xref: /openbmc/linux/arch/x86/kvm/i8254.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32 
33 #define pr_fmt(fmt) "pit: " fmt
34 
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37 
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42 
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48 
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53 
54 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
55 {
56 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
57 
58 	switch (c->mode) {
59 	default:
60 	case 0:
61 	case 4:
62 		/* XXX: just disable/enable counting */
63 		break;
64 	case 1:
65 	case 2:
66 	case 3:
67 	case 5:
68 		/* Restart counting on rising edge. */
69 		if (c->gate < val)
70 			c->count_load_time = ktime_get();
71 		break;
72 	}
73 
74 	c->gate = val;
75 }
76 
77 static int pit_get_gate(struct kvm_pit *pit, int channel)
78 {
79 	return pit->pit_state.channels[channel].gate;
80 }
81 
82 static s64 __kpit_elapsed(struct kvm_pit *pit)
83 {
84 	s64 elapsed;
85 	ktime_t remaining;
86 	struct kvm_kpit_state *ps = &pit->pit_state;
87 
88 	if (!ps->period)
89 		return 0;
90 
91 	/*
92 	 * The Counter does not stop when it reaches zero. In
93 	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94 	 * the highest count, either FFFF hex for binary counting
95 	 * or 9999 for BCD counting, and continues counting.
96 	 * Modes 2 and 3 are periodic; the Counter reloads
97 	 * itself with the initial count and continues counting
98 	 * from there.
99 	 */
100 	remaining = hrtimer_get_remaining(&ps->timer);
101 	elapsed = ps->period - ktime_to_ns(remaining);
102 
103 	return elapsed;
104 }
105 
106 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
107 			int channel)
108 {
109 	if (channel == 0)
110 		return __kpit_elapsed(pit);
111 
112 	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
113 }
114 
115 static int pit_get_count(struct kvm_pit *pit, int channel)
116 {
117 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
118 	s64 d, t;
119 	int counter;
120 
121 	t = kpit_elapsed(pit, c, channel);
122 	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
123 
124 	switch (c->mode) {
125 	case 0:
126 	case 1:
127 	case 4:
128 	case 5:
129 		counter = (c->count - d) & 0xffff;
130 		break;
131 	case 3:
132 		/* XXX: may be incorrect for odd counts */
133 		counter = c->count - (mod_64((2 * d), c->count));
134 		break;
135 	default:
136 		counter = c->count - mod_64(d, c->count);
137 		break;
138 	}
139 	return counter;
140 }
141 
142 static int pit_get_out(struct kvm_pit *pit, int channel)
143 {
144 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
145 	s64 d, t;
146 	int out;
147 
148 	t = kpit_elapsed(pit, c, channel);
149 	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150 
151 	switch (c->mode) {
152 	default:
153 	case 0:
154 		out = (d >= c->count);
155 		break;
156 	case 1:
157 		out = (d < c->count);
158 		break;
159 	case 2:
160 		out = ((mod_64(d, c->count) == 0) && (d != 0));
161 		break;
162 	case 3:
163 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
164 		break;
165 	case 4:
166 	case 5:
167 		out = (d == c->count);
168 		break;
169 	}
170 
171 	return out;
172 }
173 
174 static void pit_latch_count(struct kvm_pit *pit, int channel)
175 {
176 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
177 
178 	if (!c->count_latched) {
179 		c->latched_count = pit_get_count(pit, channel);
180 		c->count_latched = c->rw_mode;
181 	}
182 }
183 
184 static void pit_latch_status(struct kvm_pit *pit, int channel)
185 {
186 	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
187 
188 	if (!c->status_latched) {
189 		/* TODO: Return NULL COUNT (bit 6). */
190 		c->status = ((pit_get_out(pit, channel) << 7) |
191 				(c->rw_mode << 4) |
192 				(c->mode << 1) |
193 				c->bcd);
194 		c->status_latched = 1;
195 	}
196 }
197 
198 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
199 {
200 	return container_of(ps, struct kvm_pit, pit_state);
201 }
202 
203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
204 {
205 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
206 						 irq_ack_notifier);
207 	struct kvm_pit *pit = pit_state_to_pit(ps);
208 
209 	atomic_set(&ps->irq_ack, 1);
210 	/* irq_ack should be set before pending is read.  Order accesses with
211 	 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
212 	 */
213 	smp_mb();
214 	if (atomic_dec_if_positive(&ps->pending) > 0)
215 		kthread_queue_work(pit->worker, &pit->expired);
216 }
217 
218 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
219 {
220 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221 	struct hrtimer *timer;
222 
223 	if (!kvm_vcpu_is_bsp(vcpu) || !pit)
224 		return;
225 
226 	timer = &pit->pit_state.timer;
227 	mutex_lock(&pit->pit_state.lock);
228 	if (hrtimer_cancel(timer))
229 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
230 	mutex_unlock(&pit->pit_state.lock);
231 }
232 
233 static void destroy_pit_timer(struct kvm_pit *pit)
234 {
235 	hrtimer_cancel(&pit->pit_state.timer);
236 	kthread_flush_work(&pit->expired);
237 }
238 
239 static void pit_do_work(struct kthread_work *work)
240 {
241 	struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
242 	struct kvm *kvm = pit->kvm;
243 	struct kvm_vcpu *vcpu;
244 	int i;
245 	struct kvm_kpit_state *ps = &pit->pit_state;
246 
247 	if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
248 		return;
249 
250 	kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
251 	kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
252 
253 	/*
254 	 * Provides NMI watchdog support via Virtual Wire mode.
255 	 * The route is: PIT -> LVT0 in NMI mode.
256 	 *
257 	 * Note: Our Virtual Wire implementation does not follow
258 	 * the MP specification.  We propagate a PIT interrupt to all
259 	 * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
260 	 * also be simultaneously delivered through PIC and IOAPIC.
261 	 */
262 	if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
263 		kvm_for_each_vcpu(i, vcpu, kvm)
264 			kvm_apic_nmi_wd_deliver(vcpu);
265 }
266 
267 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
268 {
269 	struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
270 	struct kvm_pit *pt = pit_state_to_pit(ps);
271 
272 	if (atomic_read(&ps->reinject))
273 		atomic_inc(&ps->pending);
274 
275 	kthread_queue_work(pt->worker, &pt->expired);
276 
277 	if (ps->is_periodic) {
278 		hrtimer_add_expires_ns(&ps->timer, ps->period);
279 		return HRTIMER_RESTART;
280 	} else
281 		return HRTIMER_NORESTART;
282 }
283 
284 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
285 {
286 	atomic_set(&pit->pit_state.pending, 0);
287 	atomic_set(&pit->pit_state.irq_ack, 1);
288 }
289 
290 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
291 {
292 	struct kvm_kpit_state *ps = &pit->pit_state;
293 	struct kvm *kvm = pit->kvm;
294 
295 	if (atomic_read(&ps->reinject) == reinject)
296 		return;
297 
298 	if (reinject) {
299 		/* The initial state is preserved while ps->reinject == 0. */
300 		kvm_pit_reset_reinject(pit);
301 		kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
302 		kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
303 	} else {
304 		kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
305 		kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
306 	}
307 
308 	atomic_set(&ps->reinject, reinject);
309 }
310 
311 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
312 {
313 	struct kvm_kpit_state *ps = &pit->pit_state;
314 	struct kvm *kvm = pit->kvm;
315 	s64 interval;
316 
317 	if (!ioapic_in_kernel(kvm) ||
318 	    ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
319 		return;
320 
321 	interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
322 
323 	pr_debug("create pit timer, interval is %llu nsec\n", interval);
324 
325 	/* TODO The new value only affected after the retriggered */
326 	hrtimer_cancel(&ps->timer);
327 	kthread_flush_work(&pit->expired);
328 	ps->period = interval;
329 	ps->is_periodic = is_period;
330 
331 	kvm_pit_reset_reinject(pit);
332 
333 	/*
334 	 * Do not allow the guest to program periodic timers with small
335 	 * interval, since the hrtimers are not throttled by the host
336 	 * scheduler.
337 	 */
338 	if (ps->is_periodic) {
339 		s64 min_period = min_timer_period_us * 1000LL;
340 
341 		if (ps->period < min_period) {
342 			pr_info_ratelimited(
343 			    "kvm: requested %lld ns "
344 			    "i8254 timer period limited to %lld ns\n",
345 			    ps->period, min_period);
346 			ps->period = min_period;
347 		}
348 	}
349 
350 	hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
351 		      HRTIMER_MODE_ABS);
352 }
353 
354 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
355 {
356 	struct kvm_kpit_state *ps = &pit->pit_state;
357 
358 	pr_debug("load_count val is %d, channel is %d\n", val, channel);
359 
360 	/*
361 	 * The largest possible initial count is 0; this is equivalent
362 	 * to 216 for binary counting and 104 for BCD counting.
363 	 */
364 	if (val == 0)
365 		val = 0x10000;
366 
367 	ps->channels[channel].count = val;
368 
369 	if (channel != 0) {
370 		ps->channels[channel].count_load_time = ktime_get();
371 		return;
372 	}
373 
374 	/* Two types of timer
375 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
376 	switch (ps->channels[0].mode) {
377 	case 0:
378 	case 1:
379         /* FIXME: enhance mode 4 precision */
380 	case 4:
381 		create_pit_timer(pit, val, 0);
382 		break;
383 	case 2:
384 	case 3:
385 		create_pit_timer(pit, val, 1);
386 		break;
387 	default:
388 		destroy_pit_timer(pit);
389 	}
390 }
391 
392 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
393 		int hpet_legacy_start)
394 {
395 	u8 saved_mode;
396 
397 	WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
398 
399 	if (hpet_legacy_start) {
400 		/* save existing mode for later reenablement */
401 		WARN_ON(channel != 0);
402 		saved_mode = pit->pit_state.channels[0].mode;
403 		pit->pit_state.channels[0].mode = 0xff; /* disable timer */
404 		pit_load_count(pit, channel, val);
405 		pit->pit_state.channels[0].mode = saved_mode;
406 	} else {
407 		pit_load_count(pit, channel, val);
408 	}
409 }
410 
411 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
412 {
413 	return container_of(dev, struct kvm_pit, dev);
414 }
415 
416 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
417 {
418 	return container_of(dev, struct kvm_pit, speaker_dev);
419 }
420 
421 static inline int pit_in_range(gpa_t addr)
422 {
423 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
424 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
425 }
426 
427 static int pit_ioport_write(struct kvm_vcpu *vcpu,
428 				struct kvm_io_device *this,
429 			    gpa_t addr, int len, const void *data)
430 {
431 	struct kvm_pit *pit = dev_to_pit(this);
432 	struct kvm_kpit_state *pit_state = &pit->pit_state;
433 	int channel, access;
434 	struct kvm_kpit_channel_state *s;
435 	u32 val = *(u32 *) data;
436 	if (!pit_in_range(addr))
437 		return -EOPNOTSUPP;
438 
439 	val  &= 0xff;
440 	addr &= KVM_PIT_CHANNEL_MASK;
441 
442 	mutex_lock(&pit_state->lock);
443 
444 	if (val != 0)
445 		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
446 			 (unsigned int)addr, len, val);
447 
448 	if (addr == 3) {
449 		channel = val >> 6;
450 		if (channel == 3) {
451 			/* Read-Back Command. */
452 			for (channel = 0; channel < 3; channel++) {
453 				s = &pit_state->channels[channel];
454 				if (val & (2 << channel)) {
455 					if (!(val & 0x20))
456 						pit_latch_count(pit, channel);
457 					if (!(val & 0x10))
458 						pit_latch_status(pit, channel);
459 				}
460 			}
461 		} else {
462 			/* Select Counter <channel>. */
463 			s = &pit_state->channels[channel];
464 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
465 			if (access == 0) {
466 				pit_latch_count(pit, channel);
467 			} else {
468 				s->rw_mode = access;
469 				s->read_state = access;
470 				s->write_state = access;
471 				s->mode = (val >> 1) & 7;
472 				if (s->mode > 5)
473 					s->mode -= 4;
474 				s->bcd = val & 1;
475 			}
476 		}
477 	} else {
478 		/* Write Count. */
479 		s = &pit_state->channels[addr];
480 		switch (s->write_state) {
481 		default:
482 		case RW_STATE_LSB:
483 			pit_load_count(pit, addr, val);
484 			break;
485 		case RW_STATE_MSB:
486 			pit_load_count(pit, addr, val << 8);
487 			break;
488 		case RW_STATE_WORD0:
489 			s->write_latch = val;
490 			s->write_state = RW_STATE_WORD1;
491 			break;
492 		case RW_STATE_WORD1:
493 			pit_load_count(pit, addr, s->write_latch | (val << 8));
494 			s->write_state = RW_STATE_WORD0;
495 			break;
496 		}
497 	}
498 
499 	mutex_unlock(&pit_state->lock);
500 	return 0;
501 }
502 
503 static int pit_ioport_read(struct kvm_vcpu *vcpu,
504 			   struct kvm_io_device *this,
505 			   gpa_t addr, int len, void *data)
506 {
507 	struct kvm_pit *pit = dev_to_pit(this);
508 	struct kvm_kpit_state *pit_state = &pit->pit_state;
509 	int ret, count;
510 	struct kvm_kpit_channel_state *s;
511 	if (!pit_in_range(addr))
512 		return -EOPNOTSUPP;
513 
514 	addr &= KVM_PIT_CHANNEL_MASK;
515 	if (addr == 3)
516 		return 0;
517 
518 	s = &pit_state->channels[addr];
519 
520 	mutex_lock(&pit_state->lock);
521 
522 	if (s->status_latched) {
523 		s->status_latched = 0;
524 		ret = s->status;
525 	} else if (s->count_latched) {
526 		switch (s->count_latched) {
527 		default:
528 		case RW_STATE_LSB:
529 			ret = s->latched_count & 0xff;
530 			s->count_latched = 0;
531 			break;
532 		case RW_STATE_MSB:
533 			ret = s->latched_count >> 8;
534 			s->count_latched = 0;
535 			break;
536 		case RW_STATE_WORD0:
537 			ret = s->latched_count & 0xff;
538 			s->count_latched = RW_STATE_MSB;
539 			break;
540 		}
541 	} else {
542 		switch (s->read_state) {
543 		default:
544 		case RW_STATE_LSB:
545 			count = pit_get_count(pit, addr);
546 			ret = count & 0xff;
547 			break;
548 		case RW_STATE_MSB:
549 			count = pit_get_count(pit, addr);
550 			ret = (count >> 8) & 0xff;
551 			break;
552 		case RW_STATE_WORD0:
553 			count = pit_get_count(pit, addr);
554 			ret = count & 0xff;
555 			s->read_state = RW_STATE_WORD1;
556 			break;
557 		case RW_STATE_WORD1:
558 			count = pit_get_count(pit, addr);
559 			ret = (count >> 8) & 0xff;
560 			s->read_state = RW_STATE_WORD0;
561 			break;
562 		}
563 	}
564 
565 	if (len > sizeof(ret))
566 		len = sizeof(ret);
567 	memcpy(data, (char *)&ret, len);
568 
569 	mutex_unlock(&pit_state->lock);
570 	return 0;
571 }
572 
573 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
574 				struct kvm_io_device *this,
575 				gpa_t addr, int len, const void *data)
576 {
577 	struct kvm_pit *pit = speaker_to_pit(this);
578 	struct kvm_kpit_state *pit_state = &pit->pit_state;
579 	u32 val = *(u32 *) data;
580 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
581 		return -EOPNOTSUPP;
582 
583 	mutex_lock(&pit_state->lock);
584 	pit_state->speaker_data_on = (val >> 1) & 1;
585 	pit_set_gate(pit, 2, val & 1);
586 	mutex_unlock(&pit_state->lock);
587 	return 0;
588 }
589 
590 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
591 				   struct kvm_io_device *this,
592 				   gpa_t addr, int len, void *data)
593 {
594 	struct kvm_pit *pit = speaker_to_pit(this);
595 	struct kvm_kpit_state *pit_state = &pit->pit_state;
596 	unsigned int refresh_clock;
597 	int ret;
598 	if (addr != KVM_SPEAKER_BASE_ADDRESS)
599 		return -EOPNOTSUPP;
600 
601 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
602 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
603 
604 	mutex_lock(&pit_state->lock);
605 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
606 		(pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
607 	if (len > sizeof(ret))
608 		len = sizeof(ret);
609 	memcpy(data, (char *)&ret, len);
610 	mutex_unlock(&pit_state->lock);
611 	return 0;
612 }
613 
614 static void kvm_pit_reset(struct kvm_pit *pit)
615 {
616 	int i;
617 	struct kvm_kpit_channel_state *c;
618 
619 	pit->pit_state.flags = 0;
620 	for (i = 0; i < 3; i++) {
621 		c = &pit->pit_state.channels[i];
622 		c->mode = 0xff;
623 		c->gate = (i != 2);
624 		pit_load_count(pit, i, 0);
625 	}
626 
627 	kvm_pit_reset_reinject(pit);
628 }
629 
630 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
631 {
632 	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
633 
634 	if (!mask)
635 		kvm_pit_reset_reinject(pit);
636 }
637 
638 static const struct kvm_io_device_ops pit_dev_ops = {
639 	.read     = pit_ioport_read,
640 	.write    = pit_ioport_write,
641 };
642 
643 static const struct kvm_io_device_ops speaker_dev_ops = {
644 	.read     = speaker_ioport_read,
645 	.write    = speaker_ioport_write,
646 };
647 
648 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
649 {
650 	struct kvm_pit *pit;
651 	struct kvm_kpit_state *pit_state;
652 	struct pid *pid;
653 	pid_t pid_nr;
654 	int ret;
655 
656 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
657 	if (!pit)
658 		return NULL;
659 
660 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
661 	if (pit->irq_source_id < 0)
662 		goto fail_request;
663 
664 	mutex_init(&pit->pit_state.lock);
665 
666 	pid = get_pid(task_tgid(current));
667 	pid_nr = pid_vnr(pid);
668 	put_pid(pid);
669 
670 	pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
671 	if (IS_ERR(pit->worker))
672 		goto fail_kthread;
673 
674 	kthread_init_work(&pit->expired, pit_do_work);
675 
676 	pit->kvm = kvm;
677 
678 	pit_state = &pit->pit_state;
679 	hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
680 	pit_state->timer.function = pit_timer_fn;
681 
682 	pit_state->irq_ack_notifier.gsi = 0;
683 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
684 	pit->mask_notifier.func = pit_mask_notifer;
685 
686 	kvm_pit_reset(pit);
687 
688 	kvm_pit_set_reinject(pit, true);
689 
690 	mutex_lock(&kvm->slots_lock);
691 	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
692 	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
693 				      KVM_PIT_MEM_LENGTH, &pit->dev);
694 	if (ret < 0)
695 		goto fail_register_pit;
696 
697 	if (flags & KVM_PIT_SPEAKER_DUMMY) {
698 		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
699 		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
700 					      KVM_SPEAKER_BASE_ADDRESS, 4,
701 					      &pit->speaker_dev);
702 		if (ret < 0)
703 			goto fail_register_speaker;
704 	}
705 	mutex_unlock(&kvm->slots_lock);
706 
707 	return pit;
708 
709 fail_register_speaker:
710 	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
711 fail_register_pit:
712 	mutex_unlock(&kvm->slots_lock);
713 	kvm_pit_set_reinject(pit, false);
714 	kthread_destroy_worker(pit->worker);
715 fail_kthread:
716 	kvm_free_irq_source_id(kvm, pit->irq_source_id);
717 fail_request:
718 	kfree(pit);
719 	return NULL;
720 }
721 
722 void kvm_free_pit(struct kvm *kvm)
723 {
724 	struct kvm_pit *pit = kvm->arch.vpit;
725 
726 	if (pit) {
727 		mutex_lock(&kvm->slots_lock);
728 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
729 		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
730 		mutex_unlock(&kvm->slots_lock);
731 		kvm_pit_set_reinject(pit, false);
732 		hrtimer_cancel(&pit->pit_state.timer);
733 		kthread_destroy_worker(pit->worker);
734 		kvm_free_irq_source_id(kvm, pit->irq_source_id);
735 		kfree(pit);
736 	}
737 }
738