1 /* 2 * 8253/8254 interval timer emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * Copyright (c) 2006 Intel Corporation 6 * Copyright (c) 2007 Keir Fraser, XenSource Inc 7 * Copyright (c) 2008 Intel Corporation 8 * Copyright 2009 Red Hat, Inc. and/or its affiliates. 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 * 28 * Authors: 29 * Sheng Yang <sheng.yang@intel.com> 30 * Based on QEMU and Xen. 31 */ 32 33 #define pr_fmt(fmt) "pit: " fmt 34 35 #include <linux/kvm_host.h> 36 #include <linux/slab.h> 37 38 #include "irq.h" 39 #include "i8254.h" 40 #include "x86.h" 41 42 #ifndef CONFIG_X86_64 43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) 44 #else 45 #define mod_64(x, y) ((x) % (y)) 46 #endif 47 48 #define RW_STATE_LSB 1 49 #define RW_STATE_MSB 2 50 #define RW_STATE_WORD0 3 51 #define RW_STATE_WORD1 4 52 53 /* Compute with 96 bit intermediate result: (a*b)/c */ 54 static u64 muldiv64(u64 a, u32 b, u32 c) 55 { 56 union { 57 u64 ll; 58 struct { 59 u32 low, high; 60 } l; 61 } u, res; 62 u64 rl, rh; 63 64 u.ll = a; 65 rl = (u64)u.l.low * (u64)b; 66 rh = (u64)u.l.high * (u64)b; 67 rh += (rl >> 32); 68 res.l.high = div64_u64(rh, c); 69 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); 70 return res.ll; 71 } 72 73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val) 74 { 75 struct kvm_kpit_channel_state *c = 76 &kvm->arch.vpit->pit_state.channels[channel]; 77 78 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 79 80 switch (c->mode) { 81 default: 82 case 0: 83 case 4: 84 /* XXX: just disable/enable counting */ 85 break; 86 case 1: 87 case 2: 88 case 3: 89 case 5: 90 /* Restart counting on rising edge. */ 91 if (c->gate < val) 92 c->count_load_time = ktime_get(); 93 break; 94 } 95 96 c->gate = val; 97 } 98 99 static int pit_get_gate(struct kvm *kvm, int channel) 100 { 101 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 102 103 return kvm->arch.vpit->pit_state.channels[channel].gate; 104 } 105 106 static s64 __kpit_elapsed(struct kvm *kvm) 107 { 108 s64 elapsed; 109 ktime_t remaining; 110 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; 111 112 if (!ps->period) 113 return 0; 114 115 /* 116 * The Counter does not stop when it reaches zero. In 117 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to 118 * the highest count, either FFFF hex for binary counting 119 * or 9999 for BCD counting, and continues counting. 120 * Modes 2 and 3 are periodic; the Counter reloads 121 * itself with the initial count and continues counting 122 * from there. 123 */ 124 remaining = hrtimer_get_remaining(&ps->timer); 125 elapsed = ps->period - ktime_to_ns(remaining); 126 127 return elapsed; 128 } 129 130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c, 131 int channel) 132 { 133 if (channel == 0) 134 return __kpit_elapsed(kvm); 135 136 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); 137 } 138 139 static int pit_get_count(struct kvm *kvm, int channel) 140 { 141 struct kvm_kpit_channel_state *c = 142 &kvm->arch.vpit->pit_state.channels[channel]; 143 s64 d, t; 144 int counter; 145 146 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 147 148 t = kpit_elapsed(kvm, c, channel); 149 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); 150 151 switch (c->mode) { 152 case 0: 153 case 1: 154 case 4: 155 case 5: 156 counter = (c->count - d) & 0xffff; 157 break; 158 case 3: 159 /* XXX: may be incorrect for odd counts */ 160 counter = c->count - (mod_64((2 * d), c->count)); 161 break; 162 default: 163 counter = c->count - mod_64(d, c->count); 164 break; 165 } 166 return counter; 167 } 168 169 static int pit_get_out(struct kvm *kvm, int channel) 170 { 171 struct kvm_kpit_channel_state *c = 172 &kvm->arch.vpit->pit_state.channels[channel]; 173 s64 d, t; 174 int out; 175 176 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 177 178 t = kpit_elapsed(kvm, c, channel); 179 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); 180 181 switch (c->mode) { 182 default: 183 case 0: 184 out = (d >= c->count); 185 break; 186 case 1: 187 out = (d < c->count); 188 break; 189 case 2: 190 out = ((mod_64(d, c->count) == 0) && (d != 0)); 191 break; 192 case 3: 193 out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); 194 break; 195 case 4: 196 case 5: 197 out = (d == c->count); 198 break; 199 } 200 201 return out; 202 } 203 204 static void pit_latch_count(struct kvm *kvm, int channel) 205 { 206 struct kvm_kpit_channel_state *c = 207 &kvm->arch.vpit->pit_state.channels[channel]; 208 209 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 210 211 if (!c->count_latched) { 212 c->latched_count = pit_get_count(kvm, channel); 213 c->count_latched = c->rw_mode; 214 } 215 } 216 217 static void pit_latch_status(struct kvm *kvm, int channel) 218 { 219 struct kvm_kpit_channel_state *c = 220 &kvm->arch.vpit->pit_state.channels[channel]; 221 222 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); 223 224 if (!c->status_latched) { 225 /* TODO: Return NULL COUNT (bit 6). */ 226 c->status = ((pit_get_out(kvm, channel) << 7) | 227 (c->rw_mode << 4) | 228 (c->mode << 1) | 229 c->bcd); 230 c->status_latched = 1; 231 } 232 } 233 234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) 235 { 236 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, 237 irq_ack_notifier); 238 int value; 239 240 spin_lock(&ps->inject_lock); 241 value = atomic_dec_return(&ps->pending); 242 if (value < 0) 243 /* spurious acks can be generated if, for example, the 244 * PIC is being reset. Handle it gracefully here 245 */ 246 atomic_inc(&ps->pending); 247 else if (value > 0) 248 /* in this case, we had multiple outstanding pit interrupts 249 * that we needed to inject. Reinject 250 */ 251 queue_kthread_work(&ps->pit->worker, &ps->pit->expired); 252 ps->irq_ack = 1; 253 spin_unlock(&ps->inject_lock); 254 } 255 256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) 257 { 258 struct kvm_pit *pit = vcpu->kvm->arch.vpit; 259 struct hrtimer *timer; 260 261 if (!kvm_vcpu_is_bsp(vcpu) || !pit) 262 return; 263 264 timer = &pit->pit_state.timer; 265 mutex_lock(&pit->pit_state.lock); 266 if (hrtimer_cancel(timer)) 267 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 268 mutex_unlock(&pit->pit_state.lock); 269 } 270 271 static void destroy_pit_timer(struct kvm_pit *pit) 272 { 273 hrtimer_cancel(&pit->pit_state.timer); 274 flush_kthread_work(&pit->expired); 275 } 276 277 static void pit_do_work(struct kthread_work *work) 278 { 279 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); 280 struct kvm *kvm = pit->kvm; 281 struct kvm_vcpu *vcpu; 282 int i; 283 struct kvm_kpit_state *ps = &pit->pit_state; 284 int inject = 0; 285 286 /* Try to inject pending interrupts when 287 * last one has been acked. 288 */ 289 spin_lock(&ps->inject_lock); 290 if (ps->irq_ack) { 291 ps->irq_ack = 0; 292 inject = 1; 293 } 294 spin_unlock(&ps->inject_lock); 295 if (inject) { 296 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false); 297 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false); 298 299 /* 300 * Provides NMI watchdog support via Virtual Wire mode. 301 * The route is: PIT -> PIC -> LVT0 in NMI mode. 302 * 303 * Note: Our Virtual Wire implementation is simplified, only 304 * propagating PIT interrupts to all VCPUs when they have set 305 * LVT0 to NMI delivery. Other PIC interrupts are just sent to 306 * VCPU0, and only if its LVT0 is in EXTINT mode. 307 */ 308 if (kvm->arch.vapics_in_nmi_mode > 0) 309 kvm_for_each_vcpu(i, vcpu, kvm) 310 kvm_apic_nmi_wd_deliver(vcpu); 311 } 312 } 313 314 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) 315 { 316 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer); 317 struct kvm_pit *pt = ps->kvm->arch.vpit; 318 319 if (ps->reinject || !atomic_read(&ps->pending)) { 320 atomic_inc(&ps->pending); 321 queue_kthread_work(&pt->worker, &pt->expired); 322 } 323 324 if (ps->is_periodic) { 325 hrtimer_add_expires_ns(&ps->timer, ps->period); 326 return HRTIMER_RESTART; 327 } else 328 return HRTIMER_NORESTART; 329 } 330 331 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period) 332 { 333 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; 334 s64 interval; 335 336 if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY) 337 return; 338 339 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); 340 341 pr_debug("create pit timer, interval is %llu nsec\n", interval); 342 343 /* TODO The new value only affected after the retriggered */ 344 hrtimer_cancel(&ps->timer); 345 flush_kthread_work(&ps->pit->expired); 346 ps->period = interval; 347 ps->is_periodic = is_period; 348 349 ps->timer.function = pit_timer_fn; 350 ps->kvm = ps->pit->kvm; 351 352 atomic_set(&ps->pending, 0); 353 ps->irq_ack = 1; 354 355 /* 356 * Do not allow the guest to program periodic timers with small 357 * interval, since the hrtimers are not throttled by the host 358 * scheduler. 359 */ 360 if (ps->is_periodic) { 361 s64 min_period = min_timer_period_us * 1000LL; 362 363 if (ps->period < min_period) { 364 pr_info_ratelimited( 365 "kvm: requested %lld ns " 366 "i8254 timer period limited to %lld ns\n", 367 ps->period, min_period); 368 ps->period = min_period; 369 } 370 } 371 372 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval), 373 HRTIMER_MODE_ABS); 374 } 375 376 static void pit_load_count(struct kvm *kvm, int channel, u32 val) 377 { 378 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; 379 380 WARN_ON(!mutex_is_locked(&ps->lock)); 381 382 pr_debug("load_count val is %d, channel is %d\n", val, channel); 383 384 /* 385 * The largest possible initial count is 0; this is equivalent 386 * to 216 for binary counting and 104 for BCD counting. 387 */ 388 if (val == 0) 389 val = 0x10000; 390 391 ps->channels[channel].count = val; 392 393 if (channel != 0) { 394 ps->channels[channel].count_load_time = ktime_get(); 395 return; 396 } 397 398 /* Two types of timer 399 * mode 1 is one shot, mode 2 is period, otherwise del timer */ 400 switch (ps->channels[0].mode) { 401 case 0: 402 case 1: 403 /* FIXME: enhance mode 4 precision */ 404 case 4: 405 create_pit_timer(kvm, val, 0); 406 break; 407 case 2: 408 case 3: 409 create_pit_timer(kvm, val, 1); 410 break; 411 default: 412 destroy_pit_timer(kvm->arch.vpit); 413 } 414 } 415 416 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start) 417 { 418 u8 saved_mode; 419 if (hpet_legacy_start) { 420 /* save existing mode for later reenablement */ 421 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode; 422 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */ 423 pit_load_count(kvm, channel, val); 424 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode; 425 } else { 426 pit_load_count(kvm, channel, val); 427 } 428 } 429 430 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) 431 { 432 return container_of(dev, struct kvm_pit, dev); 433 } 434 435 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) 436 { 437 return container_of(dev, struct kvm_pit, speaker_dev); 438 } 439 440 static inline int pit_in_range(gpa_t addr) 441 { 442 return ((addr >= KVM_PIT_BASE_ADDRESS) && 443 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); 444 } 445 446 static int pit_ioport_write(struct kvm_io_device *this, 447 gpa_t addr, int len, const void *data) 448 { 449 struct kvm_pit *pit = dev_to_pit(this); 450 struct kvm_kpit_state *pit_state = &pit->pit_state; 451 struct kvm *kvm = pit->kvm; 452 int channel, access; 453 struct kvm_kpit_channel_state *s; 454 u32 val = *(u32 *) data; 455 if (!pit_in_range(addr)) 456 return -EOPNOTSUPP; 457 458 val &= 0xff; 459 addr &= KVM_PIT_CHANNEL_MASK; 460 461 mutex_lock(&pit_state->lock); 462 463 if (val != 0) 464 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", 465 (unsigned int)addr, len, val); 466 467 if (addr == 3) { 468 channel = val >> 6; 469 if (channel == 3) { 470 /* Read-Back Command. */ 471 for (channel = 0; channel < 3; channel++) { 472 s = &pit_state->channels[channel]; 473 if (val & (2 << channel)) { 474 if (!(val & 0x20)) 475 pit_latch_count(kvm, channel); 476 if (!(val & 0x10)) 477 pit_latch_status(kvm, channel); 478 } 479 } 480 } else { 481 /* Select Counter <channel>. */ 482 s = &pit_state->channels[channel]; 483 access = (val >> 4) & KVM_PIT_CHANNEL_MASK; 484 if (access == 0) { 485 pit_latch_count(kvm, channel); 486 } else { 487 s->rw_mode = access; 488 s->read_state = access; 489 s->write_state = access; 490 s->mode = (val >> 1) & 7; 491 if (s->mode > 5) 492 s->mode -= 4; 493 s->bcd = val & 1; 494 } 495 } 496 } else { 497 /* Write Count. */ 498 s = &pit_state->channels[addr]; 499 switch (s->write_state) { 500 default: 501 case RW_STATE_LSB: 502 pit_load_count(kvm, addr, val); 503 break; 504 case RW_STATE_MSB: 505 pit_load_count(kvm, addr, val << 8); 506 break; 507 case RW_STATE_WORD0: 508 s->write_latch = val; 509 s->write_state = RW_STATE_WORD1; 510 break; 511 case RW_STATE_WORD1: 512 pit_load_count(kvm, addr, s->write_latch | (val << 8)); 513 s->write_state = RW_STATE_WORD0; 514 break; 515 } 516 } 517 518 mutex_unlock(&pit_state->lock); 519 return 0; 520 } 521 522 static int pit_ioport_read(struct kvm_io_device *this, 523 gpa_t addr, int len, void *data) 524 { 525 struct kvm_pit *pit = dev_to_pit(this); 526 struct kvm_kpit_state *pit_state = &pit->pit_state; 527 struct kvm *kvm = pit->kvm; 528 int ret, count; 529 struct kvm_kpit_channel_state *s; 530 if (!pit_in_range(addr)) 531 return -EOPNOTSUPP; 532 533 addr &= KVM_PIT_CHANNEL_MASK; 534 if (addr == 3) 535 return 0; 536 537 s = &pit_state->channels[addr]; 538 539 mutex_lock(&pit_state->lock); 540 541 if (s->status_latched) { 542 s->status_latched = 0; 543 ret = s->status; 544 } else if (s->count_latched) { 545 switch (s->count_latched) { 546 default: 547 case RW_STATE_LSB: 548 ret = s->latched_count & 0xff; 549 s->count_latched = 0; 550 break; 551 case RW_STATE_MSB: 552 ret = s->latched_count >> 8; 553 s->count_latched = 0; 554 break; 555 case RW_STATE_WORD0: 556 ret = s->latched_count & 0xff; 557 s->count_latched = RW_STATE_MSB; 558 break; 559 } 560 } else { 561 switch (s->read_state) { 562 default: 563 case RW_STATE_LSB: 564 count = pit_get_count(kvm, addr); 565 ret = count & 0xff; 566 break; 567 case RW_STATE_MSB: 568 count = pit_get_count(kvm, addr); 569 ret = (count >> 8) & 0xff; 570 break; 571 case RW_STATE_WORD0: 572 count = pit_get_count(kvm, addr); 573 ret = count & 0xff; 574 s->read_state = RW_STATE_WORD1; 575 break; 576 case RW_STATE_WORD1: 577 count = pit_get_count(kvm, addr); 578 ret = (count >> 8) & 0xff; 579 s->read_state = RW_STATE_WORD0; 580 break; 581 } 582 } 583 584 if (len > sizeof(ret)) 585 len = sizeof(ret); 586 memcpy(data, (char *)&ret, len); 587 588 mutex_unlock(&pit_state->lock); 589 return 0; 590 } 591 592 static int speaker_ioport_write(struct kvm_io_device *this, 593 gpa_t addr, int len, const void *data) 594 { 595 struct kvm_pit *pit = speaker_to_pit(this); 596 struct kvm_kpit_state *pit_state = &pit->pit_state; 597 struct kvm *kvm = pit->kvm; 598 u32 val = *(u32 *) data; 599 if (addr != KVM_SPEAKER_BASE_ADDRESS) 600 return -EOPNOTSUPP; 601 602 mutex_lock(&pit_state->lock); 603 pit_state->speaker_data_on = (val >> 1) & 1; 604 pit_set_gate(kvm, 2, val & 1); 605 mutex_unlock(&pit_state->lock); 606 return 0; 607 } 608 609 static int speaker_ioport_read(struct kvm_io_device *this, 610 gpa_t addr, int len, void *data) 611 { 612 struct kvm_pit *pit = speaker_to_pit(this); 613 struct kvm_kpit_state *pit_state = &pit->pit_state; 614 struct kvm *kvm = pit->kvm; 615 unsigned int refresh_clock; 616 int ret; 617 if (addr != KVM_SPEAKER_BASE_ADDRESS) 618 return -EOPNOTSUPP; 619 620 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ 621 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; 622 623 mutex_lock(&pit_state->lock); 624 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | 625 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); 626 if (len > sizeof(ret)) 627 len = sizeof(ret); 628 memcpy(data, (char *)&ret, len); 629 mutex_unlock(&pit_state->lock); 630 return 0; 631 } 632 633 void kvm_pit_reset(struct kvm_pit *pit) 634 { 635 int i; 636 struct kvm_kpit_channel_state *c; 637 638 mutex_lock(&pit->pit_state.lock); 639 pit->pit_state.flags = 0; 640 for (i = 0; i < 3; i++) { 641 c = &pit->pit_state.channels[i]; 642 c->mode = 0xff; 643 c->gate = (i != 2); 644 pit_load_count(pit->kvm, i, 0); 645 } 646 mutex_unlock(&pit->pit_state.lock); 647 648 atomic_set(&pit->pit_state.pending, 0); 649 pit->pit_state.irq_ack = 1; 650 } 651 652 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) 653 { 654 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); 655 656 if (!mask) { 657 atomic_set(&pit->pit_state.pending, 0); 658 pit->pit_state.irq_ack = 1; 659 } 660 } 661 662 static const struct kvm_io_device_ops pit_dev_ops = { 663 .read = pit_ioport_read, 664 .write = pit_ioport_write, 665 }; 666 667 static const struct kvm_io_device_ops speaker_dev_ops = { 668 .read = speaker_ioport_read, 669 .write = speaker_ioport_write, 670 }; 671 672 /* Caller must hold slots_lock */ 673 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) 674 { 675 struct kvm_pit *pit; 676 struct kvm_kpit_state *pit_state; 677 struct pid *pid; 678 pid_t pid_nr; 679 int ret; 680 681 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); 682 if (!pit) 683 return NULL; 684 685 pit->irq_source_id = kvm_request_irq_source_id(kvm); 686 if (pit->irq_source_id < 0) { 687 kfree(pit); 688 return NULL; 689 } 690 691 mutex_init(&pit->pit_state.lock); 692 mutex_lock(&pit->pit_state.lock); 693 spin_lock_init(&pit->pit_state.inject_lock); 694 695 pid = get_pid(task_tgid(current)); 696 pid_nr = pid_vnr(pid); 697 put_pid(pid); 698 699 init_kthread_worker(&pit->worker); 700 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker, 701 "kvm-pit/%d", pid_nr); 702 if (IS_ERR(pit->worker_task)) { 703 mutex_unlock(&pit->pit_state.lock); 704 kvm_free_irq_source_id(kvm, pit->irq_source_id); 705 kfree(pit); 706 return NULL; 707 } 708 init_kthread_work(&pit->expired, pit_do_work); 709 710 kvm->arch.vpit = pit; 711 pit->kvm = kvm; 712 713 pit_state = &pit->pit_state; 714 pit_state->pit = pit; 715 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 716 pit_state->irq_ack_notifier.gsi = 0; 717 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; 718 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); 719 pit_state->reinject = true; 720 mutex_unlock(&pit->pit_state.lock); 721 722 kvm_pit_reset(pit); 723 724 pit->mask_notifier.func = pit_mask_notifer; 725 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); 726 727 kvm_iodevice_init(&pit->dev, &pit_dev_ops); 728 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS, 729 KVM_PIT_MEM_LENGTH, &pit->dev); 730 if (ret < 0) 731 goto fail; 732 733 if (flags & KVM_PIT_SPEAKER_DUMMY) { 734 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); 735 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, 736 KVM_SPEAKER_BASE_ADDRESS, 4, 737 &pit->speaker_dev); 738 if (ret < 0) 739 goto fail_unregister; 740 } 741 742 return pit; 743 744 fail_unregister: 745 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); 746 747 fail: 748 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); 749 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); 750 kvm_free_irq_source_id(kvm, pit->irq_source_id); 751 kthread_stop(pit->worker_task); 752 kfree(pit); 753 return NULL; 754 } 755 756 void kvm_free_pit(struct kvm *kvm) 757 { 758 struct hrtimer *timer; 759 760 if (kvm->arch.vpit) { 761 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev); 762 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, 763 &kvm->arch.vpit->speaker_dev); 764 kvm_unregister_irq_mask_notifier(kvm, 0, 765 &kvm->arch.vpit->mask_notifier); 766 kvm_unregister_irq_ack_notifier(kvm, 767 &kvm->arch.vpit->pit_state.irq_ack_notifier); 768 mutex_lock(&kvm->arch.vpit->pit_state.lock); 769 timer = &kvm->arch.vpit->pit_state.timer; 770 hrtimer_cancel(timer); 771 flush_kthread_work(&kvm->arch.vpit->expired); 772 kthread_stop(kvm->arch.vpit->worker_task); 773 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id); 774 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 775 kfree(kvm->arch.vpit); 776 } 777 } 778