xref: /openbmc/linux/arch/x86/kvm/hyperv.c (revision ccb01374)
1 /*
2  * KVM Microsoft Hyper-V emulation
3  *
4  * derived from arch/x86/kvm/x86.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  *   Andrey Smetanin <asmetanin@virtuozzo.com>
18  *
19  * This work is licensed under the terms of the GNU GPL, version 2.  See
20  * the COPYING file in the top-level directory.
21  *
22  */
23 
24 #include "x86.h"
25 #include "lapic.h"
26 #include "ioapic.h"
27 #include "hyperv.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33 
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36 
37 #include "trace.h"
38 
39 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
40 
41 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
42 				bool vcpu_kick);
43 
44 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
45 {
46 	return atomic64_read(&synic->sint[sint]);
47 }
48 
49 static inline int synic_get_sint_vector(u64 sint_value)
50 {
51 	if (sint_value & HV_SYNIC_SINT_MASKED)
52 		return -1;
53 	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
54 }
55 
56 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
57 				      int vector)
58 {
59 	int i;
60 
61 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
62 		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
63 			return true;
64 	}
65 	return false;
66 }
67 
68 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
69 				     int vector)
70 {
71 	int i;
72 	u64 sint_value;
73 
74 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
75 		sint_value = synic_read_sint(synic, i);
76 		if (synic_get_sint_vector(sint_value) == vector &&
77 		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
78 			return true;
79 	}
80 	return false;
81 }
82 
83 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
84 				int vector)
85 {
86 	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
87 		return;
88 
89 	if (synic_has_vector_connected(synic, vector))
90 		__set_bit(vector, synic->vec_bitmap);
91 	else
92 		__clear_bit(vector, synic->vec_bitmap);
93 
94 	if (synic_has_vector_auto_eoi(synic, vector))
95 		__set_bit(vector, synic->auto_eoi_bitmap);
96 	else
97 		__clear_bit(vector, synic->auto_eoi_bitmap);
98 }
99 
100 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
101 			  u64 data, bool host)
102 {
103 	int vector, old_vector;
104 	bool masked;
105 
106 	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107 	masked = data & HV_SYNIC_SINT_MASKED;
108 
109 	/*
110 	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
111 	 * default '0x10000' value on boot and this should not #GP. We need to
112 	 * allow zero-initing the register from host as well.
113 	 */
114 	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115 		return 1;
116 	/*
117 	 * Guest may configure multiple SINTs to use the same vector, so
118 	 * we maintain a bitmap of vectors handled by synic, and a
119 	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
120 	 * updated here, and atomically queried on fast paths.
121 	 */
122 	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123 
124 	atomic64_set(&synic->sint[sint], data);
125 
126 	synic_update_vector(synic, old_vector);
127 
128 	synic_update_vector(synic, vector);
129 
130 	/* Load SynIC vectors into EOI exit bitmap */
131 	kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
132 	return 0;
133 }
134 
135 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
136 {
137 	struct kvm_vcpu *vcpu = NULL;
138 	int i;
139 
140 	if (vpidx >= KVM_MAX_VCPUS)
141 		return NULL;
142 
143 	vcpu = kvm_get_vcpu(kvm, vpidx);
144 	if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
145 		return vcpu;
146 	kvm_for_each_vcpu(i, vcpu, kvm)
147 		if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
148 			return vcpu;
149 	return NULL;
150 }
151 
152 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 {
154 	struct kvm_vcpu *vcpu;
155 	struct kvm_vcpu_hv_synic *synic;
156 
157 	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158 	if (!vcpu)
159 		return NULL;
160 	synic = vcpu_to_synic(vcpu);
161 	return (synic->active) ? synic : NULL;
162 }
163 
164 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
165 {
166 	struct kvm *kvm = vcpu->kvm;
167 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
168 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
169 	struct kvm_vcpu_hv_stimer *stimer;
170 	int gsi, idx;
171 
172 	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173 
174 	/* Try to deliver pending Hyper-V SynIC timers messages */
175 	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
176 		stimer = &hv_vcpu->stimer[idx];
177 		if (stimer->msg_pending && stimer->config.enable &&
178 		    !stimer->config.direct_mode &&
179 		    stimer->config.sintx == sint)
180 			stimer_mark_pending(stimer, false);
181 	}
182 
183 	idx = srcu_read_lock(&kvm->irq_srcu);
184 	gsi = atomic_read(&synic->sint_to_gsi[sint]);
185 	if (gsi != -1)
186 		kvm_notify_acked_gsi(kvm, gsi);
187 	srcu_read_unlock(&kvm->irq_srcu, idx);
188 }
189 
190 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
191 {
192 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
193 	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
194 
195 	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
196 	hv_vcpu->exit.u.synic.msr = msr;
197 	hv_vcpu->exit.u.synic.control = synic->control;
198 	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
199 	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
200 
201 	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
202 }
203 
204 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
205 			 u32 msr, u64 data, bool host)
206 {
207 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
208 	int ret;
209 
210 	if (!synic->active && !host)
211 		return 1;
212 
213 	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
214 
215 	ret = 0;
216 	switch (msr) {
217 	case HV_X64_MSR_SCONTROL:
218 		synic->control = data;
219 		if (!host)
220 			synic_exit(synic, msr);
221 		break;
222 	case HV_X64_MSR_SVERSION:
223 		if (!host) {
224 			ret = 1;
225 			break;
226 		}
227 		synic->version = data;
228 		break;
229 	case HV_X64_MSR_SIEFP:
230 		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
231 		    !synic->dont_zero_synic_pages)
232 			if (kvm_clear_guest(vcpu->kvm,
233 					    data & PAGE_MASK, PAGE_SIZE)) {
234 				ret = 1;
235 				break;
236 			}
237 		synic->evt_page = data;
238 		if (!host)
239 			synic_exit(synic, msr);
240 		break;
241 	case HV_X64_MSR_SIMP:
242 		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
243 		    !synic->dont_zero_synic_pages)
244 			if (kvm_clear_guest(vcpu->kvm,
245 					    data & PAGE_MASK, PAGE_SIZE)) {
246 				ret = 1;
247 				break;
248 			}
249 		synic->msg_page = data;
250 		if (!host)
251 			synic_exit(synic, msr);
252 		break;
253 	case HV_X64_MSR_EOM: {
254 		int i;
255 
256 		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
257 			kvm_hv_notify_acked_sint(vcpu, i);
258 		break;
259 	}
260 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
261 		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
262 		break;
263 	default:
264 		ret = 1;
265 		break;
266 	}
267 	return ret;
268 }
269 
270 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
271 			 bool host)
272 {
273 	int ret;
274 
275 	if (!synic->active && !host)
276 		return 1;
277 
278 	ret = 0;
279 	switch (msr) {
280 	case HV_X64_MSR_SCONTROL:
281 		*pdata = synic->control;
282 		break;
283 	case HV_X64_MSR_SVERSION:
284 		*pdata = synic->version;
285 		break;
286 	case HV_X64_MSR_SIEFP:
287 		*pdata = synic->evt_page;
288 		break;
289 	case HV_X64_MSR_SIMP:
290 		*pdata = synic->msg_page;
291 		break;
292 	case HV_X64_MSR_EOM:
293 		*pdata = 0;
294 		break;
295 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
296 		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
297 		break;
298 	default:
299 		ret = 1;
300 		break;
301 	}
302 	return ret;
303 }
304 
305 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
306 {
307 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
308 	struct kvm_lapic_irq irq;
309 	int ret, vector;
310 
311 	if (sint >= ARRAY_SIZE(synic->sint))
312 		return -EINVAL;
313 
314 	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
315 	if (vector < 0)
316 		return -ENOENT;
317 
318 	memset(&irq, 0, sizeof(irq));
319 	irq.shorthand = APIC_DEST_SELF;
320 	irq.dest_mode = APIC_DEST_PHYSICAL;
321 	irq.delivery_mode = APIC_DM_FIXED;
322 	irq.vector = vector;
323 	irq.level = 1;
324 
325 	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
326 	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
327 	return ret;
328 }
329 
330 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
331 {
332 	struct kvm_vcpu_hv_synic *synic;
333 
334 	synic = synic_get(kvm, vpidx);
335 	if (!synic)
336 		return -EINVAL;
337 
338 	return synic_set_irq(synic, sint);
339 }
340 
341 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
342 {
343 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
344 	int i;
345 
346 	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
347 
348 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
349 		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
350 			kvm_hv_notify_acked_sint(vcpu, i);
351 }
352 
353 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
354 {
355 	struct kvm_vcpu_hv_synic *synic;
356 
357 	synic = synic_get(kvm, vpidx);
358 	if (!synic)
359 		return -EINVAL;
360 
361 	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
362 		return -EINVAL;
363 
364 	atomic_set(&synic->sint_to_gsi[sint], gsi);
365 	return 0;
366 }
367 
368 void kvm_hv_irq_routing_update(struct kvm *kvm)
369 {
370 	struct kvm_irq_routing_table *irq_rt;
371 	struct kvm_kernel_irq_routing_entry *e;
372 	u32 gsi;
373 
374 	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
375 					lockdep_is_held(&kvm->irq_lock));
376 
377 	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
378 		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
379 			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
380 				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
381 						    e->hv_sint.sint, gsi);
382 		}
383 	}
384 }
385 
386 static void synic_init(struct kvm_vcpu_hv_synic *synic)
387 {
388 	int i;
389 
390 	memset(synic, 0, sizeof(*synic));
391 	synic->version = HV_SYNIC_VERSION_1;
392 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
393 		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
394 		atomic_set(&synic->sint_to_gsi[i], -1);
395 	}
396 }
397 
398 static u64 get_time_ref_counter(struct kvm *kvm)
399 {
400 	struct kvm_hv *hv = &kvm->arch.hyperv;
401 	struct kvm_vcpu *vcpu;
402 	u64 tsc;
403 
404 	/*
405 	 * The guest has not set up the TSC page or the clock isn't
406 	 * stable, fall back to get_kvmclock_ns.
407 	 */
408 	if (!hv->tsc_ref.tsc_sequence)
409 		return div_u64(get_kvmclock_ns(kvm), 100);
410 
411 	vcpu = kvm_get_vcpu(kvm, 0);
412 	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
413 	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
414 		+ hv->tsc_ref.tsc_offset;
415 }
416 
417 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
418 				bool vcpu_kick)
419 {
420 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
421 
422 	set_bit(stimer->index,
423 		vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
424 	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
425 	if (vcpu_kick)
426 		kvm_vcpu_kick(vcpu);
427 }
428 
429 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
430 {
431 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
432 
433 	trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
434 				    stimer->index);
435 
436 	hrtimer_cancel(&stimer->timer);
437 	clear_bit(stimer->index,
438 		  vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
439 	stimer->msg_pending = false;
440 	stimer->exp_time = 0;
441 }
442 
443 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
444 {
445 	struct kvm_vcpu_hv_stimer *stimer;
446 
447 	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
448 	trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
449 				     stimer->index);
450 	stimer_mark_pending(stimer, true);
451 
452 	return HRTIMER_NORESTART;
453 }
454 
455 /*
456  * stimer_start() assumptions:
457  * a) stimer->count is not equal to 0
458  * b) stimer->config has HV_STIMER_ENABLE flag
459  */
460 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
461 {
462 	u64 time_now;
463 	ktime_t ktime_now;
464 
465 	time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
466 	ktime_now = ktime_get();
467 
468 	if (stimer->config.periodic) {
469 		if (stimer->exp_time) {
470 			if (time_now >= stimer->exp_time) {
471 				u64 remainder;
472 
473 				div64_u64_rem(time_now - stimer->exp_time,
474 					      stimer->count, &remainder);
475 				stimer->exp_time =
476 					time_now + (stimer->count - remainder);
477 			}
478 		} else
479 			stimer->exp_time = time_now + stimer->count;
480 
481 		trace_kvm_hv_stimer_start_periodic(
482 					stimer_to_vcpu(stimer)->vcpu_id,
483 					stimer->index,
484 					time_now, stimer->exp_time);
485 
486 		hrtimer_start(&stimer->timer,
487 			      ktime_add_ns(ktime_now,
488 					   100 * (stimer->exp_time - time_now)),
489 			      HRTIMER_MODE_ABS);
490 		return 0;
491 	}
492 	stimer->exp_time = stimer->count;
493 	if (time_now >= stimer->count) {
494 		/*
495 		 * Expire timer according to Hypervisor Top-Level Functional
496 		 * specification v4(15.3.1):
497 		 * "If a one shot is enabled and the specified count is in
498 		 * the past, it will expire immediately."
499 		 */
500 		stimer_mark_pending(stimer, false);
501 		return 0;
502 	}
503 
504 	trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
505 					   stimer->index,
506 					   time_now, stimer->count);
507 
508 	hrtimer_start(&stimer->timer,
509 		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
510 		      HRTIMER_MODE_ABS);
511 	return 0;
512 }
513 
514 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
515 			     bool host)
516 {
517 	union hv_stimer_config new_config = {.as_uint64 = config},
518 		old_config = {.as_uint64 = stimer->config.as_uint64};
519 
520 	trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
521 				       stimer->index, config, host);
522 
523 	stimer_cleanup(stimer);
524 	if (old_config.enable &&
525 	    !new_config.direct_mode && new_config.sintx == 0)
526 		new_config.enable = 0;
527 	stimer->config.as_uint64 = new_config.as_uint64;
528 
529 	stimer_mark_pending(stimer, false);
530 	return 0;
531 }
532 
533 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
534 			    bool host)
535 {
536 	trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
537 				      stimer->index, count, host);
538 
539 	stimer_cleanup(stimer);
540 	stimer->count = count;
541 	if (stimer->count == 0)
542 		stimer->config.enable = 0;
543 	else if (stimer->config.auto_enable)
544 		stimer->config.enable = 1;
545 	stimer_mark_pending(stimer, false);
546 	return 0;
547 }
548 
549 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
550 {
551 	*pconfig = stimer->config.as_uint64;
552 	return 0;
553 }
554 
555 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
556 {
557 	*pcount = stimer->count;
558 	return 0;
559 }
560 
561 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
562 			     struct hv_message *src_msg, bool no_retry)
563 {
564 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
565 	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
566 	gfn_t msg_page_gfn;
567 	struct hv_message_header hv_hdr;
568 	int r;
569 
570 	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
571 		return -ENOENT;
572 
573 	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
574 
575 	/*
576 	 * Strictly following the spec-mandated ordering would assume setting
577 	 * .msg_pending before checking .message_type.  However, this function
578 	 * is only called in vcpu context so the entire update is atomic from
579 	 * guest POV and thus the exact order here doesn't matter.
580 	 */
581 	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
582 				     msg_off + offsetof(struct hv_message,
583 							header.message_type),
584 				     sizeof(hv_hdr.message_type));
585 	if (r < 0)
586 		return r;
587 
588 	if (hv_hdr.message_type != HVMSG_NONE) {
589 		if (no_retry)
590 			return 0;
591 
592 		hv_hdr.message_flags.msg_pending = 1;
593 		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
594 					      &hv_hdr.message_flags,
595 					      msg_off +
596 					      offsetof(struct hv_message,
597 						       header.message_flags),
598 					      sizeof(hv_hdr.message_flags));
599 		if (r < 0)
600 			return r;
601 		return -EAGAIN;
602 	}
603 
604 	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
605 				      sizeof(src_msg->header) +
606 				      src_msg->header.payload_size);
607 	if (r < 0)
608 		return r;
609 
610 	r = synic_set_irq(synic, sint);
611 	if (r < 0)
612 		return r;
613 	if (r == 0)
614 		return -EFAULT;
615 	return 0;
616 }
617 
618 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
619 {
620 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
621 	struct hv_message *msg = &stimer->msg;
622 	struct hv_timer_message_payload *payload =
623 			(struct hv_timer_message_payload *)&msg->u.payload;
624 
625 	/*
626 	 * To avoid piling up periodic ticks, don't retry message
627 	 * delivery for them (within "lazy" lost ticks policy).
628 	 */
629 	bool no_retry = stimer->config.periodic;
630 
631 	payload->expiration_time = stimer->exp_time;
632 	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
633 	return synic_deliver_msg(vcpu_to_synic(vcpu),
634 				 stimer->config.sintx, msg,
635 				 no_retry);
636 }
637 
638 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
639 {
640 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
641 	struct kvm_lapic_irq irq = {
642 		.delivery_mode = APIC_DM_FIXED,
643 		.vector = stimer->config.apic_vector
644 	};
645 
646 	return !kvm_apic_set_irq(vcpu, &irq, NULL);
647 }
648 
649 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
650 {
651 	int r, direct = stimer->config.direct_mode;
652 
653 	stimer->msg_pending = true;
654 	if (!direct)
655 		r = stimer_send_msg(stimer);
656 	else
657 		r = stimer_notify_direct(stimer);
658 	trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
659 				       stimer->index, direct, r);
660 	if (!r) {
661 		stimer->msg_pending = false;
662 		if (!(stimer->config.periodic))
663 			stimer->config.enable = 0;
664 	}
665 }
666 
667 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
668 {
669 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
670 	struct kvm_vcpu_hv_stimer *stimer;
671 	u64 time_now, exp_time;
672 	int i;
673 
674 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
675 		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
676 			stimer = &hv_vcpu->stimer[i];
677 			if (stimer->config.enable) {
678 				exp_time = stimer->exp_time;
679 
680 				if (exp_time) {
681 					time_now =
682 						get_time_ref_counter(vcpu->kvm);
683 					if (time_now >= exp_time)
684 						stimer_expiration(stimer);
685 				}
686 
687 				if ((stimer->config.enable) &&
688 				    stimer->count) {
689 					if (!stimer->msg_pending)
690 						stimer_start(stimer);
691 				} else
692 					stimer_cleanup(stimer);
693 			}
694 		}
695 }
696 
697 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
698 {
699 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
700 	int i;
701 
702 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
703 		stimer_cleanup(&hv_vcpu->stimer[i]);
704 }
705 
706 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
707 {
708 	if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
709 		return false;
710 	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
711 }
712 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
713 
714 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
715 			    struct hv_vp_assist_page *assist_page)
716 {
717 	if (!kvm_hv_assist_page_enabled(vcpu))
718 		return false;
719 	return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
720 				      assist_page, sizeof(*assist_page));
721 }
722 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
723 
724 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
725 {
726 	struct hv_message *msg = &stimer->msg;
727 	struct hv_timer_message_payload *payload =
728 			(struct hv_timer_message_payload *)&msg->u.payload;
729 
730 	memset(&msg->header, 0, sizeof(msg->header));
731 	msg->header.message_type = HVMSG_TIMER_EXPIRED;
732 	msg->header.payload_size = sizeof(*payload);
733 
734 	payload->timer_index = stimer->index;
735 	payload->expiration_time = 0;
736 	payload->delivery_time = 0;
737 }
738 
739 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
740 {
741 	memset(stimer, 0, sizeof(*stimer));
742 	stimer->index = timer_index;
743 	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
744 	stimer->timer.function = stimer_timer_callback;
745 	stimer_prepare_msg(stimer);
746 }
747 
748 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
749 {
750 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
751 	int i;
752 
753 	synic_init(&hv_vcpu->synic);
754 
755 	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
756 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
757 		stimer_init(&hv_vcpu->stimer[i], i);
758 }
759 
760 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
761 {
762 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
763 
764 	hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
765 }
766 
767 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
768 {
769 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
770 
771 	/*
772 	 * Hyper-V SynIC auto EOI SINT's are
773 	 * not compatible with APICV, so deactivate APICV
774 	 */
775 	kvm_vcpu_deactivate_apicv(vcpu);
776 	synic->active = true;
777 	synic->dont_zero_synic_pages = dont_zero_synic_pages;
778 	return 0;
779 }
780 
781 static bool kvm_hv_msr_partition_wide(u32 msr)
782 {
783 	bool r = false;
784 
785 	switch (msr) {
786 	case HV_X64_MSR_GUEST_OS_ID:
787 	case HV_X64_MSR_HYPERCALL:
788 	case HV_X64_MSR_REFERENCE_TSC:
789 	case HV_X64_MSR_TIME_REF_COUNT:
790 	case HV_X64_MSR_CRASH_CTL:
791 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
792 	case HV_X64_MSR_RESET:
793 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
794 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
795 	case HV_X64_MSR_TSC_EMULATION_STATUS:
796 		r = true;
797 		break;
798 	}
799 
800 	return r;
801 }
802 
803 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
804 				     u32 index, u64 *pdata)
805 {
806 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
807 
808 	if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
809 		return -EINVAL;
810 
811 	*pdata = hv->hv_crash_param[index];
812 	return 0;
813 }
814 
815 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
816 {
817 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
818 
819 	*pdata = hv->hv_crash_ctl;
820 	return 0;
821 }
822 
823 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
824 {
825 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
826 
827 	if (host)
828 		hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
829 
830 	if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
831 
832 		vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
833 			  hv->hv_crash_param[0],
834 			  hv->hv_crash_param[1],
835 			  hv->hv_crash_param[2],
836 			  hv->hv_crash_param[3],
837 			  hv->hv_crash_param[4]);
838 
839 		/* Send notification about crash to user space */
840 		kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
841 	}
842 
843 	return 0;
844 }
845 
846 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
847 				     u32 index, u64 data)
848 {
849 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
850 
851 	if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
852 		return -EINVAL;
853 
854 	hv->hv_crash_param[index] = data;
855 	return 0;
856 }
857 
858 /*
859  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
860  * between them is possible:
861  *
862  * kvmclock formula:
863  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
864  *           + system_time
865  *
866  * Hyper-V formula:
867  *    nsec/100 = ticks * scale / 2^64 + offset
868  *
869  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
870  * By dividing the kvmclock formula by 100 and equating what's left we get:
871  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
872  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
873  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
874  *
875  * Now expand the kvmclock formula and divide by 100:
876  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
877  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
878  *           + system_time
879  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
880  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
881  *               + system_time / 100
882  *
883  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
884  *    nsec/100 = ticks * scale / 2^64
885  *               - tsc_timestamp * scale / 2^64
886  *               + system_time / 100
887  *
888  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
889  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
890  *
891  * These two equivalencies are implemented in this function.
892  */
893 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
894 					HV_REFERENCE_TSC_PAGE *tsc_ref)
895 {
896 	u64 max_mul;
897 
898 	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
899 		return false;
900 
901 	/*
902 	 * check if scale would overflow, if so we use the time ref counter
903 	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
904 	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
905 	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
906 	 */
907 	max_mul = 100ull << (32 - hv_clock->tsc_shift);
908 	if (hv_clock->tsc_to_system_mul >= max_mul)
909 		return false;
910 
911 	/*
912 	 * Otherwise compute the scale and offset according to the formulas
913 	 * derived above.
914 	 */
915 	tsc_ref->tsc_scale =
916 		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
917 				hv_clock->tsc_to_system_mul,
918 				100);
919 
920 	tsc_ref->tsc_offset = hv_clock->system_time;
921 	do_div(tsc_ref->tsc_offset, 100);
922 	tsc_ref->tsc_offset -=
923 		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
924 	return true;
925 }
926 
927 void kvm_hv_setup_tsc_page(struct kvm *kvm,
928 			   struct pvclock_vcpu_time_info *hv_clock)
929 {
930 	struct kvm_hv *hv = &kvm->arch.hyperv;
931 	u32 tsc_seq;
932 	u64 gfn;
933 
934 	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
935 	BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
936 
937 	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
938 		return;
939 
940 	mutex_lock(&kvm->arch.hyperv.hv_lock);
941 	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
942 		goto out_unlock;
943 
944 	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
945 	/*
946 	 * Because the TSC parameters only vary when there is a
947 	 * change in the master clock, do not bother with caching.
948 	 */
949 	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
950 				    &tsc_seq, sizeof(tsc_seq))))
951 		goto out_unlock;
952 
953 	/*
954 	 * While we're computing and writing the parameters, force the
955 	 * guest to use the time reference count MSR.
956 	 */
957 	hv->tsc_ref.tsc_sequence = 0;
958 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
959 			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
960 		goto out_unlock;
961 
962 	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
963 		goto out_unlock;
964 
965 	/* Ensure sequence is zero before writing the rest of the struct.  */
966 	smp_wmb();
967 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
968 		goto out_unlock;
969 
970 	/*
971 	 * Now switch to the TSC page mechanism by writing the sequence.
972 	 */
973 	tsc_seq++;
974 	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
975 		tsc_seq = 1;
976 
977 	/* Write the struct entirely before the non-zero sequence.  */
978 	smp_wmb();
979 
980 	hv->tsc_ref.tsc_sequence = tsc_seq;
981 	kvm_write_guest(kvm, gfn_to_gpa(gfn),
982 			&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
983 out_unlock:
984 	mutex_unlock(&kvm->arch.hyperv.hv_lock);
985 }
986 
987 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
988 			     bool host)
989 {
990 	struct kvm *kvm = vcpu->kvm;
991 	struct kvm_hv *hv = &kvm->arch.hyperv;
992 
993 	switch (msr) {
994 	case HV_X64_MSR_GUEST_OS_ID:
995 		hv->hv_guest_os_id = data;
996 		/* setting guest os id to zero disables hypercall page */
997 		if (!hv->hv_guest_os_id)
998 			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
999 		break;
1000 	case HV_X64_MSR_HYPERCALL: {
1001 		u64 gfn;
1002 		unsigned long addr;
1003 		u8 instructions[4];
1004 
1005 		/* if guest os id is not set hypercall should remain disabled */
1006 		if (!hv->hv_guest_os_id)
1007 			break;
1008 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1009 			hv->hv_hypercall = data;
1010 			break;
1011 		}
1012 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1013 		addr = gfn_to_hva(kvm, gfn);
1014 		if (kvm_is_error_hva(addr))
1015 			return 1;
1016 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1017 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1018 		if (__copy_to_user((void __user *)addr, instructions, 4))
1019 			return 1;
1020 		hv->hv_hypercall = data;
1021 		mark_page_dirty(kvm, gfn);
1022 		break;
1023 	}
1024 	case HV_X64_MSR_REFERENCE_TSC:
1025 		hv->hv_tsc_page = data;
1026 		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1027 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1028 		break;
1029 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1030 		return kvm_hv_msr_set_crash_data(vcpu,
1031 						 msr - HV_X64_MSR_CRASH_P0,
1032 						 data);
1033 	case HV_X64_MSR_CRASH_CTL:
1034 		return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1035 	case HV_X64_MSR_RESET:
1036 		if (data == 1) {
1037 			vcpu_debug(vcpu, "hyper-v reset requested\n");
1038 			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1039 		}
1040 		break;
1041 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1042 		hv->hv_reenlightenment_control = data;
1043 		break;
1044 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1045 		hv->hv_tsc_emulation_control = data;
1046 		break;
1047 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1048 		hv->hv_tsc_emulation_status = data;
1049 		break;
1050 	case HV_X64_MSR_TIME_REF_COUNT:
1051 		/* read-only, but still ignore it if host-initiated */
1052 		if (!host)
1053 			return 1;
1054 		break;
1055 	default:
1056 		vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1057 			    msr, data);
1058 		return 1;
1059 	}
1060 	return 0;
1061 }
1062 
1063 /* Calculate cpu time spent by current task in 100ns units */
1064 static u64 current_task_runtime_100ns(void)
1065 {
1066 	u64 utime, stime;
1067 
1068 	task_cputime_adjusted(current, &utime, &stime);
1069 
1070 	return div_u64(utime + stime, 100);
1071 }
1072 
1073 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1074 {
1075 	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1076 
1077 	switch (msr) {
1078 	case HV_X64_MSR_VP_INDEX: {
1079 		struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1080 		int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1081 		u32 new_vp_index = (u32)data;
1082 
1083 		if (!host || new_vp_index >= KVM_MAX_VCPUS)
1084 			return 1;
1085 
1086 		if (new_vp_index == hv_vcpu->vp_index)
1087 			return 0;
1088 
1089 		/*
1090 		 * The VP index is initialized to vcpu_index by
1091 		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
1092 		 * VP index is changing, adjust num_mismatched_vp_indexes if
1093 		 * it now matches or no longer matches vcpu_idx.
1094 		 */
1095 		if (hv_vcpu->vp_index == vcpu_idx)
1096 			atomic_inc(&hv->num_mismatched_vp_indexes);
1097 		else if (new_vp_index == vcpu_idx)
1098 			atomic_dec(&hv->num_mismatched_vp_indexes);
1099 
1100 		hv_vcpu->vp_index = new_vp_index;
1101 		break;
1102 	}
1103 	case HV_X64_MSR_VP_ASSIST_PAGE: {
1104 		u64 gfn;
1105 		unsigned long addr;
1106 
1107 		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1108 			hv_vcpu->hv_vapic = data;
1109 			if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1110 				return 1;
1111 			break;
1112 		}
1113 		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1114 		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1115 		if (kvm_is_error_hva(addr))
1116 			return 1;
1117 
1118 		/*
1119 		 * Clear apic_assist portion of f(struct hv_vp_assist_page
1120 		 * only, there can be valuable data in the rest which needs
1121 		 * to be preserved e.g. on migration.
1122 		 */
1123 		if (__clear_user((void __user *)addr, sizeof(u32)))
1124 			return 1;
1125 		hv_vcpu->hv_vapic = data;
1126 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
1127 		if (kvm_lapic_enable_pv_eoi(vcpu,
1128 					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1129 					    sizeof(struct hv_vp_assist_page)))
1130 			return 1;
1131 		break;
1132 	}
1133 	case HV_X64_MSR_EOI:
1134 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1135 	case HV_X64_MSR_ICR:
1136 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1137 	case HV_X64_MSR_TPR:
1138 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1139 	case HV_X64_MSR_VP_RUNTIME:
1140 		if (!host)
1141 			return 1;
1142 		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1143 		break;
1144 	case HV_X64_MSR_SCONTROL:
1145 	case HV_X64_MSR_SVERSION:
1146 	case HV_X64_MSR_SIEFP:
1147 	case HV_X64_MSR_SIMP:
1148 	case HV_X64_MSR_EOM:
1149 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1150 		return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1151 	case HV_X64_MSR_STIMER0_CONFIG:
1152 	case HV_X64_MSR_STIMER1_CONFIG:
1153 	case HV_X64_MSR_STIMER2_CONFIG:
1154 	case HV_X64_MSR_STIMER3_CONFIG: {
1155 		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1156 
1157 		return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1158 					 data, host);
1159 	}
1160 	case HV_X64_MSR_STIMER0_COUNT:
1161 	case HV_X64_MSR_STIMER1_COUNT:
1162 	case HV_X64_MSR_STIMER2_COUNT:
1163 	case HV_X64_MSR_STIMER3_COUNT: {
1164 		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1165 
1166 		return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1167 					data, host);
1168 	}
1169 	case HV_X64_MSR_TSC_FREQUENCY:
1170 	case HV_X64_MSR_APIC_FREQUENCY:
1171 		/* read-only, but still ignore it if host-initiated */
1172 		if (!host)
1173 			return 1;
1174 		break;
1175 	default:
1176 		vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1177 			    msr, data);
1178 		return 1;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1185 {
1186 	u64 data = 0;
1187 	struct kvm *kvm = vcpu->kvm;
1188 	struct kvm_hv *hv = &kvm->arch.hyperv;
1189 
1190 	switch (msr) {
1191 	case HV_X64_MSR_GUEST_OS_ID:
1192 		data = hv->hv_guest_os_id;
1193 		break;
1194 	case HV_X64_MSR_HYPERCALL:
1195 		data = hv->hv_hypercall;
1196 		break;
1197 	case HV_X64_MSR_TIME_REF_COUNT:
1198 		data = get_time_ref_counter(kvm);
1199 		break;
1200 	case HV_X64_MSR_REFERENCE_TSC:
1201 		data = hv->hv_tsc_page;
1202 		break;
1203 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1204 		return kvm_hv_msr_get_crash_data(vcpu,
1205 						 msr - HV_X64_MSR_CRASH_P0,
1206 						 pdata);
1207 	case HV_X64_MSR_CRASH_CTL:
1208 		return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1209 	case HV_X64_MSR_RESET:
1210 		data = 0;
1211 		break;
1212 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1213 		data = hv->hv_reenlightenment_control;
1214 		break;
1215 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1216 		data = hv->hv_tsc_emulation_control;
1217 		break;
1218 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1219 		data = hv->hv_tsc_emulation_status;
1220 		break;
1221 	default:
1222 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1223 		return 1;
1224 	}
1225 
1226 	*pdata = data;
1227 	return 0;
1228 }
1229 
1230 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1231 			  bool host)
1232 {
1233 	u64 data = 0;
1234 	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1235 
1236 	switch (msr) {
1237 	case HV_X64_MSR_VP_INDEX:
1238 		data = hv_vcpu->vp_index;
1239 		break;
1240 	case HV_X64_MSR_EOI:
1241 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1242 	case HV_X64_MSR_ICR:
1243 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1244 	case HV_X64_MSR_TPR:
1245 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1246 	case HV_X64_MSR_VP_ASSIST_PAGE:
1247 		data = hv_vcpu->hv_vapic;
1248 		break;
1249 	case HV_X64_MSR_VP_RUNTIME:
1250 		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1251 		break;
1252 	case HV_X64_MSR_SCONTROL:
1253 	case HV_X64_MSR_SVERSION:
1254 	case HV_X64_MSR_SIEFP:
1255 	case HV_X64_MSR_SIMP:
1256 	case HV_X64_MSR_EOM:
1257 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1258 		return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1259 	case HV_X64_MSR_STIMER0_CONFIG:
1260 	case HV_X64_MSR_STIMER1_CONFIG:
1261 	case HV_X64_MSR_STIMER2_CONFIG:
1262 	case HV_X64_MSR_STIMER3_CONFIG: {
1263 		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1264 
1265 		return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1266 					 pdata);
1267 	}
1268 	case HV_X64_MSR_STIMER0_COUNT:
1269 	case HV_X64_MSR_STIMER1_COUNT:
1270 	case HV_X64_MSR_STIMER2_COUNT:
1271 	case HV_X64_MSR_STIMER3_COUNT: {
1272 		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1273 
1274 		return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1275 					pdata);
1276 	}
1277 	case HV_X64_MSR_TSC_FREQUENCY:
1278 		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1279 		break;
1280 	case HV_X64_MSR_APIC_FREQUENCY:
1281 		data = APIC_BUS_FREQUENCY;
1282 		break;
1283 	default:
1284 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1285 		return 1;
1286 	}
1287 	*pdata = data;
1288 	return 0;
1289 }
1290 
1291 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1292 {
1293 	if (kvm_hv_msr_partition_wide(msr)) {
1294 		int r;
1295 
1296 		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1297 		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1298 		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1299 		return r;
1300 	} else
1301 		return kvm_hv_set_msr(vcpu, msr, data, host);
1302 }
1303 
1304 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1305 {
1306 	if (kvm_hv_msr_partition_wide(msr)) {
1307 		int r;
1308 
1309 		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1310 		r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1311 		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1312 		return r;
1313 	} else
1314 		return kvm_hv_get_msr(vcpu, msr, pdata, host);
1315 }
1316 
1317 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1318 	struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1319 	u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1320 {
1321 	struct kvm_hv *hv = &kvm->arch.hyperv;
1322 	struct kvm_vcpu *vcpu;
1323 	int i, bank, sbank = 0;
1324 
1325 	memset(vp_bitmap, 0,
1326 	       KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1327 	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1328 			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1329 		vp_bitmap[bank] = sparse_banks[sbank++];
1330 
1331 	if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1332 		/* for all vcpus vp_index == vcpu_idx */
1333 		return (unsigned long *)vp_bitmap;
1334 	}
1335 
1336 	bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1337 	kvm_for_each_vcpu(i, vcpu, kvm) {
1338 		if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1339 			     (unsigned long *)vp_bitmap))
1340 			__set_bit(i, vcpu_bitmap);
1341 	}
1342 	return vcpu_bitmap;
1343 }
1344 
1345 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1346 			    u16 rep_cnt, bool ex)
1347 {
1348 	struct kvm *kvm = current_vcpu->kvm;
1349 	struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1350 	struct hv_tlb_flush_ex flush_ex;
1351 	struct hv_tlb_flush flush;
1352 	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1353 	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1354 	unsigned long *vcpu_mask;
1355 	u64 valid_bank_mask;
1356 	u64 sparse_banks[64];
1357 	int sparse_banks_len;
1358 	bool all_cpus;
1359 
1360 	if (!ex) {
1361 		if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1362 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1363 
1364 		trace_kvm_hv_flush_tlb(flush.processor_mask,
1365 				       flush.address_space, flush.flags);
1366 
1367 		valid_bank_mask = BIT_ULL(0);
1368 		sparse_banks[0] = flush.processor_mask;
1369 		all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
1370 	} else {
1371 		if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1372 					    sizeof(flush_ex))))
1373 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1374 
1375 		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1376 					  flush_ex.hv_vp_set.format,
1377 					  flush_ex.address_space,
1378 					  flush_ex.flags);
1379 
1380 		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1381 		all_cpus = flush_ex.hv_vp_set.format !=
1382 			HV_GENERIC_SET_SPARSE_4K;
1383 
1384 		sparse_banks_len =
1385 			bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1386 			sizeof(sparse_banks[0]);
1387 
1388 		if (!sparse_banks_len && !all_cpus)
1389 			goto ret_success;
1390 
1391 		if (!all_cpus &&
1392 		    kvm_read_guest(kvm,
1393 				   ingpa + offsetof(struct hv_tlb_flush_ex,
1394 						    hv_vp_set.bank_contents),
1395 				   sparse_banks,
1396 				   sparse_banks_len))
1397 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1398 	}
1399 
1400 	cpumask_clear(&hv_vcpu->tlb_flush);
1401 
1402 	vcpu_mask = all_cpus ? NULL :
1403 		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1404 					vp_bitmap, vcpu_bitmap);
1405 
1406 	/*
1407 	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1408 	 * analyze it here, flush TLB regardless of the specified address space.
1409 	 */
1410 	kvm_make_vcpus_request_mask(kvm,
1411 				    KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1412 				    vcpu_mask, &hv_vcpu->tlb_flush);
1413 
1414 ret_success:
1415 	/* We always do full TLB flush, set rep_done = rep_cnt. */
1416 	return (u64)HV_STATUS_SUCCESS |
1417 		((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1418 }
1419 
1420 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1421 				 unsigned long *vcpu_bitmap)
1422 {
1423 	struct kvm_lapic_irq irq = {
1424 		.delivery_mode = APIC_DM_FIXED,
1425 		.vector = vector
1426 	};
1427 	struct kvm_vcpu *vcpu;
1428 	int i;
1429 
1430 	kvm_for_each_vcpu(i, vcpu, kvm) {
1431 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1432 			continue;
1433 
1434 		/* We fail only when APIC is disabled */
1435 		kvm_apic_set_irq(vcpu, &irq, NULL);
1436 	}
1437 }
1438 
1439 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1440 			   bool ex, bool fast)
1441 {
1442 	struct kvm *kvm = current_vcpu->kvm;
1443 	struct hv_send_ipi_ex send_ipi_ex;
1444 	struct hv_send_ipi send_ipi;
1445 	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1446 	DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1447 	unsigned long *vcpu_mask;
1448 	unsigned long valid_bank_mask;
1449 	u64 sparse_banks[64];
1450 	int sparse_banks_len;
1451 	u32 vector;
1452 	bool all_cpus;
1453 
1454 	if (!ex) {
1455 		if (!fast) {
1456 			if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1457 						    sizeof(send_ipi))))
1458 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
1459 			sparse_banks[0] = send_ipi.cpu_mask;
1460 			vector = send_ipi.vector;
1461 		} else {
1462 			/* 'reserved' part of hv_send_ipi should be 0 */
1463 			if (unlikely(ingpa >> 32 != 0))
1464 				return HV_STATUS_INVALID_HYPERCALL_INPUT;
1465 			sparse_banks[0] = outgpa;
1466 			vector = (u32)ingpa;
1467 		}
1468 		all_cpus = false;
1469 		valid_bank_mask = BIT_ULL(0);
1470 
1471 		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1472 	} else {
1473 		if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1474 					    sizeof(send_ipi_ex))))
1475 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1476 
1477 		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1478 					 send_ipi_ex.vp_set.format,
1479 					 send_ipi_ex.vp_set.valid_bank_mask);
1480 
1481 		vector = send_ipi_ex.vector;
1482 		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1483 		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1484 			sizeof(sparse_banks[0]);
1485 
1486 		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1487 
1488 		if (!sparse_banks_len)
1489 			goto ret_success;
1490 
1491 		if (!all_cpus &&
1492 		    kvm_read_guest(kvm,
1493 				   ingpa + offsetof(struct hv_send_ipi_ex,
1494 						    vp_set.bank_contents),
1495 				   sparse_banks,
1496 				   sparse_banks_len))
1497 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1498 	}
1499 
1500 	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1501 		return HV_STATUS_INVALID_HYPERCALL_INPUT;
1502 
1503 	vcpu_mask = all_cpus ? NULL :
1504 		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1505 					vp_bitmap, vcpu_bitmap);
1506 
1507 	kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1508 
1509 ret_success:
1510 	return HV_STATUS_SUCCESS;
1511 }
1512 
1513 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1514 {
1515 	return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1516 }
1517 
1518 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1519 {
1520 	bool longmode;
1521 
1522 	longmode = is_64_bit_mode(vcpu);
1523 	if (longmode)
1524 		kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1525 	else {
1526 		kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1527 		kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1528 	}
1529 }
1530 
1531 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1532 {
1533 	kvm_hv_hypercall_set_result(vcpu, result);
1534 	++vcpu->stat.hypercalls;
1535 	return kvm_skip_emulated_instruction(vcpu);
1536 }
1537 
1538 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1539 {
1540 	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1541 }
1542 
1543 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1544 {
1545 	struct eventfd_ctx *eventfd;
1546 
1547 	if (unlikely(!fast)) {
1548 		int ret;
1549 		gpa_t gpa = param;
1550 
1551 		if ((gpa & (__alignof__(param) - 1)) ||
1552 		    offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1553 			return HV_STATUS_INVALID_ALIGNMENT;
1554 
1555 		ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1556 		if (ret < 0)
1557 			return HV_STATUS_INVALID_ALIGNMENT;
1558 	}
1559 
1560 	/*
1561 	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
1562 	 * have no use for it, and in all known usecases it is zero, so just
1563 	 * report lookup failure if it isn't.
1564 	 */
1565 	if (param & 0xffff00000000ULL)
1566 		return HV_STATUS_INVALID_PORT_ID;
1567 	/* remaining bits are reserved-zero */
1568 	if (param & ~KVM_HYPERV_CONN_ID_MASK)
1569 		return HV_STATUS_INVALID_HYPERCALL_INPUT;
1570 
1571 	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1572 	rcu_read_lock();
1573 	eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1574 	rcu_read_unlock();
1575 	if (!eventfd)
1576 		return HV_STATUS_INVALID_PORT_ID;
1577 
1578 	eventfd_signal(eventfd, 1);
1579 	return HV_STATUS_SUCCESS;
1580 }
1581 
1582 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1583 {
1584 	u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1585 	uint16_t code, rep_idx, rep_cnt;
1586 	bool fast, longmode, rep;
1587 
1588 	/*
1589 	 * hypercall generates UD from non zero cpl and real mode
1590 	 * per HYPER-V spec
1591 	 */
1592 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1593 		kvm_queue_exception(vcpu, UD_VECTOR);
1594 		return 1;
1595 	}
1596 
1597 	longmode = is_64_bit_mode(vcpu);
1598 
1599 	if (!longmode) {
1600 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1601 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1602 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1603 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1604 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1605 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1606 	}
1607 #ifdef CONFIG_X86_64
1608 	else {
1609 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1610 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1611 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1612 	}
1613 #endif
1614 
1615 	code = param & 0xffff;
1616 	fast = !!(param & HV_HYPERCALL_FAST_BIT);
1617 	rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1618 	rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1619 	rep = !!(rep_cnt || rep_idx);
1620 
1621 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1622 
1623 	switch (code) {
1624 	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1625 		if (unlikely(rep)) {
1626 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1627 			break;
1628 		}
1629 		kvm_vcpu_on_spin(vcpu, true);
1630 		break;
1631 	case HVCALL_SIGNAL_EVENT:
1632 		if (unlikely(rep)) {
1633 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1634 			break;
1635 		}
1636 		ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1637 		if (ret != HV_STATUS_INVALID_PORT_ID)
1638 			break;
1639 		/* maybe userspace knows this conn_id: fall through */
1640 	case HVCALL_POST_MESSAGE:
1641 		/* don't bother userspace if it has no way to handle it */
1642 		if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1643 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1644 			break;
1645 		}
1646 		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1647 		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1648 		vcpu->run->hyperv.u.hcall.input = param;
1649 		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1650 		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1651 		vcpu->arch.complete_userspace_io =
1652 				kvm_hv_hypercall_complete_userspace;
1653 		return 0;
1654 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1655 		if (unlikely(fast || !rep_cnt || rep_idx)) {
1656 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1657 			break;
1658 		}
1659 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1660 		break;
1661 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1662 		if (unlikely(fast || rep)) {
1663 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1664 			break;
1665 		}
1666 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1667 		break;
1668 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1669 		if (unlikely(fast || !rep_cnt || rep_idx)) {
1670 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1671 			break;
1672 		}
1673 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1674 		break;
1675 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1676 		if (unlikely(fast || rep)) {
1677 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1678 			break;
1679 		}
1680 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1681 		break;
1682 	case HVCALL_SEND_IPI:
1683 		if (unlikely(rep)) {
1684 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1685 			break;
1686 		}
1687 		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1688 		break;
1689 	case HVCALL_SEND_IPI_EX:
1690 		if (unlikely(fast || rep)) {
1691 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1692 			break;
1693 		}
1694 		ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1695 		break;
1696 	default:
1697 		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1698 		break;
1699 	}
1700 
1701 	return kvm_hv_hypercall_complete(vcpu, ret);
1702 }
1703 
1704 void kvm_hv_init_vm(struct kvm *kvm)
1705 {
1706 	mutex_init(&kvm->arch.hyperv.hv_lock);
1707 	idr_init(&kvm->arch.hyperv.conn_to_evt);
1708 }
1709 
1710 void kvm_hv_destroy_vm(struct kvm *kvm)
1711 {
1712 	struct eventfd_ctx *eventfd;
1713 	int i;
1714 
1715 	idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1716 		eventfd_ctx_put(eventfd);
1717 	idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1718 }
1719 
1720 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1721 {
1722 	struct kvm_hv *hv = &kvm->arch.hyperv;
1723 	struct eventfd_ctx *eventfd;
1724 	int ret;
1725 
1726 	eventfd = eventfd_ctx_fdget(fd);
1727 	if (IS_ERR(eventfd))
1728 		return PTR_ERR(eventfd);
1729 
1730 	mutex_lock(&hv->hv_lock);
1731 	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1732 			GFP_KERNEL);
1733 	mutex_unlock(&hv->hv_lock);
1734 
1735 	if (ret >= 0)
1736 		return 0;
1737 
1738 	if (ret == -ENOSPC)
1739 		ret = -EEXIST;
1740 	eventfd_ctx_put(eventfd);
1741 	return ret;
1742 }
1743 
1744 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1745 {
1746 	struct kvm_hv *hv = &kvm->arch.hyperv;
1747 	struct eventfd_ctx *eventfd;
1748 
1749 	mutex_lock(&hv->hv_lock);
1750 	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1751 	mutex_unlock(&hv->hv_lock);
1752 
1753 	if (!eventfd)
1754 		return -ENOENT;
1755 
1756 	synchronize_srcu(&kvm->srcu);
1757 	eventfd_ctx_put(eventfd);
1758 	return 0;
1759 }
1760 
1761 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1762 {
1763 	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1764 	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1765 		return -EINVAL;
1766 
1767 	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1768 		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1769 	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1770 }
1771 
1772 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1773 				struct kvm_cpuid_entry2 __user *entries)
1774 {
1775 	uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
1776 	struct kvm_cpuid_entry2 cpuid_entries[] = {
1777 		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1778 		{ .function = HYPERV_CPUID_INTERFACE },
1779 		{ .function = HYPERV_CPUID_VERSION },
1780 		{ .function = HYPERV_CPUID_FEATURES },
1781 		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1782 		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1783 		{ .function = HYPERV_CPUID_NESTED_FEATURES },
1784 	};
1785 	int i, nent = ARRAY_SIZE(cpuid_entries);
1786 
1787 	/* Skip NESTED_FEATURES if eVMCS is not supported */
1788 	if (!evmcs_ver)
1789 		--nent;
1790 
1791 	if (cpuid->nent < nent)
1792 		return -E2BIG;
1793 
1794 	if (cpuid->nent > nent)
1795 		cpuid->nent = nent;
1796 
1797 	for (i = 0; i < nent; i++) {
1798 		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1799 		u32 signature[3];
1800 
1801 		switch (ent->function) {
1802 		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1803 			memcpy(signature, "Linux KVM Hv", 12);
1804 
1805 			ent->eax = HYPERV_CPUID_NESTED_FEATURES;
1806 			ent->ebx = signature[0];
1807 			ent->ecx = signature[1];
1808 			ent->edx = signature[2];
1809 			break;
1810 
1811 		case HYPERV_CPUID_INTERFACE:
1812 			memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1813 			ent->eax = signature[0];
1814 			break;
1815 
1816 		case HYPERV_CPUID_VERSION:
1817 			/*
1818 			 * We implement some Hyper-V 2016 functions so let's use
1819 			 * this version.
1820 			 */
1821 			ent->eax = 0x00003839;
1822 			ent->ebx = 0x000A0000;
1823 			break;
1824 
1825 		case HYPERV_CPUID_FEATURES:
1826 			ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
1827 			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
1828 			ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
1829 			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
1830 			ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
1831 			ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
1832 			ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
1833 			ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
1834 			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
1835 			ent->eax |= HV_X64_MSR_GUEST_IDLE_AVAILABLE;
1836 			ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
1837 			ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
1838 
1839 			ent->ebx |= HV_X64_POST_MESSAGES;
1840 			ent->ebx |= HV_X64_SIGNAL_EVENTS;
1841 
1842 			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
1843 			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1844 			ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
1845 
1846 			break;
1847 
1848 		case HYPERV_CPUID_ENLIGHTMENT_INFO:
1849 			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
1850 			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
1851 			ent->eax |= HV_X64_SYSTEM_RESET_RECOMMENDED;
1852 			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
1853 			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
1854 			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
1855 			ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
1856 
1857 			/*
1858 			 * Default number of spinlock retry attempts, matches
1859 			 * HyperV 2016.
1860 			 */
1861 			ent->ebx = 0x00000FFF;
1862 
1863 			break;
1864 
1865 		case HYPERV_CPUID_IMPLEMENT_LIMITS:
1866 			/* Maximum number of virtual processors */
1867 			ent->eax = KVM_MAX_VCPUS;
1868 			/*
1869 			 * Maximum number of logical processors, matches
1870 			 * HyperV 2016.
1871 			 */
1872 			ent->ebx = 64;
1873 
1874 			break;
1875 
1876 		case HYPERV_CPUID_NESTED_FEATURES:
1877 			ent->eax = evmcs_ver;
1878 
1879 			break;
1880 
1881 		default:
1882 			break;
1883 		}
1884 	}
1885 
1886 	if (copy_to_user(entries, cpuid_entries,
1887 			 nent * sizeof(struct kvm_cpuid_entry2)))
1888 		return -EFAULT;
1889 
1890 	return 0;
1891 }
1892