xref: /openbmc/linux/arch/x86/kvm/i8254.c (revision 732a675a)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31 
32 #include <linux/kvm_host.h>
33 
34 #include "irq.h"
35 #include "i8254.h"
36 
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42 
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47 
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 	union {
52 		u64 ll;
53 		struct {
54 			u32 low, high;
55 		} l;
56 	} u, res;
57 	u64 rl, rh;
58 
59 	u.ll = a;
60 	rl = (u64)u.l.low * (u64)b;
61 	rh = (u64)u.l.high * (u64)b;
62 	rh += (rl >> 32);
63 	res.l.high = div64_u64(rh, c);
64 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 	return res.ll;
66 }
67 
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 	struct kvm_kpit_channel_state *c =
71 		&kvm->arch.vpit->pit_state.channels[channel];
72 
73 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74 
75 	switch (c->mode) {
76 	default:
77 	case 0:
78 	case 4:
79 		/* XXX: just disable/enable counting */
80 		break;
81 	case 1:
82 	case 2:
83 	case 3:
84 	case 5:
85 		/* Restart counting on rising edge. */
86 		if (c->gate < val)
87 			c->count_load_time = ktime_get();
88 		break;
89 	}
90 
91 	c->gate = val;
92 }
93 
94 int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97 
98 	return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100 
101 static int pit_get_count(struct kvm *kvm, int channel)
102 {
103 	struct kvm_kpit_channel_state *c =
104 		&kvm->arch.vpit->pit_state.channels[channel];
105 	s64 d, t;
106 	int counter;
107 
108 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109 
110 	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112 
113 	switch (c->mode) {
114 	case 0:
115 	case 1:
116 	case 4:
117 	case 5:
118 		counter = (c->count - d) & 0xffff;
119 		break;
120 	case 3:
121 		/* XXX: may be incorrect for odd counts */
122 		counter = c->count - (mod_64((2 * d), c->count));
123 		break;
124 	default:
125 		counter = c->count - mod_64(d, c->count);
126 		break;
127 	}
128 	return counter;
129 }
130 
131 static int pit_get_out(struct kvm *kvm, int channel)
132 {
133 	struct kvm_kpit_channel_state *c =
134 		&kvm->arch.vpit->pit_state.channels[channel];
135 	s64 d, t;
136 	int out;
137 
138 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139 
140 	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142 
143 	switch (c->mode) {
144 	default:
145 	case 0:
146 		out = (d >= c->count);
147 		break;
148 	case 1:
149 		out = (d < c->count);
150 		break;
151 	case 2:
152 		out = ((mod_64(d, c->count) == 0) && (d != 0));
153 		break;
154 	case 3:
155 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 		break;
157 	case 4:
158 	case 5:
159 		out = (d == c->count);
160 		break;
161 	}
162 
163 	return out;
164 }
165 
166 static void pit_latch_count(struct kvm *kvm, int channel)
167 {
168 	struct kvm_kpit_channel_state *c =
169 		&kvm->arch.vpit->pit_state.channels[channel];
170 
171 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172 
173 	if (!c->count_latched) {
174 		c->latched_count = pit_get_count(kvm, channel);
175 		c->count_latched = c->rw_mode;
176 	}
177 }
178 
179 static void pit_latch_status(struct kvm *kvm, int channel)
180 {
181 	struct kvm_kpit_channel_state *c =
182 		&kvm->arch.vpit->pit_state.channels[channel];
183 
184 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185 
186 	if (!c->status_latched) {
187 		/* TODO: Return NULL COUNT (bit 6). */
188 		c->status = ((pit_get_out(kvm, channel) << 7) |
189 				(c->rw_mode << 4) |
190 				(c->mode << 1) |
191 				c->bcd);
192 		c->status_latched = 1;
193 	}
194 }
195 
196 int __pit_timer_fn(struct kvm_kpit_state *ps)
197 {
198 	struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 	struct kvm_kpit_timer *pt = &ps->pit_timer;
200 
201 	atomic_inc(&pt->pending);
202 	smp_mb__after_atomic_inc();
203 	/* FIXME: handle case where the guest is in guest mode */
204 	if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
205 		vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
206 		wake_up_interruptible(&vcpu0->wq);
207 	}
208 
209 	pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
210 	pt->scheduled = ktime_to_ns(pt->timer.expires);
211 
212 	return (pt->period == 0 ? 0 : 1);
213 }
214 
215 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
216 {
217 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
218 
219 	if (pit && vcpu->vcpu_id == 0 && pit->pit_state.inject_pending)
220 		return atomic_read(&pit->pit_state.pit_timer.pending);
221 
222 	return 0;
223 }
224 
225 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
226 {
227 	struct kvm_kpit_state *ps;
228 	int restart_timer = 0;
229 
230 	ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
231 
232 	restart_timer = __pit_timer_fn(ps);
233 
234 	if (restart_timer)
235 		return HRTIMER_RESTART;
236 	else
237 		return HRTIMER_NORESTART;
238 }
239 
240 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
241 {
242 	pr_debug("pit: execute del timer!\n");
243 	hrtimer_cancel(&pt->timer);
244 }
245 
246 static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
247 {
248 	s64 interval;
249 
250 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
251 
252 	pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
253 
254 	/* TODO The new value only affected after the retriggered */
255 	hrtimer_cancel(&pt->timer);
256 	pt->period = (is_period == 0) ? 0 : interval;
257 	pt->timer.function = pit_timer_fn;
258 	atomic_set(&pt->pending, 0);
259 
260 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
261 		      HRTIMER_MODE_ABS);
262 }
263 
264 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
265 {
266 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
267 
268 	WARN_ON(!mutex_is_locked(&ps->lock));
269 
270 	pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
271 
272 	/*
273 	 * Though spec said the state of 8254 is undefined after power-up,
274 	 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
275 	 * when booting up.
276 	 * So here setting initialize rate for it, and not a specific number
277 	 */
278 	if (val == 0)
279 		val = 0x10000;
280 
281 	ps->channels[channel].count_load_time = ktime_get();
282 	ps->channels[channel].count = val;
283 
284 	if (channel != 0)
285 		return;
286 
287 	/* Two types of timer
288 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
289 	switch (ps->channels[0].mode) {
290 	case 1:
291         /* FIXME: enhance mode 4 precision */
292 	case 4:
293 		create_pit_timer(&ps->pit_timer, val, 0);
294 		break;
295 	case 2:
296 		create_pit_timer(&ps->pit_timer, val, 1);
297 		break;
298 	default:
299 		destroy_pit_timer(&ps->pit_timer);
300 	}
301 }
302 
303 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
304 {
305 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
306 	pit_load_count(kvm, channel, val);
307 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
308 }
309 
310 static void pit_ioport_write(struct kvm_io_device *this,
311 			     gpa_t addr, int len, const void *data)
312 {
313 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
314 	struct kvm_kpit_state *pit_state = &pit->pit_state;
315 	struct kvm *kvm = pit->kvm;
316 	int channel, access;
317 	struct kvm_kpit_channel_state *s;
318 	u32 val = *(u32 *) data;
319 
320 	val  &= 0xff;
321 	addr &= KVM_PIT_CHANNEL_MASK;
322 
323 	mutex_lock(&pit_state->lock);
324 
325 	if (val != 0)
326 		pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
327 			  (unsigned int)addr, len, val);
328 
329 	if (addr == 3) {
330 		channel = val >> 6;
331 		if (channel == 3) {
332 			/* Read-Back Command. */
333 			for (channel = 0; channel < 3; channel++) {
334 				s = &pit_state->channels[channel];
335 				if (val & (2 << channel)) {
336 					if (!(val & 0x20))
337 						pit_latch_count(kvm, channel);
338 					if (!(val & 0x10))
339 						pit_latch_status(kvm, channel);
340 				}
341 			}
342 		} else {
343 			/* Select Counter <channel>. */
344 			s = &pit_state->channels[channel];
345 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
346 			if (access == 0) {
347 				pit_latch_count(kvm, channel);
348 			} else {
349 				s->rw_mode = access;
350 				s->read_state = access;
351 				s->write_state = access;
352 				s->mode = (val >> 1) & 7;
353 				if (s->mode > 5)
354 					s->mode -= 4;
355 				s->bcd = val & 1;
356 			}
357 		}
358 	} else {
359 		/* Write Count. */
360 		s = &pit_state->channels[addr];
361 		switch (s->write_state) {
362 		default:
363 		case RW_STATE_LSB:
364 			pit_load_count(kvm, addr, val);
365 			break;
366 		case RW_STATE_MSB:
367 			pit_load_count(kvm, addr, val << 8);
368 			break;
369 		case RW_STATE_WORD0:
370 			s->write_latch = val;
371 			s->write_state = RW_STATE_WORD1;
372 			break;
373 		case RW_STATE_WORD1:
374 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
375 			s->write_state = RW_STATE_WORD0;
376 			break;
377 		}
378 	}
379 
380 	mutex_unlock(&pit_state->lock);
381 }
382 
383 static void pit_ioport_read(struct kvm_io_device *this,
384 			    gpa_t addr, int len, void *data)
385 {
386 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
387 	struct kvm_kpit_state *pit_state = &pit->pit_state;
388 	struct kvm *kvm = pit->kvm;
389 	int ret, count;
390 	struct kvm_kpit_channel_state *s;
391 
392 	addr &= KVM_PIT_CHANNEL_MASK;
393 	s = &pit_state->channels[addr];
394 
395 	mutex_lock(&pit_state->lock);
396 
397 	if (s->status_latched) {
398 		s->status_latched = 0;
399 		ret = s->status;
400 	} else if (s->count_latched) {
401 		switch (s->count_latched) {
402 		default:
403 		case RW_STATE_LSB:
404 			ret = s->latched_count & 0xff;
405 			s->count_latched = 0;
406 			break;
407 		case RW_STATE_MSB:
408 			ret = s->latched_count >> 8;
409 			s->count_latched = 0;
410 			break;
411 		case RW_STATE_WORD0:
412 			ret = s->latched_count & 0xff;
413 			s->count_latched = RW_STATE_MSB;
414 			break;
415 		}
416 	} else {
417 		switch (s->read_state) {
418 		default:
419 		case RW_STATE_LSB:
420 			count = pit_get_count(kvm, addr);
421 			ret = count & 0xff;
422 			break;
423 		case RW_STATE_MSB:
424 			count = pit_get_count(kvm, addr);
425 			ret = (count >> 8) & 0xff;
426 			break;
427 		case RW_STATE_WORD0:
428 			count = pit_get_count(kvm, addr);
429 			ret = count & 0xff;
430 			s->read_state = RW_STATE_WORD1;
431 			break;
432 		case RW_STATE_WORD1:
433 			count = pit_get_count(kvm, addr);
434 			ret = (count >> 8) & 0xff;
435 			s->read_state = RW_STATE_WORD0;
436 			break;
437 		}
438 	}
439 
440 	if (len > sizeof(ret))
441 		len = sizeof(ret);
442 	memcpy(data, (char *)&ret, len);
443 
444 	mutex_unlock(&pit_state->lock);
445 }
446 
447 static int pit_in_range(struct kvm_io_device *this, gpa_t addr)
448 {
449 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
450 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
451 }
452 
453 static void speaker_ioport_write(struct kvm_io_device *this,
454 				 gpa_t addr, int len, const void *data)
455 {
456 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
457 	struct kvm_kpit_state *pit_state = &pit->pit_state;
458 	struct kvm *kvm = pit->kvm;
459 	u32 val = *(u32 *) data;
460 
461 	mutex_lock(&pit_state->lock);
462 	pit_state->speaker_data_on = (val >> 1) & 1;
463 	pit_set_gate(kvm, 2, val & 1);
464 	mutex_unlock(&pit_state->lock);
465 }
466 
467 static void speaker_ioport_read(struct kvm_io_device *this,
468 				gpa_t addr, int len, void *data)
469 {
470 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
471 	struct kvm_kpit_state *pit_state = &pit->pit_state;
472 	struct kvm *kvm = pit->kvm;
473 	unsigned int refresh_clock;
474 	int ret;
475 
476 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
477 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
478 
479 	mutex_lock(&pit_state->lock);
480 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
481 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
482 	if (len > sizeof(ret))
483 		len = sizeof(ret);
484 	memcpy(data, (char *)&ret, len);
485 	mutex_unlock(&pit_state->lock);
486 }
487 
488 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr)
489 {
490 	return (addr == KVM_SPEAKER_BASE_ADDRESS);
491 }
492 
493 void kvm_pit_reset(struct kvm_pit *pit)
494 {
495 	int i;
496 	struct kvm_kpit_channel_state *c;
497 
498 	mutex_lock(&pit->pit_state.lock);
499 	for (i = 0; i < 3; i++) {
500 		c = &pit->pit_state.channels[i];
501 		c->mode = 0xff;
502 		c->gate = (i != 2);
503 		pit_load_count(pit->kvm, i, 0);
504 	}
505 	mutex_unlock(&pit->pit_state.lock);
506 
507 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
508 	pit->pit_state.inject_pending = 1;
509 }
510 
511 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
512 {
513 	struct kvm_pit *pit;
514 	struct kvm_kpit_state *pit_state;
515 
516 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
517 	if (!pit)
518 		return NULL;
519 
520 	mutex_init(&pit->pit_state.lock);
521 	mutex_lock(&pit->pit_state.lock);
522 
523 	/* Initialize PIO device */
524 	pit->dev.read = pit_ioport_read;
525 	pit->dev.write = pit_ioport_write;
526 	pit->dev.in_range = pit_in_range;
527 	pit->dev.private = pit;
528 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
529 
530 	pit->speaker_dev.read = speaker_ioport_read;
531 	pit->speaker_dev.write = speaker_ioport_write;
532 	pit->speaker_dev.in_range = speaker_in_range;
533 	pit->speaker_dev.private = pit;
534 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
535 
536 	kvm->arch.vpit = pit;
537 	pit->kvm = kvm;
538 
539 	pit_state = &pit->pit_state;
540 	pit_state->pit = pit;
541 	hrtimer_init(&pit_state->pit_timer.timer,
542 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
543 	mutex_unlock(&pit->pit_state.lock);
544 
545 	kvm_pit_reset(pit);
546 
547 	return pit;
548 }
549 
550 void kvm_free_pit(struct kvm *kvm)
551 {
552 	struct hrtimer *timer;
553 
554 	if (kvm->arch.vpit) {
555 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
556 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
557 		hrtimer_cancel(timer);
558 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
559 		kfree(kvm->arch.vpit);
560 	}
561 }
562 
563 void __inject_pit_timer_intr(struct kvm *kvm)
564 {
565 	mutex_lock(&kvm->lock);
566 	kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
567 	kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
568 	kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
569 	kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
570 	mutex_unlock(&kvm->lock);
571 }
572 
573 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
574 {
575 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
576 	struct kvm *kvm = vcpu->kvm;
577 	struct kvm_kpit_state *ps;
578 
579 	if (vcpu && pit) {
580 		ps = &pit->pit_state;
581 
582 		/* Try to inject pending interrupts when:
583 		 * 1. Pending exists
584 		 * 2. Last interrupt was accepted or waited for too long time*/
585 		if (atomic_read(&ps->pit_timer.pending) &&
586 		    (ps->inject_pending ||
587 		    (jiffies - ps->last_injected_time
588 				>= KVM_MAX_PIT_INTR_INTERVAL))) {
589 			ps->inject_pending = 0;
590 			__inject_pit_timer_intr(kvm);
591 			ps->last_injected_time = jiffies;
592 		}
593 	}
594 }
595 
596 void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
597 {
598 	struct kvm_arch *arch = &vcpu->kvm->arch;
599 	struct kvm_kpit_state *ps;
600 
601 	if (vcpu && arch->vpit) {
602 		ps = &arch->vpit->pit_state;
603 		if (atomic_read(&ps->pit_timer.pending) &&
604 		(((arch->vpic->pics[0].imr & 1) == 0 &&
605 		  arch->vpic->pics[0].irq_base == vec) ||
606 		  (arch->vioapic->redirtbl[0].fields.vector == vec &&
607 		  arch->vioapic->redirtbl[0].fields.mask != 1))) {
608 			ps->inject_pending = 1;
609 			atomic_dec(&ps->pit_timer.pending);
610 			ps->channels[0].count_load_time = ktime_get();
611 		}
612 	}
613 }
614