xref: /openbmc/linux/arch/x86/kvm/i8254.c (revision 78c99ba1)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31 
32 #include <linux/kvm_host.h>
33 
34 #include "irq.h"
35 #include "i8254.h"
36 
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42 
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47 
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 	union {
52 		u64 ll;
53 		struct {
54 			u32 low, high;
55 		} l;
56 	} u, res;
57 	u64 rl, rh;
58 
59 	u.ll = a;
60 	rl = (u64)u.l.low * (u64)b;
61 	rh = (u64)u.l.high * (u64)b;
62 	rh += (rl >> 32);
63 	res.l.high = div64_u64(rh, c);
64 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 	return res.ll;
66 }
67 
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 	struct kvm_kpit_channel_state *c =
71 		&kvm->arch.vpit->pit_state.channels[channel];
72 
73 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74 
75 	switch (c->mode) {
76 	default:
77 	case 0:
78 	case 4:
79 		/* XXX: just disable/enable counting */
80 		break;
81 	case 1:
82 	case 2:
83 	case 3:
84 	case 5:
85 		/* Restart counting on rising edge. */
86 		if (c->gate < val)
87 			c->count_load_time = ktime_get();
88 		break;
89 	}
90 
91 	c->gate = val;
92 }
93 
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97 
98 	return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100 
101 static s64 __kpit_elapsed(struct kvm *kvm)
102 {
103 	s64 elapsed;
104 	ktime_t remaining;
105 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106 
107 	/*
108 	 * The Counter does not stop when it reaches zero. In
109 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
110 	 * the highest count, either FFFF hex for binary counting
111 	 * or 9999 for BCD counting, and continues counting.
112 	 * Modes 2 and 3 are periodic; the Counter reloads
113 	 * itself with the initial count and continues counting
114 	 * from there.
115 	 */
116 	remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
117 	elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
118 	elapsed = mod_64(elapsed, ps->pit_timer.period);
119 
120 	return elapsed;
121 }
122 
123 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
124 			int channel)
125 {
126 	if (channel == 0)
127 		return __kpit_elapsed(kvm);
128 
129 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
130 }
131 
132 static int pit_get_count(struct kvm *kvm, int channel)
133 {
134 	struct kvm_kpit_channel_state *c =
135 		&kvm->arch.vpit->pit_state.channels[channel];
136 	s64 d, t;
137 	int counter;
138 
139 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
140 
141 	t = kpit_elapsed(kvm, c, channel);
142 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
143 
144 	switch (c->mode) {
145 	case 0:
146 	case 1:
147 	case 4:
148 	case 5:
149 		counter = (c->count - d) & 0xffff;
150 		break;
151 	case 3:
152 		/* XXX: may be incorrect for odd counts */
153 		counter = c->count - (mod_64((2 * d), c->count));
154 		break;
155 	default:
156 		counter = c->count - mod_64(d, c->count);
157 		break;
158 	}
159 	return counter;
160 }
161 
162 static int pit_get_out(struct kvm *kvm, int channel)
163 {
164 	struct kvm_kpit_channel_state *c =
165 		&kvm->arch.vpit->pit_state.channels[channel];
166 	s64 d, t;
167 	int out;
168 
169 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
170 
171 	t = kpit_elapsed(kvm, c, channel);
172 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
173 
174 	switch (c->mode) {
175 	default:
176 	case 0:
177 		out = (d >= c->count);
178 		break;
179 	case 1:
180 		out = (d < c->count);
181 		break;
182 	case 2:
183 		out = ((mod_64(d, c->count) == 0) && (d != 0));
184 		break;
185 	case 3:
186 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
187 		break;
188 	case 4:
189 	case 5:
190 		out = (d == c->count);
191 		break;
192 	}
193 
194 	return out;
195 }
196 
197 static void pit_latch_count(struct kvm *kvm, int channel)
198 {
199 	struct kvm_kpit_channel_state *c =
200 		&kvm->arch.vpit->pit_state.channels[channel];
201 
202 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
203 
204 	if (!c->count_latched) {
205 		c->latched_count = pit_get_count(kvm, channel);
206 		c->count_latched = c->rw_mode;
207 	}
208 }
209 
210 static void pit_latch_status(struct kvm *kvm, int channel)
211 {
212 	struct kvm_kpit_channel_state *c =
213 		&kvm->arch.vpit->pit_state.channels[channel];
214 
215 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
216 
217 	if (!c->status_latched) {
218 		/* TODO: Return NULL COUNT (bit 6). */
219 		c->status = ((pit_get_out(kvm, channel) << 7) |
220 				(c->rw_mode << 4) |
221 				(c->mode << 1) |
222 				c->bcd);
223 		c->status_latched = 1;
224 	}
225 }
226 
227 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
228 {
229 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
230 
231 	if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
232 		return atomic_read(&pit->pit_state.pit_timer.pending);
233 	return 0;
234 }
235 
236 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
237 {
238 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
239 						 irq_ack_notifier);
240 	spin_lock(&ps->inject_lock);
241 	if (atomic_dec_return(&ps->pit_timer.pending) < 0)
242 		atomic_inc(&ps->pit_timer.pending);
243 	ps->irq_ack = 1;
244 	spin_unlock(&ps->inject_lock);
245 }
246 
247 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
248 {
249 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
250 	struct hrtimer *timer;
251 
252 	if (vcpu->vcpu_id != 0 || !pit)
253 		return;
254 
255 	timer = &pit->pit_state.pit_timer.timer;
256 	if (hrtimer_cancel(timer))
257 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
258 }
259 
260 static void destroy_pit_timer(struct kvm_timer *pt)
261 {
262 	pr_debug("pit: execute del timer!\n");
263 	hrtimer_cancel(&pt->timer);
264 }
265 
266 static bool kpit_is_periodic(struct kvm_timer *ktimer)
267 {
268 	struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
269 						 pit_timer);
270 	return ps->is_periodic;
271 }
272 
273 static struct kvm_timer_ops kpit_ops = {
274 	.is_periodic = kpit_is_periodic,
275 };
276 
277 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
278 {
279 	struct kvm_timer *pt = &ps->pit_timer;
280 	s64 interval;
281 
282 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
283 
284 	pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
285 
286 	/* TODO The new value only affected after the retriggered */
287 	hrtimer_cancel(&pt->timer);
288 	pt->period = interval;
289 	ps->is_periodic = is_period;
290 
291 	pt->timer.function = kvm_timer_fn;
292 	pt->t_ops = &kpit_ops;
293 	pt->kvm = ps->pit->kvm;
294 	pt->vcpu_id = 0;
295 
296 	atomic_set(&pt->pending, 0);
297 	ps->irq_ack = 1;
298 
299 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
300 		      HRTIMER_MODE_ABS);
301 }
302 
303 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
304 {
305 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
306 
307 	WARN_ON(!mutex_is_locked(&ps->lock));
308 
309 	pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
310 
311 	/*
312 	 * The largest possible initial count is 0; this is equivalent
313 	 * to 216 for binary counting and 104 for BCD counting.
314 	 */
315 	if (val == 0)
316 		val = 0x10000;
317 
318 	ps->channels[channel].count = val;
319 
320 	if (channel != 0) {
321 		ps->channels[channel].count_load_time = ktime_get();
322 		return;
323 	}
324 
325 	/* Two types of timer
326 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
327 	switch (ps->channels[0].mode) {
328 	case 0:
329 	case 1:
330         /* FIXME: enhance mode 4 precision */
331 	case 4:
332 		create_pit_timer(ps, val, 0);
333 		break;
334 	case 2:
335 	case 3:
336 		create_pit_timer(ps, val, 1);
337 		break;
338 	default:
339 		destroy_pit_timer(&ps->pit_timer);
340 	}
341 }
342 
343 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
344 {
345 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
346 	pit_load_count(kvm, channel, val);
347 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
348 }
349 
350 static void pit_ioport_write(struct kvm_io_device *this,
351 			     gpa_t addr, int len, const void *data)
352 {
353 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
354 	struct kvm_kpit_state *pit_state = &pit->pit_state;
355 	struct kvm *kvm = pit->kvm;
356 	int channel, access;
357 	struct kvm_kpit_channel_state *s;
358 	u32 val = *(u32 *) data;
359 
360 	val  &= 0xff;
361 	addr &= KVM_PIT_CHANNEL_MASK;
362 
363 	mutex_lock(&pit_state->lock);
364 
365 	if (val != 0)
366 		pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
367 			  (unsigned int)addr, len, val);
368 
369 	if (addr == 3) {
370 		channel = val >> 6;
371 		if (channel == 3) {
372 			/* Read-Back Command. */
373 			for (channel = 0; channel < 3; channel++) {
374 				s = &pit_state->channels[channel];
375 				if (val & (2 << channel)) {
376 					if (!(val & 0x20))
377 						pit_latch_count(kvm, channel);
378 					if (!(val & 0x10))
379 						pit_latch_status(kvm, channel);
380 				}
381 			}
382 		} else {
383 			/* Select Counter <channel>. */
384 			s = &pit_state->channels[channel];
385 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
386 			if (access == 0) {
387 				pit_latch_count(kvm, channel);
388 			} else {
389 				s->rw_mode = access;
390 				s->read_state = access;
391 				s->write_state = access;
392 				s->mode = (val >> 1) & 7;
393 				if (s->mode > 5)
394 					s->mode -= 4;
395 				s->bcd = val & 1;
396 			}
397 		}
398 	} else {
399 		/* Write Count. */
400 		s = &pit_state->channels[addr];
401 		switch (s->write_state) {
402 		default:
403 		case RW_STATE_LSB:
404 			pit_load_count(kvm, addr, val);
405 			break;
406 		case RW_STATE_MSB:
407 			pit_load_count(kvm, addr, val << 8);
408 			break;
409 		case RW_STATE_WORD0:
410 			s->write_latch = val;
411 			s->write_state = RW_STATE_WORD1;
412 			break;
413 		case RW_STATE_WORD1:
414 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
415 			s->write_state = RW_STATE_WORD0;
416 			break;
417 		}
418 	}
419 
420 	mutex_unlock(&pit_state->lock);
421 }
422 
423 static void pit_ioport_read(struct kvm_io_device *this,
424 			    gpa_t addr, int len, void *data)
425 {
426 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
427 	struct kvm_kpit_state *pit_state = &pit->pit_state;
428 	struct kvm *kvm = pit->kvm;
429 	int ret, count;
430 	struct kvm_kpit_channel_state *s;
431 
432 	addr &= KVM_PIT_CHANNEL_MASK;
433 	s = &pit_state->channels[addr];
434 
435 	mutex_lock(&pit_state->lock);
436 
437 	if (s->status_latched) {
438 		s->status_latched = 0;
439 		ret = s->status;
440 	} else if (s->count_latched) {
441 		switch (s->count_latched) {
442 		default:
443 		case RW_STATE_LSB:
444 			ret = s->latched_count & 0xff;
445 			s->count_latched = 0;
446 			break;
447 		case RW_STATE_MSB:
448 			ret = s->latched_count >> 8;
449 			s->count_latched = 0;
450 			break;
451 		case RW_STATE_WORD0:
452 			ret = s->latched_count & 0xff;
453 			s->count_latched = RW_STATE_MSB;
454 			break;
455 		}
456 	} else {
457 		switch (s->read_state) {
458 		default:
459 		case RW_STATE_LSB:
460 			count = pit_get_count(kvm, addr);
461 			ret = count & 0xff;
462 			break;
463 		case RW_STATE_MSB:
464 			count = pit_get_count(kvm, addr);
465 			ret = (count >> 8) & 0xff;
466 			break;
467 		case RW_STATE_WORD0:
468 			count = pit_get_count(kvm, addr);
469 			ret = count & 0xff;
470 			s->read_state = RW_STATE_WORD1;
471 			break;
472 		case RW_STATE_WORD1:
473 			count = pit_get_count(kvm, addr);
474 			ret = (count >> 8) & 0xff;
475 			s->read_state = RW_STATE_WORD0;
476 			break;
477 		}
478 	}
479 
480 	if (len > sizeof(ret))
481 		len = sizeof(ret);
482 	memcpy(data, (char *)&ret, len);
483 
484 	mutex_unlock(&pit_state->lock);
485 }
486 
487 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
488 			int len, int is_write)
489 {
490 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
491 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
492 }
493 
494 static void speaker_ioport_write(struct kvm_io_device *this,
495 				 gpa_t addr, int len, const void *data)
496 {
497 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
498 	struct kvm_kpit_state *pit_state = &pit->pit_state;
499 	struct kvm *kvm = pit->kvm;
500 	u32 val = *(u32 *) data;
501 
502 	mutex_lock(&pit_state->lock);
503 	pit_state->speaker_data_on = (val >> 1) & 1;
504 	pit_set_gate(kvm, 2, val & 1);
505 	mutex_unlock(&pit_state->lock);
506 }
507 
508 static void speaker_ioport_read(struct kvm_io_device *this,
509 				gpa_t addr, int len, void *data)
510 {
511 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
512 	struct kvm_kpit_state *pit_state = &pit->pit_state;
513 	struct kvm *kvm = pit->kvm;
514 	unsigned int refresh_clock;
515 	int ret;
516 
517 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
518 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
519 
520 	mutex_lock(&pit_state->lock);
521 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
522 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
523 	if (len > sizeof(ret))
524 		len = sizeof(ret);
525 	memcpy(data, (char *)&ret, len);
526 	mutex_unlock(&pit_state->lock);
527 }
528 
529 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
530 			    int len, int is_write)
531 {
532 	return (addr == KVM_SPEAKER_BASE_ADDRESS);
533 }
534 
535 void kvm_pit_reset(struct kvm_pit *pit)
536 {
537 	int i;
538 	struct kvm_kpit_channel_state *c;
539 
540 	mutex_lock(&pit->pit_state.lock);
541 	for (i = 0; i < 3; i++) {
542 		c = &pit->pit_state.channels[i];
543 		c->mode = 0xff;
544 		c->gate = (i != 2);
545 		pit_load_count(pit->kvm, i, 0);
546 	}
547 	mutex_unlock(&pit->pit_state.lock);
548 
549 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
550 	pit->pit_state.irq_ack = 1;
551 }
552 
553 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
554 {
555 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
556 
557 	if (!mask) {
558 		atomic_set(&pit->pit_state.pit_timer.pending, 0);
559 		pit->pit_state.irq_ack = 1;
560 	}
561 }
562 
563 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
564 {
565 	struct kvm_pit *pit;
566 	struct kvm_kpit_state *pit_state;
567 
568 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
569 	if (!pit)
570 		return NULL;
571 
572 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
573 	if (pit->irq_source_id < 0) {
574 		kfree(pit);
575 		return NULL;
576 	}
577 
578 	mutex_init(&pit->pit_state.lock);
579 	mutex_lock(&pit->pit_state.lock);
580 	spin_lock_init(&pit->pit_state.inject_lock);
581 
582 	/* Initialize PIO device */
583 	pit->dev.read = pit_ioport_read;
584 	pit->dev.write = pit_ioport_write;
585 	pit->dev.in_range = pit_in_range;
586 	pit->dev.private = pit;
587 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
588 
589 	pit->speaker_dev.read = speaker_ioport_read;
590 	pit->speaker_dev.write = speaker_ioport_write;
591 	pit->speaker_dev.in_range = speaker_in_range;
592 	pit->speaker_dev.private = pit;
593 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
594 
595 	kvm->arch.vpit = pit;
596 	pit->kvm = kvm;
597 
598 	pit_state = &pit->pit_state;
599 	pit_state->pit = pit;
600 	hrtimer_init(&pit_state->pit_timer.timer,
601 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
602 	pit_state->irq_ack_notifier.gsi = 0;
603 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
604 	kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
605 	pit_state->pit_timer.reinject = true;
606 	mutex_unlock(&pit->pit_state.lock);
607 
608 	kvm_pit_reset(pit);
609 
610 	pit->mask_notifier.func = pit_mask_notifer;
611 	kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
612 
613 	return pit;
614 }
615 
616 void kvm_free_pit(struct kvm *kvm)
617 {
618 	struct hrtimer *timer;
619 
620 	if (kvm->arch.vpit) {
621 		kvm_unregister_irq_mask_notifier(kvm, 0,
622 					       &kvm->arch.vpit->mask_notifier);
623 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
624 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
625 		hrtimer_cancel(timer);
626 		kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
627 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
628 		kfree(kvm->arch.vpit);
629 	}
630 }
631 
632 static void __inject_pit_timer_intr(struct kvm *kvm)
633 {
634 	struct kvm_vcpu *vcpu;
635 	int i;
636 
637 	mutex_lock(&kvm->lock);
638 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
639 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
640 	mutex_unlock(&kvm->lock);
641 
642 	/*
643 	 * Provides NMI watchdog support via Virtual Wire mode.
644 	 * The route is: PIT -> PIC -> LVT0 in NMI mode.
645 	 *
646 	 * Note: Our Virtual Wire implementation is simplified, only
647 	 * propagating PIT interrupts to all VCPUs when they have set
648 	 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
649 	 * VCPU0, and only if its LVT0 is in EXTINT mode.
650 	 */
651 	if (kvm->arch.vapics_in_nmi_mode > 0)
652 		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
653 			vcpu = kvm->vcpus[i];
654 			if (vcpu)
655 				kvm_apic_nmi_wd_deliver(vcpu);
656 		}
657 }
658 
659 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
660 {
661 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
662 	struct kvm *kvm = vcpu->kvm;
663 	struct kvm_kpit_state *ps;
664 
665 	if (vcpu && pit) {
666 		int inject = 0;
667 		ps = &pit->pit_state;
668 
669 		/* Try to inject pending interrupts when
670 		 * last one has been acked.
671 		 */
672 		spin_lock(&ps->inject_lock);
673 		if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
674 			ps->irq_ack = 0;
675 			inject = 1;
676 		}
677 		spin_unlock(&ps->inject_lock);
678 		if (inject)
679 			__inject_pit_timer_intr(kvm);
680 	}
681 }
682