1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * KVM Microsoft Hyper-V emulation 4 * 5 * derived from arch/x86/kvm/x86.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com> 12 * 13 * Authors: 14 * Avi Kivity <avi@qumranet.com> 15 * Yaniv Kamay <yaniv@qumranet.com> 16 * Amit Shah <amit.shah@qumranet.com> 17 * Ben-Ami Yassour <benami@il.ibm.com> 18 * Andrey Smetanin <asmetanin@virtuozzo.com> 19 */ 20 21 #include "x86.h" 22 #include "lapic.h" 23 #include "ioapic.h" 24 #include "cpuid.h" 25 #include "hyperv.h" 26 #include "xen.h" 27 28 #include <linux/cpu.h> 29 #include <linux/kvm_host.h> 30 #include <linux/highmem.h> 31 #include <linux/sched/cputime.h> 32 #include <linux/eventfd.h> 33 34 #include <asm/apicdef.h> 35 #include <trace/events/kvm.h> 36 37 #include "trace.h" 38 #include "irq.h" 39 #include "fpu.h" 40 41 /* "Hv#1" signature */ 42 #define HYPERV_CPUID_SIGNATURE_EAX 0x31237648 43 44 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64) 45 46 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, 47 bool vcpu_kick); 48 49 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) 50 { 51 return atomic64_read(&synic->sint[sint]); 52 } 53 54 static inline int synic_get_sint_vector(u64 sint_value) 55 { 56 if (sint_value & HV_SYNIC_SINT_MASKED) 57 return -1; 58 return sint_value & HV_SYNIC_SINT_VECTOR_MASK; 59 } 60 61 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic, 62 int vector) 63 { 64 int i; 65 66 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 67 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) 68 return true; 69 } 70 return false; 71 } 72 73 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic, 74 int vector) 75 { 76 int i; 77 u64 sint_value; 78 79 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 80 sint_value = synic_read_sint(synic, i); 81 if (synic_get_sint_vector(sint_value) == vector && 82 sint_value & HV_SYNIC_SINT_AUTO_EOI) 83 return true; 84 } 85 return false; 86 } 87 88 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic, 89 int vector) 90 { 91 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 92 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 93 bool auto_eoi_old, auto_eoi_new; 94 95 if (vector < HV_SYNIC_FIRST_VALID_VECTOR) 96 return; 97 98 if (synic_has_vector_connected(synic, vector)) 99 __set_bit(vector, synic->vec_bitmap); 100 else 101 __clear_bit(vector, synic->vec_bitmap); 102 103 auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256); 104 105 if (synic_has_vector_auto_eoi(synic, vector)) 106 __set_bit(vector, synic->auto_eoi_bitmap); 107 else 108 __clear_bit(vector, synic->auto_eoi_bitmap); 109 110 auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256); 111 112 if (auto_eoi_old == auto_eoi_new) 113 return; 114 115 if (!enable_apicv) 116 return; 117 118 down_write(&vcpu->kvm->arch.apicv_update_lock); 119 120 if (auto_eoi_new) 121 hv->synic_auto_eoi_used++; 122 else 123 hv->synic_auto_eoi_used--; 124 125 /* 126 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on 127 * the hypervisor to manually inject IRQs. 128 */ 129 __kvm_set_or_clear_apicv_inhibit(vcpu->kvm, 130 APICV_INHIBIT_REASON_HYPERV, 131 !!hv->synic_auto_eoi_used); 132 133 up_write(&vcpu->kvm->arch.apicv_update_lock); 134 } 135 136 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint, 137 u64 data, bool host) 138 { 139 int vector, old_vector; 140 bool masked; 141 142 vector = data & HV_SYNIC_SINT_VECTOR_MASK; 143 masked = data & HV_SYNIC_SINT_MASKED; 144 145 /* 146 * Valid vectors are 16-255, however, nested Hyper-V attempts to write 147 * default '0x10000' value on boot and this should not #GP. We need to 148 * allow zero-initing the register from host as well. 149 */ 150 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked) 151 return 1; 152 /* 153 * Guest may configure multiple SINTs to use the same vector, so 154 * we maintain a bitmap of vectors handled by synic, and a 155 * bitmap of vectors with auto-eoi behavior. The bitmaps are 156 * updated here, and atomically queried on fast paths. 157 */ 158 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK; 159 160 atomic64_set(&synic->sint[sint], data); 161 162 synic_update_vector(synic, old_vector); 163 164 synic_update_vector(synic, vector); 165 166 /* Load SynIC vectors into EOI exit bitmap */ 167 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic)); 168 return 0; 169 } 170 171 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx) 172 { 173 struct kvm_vcpu *vcpu = NULL; 174 unsigned long i; 175 176 if (vpidx >= KVM_MAX_VCPUS) 177 return NULL; 178 179 vcpu = kvm_get_vcpu(kvm, vpidx); 180 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx) 181 return vcpu; 182 kvm_for_each_vcpu(i, vcpu, kvm) 183 if (kvm_hv_get_vpindex(vcpu) == vpidx) 184 return vcpu; 185 return NULL; 186 } 187 188 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) 189 { 190 struct kvm_vcpu *vcpu; 191 struct kvm_vcpu_hv_synic *synic; 192 193 vcpu = get_vcpu_by_vpidx(kvm, vpidx); 194 if (!vcpu || !to_hv_vcpu(vcpu)) 195 return NULL; 196 synic = to_hv_synic(vcpu); 197 return (synic->active) ? synic : NULL; 198 } 199 200 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) 201 { 202 struct kvm *kvm = vcpu->kvm; 203 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 204 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 205 struct kvm_vcpu_hv_stimer *stimer; 206 int gsi, idx; 207 208 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); 209 210 /* Try to deliver pending Hyper-V SynIC timers messages */ 211 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { 212 stimer = &hv_vcpu->stimer[idx]; 213 if (stimer->msg_pending && stimer->config.enable && 214 !stimer->config.direct_mode && 215 stimer->config.sintx == sint) 216 stimer_mark_pending(stimer, false); 217 } 218 219 idx = srcu_read_lock(&kvm->irq_srcu); 220 gsi = atomic_read(&synic->sint_to_gsi[sint]); 221 if (gsi != -1) 222 kvm_notify_acked_gsi(kvm, gsi); 223 srcu_read_unlock(&kvm->irq_srcu, idx); 224 } 225 226 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr) 227 { 228 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 229 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 230 231 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC; 232 hv_vcpu->exit.u.synic.msr = msr; 233 hv_vcpu->exit.u.synic.control = synic->control; 234 hv_vcpu->exit.u.synic.evt_page = synic->evt_page; 235 hv_vcpu->exit.u.synic.msg_page = synic->msg_page; 236 237 kvm_make_request(KVM_REQ_HV_EXIT, vcpu); 238 } 239 240 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic, 241 u32 msr, u64 data, bool host) 242 { 243 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 244 int ret; 245 246 if (!synic->active && (!host || data)) 247 return 1; 248 249 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host); 250 251 ret = 0; 252 switch (msr) { 253 case HV_X64_MSR_SCONTROL: 254 synic->control = data; 255 if (!host) 256 synic_exit(synic, msr); 257 break; 258 case HV_X64_MSR_SVERSION: 259 if (!host) { 260 ret = 1; 261 break; 262 } 263 synic->version = data; 264 break; 265 case HV_X64_MSR_SIEFP: 266 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host && 267 !synic->dont_zero_synic_pages) 268 if (kvm_clear_guest(vcpu->kvm, 269 data & PAGE_MASK, PAGE_SIZE)) { 270 ret = 1; 271 break; 272 } 273 synic->evt_page = data; 274 if (!host) 275 synic_exit(synic, msr); 276 break; 277 case HV_X64_MSR_SIMP: 278 if ((data & HV_SYNIC_SIMP_ENABLE) && !host && 279 !synic->dont_zero_synic_pages) 280 if (kvm_clear_guest(vcpu->kvm, 281 data & PAGE_MASK, PAGE_SIZE)) { 282 ret = 1; 283 break; 284 } 285 synic->msg_page = data; 286 if (!host) 287 synic_exit(synic, msr); 288 break; 289 case HV_X64_MSR_EOM: { 290 int i; 291 292 if (!synic->active) 293 break; 294 295 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) 296 kvm_hv_notify_acked_sint(vcpu, i); 297 break; 298 } 299 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 300 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host); 301 break; 302 default: 303 ret = 1; 304 break; 305 } 306 return ret; 307 } 308 309 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu) 310 { 311 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 312 313 return hv_vcpu->cpuid_cache.syndbg_cap_eax & 314 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 315 } 316 317 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu) 318 { 319 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 320 321 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL) 322 hv->hv_syndbg.control.status = 323 vcpu->run->hyperv.u.syndbg.status; 324 return 1; 325 } 326 327 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr) 328 { 329 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 330 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 331 332 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG; 333 hv_vcpu->exit.u.syndbg.msr = msr; 334 hv_vcpu->exit.u.syndbg.control = syndbg->control.control; 335 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page; 336 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page; 337 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page; 338 vcpu->arch.complete_userspace_io = 339 kvm_hv_syndbg_complete_userspace; 340 341 kvm_make_request(KVM_REQ_HV_EXIT, vcpu); 342 } 343 344 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 345 { 346 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 347 348 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) 349 return 1; 350 351 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id, 352 to_hv_vcpu(vcpu)->vp_index, msr, data); 353 switch (msr) { 354 case HV_X64_MSR_SYNDBG_CONTROL: 355 syndbg->control.control = data; 356 if (!host) 357 syndbg_exit(vcpu, msr); 358 break; 359 case HV_X64_MSR_SYNDBG_STATUS: 360 syndbg->control.status = data; 361 break; 362 case HV_X64_MSR_SYNDBG_SEND_BUFFER: 363 syndbg->control.send_page = data; 364 break; 365 case HV_X64_MSR_SYNDBG_RECV_BUFFER: 366 syndbg->control.recv_page = data; 367 break; 368 case HV_X64_MSR_SYNDBG_PENDING_BUFFER: 369 syndbg->control.pending_page = data; 370 if (!host) 371 syndbg_exit(vcpu, msr); 372 break; 373 case HV_X64_MSR_SYNDBG_OPTIONS: 374 syndbg->options = data; 375 break; 376 default: 377 break; 378 } 379 380 return 0; 381 } 382 383 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 384 { 385 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 386 387 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) 388 return 1; 389 390 switch (msr) { 391 case HV_X64_MSR_SYNDBG_CONTROL: 392 *pdata = syndbg->control.control; 393 break; 394 case HV_X64_MSR_SYNDBG_STATUS: 395 *pdata = syndbg->control.status; 396 break; 397 case HV_X64_MSR_SYNDBG_SEND_BUFFER: 398 *pdata = syndbg->control.send_page; 399 break; 400 case HV_X64_MSR_SYNDBG_RECV_BUFFER: 401 *pdata = syndbg->control.recv_page; 402 break; 403 case HV_X64_MSR_SYNDBG_PENDING_BUFFER: 404 *pdata = syndbg->control.pending_page; 405 break; 406 case HV_X64_MSR_SYNDBG_OPTIONS: 407 *pdata = syndbg->options; 408 break; 409 default: 410 break; 411 } 412 413 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata); 414 415 return 0; 416 } 417 418 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata, 419 bool host) 420 { 421 int ret; 422 423 if (!synic->active && !host) 424 return 1; 425 426 ret = 0; 427 switch (msr) { 428 case HV_X64_MSR_SCONTROL: 429 *pdata = synic->control; 430 break; 431 case HV_X64_MSR_SVERSION: 432 *pdata = synic->version; 433 break; 434 case HV_X64_MSR_SIEFP: 435 *pdata = synic->evt_page; 436 break; 437 case HV_X64_MSR_SIMP: 438 *pdata = synic->msg_page; 439 break; 440 case HV_X64_MSR_EOM: 441 *pdata = 0; 442 break; 443 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 444 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]); 445 break; 446 default: 447 ret = 1; 448 break; 449 } 450 return ret; 451 } 452 453 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint) 454 { 455 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 456 struct kvm_lapic_irq irq; 457 int ret, vector; 458 459 if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm)) 460 return -EINVAL; 461 462 if (sint >= ARRAY_SIZE(synic->sint)) 463 return -EINVAL; 464 465 vector = synic_get_sint_vector(synic_read_sint(synic, sint)); 466 if (vector < 0) 467 return -ENOENT; 468 469 memset(&irq, 0, sizeof(irq)); 470 irq.shorthand = APIC_DEST_SELF; 471 irq.dest_mode = APIC_DEST_PHYSICAL; 472 irq.delivery_mode = APIC_DM_FIXED; 473 irq.vector = vector; 474 irq.level = 1; 475 476 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL); 477 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret); 478 return ret; 479 } 480 481 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint) 482 { 483 struct kvm_vcpu_hv_synic *synic; 484 485 synic = synic_get(kvm, vpidx); 486 if (!synic) 487 return -EINVAL; 488 489 return synic_set_irq(synic, sint); 490 } 491 492 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector) 493 { 494 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 495 int i; 496 497 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector); 498 499 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) 500 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) 501 kvm_hv_notify_acked_sint(vcpu, i); 502 } 503 504 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi) 505 { 506 struct kvm_vcpu_hv_synic *synic; 507 508 synic = synic_get(kvm, vpidx); 509 if (!synic) 510 return -EINVAL; 511 512 if (sint >= ARRAY_SIZE(synic->sint_to_gsi)) 513 return -EINVAL; 514 515 atomic_set(&synic->sint_to_gsi[sint], gsi); 516 return 0; 517 } 518 519 void kvm_hv_irq_routing_update(struct kvm *kvm) 520 { 521 struct kvm_irq_routing_table *irq_rt; 522 struct kvm_kernel_irq_routing_entry *e; 523 u32 gsi; 524 525 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu, 526 lockdep_is_held(&kvm->irq_lock)); 527 528 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) { 529 hlist_for_each_entry(e, &irq_rt->map[gsi], link) { 530 if (e->type == KVM_IRQ_ROUTING_HV_SINT) 531 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu, 532 e->hv_sint.sint, gsi); 533 } 534 } 535 } 536 537 static void synic_init(struct kvm_vcpu_hv_synic *synic) 538 { 539 int i; 540 541 memset(synic, 0, sizeof(*synic)); 542 synic->version = HV_SYNIC_VERSION_1; 543 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 544 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED); 545 atomic_set(&synic->sint_to_gsi[i], -1); 546 } 547 } 548 549 static u64 get_time_ref_counter(struct kvm *kvm) 550 { 551 struct kvm_hv *hv = to_kvm_hv(kvm); 552 struct kvm_vcpu *vcpu; 553 u64 tsc; 554 555 /* 556 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up, 557 * is broken, disabled or being updated. 558 */ 559 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET) 560 return div_u64(get_kvmclock_ns(kvm), 100); 561 562 vcpu = kvm_get_vcpu(kvm, 0); 563 tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 564 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64) 565 + hv->tsc_ref.tsc_offset; 566 } 567 568 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, 569 bool vcpu_kick) 570 { 571 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 572 573 set_bit(stimer->index, 574 to_hv_vcpu(vcpu)->stimer_pending_bitmap); 575 kvm_make_request(KVM_REQ_HV_STIMER, vcpu); 576 if (vcpu_kick) 577 kvm_vcpu_kick(vcpu); 578 } 579 580 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer) 581 { 582 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 583 584 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id, 585 stimer->index); 586 587 hrtimer_cancel(&stimer->timer); 588 clear_bit(stimer->index, 589 to_hv_vcpu(vcpu)->stimer_pending_bitmap); 590 stimer->msg_pending = false; 591 stimer->exp_time = 0; 592 } 593 594 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer) 595 { 596 struct kvm_vcpu_hv_stimer *stimer; 597 598 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer); 599 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id, 600 stimer->index); 601 stimer_mark_pending(stimer, true); 602 603 return HRTIMER_NORESTART; 604 } 605 606 /* 607 * stimer_start() assumptions: 608 * a) stimer->count is not equal to 0 609 * b) stimer->config has HV_STIMER_ENABLE flag 610 */ 611 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) 612 { 613 u64 time_now; 614 ktime_t ktime_now; 615 616 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm); 617 ktime_now = ktime_get(); 618 619 if (stimer->config.periodic) { 620 if (stimer->exp_time) { 621 if (time_now >= stimer->exp_time) { 622 u64 remainder; 623 624 div64_u64_rem(time_now - stimer->exp_time, 625 stimer->count, &remainder); 626 stimer->exp_time = 627 time_now + (stimer->count - remainder); 628 } 629 } else 630 stimer->exp_time = time_now + stimer->count; 631 632 trace_kvm_hv_stimer_start_periodic( 633 hv_stimer_to_vcpu(stimer)->vcpu_id, 634 stimer->index, 635 time_now, stimer->exp_time); 636 637 hrtimer_start(&stimer->timer, 638 ktime_add_ns(ktime_now, 639 100 * (stimer->exp_time - time_now)), 640 HRTIMER_MODE_ABS); 641 return 0; 642 } 643 stimer->exp_time = stimer->count; 644 if (time_now >= stimer->count) { 645 /* 646 * Expire timer according to Hypervisor Top-Level Functional 647 * specification v4(15.3.1): 648 * "If a one shot is enabled and the specified count is in 649 * the past, it will expire immediately." 650 */ 651 stimer_mark_pending(stimer, false); 652 return 0; 653 } 654 655 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id, 656 stimer->index, 657 time_now, stimer->count); 658 659 hrtimer_start(&stimer->timer, 660 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)), 661 HRTIMER_MODE_ABS); 662 return 0; 663 } 664 665 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, 666 bool host) 667 { 668 union hv_stimer_config new_config = {.as_uint64 = config}, 669 old_config = {.as_uint64 = stimer->config.as_uint64}; 670 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 671 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 672 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 673 674 if (!synic->active && (!host || config)) 675 return 1; 676 677 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode && 678 !(hv_vcpu->cpuid_cache.features_edx & 679 HV_STIMER_DIRECT_MODE_AVAILABLE))) 680 return 1; 681 682 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id, 683 stimer->index, config, host); 684 685 stimer_cleanup(stimer); 686 if (old_config.enable && 687 !new_config.direct_mode && new_config.sintx == 0) 688 new_config.enable = 0; 689 stimer->config.as_uint64 = new_config.as_uint64; 690 691 if (stimer->config.enable) 692 stimer_mark_pending(stimer, false); 693 694 return 0; 695 } 696 697 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, 698 bool host) 699 { 700 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 701 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 702 703 if (!synic->active && (!host || count)) 704 return 1; 705 706 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id, 707 stimer->index, count, host); 708 709 stimer_cleanup(stimer); 710 stimer->count = count; 711 if (stimer->count == 0) 712 stimer->config.enable = 0; 713 else if (stimer->config.auto_enable) 714 stimer->config.enable = 1; 715 716 if (stimer->config.enable) 717 stimer_mark_pending(stimer, false); 718 719 return 0; 720 } 721 722 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) 723 { 724 *pconfig = stimer->config.as_uint64; 725 return 0; 726 } 727 728 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) 729 { 730 *pcount = stimer->count; 731 return 0; 732 } 733 734 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, 735 struct hv_message *src_msg, bool no_retry) 736 { 737 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 738 int msg_off = offsetof(struct hv_message_page, sint_message[sint]); 739 gfn_t msg_page_gfn; 740 struct hv_message_header hv_hdr; 741 int r; 742 743 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) 744 return -ENOENT; 745 746 msg_page_gfn = synic->msg_page >> PAGE_SHIFT; 747 748 /* 749 * Strictly following the spec-mandated ordering would assume setting 750 * .msg_pending before checking .message_type. However, this function 751 * is only called in vcpu context so the entire update is atomic from 752 * guest POV and thus the exact order here doesn't matter. 753 */ 754 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type, 755 msg_off + offsetof(struct hv_message, 756 header.message_type), 757 sizeof(hv_hdr.message_type)); 758 if (r < 0) 759 return r; 760 761 if (hv_hdr.message_type != HVMSG_NONE) { 762 if (no_retry) 763 return 0; 764 765 hv_hdr.message_flags.msg_pending = 1; 766 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, 767 &hv_hdr.message_flags, 768 msg_off + 769 offsetof(struct hv_message, 770 header.message_flags), 771 sizeof(hv_hdr.message_flags)); 772 if (r < 0) 773 return r; 774 return -EAGAIN; 775 } 776 777 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off, 778 sizeof(src_msg->header) + 779 src_msg->header.payload_size); 780 if (r < 0) 781 return r; 782 783 r = synic_set_irq(synic, sint); 784 if (r < 0) 785 return r; 786 if (r == 0) 787 return -EFAULT; 788 return 0; 789 } 790 791 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) 792 { 793 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 794 struct hv_message *msg = &stimer->msg; 795 struct hv_timer_message_payload *payload = 796 (struct hv_timer_message_payload *)&msg->u.payload; 797 798 /* 799 * To avoid piling up periodic ticks, don't retry message 800 * delivery for them (within "lazy" lost ticks policy). 801 */ 802 bool no_retry = stimer->config.periodic; 803 804 payload->expiration_time = stimer->exp_time; 805 payload->delivery_time = get_time_ref_counter(vcpu->kvm); 806 return synic_deliver_msg(to_hv_synic(vcpu), 807 stimer->config.sintx, msg, 808 no_retry); 809 } 810 811 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer) 812 { 813 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 814 struct kvm_lapic_irq irq = { 815 .delivery_mode = APIC_DM_FIXED, 816 .vector = stimer->config.apic_vector 817 }; 818 819 if (lapic_in_kernel(vcpu)) 820 return !kvm_apic_set_irq(vcpu, &irq, NULL); 821 return 0; 822 } 823 824 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) 825 { 826 int r, direct = stimer->config.direct_mode; 827 828 stimer->msg_pending = true; 829 if (!direct) 830 r = stimer_send_msg(stimer); 831 else 832 r = stimer_notify_direct(stimer); 833 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id, 834 stimer->index, direct, r); 835 if (!r) { 836 stimer->msg_pending = false; 837 if (!(stimer->config.periodic)) 838 stimer->config.enable = 0; 839 } 840 } 841 842 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) 843 { 844 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 845 struct kvm_vcpu_hv_stimer *stimer; 846 u64 time_now, exp_time; 847 int i; 848 849 if (!hv_vcpu) 850 return; 851 852 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 853 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { 854 stimer = &hv_vcpu->stimer[i]; 855 if (stimer->config.enable) { 856 exp_time = stimer->exp_time; 857 858 if (exp_time) { 859 time_now = 860 get_time_ref_counter(vcpu->kvm); 861 if (time_now >= exp_time) 862 stimer_expiration(stimer); 863 } 864 865 if ((stimer->config.enable) && 866 stimer->count) { 867 if (!stimer->msg_pending) 868 stimer_start(stimer); 869 } else 870 stimer_cleanup(stimer); 871 } 872 } 873 } 874 875 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu) 876 { 877 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 878 int i; 879 880 if (!hv_vcpu) 881 return; 882 883 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 884 stimer_cleanup(&hv_vcpu->stimer[i]); 885 886 kfree(hv_vcpu); 887 vcpu->arch.hyperv = NULL; 888 } 889 890 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu) 891 { 892 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 893 894 if (!hv_vcpu) 895 return false; 896 897 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) 898 return false; 899 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 900 } 901 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled); 902 903 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu, 904 struct hv_vp_assist_page *assist_page) 905 { 906 if (!kvm_hv_assist_page_enabled(vcpu)) 907 return false; 908 return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, 909 assist_page, sizeof(*assist_page)); 910 } 911 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page); 912 913 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer) 914 { 915 struct hv_message *msg = &stimer->msg; 916 struct hv_timer_message_payload *payload = 917 (struct hv_timer_message_payload *)&msg->u.payload; 918 919 memset(&msg->header, 0, sizeof(msg->header)); 920 msg->header.message_type = HVMSG_TIMER_EXPIRED; 921 msg->header.payload_size = sizeof(*payload); 922 923 payload->timer_index = stimer->index; 924 payload->expiration_time = 0; 925 payload->delivery_time = 0; 926 } 927 928 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index) 929 { 930 memset(stimer, 0, sizeof(*stimer)); 931 stimer->index = timer_index; 932 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 933 stimer->timer.function = stimer_timer_callback; 934 stimer_prepare_msg(stimer); 935 } 936 937 static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu) 938 { 939 struct kvm_vcpu_hv *hv_vcpu; 940 int i; 941 942 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT); 943 if (!hv_vcpu) 944 return -ENOMEM; 945 946 vcpu->arch.hyperv = hv_vcpu; 947 hv_vcpu->vcpu = vcpu; 948 949 synic_init(&hv_vcpu->synic); 950 951 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 952 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 953 stimer_init(&hv_vcpu->stimer[i], i); 954 955 hv_vcpu->vp_index = vcpu->vcpu_idx; 956 957 return 0; 958 } 959 960 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages) 961 { 962 struct kvm_vcpu_hv_synic *synic; 963 int r; 964 965 if (!to_hv_vcpu(vcpu)) { 966 r = kvm_hv_vcpu_init(vcpu); 967 if (r) 968 return r; 969 } 970 971 synic = to_hv_synic(vcpu); 972 973 synic->active = true; 974 synic->dont_zero_synic_pages = dont_zero_synic_pages; 975 synic->control = HV_SYNIC_CONTROL_ENABLE; 976 return 0; 977 } 978 979 static bool kvm_hv_msr_partition_wide(u32 msr) 980 { 981 bool r = false; 982 983 switch (msr) { 984 case HV_X64_MSR_GUEST_OS_ID: 985 case HV_X64_MSR_HYPERCALL: 986 case HV_X64_MSR_REFERENCE_TSC: 987 case HV_X64_MSR_TIME_REF_COUNT: 988 case HV_X64_MSR_CRASH_CTL: 989 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 990 case HV_X64_MSR_RESET: 991 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 992 case HV_X64_MSR_TSC_EMULATION_CONTROL: 993 case HV_X64_MSR_TSC_EMULATION_STATUS: 994 case HV_X64_MSR_SYNDBG_OPTIONS: 995 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 996 r = true; 997 break; 998 } 999 1000 return r; 1001 } 1002 1003 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata) 1004 { 1005 struct kvm_hv *hv = to_kvm_hv(kvm); 1006 size_t size = ARRAY_SIZE(hv->hv_crash_param); 1007 1008 if (WARN_ON_ONCE(index >= size)) 1009 return -EINVAL; 1010 1011 *pdata = hv->hv_crash_param[array_index_nospec(index, size)]; 1012 return 0; 1013 } 1014 1015 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata) 1016 { 1017 struct kvm_hv *hv = to_kvm_hv(kvm); 1018 1019 *pdata = hv->hv_crash_ctl; 1020 return 0; 1021 } 1022 1023 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data) 1024 { 1025 struct kvm_hv *hv = to_kvm_hv(kvm); 1026 1027 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY; 1028 1029 return 0; 1030 } 1031 1032 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data) 1033 { 1034 struct kvm_hv *hv = to_kvm_hv(kvm); 1035 size_t size = ARRAY_SIZE(hv->hv_crash_param); 1036 1037 if (WARN_ON_ONCE(index >= size)) 1038 return -EINVAL; 1039 1040 hv->hv_crash_param[array_index_nospec(index, size)] = data; 1041 return 0; 1042 } 1043 1044 /* 1045 * The kvmclock and Hyper-V TSC page use similar formulas, and converting 1046 * between them is possible: 1047 * 1048 * kvmclock formula: 1049 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32) 1050 * + system_time 1051 * 1052 * Hyper-V formula: 1053 * nsec/100 = ticks * scale / 2^64 + offset 1054 * 1055 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula. 1056 * By dividing the kvmclock formula by 100 and equating what's left we get: 1057 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1058 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100 1059 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100 1060 * 1061 * Now expand the kvmclock formula and divide by 100: 1062 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32) 1063 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) 1064 * + system_time 1065 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1066 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1067 * + system_time / 100 1068 * 1069 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64: 1070 * nsec/100 = ticks * scale / 2^64 1071 * - tsc_timestamp * scale / 2^64 1072 * + system_time / 100 1073 * 1074 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out: 1075 * offset = system_time / 100 - tsc_timestamp * scale / 2^64 1076 * 1077 * These two equivalencies are implemented in this function. 1078 */ 1079 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock, 1080 struct ms_hyperv_tsc_page *tsc_ref) 1081 { 1082 u64 max_mul; 1083 1084 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT)) 1085 return false; 1086 1087 /* 1088 * check if scale would overflow, if so we use the time ref counter 1089 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64 1090 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift) 1091 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift) 1092 */ 1093 max_mul = 100ull << (32 - hv_clock->tsc_shift); 1094 if (hv_clock->tsc_to_system_mul >= max_mul) 1095 return false; 1096 1097 /* 1098 * Otherwise compute the scale and offset according to the formulas 1099 * derived above. 1100 */ 1101 tsc_ref->tsc_scale = 1102 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift), 1103 hv_clock->tsc_to_system_mul, 1104 100); 1105 1106 tsc_ref->tsc_offset = hv_clock->system_time; 1107 do_div(tsc_ref->tsc_offset, 100); 1108 tsc_ref->tsc_offset -= 1109 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64); 1110 return true; 1111 } 1112 1113 /* 1114 * Don't touch TSC page values if the guest has opted for TSC emulation after 1115 * migration. KVM doesn't fully support reenlightenment notifications and TSC 1116 * access emulation and Hyper-V is known to expect the values in TSC page to 1117 * stay constant before TSC access emulation is disabled from guest side 1118 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC 1119 * frequency and guest visible TSC value across migration (and prevent it when 1120 * TSC scaling is unsupported). 1121 */ 1122 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv) 1123 { 1124 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) && 1125 hv->hv_tsc_emulation_control; 1126 } 1127 1128 void kvm_hv_setup_tsc_page(struct kvm *kvm, 1129 struct pvclock_vcpu_time_info *hv_clock) 1130 { 1131 struct kvm_hv *hv = to_kvm_hv(kvm); 1132 u32 tsc_seq; 1133 u64 gfn; 1134 1135 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence)); 1136 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0); 1137 1138 mutex_lock(&hv->hv_lock); 1139 1140 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN || 1141 hv->hv_tsc_page_status == HV_TSC_PAGE_SET || 1142 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET) 1143 goto out_unlock; 1144 1145 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1146 goto out_unlock; 1147 1148 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1149 /* 1150 * Because the TSC parameters only vary when there is a 1151 * change in the master clock, do not bother with caching. 1152 */ 1153 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn), 1154 &tsc_seq, sizeof(tsc_seq)))) 1155 goto out_err; 1156 1157 if (tsc_seq && tsc_page_update_unsafe(hv)) { 1158 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) 1159 goto out_err; 1160 1161 hv->hv_tsc_page_status = HV_TSC_PAGE_SET; 1162 goto out_unlock; 1163 } 1164 1165 /* 1166 * While we're computing and writing the parameters, force the 1167 * guest to use the time reference count MSR. 1168 */ 1169 hv->tsc_ref.tsc_sequence = 0; 1170 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), 1171 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) 1172 goto out_err; 1173 1174 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref)) 1175 goto out_err; 1176 1177 /* Ensure sequence is zero before writing the rest of the struct. */ 1178 smp_wmb(); 1179 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) 1180 goto out_err; 1181 1182 /* 1183 * Now switch to the TSC page mechanism by writing the sequence. 1184 */ 1185 tsc_seq++; 1186 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0) 1187 tsc_seq = 1; 1188 1189 /* Write the struct entirely before the non-zero sequence. */ 1190 smp_wmb(); 1191 1192 hv->tsc_ref.tsc_sequence = tsc_seq; 1193 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), 1194 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) 1195 goto out_err; 1196 1197 hv->hv_tsc_page_status = HV_TSC_PAGE_SET; 1198 goto out_unlock; 1199 1200 out_err: 1201 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN; 1202 out_unlock: 1203 mutex_unlock(&hv->hv_lock); 1204 } 1205 1206 void kvm_hv_request_tsc_page_update(struct kvm *kvm) 1207 { 1208 struct kvm_hv *hv = to_kvm_hv(kvm); 1209 1210 mutex_lock(&hv->hv_lock); 1211 1212 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET && 1213 !tsc_page_update_unsafe(hv)) 1214 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; 1215 1216 mutex_unlock(&hv->hv_lock); 1217 } 1218 1219 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr) 1220 { 1221 if (!hv_vcpu->enforce_cpuid) 1222 return true; 1223 1224 switch (msr) { 1225 case HV_X64_MSR_GUEST_OS_ID: 1226 case HV_X64_MSR_HYPERCALL: 1227 return hv_vcpu->cpuid_cache.features_eax & 1228 HV_MSR_HYPERCALL_AVAILABLE; 1229 case HV_X64_MSR_VP_RUNTIME: 1230 return hv_vcpu->cpuid_cache.features_eax & 1231 HV_MSR_VP_RUNTIME_AVAILABLE; 1232 case HV_X64_MSR_TIME_REF_COUNT: 1233 return hv_vcpu->cpuid_cache.features_eax & 1234 HV_MSR_TIME_REF_COUNT_AVAILABLE; 1235 case HV_X64_MSR_VP_INDEX: 1236 return hv_vcpu->cpuid_cache.features_eax & 1237 HV_MSR_VP_INDEX_AVAILABLE; 1238 case HV_X64_MSR_RESET: 1239 return hv_vcpu->cpuid_cache.features_eax & 1240 HV_MSR_RESET_AVAILABLE; 1241 case HV_X64_MSR_REFERENCE_TSC: 1242 return hv_vcpu->cpuid_cache.features_eax & 1243 HV_MSR_REFERENCE_TSC_AVAILABLE; 1244 case HV_X64_MSR_SCONTROL: 1245 case HV_X64_MSR_SVERSION: 1246 case HV_X64_MSR_SIEFP: 1247 case HV_X64_MSR_SIMP: 1248 case HV_X64_MSR_EOM: 1249 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1250 return hv_vcpu->cpuid_cache.features_eax & 1251 HV_MSR_SYNIC_AVAILABLE; 1252 case HV_X64_MSR_STIMER0_CONFIG: 1253 case HV_X64_MSR_STIMER1_CONFIG: 1254 case HV_X64_MSR_STIMER2_CONFIG: 1255 case HV_X64_MSR_STIMER3_CONFIG: 1256 case HV_X64_MSR_STIMER0_COUNT: 1257 case HV_X64_MSR_STIMER1_COUNT: 1258 case HV_X64_MSR_STIMER2_COUNT: 1259 case HV_X64_MSR_STIMER3_COUNT: 1260 return hv_vcpu->cpuid_cache.features_eax & 1261 HV_MSR_SYNTIMER_AVAILABLE; 1262 case HV_X64_MSR_EOI: 1263 case HV_X64_MSR_ICR: 1264 case HV_X64_MSR_TPR: 1265 case HV_X64_MSR_VP_ASSIST_PAGE: 1266 return hv_vcpu->cpuid_cache.features_eax & 1267 HV_MSR_APIC_ACCESS_AVAILABLE; 1268 break; 1269 case HV_X64_MSR_TSC_FREQUENCY: 1270 case HV_X64_MSR_APIC_FREQUENCY: 1271 return hv_vcpu->cpuid_cache.features_eax & 1272 HV_ACCESS_FREQUENCY_MSRS; 1273 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1274 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1275 case HV_X64_MSR_TSC_EMULATION_STATUS: 1276 return hv_vcpu->cpuid_cache.features_eax & 1277 HV_ACCESS_REENLIGHTENMENT; 1278 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1279 case HV_X64_MSR_CRASH_CTL: 1280 return hv_vcpu->cpuid_cache.features_edx & 1281 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; 1282 case HV_X64_MSR_SYNDBG_OPTIONS: 1283 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1284 return hv_vcpu->cpuid_cache.features_edx & 1285 HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1286 default: 1287 break; 1288 } 1289 1290 return false; 1291 } 1292 1293 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data, 1294 bool host) 1295 { 1296 struct kvm *kvm = vcpu->kvm; 1297 struct kvm_hv *hv = to_kvm_hv(kvm); 1298 1299 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) 1300 return 1; 1301 1302 switch (msr) { 1303 case HV_X64_MSR_GUEST_OS_ID: 1304 hv->hv_guest_os_id = data; 1305 /* setting guest os id to zero disables hypercall page */ 1306 if (!hv->hv_guest_os_id) 1307 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1308 break; 1309 case HV_X64_MSR_HYPERCALL: { 1310 u8 instructions[9]; 1311 int i = 0; 1312 u64 addr; 1313 1314 /* if guest os id is not set hypercall should remain disabled */ 1315 if (!hv->hv_guest_os_id) 1316 break; 1317 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1318 hv->hv_hypercall = data; 1319 break; 1320 } 1321 1322 /* 1323 * If Xen and Hyper-V hypercalls are both enabled, disambiguate 1324 * the same way Xen itself does, by setting the bit 31 of EAX 1325 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just 1326 * going to be clobbered on 64-bit. 1327 */ 1328 if (kvm_xen_hypercall_enabled(kvm)) { 1329 /* orl $0x80000000, %eax */ 1330 instructions[i++] = 0x0d; 1331 instructions[i++] = 0x00; 1332 instructions[i++] = 0x00; 1333 instructions[i++] = 0x00; 1334 instructions[i++] = 0x80; 1335 } 1336 1337 /* vmcall/vmmcall */ 1338 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i); 1339 i += 3; 1340 1341 /* ret */ 1342 ((unsigned char *)instructions)[i++] = 0xc3; 1343 1344 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK; 1345 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i)) 1346 return 1; 1347 hv->hv_hypercall = data; 1348 break; 1349 } 1350 case HV_X64_MSR_REFERENCE_TSC: 1351 hv->hv_tsc_page = data; 1352 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) { 1353 if (!host) 1354 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED; 1355 else 1356 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; 1357 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1358 } else { 1359 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET; 1360 } 1361 break; 1362 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1363 return kvm_hv_msr_set_crash_data(kvm, 1364 msr - HV_X64_MSR_CRASH_P0, 1365 data); 1366 case HV_X64_MSR_CRASH_CTL: 1367 if (host) 1368 return kvm_hv_msr_set_crash_ctl(kvm, data); 1369 1370 if (data & HV_CRASH_CTL_CRASH_NOTIFY) { 1371 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", 1372 hv->hv_crash_param[0], 1373 hv->hv_crash_param[1], 1374 hv->hv_crash_param[2], 1375 hv->hv_crash_param[3], 1376 hv->hv_crash_param[4]); 1377 1378 /* Send notification about crash to user space */ 1379 kvm_make_request(KVM_REQ_HV_CRASH, vcpu); 1380 } 1381 break; 1382 case HV_X64_MSR_RESET: 1383 if (data == 1) { 1384 vcpu_debug(vcpu, "hyper-v reset requested\n"); 1385 kvm_make_request(KVM_REQ_HV_RESET, vcpu); 1386 } 1387 break; 1388 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1389 hv->hv_reenlightenment_control = data; 1390 break; 1391 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1392 hv->hv_tsc_emulation_control = data; 1393 break; 1394 case HV_X64_MSR_TSC_EMULATION_STATUS: 1395 if (data && !host) 1396 return 1; 1397 1398 hv->hv_tsc_emulation_status = data; 1399 break; 1400 case HV_X64_MSR_TIME_REF_COUNT: 1401 /* read-only, but still ignore it if host-initiated */ 1402 if (!host) 1403 return 1; 1404 break; 1405 case HV_X64_MSR_SYNDBG_OPTIONS: 1406 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1407 return syndbg_set_msr(vcpu, msr, data, host); 1408 default: 1409 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n", 1410 msr, data); 1411 return 1; 1412 } 1413 return 0; 1414 } 1415 1416 /* Calculate cpu time spent by current task in 100ns units */ 1417 static u64 current_task_runtime_100ns(void) 1418 { 1419 u64 utime, stime; 1420 1421 task_cputime_adjusted(current, &utime, &stime); 1422 1423 return div_u64(utime + stime, 100); 1424 } 1425 1426 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 1427 { 1428 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1429 1430 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) 1431 return 1; 1432 1433 switch (msr) { 1434 case HV_X64_MSR_VP_INDEX: { 1435 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1436 u32 new_vp_index = (u32)data; 1437 1438 if (!host || new_vp_index >= KVM_MAX_VCPUS) 1439 return 1; 1440 1441 if (new_vp_index == hv_vcpu->vp_index) 1442 return 0; 1443 1444 /* 1445 * The VP index is initialized to vcpu_index by 1446 * kvm_hv_vcpu_postcreate so they initially match. Now the 1447 * VP index is changing, adjust num_mismatched_vp_indexes if 1448 * it now matches or no longer matches vcpu_idx. 1449 */ 1450 if (hv_vcpu->vp_index == vcpu->vcpu_idx) 1451 atomic_inc(&hv->num_mismatched_vp_indexes); 1452 else if (new_vp_index == vcpu->vcpu_idx) 1453 atomic_dec(&hv->num_mismatched_vp_indexes); 1454 1455 hv_vcpu->vp_index = new_vp_index; 1456 break; 1457 } 1458 case HV_X64_MSR_VP_ASSIST_PAGE: { 1459 u64 gfn; 1460 unsigned long addr; 1461 1462 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) { 1463 hv_vcpu->hv_vapic = data; 1464 if (kvm_lapic_set_pv_eoi(vcpu, 0, 0)) 1465 return 1; 1466 break; 1467 } 1468 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT; 1469 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn); 1470 if (kvm_is_error_hva(addr)) 1471 return 1; 1472 1473 /* 1474 * Clear apic_assist portion of struct hv_vp_assist_page 1475 * only, there can be valuable data in the rest which needs 1476 * to be preserved e.g. on migration. 1477 */ 1478 if (__put_user(0, (u32 __user *)addr)) 1479 return 1; 1480 hv_vcpu->hv_vapic = data; 1481 kvm_vcpu_mark_page_dirty(vcpu, gfn); 1482 if (kvm_lapic_set_pv_eoi(vcpu, 1483 gfn_to_gpa(gfn) | KVM_MSR_ENABLED, 1484 sizeof(struct hv_vp_assist_page))) 1485 return 1; 1486 break; 1487 } 1488 case HV_X64_MSR_EOI: 1489 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1490 case HV_X64_MSR_ICR: 1491 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1492 case HV_X64_MSR_TPR: 1493 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1494 case HV_X64_MSR_VP_RUNTIME: 1495 if (!host) 1496 return 1; 1497 hv_vcpu->runtime_offset = data - current_task_runtime_100ns(); 1498 break; 1499 case HV_X64_MSR_SCONTROL: 1500 case HV_X64_MSR_SVERSION: 1501 case HV_X64_MSR_SIEFP: 1502 case HV_X64_MSR_SIMP: 1503 case HV_X64_MSR_EOM: 1504 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1505 return synic_set_msr(to_hv_synic(vcpu), msr, data, host); 1506 case HV_X64_MSR_STIMER0_CONFIG: 1507 case HV_X64_MSR_STIMER1_CONFIG: 1508 case HV_X64_MSR_STIMER2_CONFIG: 1509 case HV_X64_MSR_STIMER3_CONFIG: { 1510 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; 1511 1512 return stimer_set_config(to_hv_stimer(vcpu, timer_index), 1513 data, host); 1514 } 1515 case HV_X64_MSR_STIMER0_COUNT: 1516 case HV_X64_MSR_STIMER1_COUNT: 1517 case HV_X64_MSR_STIMER2_COUNT: 1518 case HV_X64_MSR_STIMER3_COUNT: { 1519 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; 1520 1521 return stimer_set_count(to_hv_stimer(vcpu, timer_index), 1522 data, host); 1523 } 1524 case HV_X64_MSR_TSC_FREQUENCY: 1525 case HV_X64_MSR_APIC_FREQUENCY: 1526 /* read-only, but still ignore it if host-initiated */ 1527 if (!host) 1528 return 1; 1529 break; 1530 default: 1531 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n", 1532 msr, data); 1533 return 1; 1534 } 1535 1536 return 0; 1537 } 1538 1539 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, 1540 bool host) 1541 { 1542 u64 data = 0; 1543 struct kvm *kvm = vcpu->kvm; 1544 struct kvm_hv *hv = to_kvm_hv(kvm); 1545 1546 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) 1547 return 1; 1548 1549 switch (msr) { 1550 case HV_X64_MSR_GUEST_OS_ID: 1551 data = hv->hv_guest_os_id; 1552 break; 1553 case HV_X64_MSR_HYPERCALL: 1554 data = hv->hv_hypercall; 1555 break; 1556 case HV_X64_MSR_TIME_REF_COUNT: 1557 data = get_time_ref_counter(kvm); 1558 break; 1559 case HV_X64_MSR_REFERENCE_TSC: 1560 data = hv->hv_tsc_page; 1561 break; 1562 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1563 return kvm_hv_msr_get_crash_data(kvm, 1564 msr - HV_X64_MSR_CRASH_P0, 1565 pdata); 1566 case HV_X64_MSR_CRASH_CTL: 1567 return kvm_hv_msr_get_crash_ctl(kvm, pdata); 1568 case HV_X64_MSR_RESET: 1569 data = 0; 1570 break; 1571 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1572 data = hv->hv_reenlightenment_control; 1573 break; 1574 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1575 data = hv->hv_tsc_emulation_control; 1576 break; 1577 case HV_X64_MSR_TSC_EMULATION_STATUS: 1578 data = hv->hv_tsc_emulation_status; 1579 break; 1580 case HV_X64_MSR_SYNDBG_OPTIONS: 1581 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1582 return syndbg_get_msr(vcpu, msr, pdata, host); 1583 default: 1584 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1585 return 1; 1586 } 1587 1588 *pdata = data; 1589 return 0; 1590 } 1591 1592 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, 1593 bool host) 1594 { 1595 u64 data = 0; 1596 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1597 1598 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) 1599 return 1; 1600 1601 switch (msr) { 1602 case HV_X64_MSR_VP_INDEX: 1603 data = hv_vcpu->vp_index; 1604 break; 1605 case HV_X64_MSR_EOI: 1606 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1607 case HV_X64_MSR_ICR: 1608 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1609 case HV_X64_MSR_TPR: 1610 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1611 case HV_X64_MSR_VP_ASSIST_PAGE: 1612 data = hv_vcpu->hv_vapic; 1613 break; 1614 case HV_X64_MSR_VP_RUNTIME: 1615 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset; 1616 break; 1617 case HV_X64_MSR_SCONTROL: 1618 case HV_X64_MSR_SVERSION: 1619 case HV_X64_MSR_SIEFP: 1620 case HV_X64_MSR_SIMP: 1621 case HV_X64_MSR_EOM: 1622 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1623 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host); 1624 case HV_X64_MSR_STIMER0_CONFIG: 1625 case HV_X64_MSR_STIMER1_CONFIG: 1626 case HV_X64_MSR_STIMER2_CONFIG: 1627 case HV_X64_MSR_STIMER3_CONFIG: { 1628 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; 1629 1630 return stimer_get_config(to_hv_stimer(vcpu, timer_index), 1631 pdata); 1632 } 1633 case HV_X64_MSR_STIMER0_COUNT: 1634 case HV_X64_MSR_STIMER1_COUNT: 1635 case HV_X64_MSR_STIMER2_COUNT: 1636 case HV_X64_MSR_STIMER3_COUNT: { 1637 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; 1638 1639 return stimer_get_count(to_hv_stimer(vcpu, timer_index), 1640 pdata); 1641 } 1642 case HV_X64_MSR_TSC_FREQUENCY: 1643 data = (u64)vcpu->arch.virtual_tsc_khz * 1000; 1644 break; 1645 case HV_X64_MSR_APIC_FREQUENCY: 1646 data = APIC_BUS_FREQUENCY; 1647 break; 1648 default: 1649 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1650 return 1; 1651 } 1652 *pdata = data; 1653 return 0; 1654 } 1655 1656 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 1657 { 1658 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1659 1660 if (!host && !vcpu->arch.hyperv_enabled) 1661 return 1; 1662 1663 if (!to_hv_vcpu(vcpu)) { 1664 if (kvm_hv_vcpu_init(vcpu)) 1665 return 1; 1666 } 1667 1668 if (kvm_hv_msr_partition_wide(msr)) { 1669 int r; 1670 1671 mutex_lock(&hv->hv_lock); 1672 r = kvm_hv_set_msr_pw(vcpu, msr, data, host); 1673 mutex_unlock(&hv->hv_lock); 1674 return r; 1675 } else 1676 return kvm_hv_set_msr(vcpu, msr, data, host); 1677 } 1678 1679 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 1680 { 1681 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1682 1683 if (!host && !vcpu->arch.hyperv_enabled) 1684 return 1; 1685 1686 if (!to_hv_vcpu(vcpu)) { 1687 if (kvm_hv_vcpu_init(vcpu)) 1688 return 1; 1689 } 1690 1691 if (kvm_hv_msr_partition_wide(msr)) { 1692 int r; 1693 1694 mutex_lock(&hv->hv_lock); 1695 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host); 1696 mutex_unlock(&hv->hv_lock); 1697 return r; 1698 } else 1699 return kvm_hv_get_msr(vcpu, msr, pdata, host); 1700 } 1701 1702 static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks, 1703 u64 valid_bank_mask, unsigned long *vcpu_mask) 1704 { 1705 struct kvm_hv *hv = to_kvm_hv(kvm); 1706 bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes); 1707 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; 1708 struct kvm_vcpu *vcpu; 1709 int bank, sbank = 0; 1710 unsigned long i; 1711 u64 *bitmap; 1712 1713 BUILD_BUG_ON(sizeof(vp_bitmap) > 1714 sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS)); 1715 1716 /* 1717 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else 1718 * fill a temporary buffer and manually test each vCPU's VP index. 1719 */ 1720 if (likely(!has_mismatch)) 1721 bitmap = (u64 *)vcpu_mask; 1722 else 1723 bitmap = vp_bitmap; 1724 1725 /* 1726 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask 1727 * having a '1' for each bank that exists in sparse_banks. Sets must 1728 * be in ascending order, i.e. bank0..bankN. 1729 */ 1730 memset(bitmap, 0, sizeof(vp_bitmap)); 1731 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask, 1732 KVM_HV_MAX_SPARSE_VCPU_SET_BITS) 1733 bitmap[bank] = sparse_banks[sbank++]; 1734 1735 if (likely(!has_mismatch)) 1736 return; 1737 1738 bitmap_zero(vcpu_mask, KVM_MAX_VCPUS); 1739 kvm_for_each_vcpu(i, vcpu, kvm) { 1740 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap)) 1741 __set_bit(i, vcpu_mask); 1742 } 1743 } 1744 1745 struct kvm_hv_hcall { 1746 u64 param; 1747 u64 ingpa; 1748 u64 outgpa; 1749 u16 code; 1750 u16 var_cnt; 1751 u16 rep_cnt; 1752 u16 rep_idx; 1753 bool fast; 1754 bool rep; 1755 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS]; 1756 }; 1757 1758 static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc, 1759 int consumed_xmm_halves, 1760 u64 *sparse_banks, gpa_t offset) 1761 { 1762 u16 var_cnt; 1763 int i; 1764 1765 if (hc->var_cnt > 64) 1766 return -EINVAL; 1767 1768 /* Ignore banks that cannot possibly contain a legal VP index. */ 1769 var_cnt = min_t(u16, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS); 1770 1771 if (hc->fast) { 1772 /* 1773 * Each XMM holds two sparse banks, but do not count halves that 1774 * have already been consumed for hypercall parameters. 1775 */ 1776 if (hc->var_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - consumed_xmm_halves) 1777 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1778 for (i = 0; i < var_cnt; i++) { 1779 int j = i + consumed_xmm_halves; 1780 if (j % 2) 1781 sparse_banks[i] = sse128_hi(hc->xmm[j / 2]); 1782 else 1783 sparse_banks[i] = sse128_lo(hc->xmm[j / 2]); 1784 } 1785 return 0; 1786 } 1787 1788 return kvm_read_guest(kvm, hc->ingpa + offset, sparse_banks, 1789 var_cnt * sizeof(*sparse_banks)); 1790 } 1791 1792 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) 1793 { 1794 struct kvm *kvm = vcpu->kvm; 1795 struct hv_tlb_flush_ex flush_ex; 1796 struct hv_tlb_flush flush; 1797 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); 1798 u64 valid_bank_mask; 1799 u64 sparse_banks[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; 1800 bool all_cpus; 1801 1802 /* 1803 * The Hyper-V TLFS doesn't allow more than 64 sparse banks, e.g. the 1804 * valid mask is a u64. Fail the build if KVM's max allowed number of 1805 * vCPUs (>4096) would exceed this limit, KVM will additional changes 1806 * for Hyper-V support to avoid setting the guest up to fail. 1807 */ 1808 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > 64); 1809 1810 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST || 1811 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) { 1812 if (hc->fast) { 1813 flush.address_space = hc->ingpa; 1814 flush.flags = hc->outgpa; 1815 flush.processor_mask = sse128_lo(hc->xmm[0]); 1816 } else { 1817 if (unlikely(kvm_read_guest(kvm, hc->ingpa, 1818 &flush, sizeof(flush)))) 1819 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1820 } 1821 1822 trace_kvm_hv_flush_tlb(flush.processor_mask, 1823 flush.address_space, flush.flags); 1824 1825 valid_bank_mask = BIT_ULL(0); 1826 sparse_banks[0] = flush.processor_mask; 1827 1828 /* 1829 * Work around possible WS2012 bug: it sends hypercalls 1830 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear, 1831 * while also expecting us to flush something and crashing if 1832 * we don't. Let's treat processor_mask == 0 same as 1833 * HV_FLUSH_ALL_PROCESSORS. 1834 */ 1835 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) || 1836 flush.processor_mask == 0; 1837 } else { 1838 if (hc->fast) { 1839 flush_ex.address_space = hc->ingpa; 1840 flush_ex.flags = hc->outgpa; 1841 memcpy(&flush_ex.hv_vp_set, 1842 &hc->xmm[0], sizeof(hc->xmm[0])); 1843 } else { 1844 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex, 1845 sizeof(flush_ex)))) 1846 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1847 } 1848 1849 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, 1850 flush_ex.hv_vp_set.format, 1851 flush_ex.address_space, 1852 flush_ex.flags); 1853 1854 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask; 1855 all_cpus = flush_ex.hv_vp_set.format != 1856 HV_GENERIC_SET_SPARSE_4K; 1857 1858 if (hc->var_cnt != hweight64(valid_bank_mask)) 1859 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1860 1861 if (all_cpus) 1862 goto do_flush; 1863 1864 if (!hc->var_cnt) 1865 goto ret_success; 1866 1867 if (kvm_get_sparse_vp_set(kvm, hc, 2, sparse_banks, 1868 offsetof(struct hv_tlb_flush_ex, 1869 hv_vp_set.bank_contents))) 1870 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1871 } 1872 1873 do_flush: 1874 /* 1875 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't 1876 * analyze it here, flush TLB regardless of the specified address space. 1877 */ 1878 if (all_cpus) { 1879 kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH_GUEST); 1880 } else { 1881 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask); 1882 1883 kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST, vcpu_mask); 1884 } 1885 1886 ret_success: 1887 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */ 1888 return (u64)HV_STATUS_SUCCESS | 1889 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET); 1890 } 1891 1892 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector, 1893 unsigned long *vcpu_bitmap) 1894 { 1895 struct kvm_lapic_irq irq = { 1896 .delivery_mode = APIC_DM_FIXED, 1897 .vector = vector 1898 }; 1899 struct kvm_vcpu *vcpu; 1900 unsigned long i; 1901 1902 kvm_for_each_vcpu(i, vcpu, kvm) { 1903 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 1904 continue; 1905 1906 /* We fail only when APIC is disabled */ 1907 kvm_apic_set_irq(vcpu, &irq, NULL); 1908 } 1909 } 1910 1911 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) 1912 { 1913 struct kvm *kvm = vcpu->kvm; 1914 struct hv_send_ipi_ex send_ipi_ex; 1915 struct hv_send_ipi send_ipi; 1916 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS); 1917 u64 valid_bank_mask; 1918 u64 sparse_banks[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; 1919 u32 vector; 1920 bool all_cpus; 1921 1922 if (hc->code == HVCALL_SEND_IPI) { 1923 if (!hc->fast) { 1924 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi, 1925 sizeof(send_ipi)))) 1926 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1927 sparse_banks[0] = send_ipi.cpu_mask; 1928 vector = send_ipi.vector; 1929 } else { 1930 /* 'reserved' part of hv_send_ipi should be 0 */ 1931 if (unlikely(hc->ingpa >> 32 != 0)) 1932 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1933 sparse_banks[0] = hc->outgpa; 1934 vector = (u32)hc->ingpa; 1935 } 1936 all_cpus = false; 1937 valid_bank_mask = BIT_ULL(0); 1938 1939 trace_kvm_hv_send_ipi(vector, sparse_banks[0]); 1940 } else { 1941 if (!hc->fast) { 1942 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex, 1943 sizeof(send_ipi_ex)))) 1944 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1945 } else { 1946 send_ipi_ex.vector = (u32)hc->ingpa; 1947 send_ipi_ex.vp_set.format = hc->outgpa; 1948 send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]); 1949 } 1950 1951 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector, 1952 send_ipi_ex.vp_set.format, 1953 send_ipi_ex.vp_set.valid_bank_mask); 1954 1955 vector = send_ipi_ex.vector; 1956 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask; 1957 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL; 1958 1959 if (hc->var_cnt != hweight64(valid_bank_mask)) 1960 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1961 1962 if (all_cpus) 1963 goto check_and_send_ipi; 1964 1965 if (!hc->var_cnt) 1966 goto ret_success; 1967 1968 if (kvm_get_sparse_vp_set(kvm, hc, 1, sparse_banks, 1969 offsetof(struct hv_send_ipi_ex, 1970 vp_set.bank_contents))) 1971 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1972 } 1973 1974 check_and_send_ipi: 1975 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR)) 1976 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1977 1978 if (all_cpus) { 1979 kvm_send_ipi_to_many(kvm, vector, NULL); 1980 } else { 1981 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask); 1982 1983 kvm_send_ipi_to_many(kvm, vector, vcpu_mask); 1984 } 1985 1986 ret_success: 1987 return HV_STATUS_SUCCESS; 1988 } 1989 1990 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu) 1991 { 1992 struct kvm_cpuid_entry2 *entry; 1993 struct kvm_vcpu_hv *hv_vcpu; 1994 1995 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE); 1996 if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX) { 1997 vcpu->arch.hyperv_enabled = true; 1998 } else { 1999 vcpu->arch.hyperv_enabled = false; 2000 return; 2001 } 2002 2003 if (!to_hv_vcpu(vcpu) && kvm_hv_vcpu_init(vcpu)) 2004 return; 2005 2006 hv_vcpu = to_hv_vcpu(vcpu); 2007 2008 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES); 2009 if (entry) { 2010 hv_vcpu->cpuid_cache.features_eax = entry->eax; 2011 hv_vcpu->cpuid_cache.features_ebx = entry->ebx; 2012 hv_vcpu->cpuid_cache.features_edx = entry->edx; 2013 } else { 2014 hv_vcpu->cpuid_cache.features_eax = 0; 2015 hv_vcpu->cpuid_cache.features_ebx = 0; 2016 hv_vcpu->cpuid_cache.features_edx = 0; 2017 } 2018 2019 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO); 2020 if (entry) { 2021 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax; 2022 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx; 2023 } else { 2024 hv_vcpu->cpuid_cache.enlightenments_eax = 0; 2025 hv_vcpu->cpuid_cache.enlightenments_ebx = 0; 2026 } 2027 2028 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 2029 if (entry) 2030 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax; 2031 else 2032 hv_vcpu->cpuid_cache.syndbg_cap_eax = 0; 2033 } 2034 2035 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce) 2036 { 2037 struct kvm_vcpu_hv *hv_vcpu; 2038 int ret = 0; 2039 2040 if (!to_hv_vcpu(vcpu)) { 2041 if (enforce) { 2042 ret = kvm_hv_vcpu_init(vcpu); 2043 if (ret) 2044 return ret; 2045 } else { 2046 return 0; 2047 } 2048 } 2049 2050 hv_vcpu = to_hv_vcpu(vcpu); 2051 hv_vcpu->enforce_cpuid = enforce; 2052 2053 return ret; 2054 } 2055 2056 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 2057 { 2058 bool longmode; 2059 2060 longmode = is_64_bit_hypercall(vcpu); 2061 if (longmode) 2062 kvm_rax_write(vcpu, result); 2063 else { 2064 kvm_rdx_write(vcpu, result >> 32); 2065 kvm_rax_write(vcpu, result & 0xffffffff); 2066 } 2067 } 2068 2069 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result) 2070 { 2071 trace_kvm_hv_hypercall_done(result); 2072 kvm_hv_hypercall_set_result(vcpu, result); 2073 ++vcpu->stat.hypercalls; 2074 return kvm_skip_emulated_instruction(vcpu); 2075 } 2076 2077 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 2078 { 2079 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result); 2080 } 2081 2082 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) 2083 { 2084 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 2085 struct eventfd_ctx *eventfd; 2086 2087 if (unlikely(!hc->fast)) { 2088 int ret; 2089 gpa_t gpa = hc->ingpa; 2090 2091 if ((gpa & (__alignof__(hc->ingpa) - 1)) || 2092 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE) 2093 return HV_STATUS_INVALID_ALIGNMENT; 2094 2095 ret = kvm_vcpu_read_guest(vcpu, gpa, 2096 &hc->ingpa, sizeof(hc->ingpa)); 2097 if (ret < 0) 2098 return HV_STATUS_INVALID_ALIGNMENT; 2099 } 2100 2101 /* 2102 * Per spec, bits 32-47 contain the extra "flag number". However, we 2103 * have no use for it, and in all known usecases it is zero, so just 2104 * report lookup failure if it isn't. 2105 */ 2106 if (hc->ingpa & 0xffff00000000ULL) 2107 return HV_STATUS_INVALID_PORT_ID; 2108 /* remaining bits are reserved-zero */ 2109 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK) 2110 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2111 2112 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */ 2113 rcu_read_lock(); 2114 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa); 2115 rcu_read_unlock(); 2116 if (!eventfd) 2117 return HV_STATUS_INVALID_PORT_ID; 2118 2119 eventfd_signal(eventfd, 1); 2120 return HV_STATUS_SUCCESS; 2121 } 2122 2123 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc) 2124 { 2125 switch (hc->code) { 2126 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2127 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2128 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2129 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2130 case HVCALL_SEND_IPI_EX: 2131 return true; 2132 } 2133 2134 return false; 2135 } 2136 2137 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc) 2138 { 2139 int reg; 2140 2141 kvm_fpu_get(); 2142 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++) 2143 _kvm_read_sse_reg(reg, &hc->xmm[reg]); 2144 kvm_fpu_put(); 2145 } 2146 2147 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code) 2148 { 2149 if (!hv_vcpu->enforce_cpuid) 2150 return true; 2151 2152 switch (code) { 2153 case HVCALL_NOTIFY_LONG_SPIN_WAIT: 2154 return hv_vcpu->cpuid_cache.enlightenments_ebx && 2155 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX; 2156 case HVCALL_POST_MESSAGE: 2157 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES; 2158 case HVCALL_SIGNAL_EVENT: 2159 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS; 2160 case HVCALL_POST_DEBUG_DATA: 2161 case HVCALL_RETRIEVE_DEBUG_DATA: 2162 case HVCALL_RESET_DEBUG_SESSION: 2163 /* 2164 * Return 'true' when SynDBG is disabled so the resulting code 2165 * will be HV_STATUS_INVALID_HYPERCALL_CODE. 2166 */ 2167 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) || 2168 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING; 2169 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2170 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2171 if (!(hv_vcpu->cpuid_cache.enlightenments_eax & 2172 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) 2173 return false; 2174 fallthrough; 2175 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2176 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2177 return hv_vcpu->cpuid_cache.enlightenments_eax & 2178 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; 2179 case HVCALL_SEND_IPI_EX: 2180 if (!(hv_vcpu->cpuid_cache.enlightenments_eax & 2181 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) 2182 return false; 2183 fallthrough; 2184 case HVCALL_SEND_IPI: 2185 return hv_vcpu->cpuid_cache.enlightenments_eax & 2186 HV_X64_CLUSTER_IPI_RECOMMENDED; 2187 default: 2188 break; 2189 } 2190 2191 return true; 2192 } 2193 2194 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 2195 { 2196 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 2197 struct kvm_hv_hcall hc; 2198 u64 ret = HV_STATUS_SUCCESS; 2199 2200 /* 2201 * hypercall generates UD from non zero cpl and real mode 2202 * per HYPER-V spec 2203 */ 2204 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) { 2205 kvm_queue_exception(vcpu, UD_VECTOR); 2206 return 1; 2207 } 2208 2209 #ifdef CONFIG_X86_64 2210 if (is_64_bit_hypercall(vcpu)) { 2211 hc.param = kvm_rcx_read(vcpu); 2212 hc.ingpa = kvm_rdx_read(vcpu); 2213 hc.outgpa = kvm_r8_read(vcpu); 2214 } else 2215 #endif 2216 { 2217 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) | 2218 (kvm_rax_read(vcpu) & 0xffffffff); 2219 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) | 2220 (kvm_rcx_read(vcpu) & 0xffffffff); 2221 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) | 2222 (kvm_rsi_read(vcpu) & 0xffffffff); 2223 } 2224 2225 hc.code = hc.param & 0xffff; 2226 hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET; 2227 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT); 2228 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff; 2229 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff; 2230 hc.rep = !!(hc.rep_cnt || hc.rep_idx); 2231 2232 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt, 2233 hc.rep_idx, hc.ingpa, hc.outgpa); 2234 2235 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) { 2236 ret = HV_STATUS_ACCESS_DENIED; 2237 goto hypercall_complete; 2238 } 2239 2240 if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) { 2241 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2242 goto hypercall_complete; 2243 } 2244 2245 if (hc.fast && is_xmm_fast_hypercall(&hc)) { 2246 if (unlikely(hv_vcpu->enforce_cpuid && 2247 !(hv_vcpu->cpuid_cache.features_edx & 2248 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) { 2249 kvm_queue_exception(vcpu, UD_VECTOR); 2250 return 1; 2251 } 2252 2253 kvm_hv_hypercall_read_xmm(&hc); 2254 } 2255 2256 switch (hc.code) { 2257 case HVCALL_NOTIFY_LONG_SPIN_WAIT: 2258 if (unlikely(hc.rep || hc.var_cnt)) { 2259 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2260 break; 2261 } 2262 kvm_vcpu_on_spin(vcpu, true); 2263 break; 2264 case HVCALL_SIGNAL_EVENT: 2265 if (unlikely(hc.rep || hc.var_cnt)) { 2266 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2267 break; 2268 } 2269 ret = kvm_hvcall_signal_event(vcpu, &hc); 2270 if (ret != HV_STATUS_INVALID_PORT_ID) 2271 break; 2272 fallthrough; /* maybe userspace knows this conn_id */ 2273 case HVCALL_POST_MESSAGE: 2274 /* don't bother userspace if it has no way to handle it */ 2275 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) { 2276 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2277 break; 2278 } 2279 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 2280 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; 2281 vcpu->run->hyperv.u.hcall.input = hc.param; 2282 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa; 2283 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa; 2284 vcpu->arch.complete_userspace_io = 2285 kvm_hv_hypercall_complete_userspace; 2286 return 0; 2287 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2288 if (unlikely(hc.var_cnt)) { 2289 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2290 break; 2291 } 2292 fallthrough; 2293 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2294 if (unlikely(!hc.rep_cnt || hc.rep_idx)) { 2295 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2296 break; 2297 } 2298 ret = kvm_hv_flush_tlb(vcpu, &hc); 2299 break; 2300 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2301 if (unlikely(hc.var_cnt)) { 2302 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2303 break; 2304 } 2305 fallthrough; 2306 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2307 if (unlikely(hc.rep)) { 2308 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2309 break; 2310 } 2311 ret = kvm_hv_flush_tlb(vcpu, &hc); 2312 break; 2313 case HVCALL_SEND_IPI: 2314 if (unlikely(hc.var_cnt)) { 2315 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2316 break; 2317 } 2318 fallthrough; 2319 case HVCALL_SEND_IPI_EX: 2320 if (unlikely(hc.rep)) { 2321 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2322 break; 2323 } 2324 ret = kvm_hv_send_ipi(vcpu, &hc); 2325 break; 2326 case HVCALL_POST_DEBUG_DATA: 2327 case HVCALL_RETRIEVE_DEBUG_DATA: 2328 if (unlikely(hc.fast)) { 2329 ret = HV_STATUS_INVALID_PARAMETER; 2330 break; 2331 } 2332 fallthrough; 2333 case HVCALL_RESET_DEBUG_SESSION: { 2334 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 2335 2336 if (!kvm_hv_is_syndbg_enabled(vcpu)) { 2337 ret = HV_STATUS_INVALID_HYPERCALL_CODE; 2338 break; 2339 } 2340 2341 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) { 2342 ret = HV_STATUS_OPERATION_DENIED; 2343 break; 2344 } 2345 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 2346 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; 2347 vcpu->run->hyperv.u.hcall.input = hc.param; 2348 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa; 2349 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa; 2350 vcpu->arch.complete_userspace_io = 2351 kvm_hv_hypercall_complete_userspace; 2352 return 0; 2353 } 2354 default: 2355 ret = HV_STATUS_INVALID_HYPERCALL_CODE; 2356 break; 2357 } 2358 2359 hypercall_complete: 2360 return kvm_hv_hypercall_complete(vcpu, ret); 2361 } 2362 2363 void kvm_hv_init_vm(struct kvm *kvm) 2364 { 2365 struct kvm_hv *hv = to_kvm_hv(kvm); 2366 2367 mutex_init(&hv->hv_lock); 2368 idr_init(&hv->conn_to_evt); 2369 } 2370 2371 void kvm_hv_destroy_vm(struct kvm *kvm) 2372 { 2373 struct kvm_hv *hv = to_kvm_hv(kvm); 2374 struct eventfd_ctx *eventfd; 2375 int i; 2376 2377 idr_for_each_entry(&hv->conn_to_evt, eventfd, i) 2378 eventfd_ctx_put(eventfd); 2379 idr_destroy(&hv->conn_to_evt); 2380 } 2381 2382 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd) 2383 { 2384 struct kvm_hv *hv = to_kvm_hv(kvm); 2385 struct eventfd_ctx *eventfd; 2386 int ret; 2387 2388 eventfd = eventfd_ctx_fdget(fd); 2389 if (IS_ERR(eventfd)) 2390 return PTR_ERR(eventfd); 2391 2392 mutex_lock(&hv->hv_lock); 2393 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1, 2394 GFP_KERNEL_ACCOUNT); 2395 mutex_unlock(&hv->hv_lock); 2396 2397 if (ret >= 0) 2398 return 0; 2399 2400 if (ret == -ENOSPC) 2401 ret = -EEXIST; 2402 eventfd_ctx_put(eventfd); 2403 return ret; 2404 } 2405 2406 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id) 2407 { 2408 struct kvm_hv *hv = to_kvm_hv(kvm); 2409 struct eventfd_ctx *eventfd; 2410 2411 mutex_lock(&hv->hv_lock); 2412 eventfd = idr_remove(&hv->conn_to_evt, conn_id); 2413 mutex_unlock(&hv->hv_lock); 2414 2415 if (!eventfd) 2416 return -ENOENT; 2417 2418 synchronize_srcu(&kvm->srcu); 2419 eventfd_ctx_put(eventfd); 2420 return 0; 2421 } 2422 2423 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) 2424 { 2425 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) || 2426 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK)) 2427 return -EINVAL; 2428 2429 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN) 2430 return kvm_hv_eventfd_deassign(kvm, args->conn_id); 2431 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); 2432 } 2433 2434 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, 2435 struct kvm_cpuid_entry2 __user *entries) 2436 { 2437 uint16_t evmcs_ver = 0; 2438 struct kvm_cpuid_entry2 cpuid_entries[] = { 2439 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS }, 2440 { .function = HYPERV_CPUID_INTERFACE }, 2441 { .function = HYPERV_CPUID_VERSION }, 2442 { .function = HYPERV_CPUID_FEATURES }, 2443 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO }, 2444 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS }, 2445 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS }, 2446 { .function = HYPERV_CPUID_SYNDBG_INTERFACE }, 2447 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES }, 2448 { .function = HYPERV_CPUID_NESTED_FEATURES }, 2449 }; 2450 int i, nent = ARRAY_SIZE(cpuid_entries); 2451 2452 if (kvm_x86_ops.nested_ops->get_evmcs_version) 2453 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu); 2454 2455 if (cpuid->nent < nent) 2456 return -E2BIG; 2457 2458 if (cpuid->nent > nent) 2459 cpuid->nent = nent; 2460 2461 for (i = 0; i < nent; i++) { 2462 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i]; 2463 u32 signature[3]; 2464 2465 switch (ent->function) { 2466 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS: 2467 memcpy(signature, "Linux KVM Hv", 12); 2468 2469 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 2470 ent->ebx = signature[0]; 2471 ent->ecx = signature[1]; 2472 ent->edx = signature[2]; 2473 break; 2474 2475 case HYPERV_CPUID_INTERFACE: 2476 ent->eax = HYPERV_CPUID_SIGNATURE_EAX; 2477 break; 2478 2479 case HYPERV_CPUID_VERSION: 2480 /* 2481 * We implement some Hyper-V 2016 functions so let's use 2482 * this version. 2483 */ 2484 ent->eax = 0x00003839; 2485 ent->ebx = 0x000A0000; 2486 break; 2487 2488 case HYPERV_CPUID_FEATURES: 2489 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE; 2490 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE; 2491 ent->eax |= HV_MSR_SYNIC_AVAILABLE; 2492 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE; 2493 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE; 2494 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE; 2495 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE; 2496 ent->eax |= HV_MSR_RESET_AVAILABLE; 2497 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE; 2498 ent->eax |= HV_ACCESS_FREQUENCY_MSRS; 2499 ent->eax |= HV_ACCESS_REENLIGHTENMENT; 2500 2501 ent->ebx |= HV_POST_MESSAGES; 2502 ent->ebx |= HV_SIGNAL_EVENTS; 2503 2504 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE; 2505 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE; 2506 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; 2507 2508 ent->ebx |= HV_DEBUGGING; 2509 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE; 2510 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 2511 2512 /* 2513 * Direct Synthetic timers only make sense with in-kernel 2514 * LAPIC 2515 */ 2516 if (!vcpu || lapic_in_kernel(vcpu)) 2517 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE; 2518 2519 break; 2520 2521 case HYPERV_CPUID_ENLIGHTMENT_INFO: 2522 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; 2523 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; 2524 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; 2525 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED; 2526 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED; 2527 if (evmcs_ver) 2528 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 2529 if (!cpu_smt_possible()) 2530 ent->eax |= HV_X64_NO_NONARCH_CORESHARING; 2531 2532 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED; 2533 /* 2534 * Default number of spinlock retry attempts, matches 2535 * HyperV 2016. 2536 */ 2537 ent->ebx = 0x00000FFF; 2538 2539 break; 2540 2541 case HYPERV_CPUID_IMPLEMENT_LIMITS: 2542 /* Maximum number of virtual processors */ 2543 ent->eax = KVM_MAX_VCPUS; 2544 /* 2545 * Maximum number of logical processors, matches 2546 * HyperV 2016. 2547 */ 2548 ent->ebx = 64; 2549 2550 break; 2551 2552 case HYPERV_CPUID_NESTED_FEATURES: 2553 ent->eax = evmcs_ver; 2554 ent->eax |= HV_X64_NESTED_MSR_BITMAP; 2555 2556 break; 2557 2558 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS: 2559 memcpy(signature, "Linux KVM Hv", 12); 2560 2561 ent->eax = 0; 2562 ent->ebx = signature[0]; 2563 ent->ecx = signature[1]; 2564 ent->edx = signature[2]; 2565 break; 2566 2567 case HYPERV_CPUID_SYNDBG_INTERFACE: 2568 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 2569 ent->eax = signature[0]; 2570 break; 2571 2572 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES: 2573 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 2574 break; 2575 2576 default: 2577 break; 2578 } 2579 } 2580 2581 if (copy_to_user(entries, cpuid_entries, 2582 nent * sizeof(struct kvm_cpuid_entry2))) 2583 return -EFAULT; 2584 2585 return 0; 2586 } 2587