 static int __pit_timer_fn(struct kvm_kpit_state *ps) 197 { 198 struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0]; 199 struct kvm_kpit_timer *pt = &ps->pit_timer; 200 201 if (!atomic_inc_and_test(&pt->pending)) 202 set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests); 203 204 if (!pt->reinject) 205 atomic_set(&pt->pending, 1); 206 207 if (vcpu0 && waitqueue_active(&vcpu0->wq)) 208 wake_up_interruptible(&vcpu0->wq); 209 210 hrtimer_add_expires_ns(&pt->timer, pt->period); 211 pt->scheduled = hrtimer_get_expires_ns(&pt->timer); 212 if (pt->period) 213 ps->channels[0].count_load_time = ktime_get(); 214 215 return (pt->period == 0 ? 0 : 1); 216 } 217 218 int pit_has_pending_timer(struct kvm_vcpu *vcpu) 219 { 220 struct kvm_pit *pit = vcpu->kvm->arch.vpit; 221 222 if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack) 223 return atomic_read(&pit->pit_state.pit_timer.pending); 224 return 0; 225 } 226 227 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) 228 { 229 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, 230 irq_ack_notifier); 231 spin_lock(&ps->inject_lock); 232 if (atomic_dec_return(&ps->pit_timer.pending) < 0) 233 atomic_inc(&ps->pit_timer.pending); 234 ps->irq_ack = 1; 235 spin_unlock(&ps->inject_lock); 236 } 237 238 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) 239 { 240 struct kvm_kpit_state *ps; 241 int restart_timer = 0; 242 243 ps = container_of(data, struct kvm_kpit_state, pit_timer.timer); 244 245 restart_timer = __pit_timer_fn(ps); 246 247 if (restart_timer) 248 return HRTIMER_RESTART; 249 else 250 return HRTIMER_NORESTART; 251 } 252 253 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) 254 { 255 struct kvm_pit *pit = vcpu->kvm->arch.vpit; 256 struct hrtimer *timer; 257 258 if (vcpu->vcpu_id != 0 || !pit) 259 return; 260 261 timer = &pit->pit_state.pit_timer.timer; 262 if (hrtimer_cancel(timer)) 263 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 264 } 265 266 static void destroy_pit_timer(struct kvm_kpit_timer *pt) 267 { 268 pr_debug("pit: execute del timer!\n"); 269 hrtimer_cancel(&pt->timer); 270 } 271 272 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period) 273 { 274 struct kvm_kpit_timer *pt = &ps->pit_timer; 275 s64 interval; 276 277 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); 278 279 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval); 280 281 /* TODO The new value only affected after the retriggered */ 282 hrtimer_cancel(&pt->timer); 283 pt->period = (is_period == 0) ? 0 : interval; 284 pt->timer.function = pit_timer_fn; 285 atomic_set(&pt->pending, 0); 286 ps->irq_ack = 1; 287 288 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval), 289 HRTIMER_MODE_ABS); 290 } 291 292 static void pit_load_count(struct kvm *kvm, int channel, u32 val) 293 { 294 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; 295 296 WARN_ON(!mutex_is_locked(&ps->lock)); 297 298 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel); 299 300 /* 301 * Though spec said the state of 8254 is undefined after power-up, 302 * seems some tricky OS like Windows XP depends on IRQ0 interrupt 303 * when booting up. 304 * So here setting initialize rate for it, and not a specific number 305 */ 306 if (val == 0) 307 val = 0x10000; 308 309 ps->channels[channel].count_load_time = ktime_get(); 310 ps->channels[channel].count = val; 311 312 if (channel != 0) 313 return; 314 315 /* Two types of timer 316 * mode 1 is one shot, mode 2 is period, otherwise del timer */ 317 switch (ps->channels[0].mode) { 318 case 1: 319 /* FIXME: enhance mode 4 precision */ 320 case 4: 321 create_pit_timer(ps, val, 0); 322 break; 323 case 2: 324 case 3: 325 create_pit_timer(ps, val, 1); 326 break; 327 default: 328 destroy_pit_timer(&ps->pit_timer); 329 } 330 } 331 332 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val) 333 { 334 mutex_lock(&kvm->arch.vpit->pit_state.lock); 335 pit_load_count(kvm, channel, val); 336 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 337 } 338 339 static void pit_ioport_write(struct kvm_io_device *this, 340 gpa_t addr, int len, const void *data) 341 { 342 struct kvm_pit *pit = (struct kvm_pit *)this->private; 343 struct kvm_kpit_state *pit_state = &pit->pit_state; 344 struct kvm *kvm = pit->kvm; 345 int channel, access; 346 struct kvm_kpit_channel_state *s; 347 u32 val = *(u32 *) data; 348 349 val &= 0xff; 350 addr &= KVM_PIT_CHANNEL_MASK; 351 352 mutex_lock(&pit_state->lock); 353 354 if (val != 0) 355 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n", 356 (unsigned int)addr, len, val); 357 358 if (addr == 3) { 359 channel = val >> 6; 360 if (channel == 3) { 361 /* Read-Back Command. */ 362 for (channel = 0; channel < 3; channel++) { 363 s = &pit_state->channels[channel]; 364 if (val & (2 << channel)) { 365 if (!(val & 0x20)) 366 pit_latch_count(kvm, channel); 367 if (!(val & 0x10)) 368 pit_latch_status(kvm, channel); 369 } 370 } 371 } else { 372 /* Select Counter <channel>. */ 373 s = &pit_state->channels[channel]; 374 access = (val >> 4) & KVM_PIT_CHANNEL_MASK; 375 if (access == 0) { 376 pit_latch_count(kvm, channel); 377 } else { 378 s->rw_mode = access; 379 s->read_state = access; 380 s->write_state = access; 381 s->mode = (val >> 1) & 7; 382 if (s->mode > 5) 383 s->mode -= 4; 384 s->bcd = val & 1; 385 } 386 } 387 } else { 388 /* Write Count. */ 389 s = &pit_state->channels[addr]; 390 switch (s->write_state) { 391 default: 392 case RW_STATE_LSB: 393 pit_load_count(kvm, addr, val); 394 break; 395 case RW_STATE_MSB: 396 pit_load_count(kvm, addr, val << 8); 397 break; 398 case RW_STATE_WORD0: 399 s->write_latch = val; 400 s->write_state = RW_STATE_WORD1; 401 break; 402 case RW_STATE_WORD1: 403 pit_load_count(kvm, addr, s->write_latch | (val << 8)); 404 s->write_state = RW_STATE_WORD0; 405 break; 406 } 407 } 408 409 mutex_unlock(&pit_state->lock); 410 } 411 412 static void pit_ioport_read(struct kvm_io_device *this, 413 gpa_t addr, int len, void *data) 414 { 415 struct kvm_pit *pit = (struct kvm_pit *)this->private; 416 struct kvm_kpit_state *pit_state = &pit->pit_state; 417 struct kvm *kvm = pit->kvm; 418 int ret, count; 419 struct kvm_kpit_channel_state *s; 420 421 addr &= KVM_PIT_CHANNEL_MASK; 422 s = &pit_state->channels[addr]; 423 424 mutex_lock(&pit_state->lock); 425 426 if (s->status_latched) { 427 s->status_latched = 0; 428 ret = s->status; 429 } else if (s->count_latched) { 430 switch (s->count_latched) { 431 default: 432 case RW_STATE_LSB: 433 ret = s->latched_count & 0xff; 434 s->count_latched = 0; 435 break; 436 case RW_STATE_MSB: 437 ret = s->latched_count >> 8; 438 s->count_latched = 0; 439 break; 440 case RW_STATE_WORD0: 441 ret = s->latched_count & 0xff; 442 s->count_latched = RW_STATE_MSB; 443 break; 444 } 445 } else { 446 switch (s->read_state) { 447 default: 448 case RW_STATE_LSB: 449 count = pit_get_count(kvm, addr); 450 ret = count & 0xff; 451 break; 452 case RW_STATE_MSB: 453 count = pit_get_count(kvm, addr); 454 ret = (count >> 8) & 0xff; 455 break; 456 case RW_STATE_WORD0: 457 count = pit_get_count(kvm, addr); 458 ret = count & 0xff; 459 s->read_state = RW_STATE_WORD1; 460 break; 461 case RW_STATE_WORD1: 462 count = pit_get_count(kvm, addr); 463 ret = (count >> 8) & 0xff; 464 s->read_state = RW_STATE_WORD0; 465 break; 466 } 467 } 468 469 if (len > sizeof(ret)) 470 len = sizeof(ret); 471 memcpy(data, (char *)&ret, len); 472 473 mutex_unlock(&pit_state->lock); 474 } 475 476 static int pit_in_range(struct kvm_io_device *this, gpa_t addr, 477 int len, int is_write) 478 { 479 return ((addr >= KVM_PIT_BASE_ADDRESS) && 480 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); 481 } 482 483 static void speaker_ioport_write(struct kvm_io_device *this, 484 gpa_t addr, int len, const void *data) 485 { 486 struct kvm_pit *pit = (struct kvm_pit *)this->private; 487 struct kvm_kpit_state *pit_state = &pit->pit_state; 488 struct kvm *kvm = pit->kvm; 489 u32 val = *(u32 *) data; 490 491 mutex_lock(&pit_state->lock); 492 pit_state->speaker_data_on = (val >> 1) & 1; 493 pit_set_gate(kvm, 2, val & 1); 494 mutex_unlock(&pit_state->lock); 495 } 496 497 static void speaker_ioport_read(struct kvm_io_device *this, 498 gpa_t addr, int len, void *data) 499 { 500 struct kvm_pit *pit = (struct kvm_pit *)this->private; 501 struct kvm_kpit_state *pit_state = &pit->pit_state; 502 struct kvm *kvm = pit->kvm; 503 unsigned int refresh_clock; 504 int ret; 505 506 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ 507 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; 508 509 mutex_lock(&pit_state->lock); 510 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | 511 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); 512 if (len > sizeof(ret)) 513 len = sizeof(ret); 514 memcpy(data, (char *)&ret, len); 515 mutex_unlock(&pit_state->lock); 516 } 517 518 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr, 519 int len, int is_write) 520 { 521 return (addr == KVM_SPEAKER_BASE_ADDRESS); 522 } 523 524 void kvm_pit_reset(struct kvm_pit *pit) 525 { 526 int i; 527 struct kvm_kpit_channel_state *c; 528 529 mutex_lock(&pit->pit_state.lock); 530 for (i = 0; i < 3; i++) { 531 c = &pit->pit_state.channels[i]; 532 c->mode = 0xff; 533 c->gate = (i != 2); 534 pit_load_count(pit->kvm, i, 0); 535 } 536 mutex_unlock(&pit->pit_state.lock); 537 538 atomic_set(&pit->pit_state.pit_timer.pending, 0); 539 pit->pit_state.irq_ack = 1; 540 } 541 542 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) 543 { 544 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); 545 546 if (!mask) { 547 atomic_set(&pit->pit_state.pit_timer.pending, 0); 548 pit->pit_state.irq_ack = 1; 549 } 550 } 551 552 struct kvm_pit *kvm_create_pit(struct kvm *kvm) 553 { 554 struct kvm_pit *pit; 555 struct kvm_kpit_state *pit_state; 556 557 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); 558 if (!pit) 559 return NULL; 560 561 pit->irq_source_id = kvm_request_irq_source_id(kvm); 562 if (pit->irq_source_id < 0) { 563 kfree(pit); 564 return NULL; 565 } 566 567 mutex_init(&pit->pit_state.lock); 568 mutex_lock(&pit->pit_state.lock); 569 spin_lock_init(&pit->pit_state.inject_lock); 570 571 /* Initialize PIO device */ 572 pit->dev.read = pit_ioport_read; 573 pit->dev.write = pit_ioport_write; 574 pit->dev.in_range = pit_in_range; 575 pit->dev.private = pit; 576 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev); 577 578 pit->speaker_dev.read = speaker_ioport_read; 579 pit->speaker_dev.write = speaker_ioport_write; 580 pit->speaker_dev.in_range = speaker_in_range; 581 pit->speaker_dev.private = pit; 582 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev); 583 584 kvm->arch.vpit = pit; 585 pit->kvm = kvm; 586 587 pit_state = &pit->pit_state; 588 pit_state->pit = pit; 589 hrtimer_init(&pit_state->pit_timer.timer, 590 CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 591 pit_state->irq_ack_notifier.gsi = 0; 592 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; 593 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); 594 pit_state->pit_timer.reinject = true; 595 mutex_unlock(&pit->pit_state.lock); 596 597 kvm_pit_reset(pit); 598 599 pit->mask_notifier.func = pit_mask_notifer; 600 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); 601 602 return pit; 603 } 604 605 void kvm_free_pit(struct kvm *kvm) 606 { 607 struct hrtimer *timer; 608 609 if (kvm->arch.vpit) { 610 kvm_unregister_irq_mask_notifier(kvm, 0, 611 &kvm->arch.vpit->mask_notifier); 612 mutex_lock(&kvm->arch.vpit->pit_state.lock); 613 timer = &kvm->arch.vpit->pit_state.pit_timer.timer; 614 hrtimer_cancel(timer); 615 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id); 616 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 617 kfree(kvm->arch.vpit); 618 } 619 } 620 621 static void __inject_pit_timer_intr(struct kvm *kvm) 622 { 623 struct kvm_vcpu *vcpu; 624 int i; 625 626 mutex_lock(&kvm->lock); 627 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1); 628 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0); 629 mutex_unlock(&kvm->lock); 630 631 /* 632 * Provides NMI watchdog support via Virtual Wire mode. 633 * The route is: PIT -> PIC -> LVT0 in NMI mode. 634 * 635 * Note: Our Virtual Wire implementation is simplified, only 636 * propagating PIT interrupts to all VCPUs when they have set 637 * LVT0 to NMI delivery. Other PIC interrupts are just sent to 638 * VCPU0, and only if its LVT0 is in EXTINT mode. 639 */ 640 if (kvm->arch.vapics_in_nmi_mode > 0) 641 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 642 vcpu = kvm->vcpus[i]; 643 if (vcpu) 644 kvm_apic_nmi_wd_deliver(vcpu); 645 } 646 } 647 648 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu) 649 { 650 struct kvm_pit *pit = vcpu->kvm->arch.vpit; 651 struct kvm *kvm = vcpu->kvm; 652 struct kvm_kpit_state *ps; 653 654 if (vcpu && pit) { 655 int inject = 0; 656 ps = &pit->pit_state; 657 658 /* Try to inject pending interrupts when 659 * last one has been acked. 660 */ 661 spin_lock(&ps->inject_lock); 662 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) { 663 ps->irq_ack = 0; 664 inject = 1; 665 } 666 spin_unlock(&ps->inject_lock); 667 if (inject) 668 __inject_pit_timer_intr(kvm); 669 } 670 } 671