xref: /openbmc/linux/arch/x86/kvm/i8254.c (revision 82ced6fd)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31 
32 #include <linux/kvm_host.h>
33 
34 #include "irq.h"
35 #include "i8254.h"
36 
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42 
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47 
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 	union {
52 		u64 ll;
53 		struct {
54 			u32 low, high;
55 		} l;
56 	} u, res;
57 	u64 rl, rh;
58 
59 	u.ll = a;
60 	rl = (u64)u.l.low * (u64)b;
61 	rh = (u64)u.l.high * (u64)b;
62 	rh += (rl >> 32);
63 	res.l.high = div64_u64(rh, c);
64 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 	return res.ll;
66 }
67 
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 	struct kvm_kpit_channel_state *c =
71 		&kvm->arch.vpit->pit_state.channels[channel];
72 
73 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74 
75 	switch (c->mode) {
76 	default:
77 	case 0:
78 	case 4:
79 		/* XXX: just disable/enable counting */
80 		break;
81 	case 1:
82 	case 2:
83 	case 3:
84 	case 5:
85 		/* Restart counting on rising edge. */
86 		if (c->gate < val)
87 			c->count_load_time = ktime_get();
88 		break;
89 	}
90 
91 	c->gate = val;
92 }
93 
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97 
98 	return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100 
101 static int pit_get_count(struct kvm *kvm, int channel)
102 {
103 	struct kvm_kpit_channel_state *c =
104 		&kvm->arch.vpit->pit_state.channels[channel];
105 	s64 d, t;
106 	int counter;
107 
108 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109 
110 	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112 
113 	switch (c->mode) {
114 	case 0:
115 	case 1:
116 	case 4:
117 	case 5:
118 		counter = (c->count - d) & 0xffff;
119 		break;
120 	case 3:
121 		/* XXX: may be incorrect for odd counts */
122 		counter = c->count - (mod_64((2 * d), c->count));
123 		break;
124 	default:
125 		counter = c->count - mod_64(d, c->count);
126 		break;
127 	}
128 	return counter;
129 }
130 
131 static int pit_get_out(struct kvm *kvm, int channel)
132 {
133 	struct kvm_kpit_channel_state *c =
134 		&kvm->arch.vpit->pit_state.channels[channel];
135 	s64 d, t;
136 	int out;
137 
138 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139 
140 	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142 
143 	switch (c->mode) {
144 	default:
145 	case 0:
146 		out = (d >= c->count);
147 		break;
148 	case 1:
149 		out = (d < c->count);
150 		break;
151 	case 2:
152 		out = ((mod_64(d, c->count) == 0) && (d != 0));
153 		break;
154 	case 3:
155 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 		break;
157 	case 4:
158 	case 5:
159 		out = (d == c->count);
160 		break;
161 	}
162 
163 	return out;
164 }
165 
166 static void pit_latch_count(struct kvm *kvm, int channel)
167 {
168 	struct kvm_kpit_channel_state *c =
169 		&kvm->arch.vpit->pit_state.channels[channel];
170 
171 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172 
173 	if (!c->count_latched) {
174 		c->latched_count = pit_get_count(kvm, channel);
175 		c->count_latched = c->rw_mode;
176 	}
177 }
178 
179 static void pit_latch_status(struct kvm *kvm, int channel)
180 {
181 	struct kvm_kpit_channel_state *c =
182 		&kvm->arch.vpit->pit_state.channels[channel];
183 
184 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185 
186 	if (!c->status_latched) {
187 		/* TODO: Return NULL COUNT (bit 6). */
188 		c->status = ((pit_get_out(kvm, channel) << 7) |
189 				(c->rw_mode << 4) |
190 				(c->mode << 1) |
191 				c->bcd);
192 		c->status_latched = 1;
193 	}
194 }
195 
196 static int __pit_timer_fn(struct kvm_kpit_state *ps)
197 {
198 	struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 	struct kvm_kpit_timer *pt = &ps->pit_timer;
200 
201 	if (!atomic_inc_and_test(&pt->pending))
202 		set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
203 
204 	if (!pt->reinject)
205 		atomic_set(&pt->pending, 1);
206 
207 	if (vcpu0 && waitqueue_active(&vcpu0->wq))
208 		wake_up_interruptible(&vcpu0->wq);
209 
210 	hrtimer_add_expires_ns(&pt->timer, pt->period);
211 	pt->scheduled = hrtimer_get_expires_ns(&pt->timer);
212 	if (pt->period)
213 		ps->channels[0].count_load_time = ktime_get();
214 
215 	return (pt->period == 0 ? 0 : 1);
216 }
217 
218 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
219 {
220 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221 
222 	if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
223 		return atomic_read(&pit->pit_state.pit_timer.pending);
224 	return 0;
225 }
226 
227 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
228 {
229 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
230 						 irq_ack_notifier);
231 	spin_lock(&ps->inject_lock);
232 	if (atomic_dec_return(&ps->pit_timer.pending) < 0)
233 		atomic_inc(&ps->pit_timer.pending);
234 	ps->irq_ack = 1;
235 	spin_unlock(&ps->inject_lock);
236 }
237 
238 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
239 {
240 	struct kvm_kpit_state *ps;
241 	int restart_timer = 0;
242 
243 	ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
244 
245 	restart_timer = __pit_timer_fn(ps);
246 
247 	if (restart_timer)
248 		return HRTIMER_RESTART;
249 	else
250 		return HRTIMER_NORESTART;
251 }
252 
253 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
254 {
255 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
256 	struct hrtimer *timer;
257 
258 	if (vcpu->vcpu_id != 0 || !pit)
259 		return;
260 
261 	timer = &pit->pit_state.pit_timer.timer;
262 	if (hrtimer_cancel(timer))
263 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
264 }
265 
266 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
267 {
268 	pr_debug("pit: execute del timer!\n");
269 	hrtimer_cancel(&pt->timer);
270 }
271 
272 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
273 {
274 	struct kvm_kpit_timer *pt = &ps->pit_timer;
275 	s64 interval;
276 
277 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
278 
279 	pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
280 
281 	/* TODO The new value only affected after the retriggered */
282 	hrtimer_cancel(&pt->timer);
283 	pt->period = (is_period == 0) ? 0 : interval;
284 	pt->timer.function = pit_timer_fn;
285 	atomic_set(&pt->pending, 0);
286 	ps->irq_ack = 1;
287 
288 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
289 		      HRTIMER_MODE_ABS);
290 }
291 
292 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
293 {
294 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
295 
296 	WARN_ON(!mutex_is_locked(&ps->lock));
297 
298 	pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
299 
300 	/*
301 	 * Though spec said the state of 8254 is undefined after power-up,
302 	 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
303 	 * when booting up.
304 	 * So here setting initialize rate for it, and not a specific number
305 	 */
306 	if (val == 0)
307 		val = 0x10000;
308 
309 	ps->channels[channel].count_load_time = ktime_get();
310 	ps->channels[channel].count = val;
311 
312 	if (channel != 0)
313 		return;
314 
315 	/* Two types of timer
316 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
317 	switch (ps->channels[0].mode) {
318 	case 1:
319         /* FIXME: enhance mode 4 precision */
320 	case 4:
321 		create_pit_timer(ps, val, 0);
322 		break;
323 	case 2:
324 	case 3:
325 		create_pit_timer(ps, val, 1);
326 		break;
327 	default:
328 		destroy_pit_timer(&ps->pit_timer);
329 	}
330 }
331 
332 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
333 {
334 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
335 	pit_load_count(kvm, channel, val);
336 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
337 }
338 
339 static void pit_ioport_write(struct kvm_io_device *this,
340 			     gpa_t addr, int len, const void *data)
341 {
342 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
343 	struct kvm_kpit_state *pit_state = &pit->pit_state;
344 	struct kvm *kvm = pit->kvm;
345 	int channel, access;
346 	struct kvm_kpit_channel_state *s;
347 	u32 val = *(u32 *) data;
348 
349 	val  &= 0xff;
350 	addr &= KVM_PIT_CHANNEL_MASK;
351 
352 	mutex_lock(&pit_state->lock);
353 
354 	if (val != 0)
355 		pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
356 			  (unsigned int)addr, len, val);
357 
358 	if (addr == 3) {
359 		channel = val >> 6;
360 		if (channel == 3) {
361 			/* Read-Back Command. */
362 			for (channel = 0; channel < 3; channel++) {
363 				s = &pit_state->channels[channel];
364 				if (val & (2 << channel)) {
365 					if (!(val & 0x20))
366 						pit_latch_count(kvm, channel);
367 					if (!(val & 0x10))
368 						pit_latch_status(kvm, channel);
369 				}
370 			}
371 		} else {
372 			/* Select Counter <channel>. */
373 			s = &pit_state->channels[channel];
374 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
375 			if (access == 0) {
376 				pit_latch_count(kvm, channel);
377 			} else {
378 				s->rw_mode = access;
379 				s->read_state = access;
380 				s->write_state = access;
381 				s->mode = (val >> 1) & 7;
382 				if (s->mode > 5)
383 					s->mode -= 4;
384 				s->bcd = val & 1;
385 			}
386 		}
387 	} else {
388 		/* Write Count. */
389 		s = &pit_state->channels[addr];
390 		switch (s->write_state) {
391 		default:
392 		case RW_STATE_LSB:
393 			pit_load_count(kvm, addr, val);
394 			break;
395 		case RW_STATE_MSB:
396 			pit_load_count(kvm, addr, val << 8);
397 			break;
398 		case RW_STATE_WORD0:
399 			s->write_latch = val;
400 			s->write_state = RW_STATE_WORD1;
401 			break;
402 		case RW_STATE_WORD1:
403 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
404 			s->write_state = RW_STATE_WORD0;
405 			break;
406 		}
407 	}
408 
409 	mutex_unlock(&pit_state->lock);
410 }
411 
412 static void pit_ioport_read(struct kvm_io_device *this,
413 			    gpa_t addr, int len, void *data)
414 {
415 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
416 	struct kvm_kpit_state *pit_state = &pit->pit_state;
417 	struct kvm *kvm = pit->kvm;
418 	int ret, count;
419 	struct kvm_kpit_channel_state *s;
420 
421 	addr &= KVM_PIT_CHANNEL_MASK;
422 	s = &pit_state->channels[addr];
423 
424 	mutex_lock(&pit_state->lock);
425 
426 	if (s->status_latched) {
427 		s->status_latched = 0;
428 		ret = s->status;
429 	} else if (s->count_latched) {
430 		switch (s->count_latched) {
431 		default:
432 		case RW_STATE_LSB:
433 			ret = s->latched_count & 0xff;
434 			s->count_latched = 0;
435 			break;
436 		case RW_STATE_MSB:
437 			ret = s->latched_count >> 8;
438 			s->count_latched = 0;
439 			break;
440 		case RW_STATE_WORD0:
441 			ret = s->latched_count & 0xff;
442 			s->count_latched = RW_STATE_MSB;
443 			break;
444 		}
445 	} else {
446 		switch (s->read_state) {
447 		default:
448 		case RW_STATE_LSB:
449 			count = pit_get_count(kvm, addr);
450 			ret = count & 0xff;
451 			break;
452 		case RW_STATE_MSB:
453 			count = pit_get_count(kvm, addr);
454 			ret = (count >> 8) & 0xff;
455 			break;
456 		case RW_STATE_WORD0:
457 			count = pit_get_count(kvm, addr);
458 			ret = count & 0xff;
459 			s->read_state = RW_STATE_WORD1;
460 			break;
461 		case RW_STATE_WORD1:
462 			count = pit_get_count(kvm, addr);
463 			ret = (count >> 8) & 0xff;
464 			s->read_state = RW_STATE_WORD0;
465 			break;
466 		}
467 	}
468 
469 	if (len > sizeof(ret))
470 		len = sizeof(ret);
471 	memcpy(data, (char *)&ret, len);
472 
473 	mutex_unlock(&pit_state->lock);
474 }
475 
476 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
477 			int len, int is_write)
478 {
479 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
480 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
481 }
482 
483 static void speaker_ioport_write(struct kvm_io_device *this,
484 				 gpa_t addr, int len, const void *data)
485 {
486 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
487 	struct kvm_kpit_state *pit_state = &pit->pit_state;
488 	struct kvm *kvm = pit->kvm;
489 	u32 val = *(u32 *) data;
490 
491 	mutex_lock(&pit_state->lock);
492 	pit_state->speaker_data_on = (val >> 1) & 1;
493 	pit_set_gate(kvm, 2, val & 1);
494 	mutex_unlock(&pit_state->lock);
495 }
496 
497 static void speaker_ioport_read(struct kvm_io_device *this,
498 				gpa_t addr, int len, void *data)
499 {
500 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
501 	struct kvm_kpit_state *pit_state = &pit->pit_state;
502 	struct kvm *kvm = pit->kvm;
503 	unsigned int refresh_clock;
504 	int ret;
505 
506 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
507 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
508 
509 	mutex_lock(&pit_state->lock);
510 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
511 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
512 	if (len > sizeof(ret))
513 		len = sizeof(ret);
514 	memcpy(data, (char *)&ret, len);
515 	mutex_unlock(&pit_state->lock);
516 }
517 
518 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
519 			    int len, int is_write)
520 {
521 	return (addr == KVM_SPEAKER_BASE_ADDRESS);
522 }
523 
524 void kvm_pit_reset(struct kvm_pit *pit)
525 {
526 	int i;
527 	struct kvm_kpit_channel_state *c;
528 
529 	mutex_lock(&pit->pit_state.lock);
530 	for (i = 0; i < 3; i++) {
531 		c = &pit->pit_state.channels[i];
532 		c->mode = 0xff;
533 		c->gate = (i != 2);
534 		pit_load_count(pit->kvm, i, 0);
535 	}
536 	mutex_unlock(&pit->pit_state.lock);
537 
538 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
539 	pit->pit_state.irq_ack = 1;
540 }
541 
542 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
543 {
544 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
545 
546 	if (!mask) {
547 		atomic_set(&pit->pit_state.pit_timer.pending, 0);
548 		pit->pit_state.irq_ack = 1;
549 	}
550 }
551 
552 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
553 {
554 	struct kvm_pit *pit;
555 	struct kvm_kpit_state *pit_state;
556 
557 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
558 	if (!pit)
559 		return NULL;
560 
561 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
562 	if (pit->irq_source_id < 0) {
563 		kfree(pit);
564 		return NULL;
565 	}
566 
567 	mutex_init(&pit->pit_state.lock);
568 	mutex_lock(&pit->pit_state.lock);
569 	spin_lock_init(&pit->pit_state.inject_lock);
570 
571 	/* Initialize PIO device */
572 	pit->dev.read = pit_ioport_read;
573 	pit->dev.write = pit_ioport_write;
574 	pit->dev.in_range = pit_in_range;
575 	pit->dev.private = pit;
576 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
577 
578 	pit->speaker_dev.read = speaker_ioport_read;
579 	pit->speaker_dev.write = speaker_ioport_write;
580 	pit->speaker_dev.in_range = speaker_in_range;
581 	pit->speaker_dev.private = pit;
582 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
583 
584 	kvm->arch.vpit = pit;
585 	pit->kvm = kvm;
586 
587 	pit_state = &pit->pit_state;
588 	pit_state->pit = pit;
589 	hrtimer_init(&pit_state->pit_timer.timer,
590 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
591 	pit_state->irq_ack_notifier.gsi = 0;
592 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
593 	kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
594 	pit_state->pit_timer.reinject = true;
595 	mutex_unlock(&pit->pit_state.lock);
596 
597 	kvm_pit_reset(pit);
598 
599 	pit->mask_notifier.func = pit_mask_notifer;
600 	kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
601 
602 	return pit;
603 }
604 
605 void kvm_free_pit(struct kvm *kvm)
606 {
607 	struct hrtimer *timer;
608 
609 	if (kvm->arch.vpit) {
610 		kvm_unregister_irq_mask_notifier(kvm, 0,
611 					       &kvm->arch.vpit->mask_notifier);
612 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
613 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
614 		hrtimer_cancel(timer);
615 		kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
616 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
617 		kfree(kvm->arch.vpit);
618 	}
619 }
620 
621 static void __inject_pit_timer_intr(struct kvm *kvm)
622 {
623 	struct kvm_vcpu *vcpu;
624 	int i;
625 
626 	mutex_lock(&kvm->lock);
627 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
628 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
629 	mutex_unlock(&kvm->lock);
630 
631 	/*
632 	 * Provides NMI watchdog support via Virtual Wire mode.
633 	 * The route is: PIT -> PIC -> LVT0 in NMI mode.
634 	 *
635 	 * Note: Our Virtual Wire implementation is simplified, only
636 	 * propagating PIT interrupts to all VCPUs when they have set
637 	 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
638 	 * VCPU0, and only if its LVT0 is in EXTINT mode.
639 	 */
640 	if (kvm->arch.vapics_in_nmi_mode > 0)
641 		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
642 			vcpu = kvm->vcpus[i];
643 			if (vcpu)
644 				kvm_apic_nmi_wd_deliver(vcpu);
645 		}
646 }
647 
648 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
649 {
650 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
651 	struct kvm *kvm = vcpu->kvm;
652 	struct kvm_kpit_state *ps;
653 
654 	if (vcpu && pit) {
655 		int inject = 0;
656 		ps = &pit->pit_state;
657 
658 		/* Try to inject pending interrupts when
659 		 * last one has been acked.
660 		 */
661 		spin_lock(&ps->inject_lock);
662 		if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
663 			ps->irq_ack = 0;
664 			inject = 1;
665 		}
666 		spin_unlock(&ps->inject_lock);
667 		if (inject)
668 			__inject_pit_timer_intr(kvm);
669 	}
670 }
671