xref: /openbmc/linux/arch/x86/kvm/hyperv.c (revision 8dd99871)
1 /*
2  * KVM Microsoft Hyper-V emulation
3  *
4  * derived from arch/x86/kvm/x86.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  *   Andrey Smetanin <asmetanin@virtuozzo.com>
18  *
19  * This work is licensed under the terms of the GNU GPL, version 2.  See
20  * the COPYING file in the top-level directory.
21  *
22  */
23 
24 #include "x86.h"
25 #include "lapic.h"
26 #include "ioapic.h"
27 #include "hyperv.h"
28 
29 #include <linux/kvm_host.h>
30 #include <linux/highmem.h>
31 #include <linux/sched/cputime.h>
32 #include <linux/eventfd.h>
33 
34 #include <asm/apicdef.h>
35 #include <trace/events/kvm.h>
36 
37 #include "trace.h"
38 
39 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
40 {
41 	return atomic64_read(&synic->sint[sint]);
42 }
43 
44 static inline int synic_get_sint_vector(u64 sint_value)
45 {
46 	if (sint_value & HV_SYNIC_SINT_MASKED)
47 		return -1;
48 	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
49 }
50 
51 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
52 				      int vector)
53 {
54 	int i;
55 
56 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
57 		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
58 			return true;
59 	}
60 	return false;
61 }
62 
63 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
64 				     int vector)
65 {
66 	int i;
67 	u64 sint_value;
68 
69 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
70 		sint_value = synic_read_sint(synic, i);
71 		if (synic_get_sint_vector(sint_value) == vector &&
72 		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
73 			return true;
74 	}
75 	return false;
76 }
77 
78 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
79 				int vector)
80 {
81 	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
82 		return;
83 
84 	if (synic_has_vector_connected(synic, vector))
85 		__set_bit(vector, synic->vec_bitmap);
86 	else
87 		__clear_bit(vector, synic->vec_bitmap);
88 
89 	if (synic_has_vector_auto_eoi(synic, vector))
90 		__set_bit(vector, synic->auto_eoi_bitmap);
91 	else
92 		__clear_bit(vector, synic->auto_eoi_bitmap);
93 }
94 
95 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
96 			  u64 data, bool host)
97 {
98 	int vector, old_vector;
99 	bool masked;
100 
101 	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
102 	masked = data & HV_SYNIC_SINT_MASKED;
103 
104 	/*
105 	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
106 	 * default '0x10000' value on boot and this should not #GP. We need to
107 	 * allow zero-initing the register from host as well.
108 	 */
109 	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
110 		return 1;
111 	/*
112 	 * Guest may configure multiple SINTs to use the same vector, so
113 	 * we maintain a bitmap of vectors handled by synic, and a
114 	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
115 	 * updated here, and atomically queried on fast paths.
116 	 */
117 	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
118 
119 	atomic64_set(&synic->sint[sint], data);
120 
121 	synic_update_vector(synic, old_vector);
122 
123 	synic_update_vector(synic, vector);
124 
125 	/* Load SynIC vectors into EOI exit bitmap */
126 	kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
127 	return 0;
128 }
129 
130 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
131 {
132 	struct kvm_vcpu *vcpu = NULL;
133 	int i;
134 
135 	if (vpidx < KVM_MAX_VCPUS)
136 		vcpu = kvm_get_vcpu(kvm, vpidx);
137 	if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
138 		return vcpu;
139 	kvm_for_each_vcpu(i, vcpu, kvm)
140 		if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
141 			return vcpu;
142 	return NULL;
143 }
144 
145 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
146 {
147 	struct kvm_vcpu *vcpu;
148 	struct kvm_vcpu_hv_synic *synic;
149 
150 	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
151 	if (!vcpu)
152 		return NULL;
153 	synic = vcpu_to_synic(vcpu);
154 	return (synic->active) ? synic : NULL;
155 }
156 
157 static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic,
158 					u32 sint)
159 {
160 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
161 	struct page *page;
162 	gpa_t gpa;
163 	struct hv_message *msg;
164 	struct hv_message_page *msg_page;
165 
166 	gpa = synic->msg_page & PAGE_MASK;
167 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
168 	if (is_error_page(page)) {
169 		vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n",
170 			 gpa);
171 		return;
172 	}
173 	msg_page = kmap_atomic(page);
174 
175 	msg = &msg_page->sint_message[sint];
176 	msg->header.message_flags.msg_pending = 0;
177 
178 	kunmap_atomic(msg_page);
179 	kvm_release_page_dirty(page);
180 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
181 }
182 
183 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
184 {
185 	struct kvm *kvm = vcpu->kvm;
186 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
187 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
188 	struct kvm_vcpu_hv_stimer *stimer;
189 	int gsi, idx, stimers_pending;
190 
191 	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
192 
193 	if (synic->msg_page & HV_SYNIC_SIMP_ENABLE)
194 		synic_clear_sint_msg_pending(synic, sint);
195 
196 	/* Try to deliver pending Hyper-V SynIC timers messages */
197 	stimers_pending = 0;
198 	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
199 		stimer = &hv_vcpu->stimer[idx];
200 		if (stimer->msg_pending &&
201 		    (stimer->config & HV_STIMER_ENABLE) &&
202 		    HV_STIMER_SINT(stimer->config) == sint) {
203 			set_bit(stimer->index,
204 				hv_vcpu->stimer_pending_bitmap);
205 			stimers_pending++;
206 		}
207 	}
208 	if (stimers_pending)
209 		kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
210 
211 	idx = srcu_read_lock(&kvm->irq_srcu);
212 	gsi = atomic_read(&synic->sint_to_gsi[sint]);
213 	if (gsi != -1)
214 		kvm_notify_acked_gsi(kvm, gsi);
215 	srcu_read_unlock(&kvm->irq_srcu, idx);
216 }
217 
218 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
219 {
220 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
221 	struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
222 
223 	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
224 	hv_vcpu->exit.u.synic.msr = msr;
225 	hv_vcpu->exit.u.synic.control = synic->control;
226 	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
227 	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
228 
229 	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
230 }
231 
232 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
233 			 u32 msr, u64 data, bool host)
234 {
235 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
236 	int ret;
237 
238 	if (!synic->active)
239 		return 1;
240 
241 	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
242 
243 	ret = 0;
244 	switch (msr) {
245 	case HV_X64_MSR_SCONTROL:
246 		synic->control = data;
247 		if (!host)
248 			synic_exit(synic, msr);
249 		break;
250 	case HV_X64_MSR_SVERSION:
251 		if (!host) {
252 			ret = 1;
253 			break;
254 		}
255 		synic->version = data;
256 		break;
257 	case HV_X64_MSR_SIEFP:
258 		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
259 		    !synic->dont_zero_synic_pages)
260 			if (kvm_clear_guest(vcpu->kvm,
261 					    data & PAGE_MASK, PAGE_SIZE)) {
262 				ret = 1;
263 				break;
264 			}
265 		synic->evt_page = data;
266 		if (!host)
267 			synic_exit(synic, msr);
268 		break;
269 	case HV_X64_MSR_SIMP:
270 		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
271 		    !synic->dont_zero_synic_pages)
272 			if (kvm_clear_guest(vcpu->kvm,
273 					    data & PAGE_MASK, PAGE_SIZE)) {
274 				ret = 1;
275 				break;
276 			}
277 		synic->msg_page = data;
278 		if (!host)
279 			synic_exit(synic, msr);
280 		break;
281 	case HV_X64_MSR_EOM: {
282 		int i;
283 
284 		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
285 			kvm_hv_notify_acked_sint(vcpu, i);
286 		break;
287 	}
288 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
289 		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
290 		break;
291 	default:
292 		ret = 1;
293 		break;
294 	}
295 	return ret;
296 }
297 
298 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata)
299 {
300 	int ret;
301 
302 	if (!synic->active)
303 		return 1;
304 
305 	ret = 0;
306 	switch (msr) {
307 	case HV_X64_MSR_SCONTROL:
308 		*pdata = synic->control;
309 		break;
310 	case HV_X64_MSR_SVERSION:
311 		*pdata = synic->version;
312 		break;
313 	case HV_X64_MSR_SIEFP:
314 		*pdata = synic->evt_page;
315 		break;
316 	case HV_X64_MSR_SIMP:
317 		*pdata = synic->msg_page;
318 		break;
319 	case HV_X64_MSR_EOM:
320 		*pdata = 0;
321 		break;
322 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
323 		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
324 		break;
325 	default:
326 		ret = 1;
327 		break;
328 	}
329 	return ret;
330 }
331 
332 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
333 {
334 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
335 	struct kvm_lapic_irq irq;
336 	int ret, vector;
337 
338 	if (sint >= ARRAY_SIZE(synic->sint))
339 		return -EINVAL;
340 
341 	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
342 	if (vector < 0)
343 		return -ENOENT;
344 
345 	memset(&irq, 0, sizeof(irq));
346 	irq.shorthand = APIC_DEST_SELF;
347 	irq.dest_mode = APIC_DEST_PHYSICAL;
348 	irq.delivery_mode = APIC_DM_FIXED;
349 	irq.vector = vector;
350 	irq.level = 1;
351 
352 	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
353 	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
354 	return ret;
355 }
356 
357 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
358 {
359 	struct kvm_vcpu_hv_synic *synic;
360 
361 	synic = synic_get(kvm, vpidx);
362 	if (!synic)
363 		return -EINVAL;
364 
365 	return synic_set_irq(synic, sint);
366 }
367 
368 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
369 {
370 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
371 	int i;
372 
373 	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
374 
375 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
376 		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
377 			kvm_hv_notify_acked_sint(vcpu, i);
378 }
379 
380 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
381 {
382 	struct kvm_vcpu_hv_synic *synic;
383 
384 	synic = synic_get(kvm, vpidx);
385 	if (!synic)
386 		return -EINVAL;
387 
388 	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
389 		return -EINVAL;
390 
391 	atomic_set(&synic->sint_to_gsi[sint], gsi);
392 	return 0;
393 }
394 
395 void kvm_hv_irq_routing_update(struct kvm *kvm)
396 {
397 	struct kvm_irq_routing_table *irq_rt;
398 	struct kvm_kernel_irq_routing_entry *e;
399 	u32 gsi;
400 
401 	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
402 					lockdep_is_held(&kvm->irq_lock));
403 
404 	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
405 		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
406 			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
407 				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
408 						    e->hv_sint.sint, gsi);
409 		}
410 	}
411 }
412 
413 static void synic_init(struct kvm_vcpu_hv_synic *synic)
414 {
415 	int i;
416 
417 	memset(synic, 0, sizeof(*synic));
418 	synic->version = HV_SYNIC_VERSION_1;
419 	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
420 		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
421 		atomic_set(&synic->sint_to_gsi[i], -1);
422 	}
423 }
424 
425 static u64 get_time_ref_counter(struct kvm *kvm)
426 {
427 	struct kvm_hv *hv = &kvm->arch.hyperv;
428 	struct kvm_vcpu *vcpu;
429 	u64 tsc;
430 
431 	/*
432 	 * The guest has not set up the TSC page or the clock isn't
433 	 * stable, fall back to get_kvmclock_ns.
434 	 */
435 	if (!hv->tsc_ref.tsc_sequence)
436 		return div_u64(get_kvmclock_ns(kvm), 100);
437 
438 	vcpu = kvm_get_vcpu(kvm, 0);
439 	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
440 	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
441 		+ hv->tsc_ref.tsc_offset;
442 }
443 
444 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
445 				bool vcpu_kick)
446 {
447 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
448 
449 	set_bit(stimer->index,
450 		vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
451 	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
452 	if (vcpu_kick)
453 		kvm_vcpu_kick(vcpu);
454 }
455 
456 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
457 {
458 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
459 
460 	trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
461 				    stimer->index);
462 
463 	hrtimer_cancel(&stimer->timer);
464 	clear_bit(stimer->index,
465 		  vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
466 	stimer->msg_pending = false;
467 	stimer->exp_time = 0;
468 }
469 
470 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
471 {
472 	struct kvm_vcpu_hv_stimer *stimer;
473 
474 	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
475 	trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
476 				     stimer->index);
477 	stimer_mark_pending(stimer, true);
478 
479 	return HRTIMER_NORESTART;
480 }
481 
482 /*
483  * stimer_start() assumptions:
484  * a) stimer->count is not equal to 0
485  * b) stimer->config has HV_STIMER_ENABLE flag
486  */
487 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
488 {
489 	u64 time_now;
490 	ktime_t ktime_now;
491 
492 	time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
493 	ktime_now = ktime_get();
494 
495 	if (stimer->config & HV_STIMER_PERIODIC) {
496 		if (stimer->exp_time) {
497 			if (time_now >= stimer->exp_time) {
498 				u64 remainder;
499 
500 				div64_u64_rem(time_now - stimer->exp_time,
501 					      stimer->count, &remainder);
502 				stimer->exp_time =
503 					time_now + (stimer->count - remainder);
504 			}
505 		} else
506 			stimer->exp_time = time_now + stimer->count;
507 
508 		trace_kvm_hv_stimer_start_periodic(
509 					stimer_to_vcpu(stimer)->vcpu_id,
510 					stimer->index,
511 					time_now, stimer->exp_time);
512 
513 		hrtimer_start(&stimer->timer,
514 			      ktime_add_ns(ktime_now,
515 					   100 * (stimer->exp_time - time_now)),
516 			      HRTIMER_MODE_ABS);
517 		return 0;
518 	}
519 	stimer->exp_time = stimer->count;
520 	if (time_now >= stimer->count) {
521 		/*
522 		 * Expire timer according to Hypervisor Top-Level Functional
523 		 * specification v4(15.3.1):
524 		 * "If a one shot is enabled and the specified count is in
525 		 * the past, it will expire immediately."
526 		 */
527 		stimer_mark_pending(stimer, false);
528 		return 0;
529 	}
530 
531 	trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
532 					   stimer->index,
533 					   time_now, stimer->count);
534 
535 	hrtimer_start(&stimer->timer,
536 		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
537 		      HRTIMER_MODE_ABS);
538 	return 0;
539 }
540 
541 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
542 			     bool host)
543 {
544 	trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
545 				       stimer->index, config, host);
546 
547 	stimer_cleanup(stimer);
548 	if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0)
549 		config &= ~HV_STIMER_ENABLE;
550 	stimer->config = config;
551 	stimer_mark_pending(stimer, false);
552 	return 0;
553 }
554 
555 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
556 			    bool host)
557 {
558 	trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
559 				      stimer->index, count, host);
560 
561 	stimer_cleanup(stimer);
562 	stimer->count = count;
563 	if (stimer->count == 0)
564 		stimer->config &= ~HV_STIMER_ENABLE;
565 	else if (stimer->config & HV_STIMER_AUTOENABLE)
566 		stimer->config |= HV_STIMER_ENABLE;
567 	stimer_mark_pending(stimer, false);
568 	return 0;
569 }
570 
571 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
572 {
573 	*pconfig = stimer->config;
574 	return 0;
575 }
576 
577 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
578 {
579 	*pcount = stimer->count;
580 	return 0;
581 }
582 
583 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
584 			     struct hv_message *src_msg)
585 {
586 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
587 	struct page *page;
588 	gpa_t gpa;
589 	struct hv_message *dst_msg;
590 	int r;
591 	struct hv_message_page *msg_page;
592 
593 	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
594 		return -ENOENT;
595 
596 	gpa = synic->msg_page & PAGE_MASK;
597 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
598 	if (is_error_page(page))
599 		return -EFAULT;
600 
601 	msg_page = kmap_atomic(page);
602 	dst_msg = &msg_page->sint_message[sint];
603 	if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE,
604 			 src_msg->header.message_type) != HVMSG_NONE) {
605 		dst_msg->header.message_flags.msg_pending = 1;
606 		r = -EAGAIN;
607 	} else {
608 		memcpy(&dst_msg->u.payload, &src_msg->u.payload,
609 		       src_msg->header.payload_size);
610 		dst_msg->header.message_type = src_msg->header.message_type;
611 		dst_msg->header.payload_size = src_msg->header.payload_size;
612 		r = synic_set_irq(synic, sint);
613 		if (r >= 1)
614 			r = 0;
615 		else if (r == 0)
616 			r = -EFAULT;
617 	}
618 	kunmap_atomic(msg_page);
619 	kvm_release_page_dirty(page);
620 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
621 	return r;
622 }
623 
624 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
625 {
626 	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
627 	struct hv_message *msg = &stimer->msg;
628 	struct hv_timer_message_payload *payload =
629 			(struct hv_timer_message_payload *)&msg->u.payload;
630 
631 	payload->expiration_time = stimer->exp_time;
632 	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
633 	return synic_deliver_msg(vcpu_to_synic(vcpu),
634 				 HV_STIMER_SINT(stimer->config), msg);
635 }
636 
637 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
638 {
639 	int r;
640 
641 	stimer->msg_pending = true;
642 	r = stimer_send_msg(stimer);
643 	trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
644 				       stimer->index, r);
645 	if (!r) {
646 		stimer->msg_pending = false;
647 		if (!(stimer->config & HV_STIMER_PERIODIC))
648 			stimer->config &= ~HV_STIMER_ENABLE;
649 	}
650 }
651 
652 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
653 {
654 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
655 	struct kvm_vcpu_hv_stimer *stimer;
656 	u64 time_now, exp_time;
657 	int i;
658 
659 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
660 		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
661 			stimer = &hv_vcpu->stimer[i];
662 			if (stimer->config & HV_STIMER_ENABLE) {
663 				exp_time = stimer->exp_time;
664 
665 				if (exp_time) {
666 					time_now =
667 						get_time_ref_counter(vcpu->kvm);
668 					if (time_now >= exp_time)
669 						stimer_expiration(stimer);
670 				}
671 
672 				if ((stimer->config & HV_STIMER_ENABLE) &&
673 				    stimer->count) {
674 					if (!stimer->msg_pending)
675 						stimer_start(stimer);
676 				} else
677 					stimer_cleanup(stimer);
678 			}
679 		}
680 }
681 
682 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
683 {
684 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
685 	int i;
686 
687 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
688 		stimer_cleanup(&hv_vcpu->stimer[i]);
689 }
690 
691 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
692 {
693 	struct hv_message *msg = &stimer->msg;
694 	struct hv_timer_message_payload *payload =
695 			(struct hv_timer_message_payload *)&msg->u.payload;
696 
697 	memset(&msg->header, 0, sizeof(msg->header));
698 	msg->header.message_type = HVMSG_TIMER_EXPIRED;
699 	msg->header.payload_size = sizeof(*payload);
700 
701 	payload->timer_index = stimer->index;
702 	payload->expiration_time = 0;
703 	payload->delivery_time = 0;
704 }
705 
706 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
707 {
708 	memset(stimer, 0, sizeof(*stimer));
709 	stimer->index = timer_index;
710 	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
711 	stimer->timer.function = stimer_timer_callback;
712 	stimer_prepare_msg(stimer);
713 }
714 
715 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
716 {
717 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
718 	int i;
719 
720 	synic_init(&hv_vcpu->synic);
721 
722 	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
723 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
724 		stimer_init(&hv_vcpu->stimer[i], i);
725 }
726 
727 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
728 {
729 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
730 
731 	hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
732 }
733 
734 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
735 {
736 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
737 
738 	/*
739 	 * Hyper-V SynIC auto EOI SINT's are
740 	 * not compatible with APICV, so deactivate APICV
741 	 */
742 	kvm_vcpu_deactivate_apicv(vcpu);
743 	synic->active = true;
744 	synic->dont_zero_synic_pages = dont_zero_synic_pages;
745 	return 0;
746 }
747 
748 static bool kvm_hv_msr_partition_wide(u32 msr)
749 {
750 	bool r = false;
751 
752 	switch (msr) {
753 	case HV_X64_MSR_GUEST_OS_ID:
754 	case HV_X64_MSR_HYPERCALL:
755 	case HV_X64_MSR_REFERENCE_TSC:
756 	case HV_X64_MSR_TIME_REF_COUNT:
757 	case HV_X64_MSR_CRASH_CTL:
758 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
759 	case HV_X64_MSR_RESET:
760 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
761 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
762 	case HV_X64_MSR_TSC_EMULATION_STATUS:
763 		r = true;
764 		break;
765 	}
766 
767 	return r;
768 }
769 
770 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
771 				     u32 index, u64 *pdata)
772 {
773 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
774 
775 	if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
776 		return -EINVAL;
777 
778 	*pdata = hv->hv_crash_param[index];
779 	return 0;
780 }
781 
782 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
783 {
784 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
785 
786 	*pdata = hv->hv_crash_ctl;
787 	return 0;
788 }
789 
790 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
791 {
792 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
793 
794 	if (host)
795 		hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY;
796 
797 	if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) {
798 
799 		vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
800 			  hv->hv_crash_param[0],
801 			  hv->hv_crash_param[1],
802 			  hv->hv_crash_param[2],
803 			  hv->hv_crash_param[3],
804 			  hv->hv_crash_param[4]);
805 
806 		/* Send notification about crash to user space */
807 		kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
808 	}
809 
810 	return 0;
811 }
812 
813 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
814 				     u32 index, u64 data)
815 {
816 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
817 
818 	if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
819 		return -EINVAL;
820 
821 	hv->hv_crash_param[index] = data;
822 	return 0;
823 }
824 
825 /*
826  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
827  * between them is possible:
828  *
829  * kvmclock formula:
830  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
831  *           + system_time
832  *
833  * Hyper-V formula:
834  *    nsec/100 = ticks * scale / 2^64 + offset
835  *
836  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
837  * By dividing the kvmclock formula by 100 and equating what's left we get:
838  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
839  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
840  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
841  *
842  * Now expand the kvmclock formula and divide by 100:
843  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
844  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
845  *           + system_time
846  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
847  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
848  *               + system_time / 100
849  *
850  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
851  *    nsec/100 = ticks * scale / 2^64
852  *               - tsc_timestamp * scale / 2^64
853  *               + system_time / 100
854  *
855  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
856  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
857  *
858  * These two equivalencies are implemented in this function.
859  */
860 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
861 					HV_REFERENCE_TSC_PAGE *tsc_ref)
862 {
863 	u64 max_mul;
864 
865 	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
866 		return false;
867 
868 	/*
869 	 * check if scale would overflow, if so we use the time ref counter
870 	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
871 	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
872 	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
873 	 */
874 	max_mul = 100ull << (32 - hv_clock->tsc_shift);
875 	if (hv_clock->tsc_to_system_mul >= max_mul)
876 		return false;
877 
878 	/*
879 	 * Otherwise compute the scale and offset according to the formulas
880 	 * derived above.
881 	 */
882 	tsc_ref->tsc_scale =
883 		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
884 				hv_clock->tsc_to_system_mul,
885 				100);
886 
887 	tsc_ref->tsc_offset = hv_clock->system_time;
888 	do_div(tsc_ref->tsc_offset, 100);
889 	tsc_ref->tsc_offset -=
890 		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
891 	return true;
892 }
893 
894 void kvm_hv_setup_tsc_page(struct kvm *kvm,
895 			   struct pvclock_vcpu_time_info *hv_clock)
896 {
897 	struct kvm_hv *hv = &kvm->arch.hyperv;
898 	u32 tsc_seq;
899 	u64 gfn;
900 
901 	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
902 	BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
903 
904 	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
905 		return;
906 
907 	mutex_lock(&kvm->arch.hyperv.hv_lock);
908 	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
909 		goto out_unlock;
910 
911 	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
912 	/*
913 	 * Because the TSC parameters only vary when there is a
914 	 * change in the master clock, do not bother with caching.
915 	 */
916 	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
917 				    &tsc_seq, sizeof(tsc_seq))))
918 		goto out_unlock;
919 
920 	/*
921 	 * While we're computing and writing the parameters, force the
922 	 * guest to use the time reference count MSR.
923 	 */
924 	hv->tsc_ref.tsc_sequence = 0;
925 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
926 			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
927 		goto out_unlock;
928 
929 	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
930 		goto out_unlock;
931 
932 	/* Ensure sequence is zero before writing the rest of the struct.  */
933 	smp_wmb();
934 	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
935 		goto out_unlock;
936 
937 	/*
938 	 * Now switch to the TSC page mechanism by writing the sequence.
939 	 */
940 	tsc_seq++;
941 	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
942 		tsc_seq = 1;
943 
944 	/* Write the struct entirely before the non-zero sequence.  */
945 	smp_wmb();
946 
947 	hv->tsc_ref.tsc_sequence = tsc_seq;
948 	kvm_write_guest(kvm, gfn_to_gpa(gfn),
949 			&hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
950 out_unlock:
951 	mutex_unlock(&kvm->arch.hyperv.hv_lock);
952 }
953 
954 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
955 			     bool host)
956 {
957 	struct kvm *kvm = vcpu->kvm;
958 	struct kvm_hv *hv = &kvm->arch.hyperv;
959 
960 	switch (msr) {
961 	case HV_X64_MSR_GUEST_OS_ID:
962 		hv->hv_guest_os_id = data;
963 		/* setting guest os id to zero disables hypercall page */
964 		if (!hv->hv_guest_os_id)
965 			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
966 		break;
967 	case HV_X64_MSR_HYPERCALL: {
968 		u64 gfn;
969 		unsigned long addr;
970 		u8 instructions[4];
971 
972 		/* if guest os id is not set hypercall should remain disabled */
973 		if (!hv->hv_guest_os_id)
974 			break;
975 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
976 			hv->hv_hypercall = data;
977 			break;
978 		}
979 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
980 		addr = gfn_to_hva(kvm, gfn);
981 		if (kvm_is_error_hva(addr))
982 			return 1;
983 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
984 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
985 		if (__copy_to_user((void __user *)addr, instructions, 4))
986 			return 1;
987 		hv->hv_hypercall = data;
988 		mark_page_dirty(kvm, gfn);
989 		break;
990 	}
991 	case HV_X64_MSR_REFERENCE_TSC:
992 		hv->hv_tsc_page = data;
993 		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
994 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
995 		break;
996 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
997 		return kvm_hv_msr_set_crash_data(vcpu,
998 						 msr - HV_X64_MSR_CRASH_P0,
999 						 data);
1000 	case HV_X64_MSR_CRASH_CTL:
1001 		return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1002 	case HV_X64_MSR_RESET:
1003 		if (data == 1) {
1004 			vcpu_debug(vcpu, "hyper-v reset requested\n");
1005 			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1006 		}
1007 		break;
1008 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1009 		hv->hv_reenlightenment_control = data;
1010 		break;
1011 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1012 		hv->hv_tsc_emulation_control = data;
1013 		break;
1014 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1015 		hv->hv_tsc_emulation_status = data;
1016 		break;
1017 	default:
1018 		vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1019 			    msr, data);
1020 		return 1;
1021 	}
1022 	return 0;
1023 }
1024 
1025 /* Calculate cpu time spent by current task in 100ns units */
1026 static u64 current_task_runtime_100ns(void)
1027 {
1028 	u64 utime, stime;
1029 
1030 	task_cputime_adjusted(current, &utime, &stime);
1031 
1032 	return div_u64(utime + stime, 100);
1033 }
1034 
1035 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1036 {
1037 	struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1038 
1039 	switch (msr) {
1040 	case HV_X64_MSR_VP_INDEX:
1041 		if (!host)
1042 			return 1;
1043 		hv->vp_index = (u32)data;
1044 		break;
1045 	case HV_X64_MSR_VP_ASSIST_PAGE: {
1046 		u64 gfn;
1047 		unsigned long addr;
1048 
1049 		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1050 			hv->hv_vapic = data;
1051 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
1052 				return 1;
1053 			break;
1054 		}
1055 		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1056 		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1057 		if (kvm_is_error_hva(addr))
1058 			return 1;
1059 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1060 			return 1;
1061 		hv->hv_vapic = data;
1062 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
1063 		if (kvm_lapic_enable_pv_eoi(vcpu,
1064 					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
1065 			return 1;
1066 		break;
1067 	}
1068 	case HV_X64_MSR_EOI:
1069 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1070 	case HV_X64_MSR_ICR:
1071 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1072 	case HV_X64_MSR_TPR:
1073 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1074 	case HV_X64_MSR_VP_RUNTIME:
1075 		if (!host)
1076 			return 1;
1077 		hv->runtime_offset = data - current_task_runtime_100ns();
1078 		break;
1079 	case HV_X64_MSR_SCONTROL:
1080 	case HV_X64_MSR_SVERSION:
1081 	case HV_X64_MSR_SIEFP:
1082 	case HV_X64_MSR_SIMP:
1083 	case HV_X64_MSR_EOM:
1084 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1085 		return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1086 	case HV_X64_MSR_STIMER0_CONFIG:
1087 	case HV_X64_MSR_STIMER1_CONFIG:
1088 	case HV_X64_MSR_STIMER2_CONFIG:
1089 	case HV_X64_MSR_STIMER3_CONFIG: {
1090 		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1091 
1092 		return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1093 					 data, host);
1094 	}
1095 	case HV_X64_MSR_STIMER0_COUNT:
1096 	case HV_X64_MSR_STIMER1_COUNT:
1097 	case HV_X64_MSR_STIMER2_COUNT:
1098 	case HV_X64_MSR_STIMER3_COUNT: {
1099 		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1100 
1101 		return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1102 					data, host);
1103 	}
1104 	default:
1105 		vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1106 			    msr, data);
1107 		return 1;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1114 {
1115 	u64 data = 0;
1116 	struct kvm *kvm = vcpu->kvm;
1117 	struct kvm_hv *hv = &kvm->arch.hyperv;
1118 
1119 	switch (msr) {
1120 	case HV_X64_MSR_GUEST_OS_ID:
1121 		data = hv->hv_guest_os_id;
1122 		break;
1123 	case HV_X64_MSR_HYPERCALL:
1124 		data = hv->hv_hypercall;
1125 		break;
1126 	case HV_X64_MSR_TIME_REF_COUNT:
1127 		data = get_time_ref_counter(kvm);
1128 		break;
1129 	case HV_X64_MSR_REFERENCE_TSC:
1130 		data = hv->hv_tsc_page;
1131 		break;
1132 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1133 		return kvm_hv_msr_get_crash_data(vcpu,
1134 						 msr - HV_X64_MSR_CRASH_P0,
1135 						 pdata);
1136 	case HV_X64_MSR_CRASH_CTL:
1137 		return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1138 	case HV_X64_MSR_RESET:
1139 		data = 0;
1140 		break;
1141 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1142 		data = hv->hv_reenlightenment_control;
1143 		break;
1144 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
1145 		data = hv->hv_tsc_emulation_control;
1146 		break;
1147 	case HV_X64_MSR_TSC_EMULATION_STATUS:
1148 		data = hv->hv_tsc_emulation_status;
1149 		break;
1150 	default:
1151 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1152 		return 1;
1153 	}
1154 
1155 	*pdata = data;
1156 	return 0;
1157 }
1158 
1159 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1160 {
1161 	u64 data = 0;
1162 	struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1163 
1164 	switch (msr) {
1165 	case HV_X64_MSR_VP_INDEX:
1166 		data = hv->vp_index;
1167 		break;
1168 	case HV_X64_MSR_EOI:
1169 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1170 	case HV_X64_MSR_ICR:
1171 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1172 	case HV_X64_MSR_TPR:
1173 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1174 	case HV_X64_MSR_VP_ASSIST_PAGE:
1175 		data = hv->hv_vapic;
1176 		break;
1177 	case HV_X64_MSR_VP_RUNTIME:
1178 		data = current_task_runtime_100ns() + hv->runtime_offset;
1179 		break;
1180 	case HV_X64_MSR_SCONTROL:
1181 	case HV_X64_MSR_SVERSION:
1182 	case HV_X64_MSR_SIEFP:
1183 	case HV_X64_MSR_SIMP:
1184 	case HV_X64_MSR_EOM:
1185 	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1186 		return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata);
1187 	case HV_X64_MSR_STIMER0_CONFIG:
1188 	case HV_X64_MSR_STIMER1_CONFIG:
1189 	case HV_X64_MSR_STIMER2_CONFIG:
1190 	case HV_X64_MSR_STIMER3_CONFIG: {
1191 		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1192 
1193 		return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1194 					 pdata);
1195 	}
1196 	case HV_X64_MSR_STIMER0_COUNT:
1197 	case HV_X64_MSR_STIMER1_COUNT:
1198 	case HV_X64_MSR_STIMER2_COUNT:
1199 	case HV_X64_MSR_STIMER3_COUNT: {
1200 		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1201 
1202 		return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1203 					pdata);
1204 	}
1205 	case HV_X64_MSR_TSC_FREQUENCY:
1206 		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1207 		break;
1208 	case HV_X64_MSR_APIC_FREQUENCY:
1209 		data = APIC_BUS_FREQUENCY;
1210 		break;
1211 	default:
1212 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1213 		return 1;
1214 	}
1215 	*pdata = data;
1216 	return 0;
1217 }
1218 
1219 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1220 {
1221 	if (kvm_hv_msr_partition_wide(msr)) {
1222 		int r;
1223 
1224 		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1225 		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1226 		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1227 		return r;
1228 	} else
1229 		return kvm_hv_set_msr(vcpu, msr, data, host);
1230 }
1231 
1232 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1233 {
1234 	if (kvm_hv_msr_partition_wide(msr)) {
1235 		int r;
1236 
1237 		mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1238 		r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1239 		mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1240 		return r;
1241 	} else
1242 		return kvm_hv_get_msr(vcpu, msr, pdata);
1243 }
1244 
1245 static __always_inline int get_sparse_bank_no(u64 valid_bank_mask, int bank_no)
1246 {
1247 	int i = 0, j;
1248 
1249 	if (!(valid_bank_mask & BIT_ULL(bank_no)))
1250 		return -1;
1251 
1252 	for (j = 0; j < bank_no; j++)
1253 		if (valid_bank_mask & BIT_ULL(j))
1254 			i++;
1255 
1256 	return i;
1257 }
1258 
1259 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1260 			    u16 rep_cnt, bool ex)
1261 {
1262 	struct kvm *kvm = current_vcpu->kvm;
1263 	struct kvm_vcpu_hv *hv_current = &current_vcpu->arch.hyperv;
1264 	struct hv_tlb_flush_ex flush_ex;
1265 	struct hv_tlb_flush flush;
1266 	struct kvm_vcpu *vcpu;
1267 	unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)] = {0};
1268 	unsigned long valid_bank_mask = 0;
1269 	u64 sparse_banks[64];
1270 	int sparse_banks_len, i;
1271 	bool all_cpus;
1272 
1273 	if (!ex) {
1274 		if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1275 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1276 
1277 		trace_kvm_hv_flush_tlb(flush.processor_mask,
1278 				       flush.address_space, flush.flags);
1279 
1280 		sparse_banks[0] = flush.processor_mask;
1281 		all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
1282 	} else {
1283 		if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1284 					    sizeof(flush_ex))))
1285 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1286 
1287 		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1288 					  flush_ex.hv_vp_set.format,
1289 					  flush_ex.address_space,
1290 					  flush_ex.flags);
1291 
1292 		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1293 		all_cpus = flush_ex.hv_vp_set.format !=
1294 			HV_GENERIC_SET_SPARSE_4K;
1295 
1296 		sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1297 			sizeof(sparse_banks[0]);
1298 
1299 		if (!sparse_banks_len && !all_cpus)
1300 			goto ret_success;
1301 
1302 		if (!all_cpus &&
1303 		    kvm_read_guest(kvm,
1304 				   ingpa + offsetof(struct hv_tlb_flush_ex,
1305 						    hv_vp_set.bank_contents),
1306 				   sparse_banks,
1307 				   sparse_banks_len))
1308 			return HV_STATUS_INVALID_HYPERCALL_INPUT;
1309 	}
1310 
1311 	cpumask_clear(&hv_current->tlb_lush);
1312 
1313 	kvm_for_each_vcpu(i, vcpu, kvm) {
1314 		struct kvm_vcpu_hv *hv = &vcpu->arch.hyperv;
1315 		int bank = hv->vp_index / 64, sbank = 0;
1316 
1317 		if (!all_cpus) {
1318 			/* Banks >64 can't be represented */
1319 			if (bank >= 64)
1320 				continue;
1321 
1322 			/* Non-ex hypercalls can only address first 64 vCPUs */
1323 			if (!ex && bank)
1324 				continue;
1325 
1326 			if (ex) {
1327 				/*
1328 				 * Check is the bank of this vCPU is in sparse
1329 				 * set and get the sparse bank number.
1330 				 */
1331 				sbank = get_sparse_bank_no(valid_bank_mask,
1332 							   bank);
1333 
1334 				if (sbank < 0)
1335 					continue;
1336 			}
1337 
1338 			if (!(sparse_banks[sbank] & BIT_ULL(hv->vp_index % 64)))
1339 				continue;
1340 		}
1341 
1342 		/*
1343 		 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we
1344 		 * can't analyze it here, flush TLB regardless of the specified
1345 		 * address space.
1346 		 */
1347 		__set_bit(i, vcpu_bitmap);
1348 	}
1349 
1350 	kvm_make_vcpus_request_mask(kvm,
1351 				    KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1352 				    vcpu_bitmap, &hv_current->tlb_lush);
1353 
1354 ret_success:
1355 	/* We always do full TLB flush, set rep_done = rep_cnt. */
1356 	return (u64)HV_STATUS_SUCCESS |
1357 		((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1358 }
1359 
1360 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1361 {
1362 	return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1363 }
1364 
1365 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1366 {
1367 	bool longmode;
1368 
1369 	longmode = is_64_bit_mode(vcpu);
1370 	if (longmode)
1371 		kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1372 	else {
1373 		kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1374 		kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1375 	}
1376 }
1377 
1378 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1379 {
1380 	kvm_hv_hypercall_set_result(vcpu, result);
1381 	++vcpu->stat.hypercalls;
1382 	return kvm_skip_emulated_instruction(vcpu);
1383 }
1384 
1385 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1386 {
1387 	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1388 }
1389 
1390 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1391 {
1392 	struct eventfd_ctx *eventfd;
1393 
1394 	if (unlikely(!fast)) {
1395 		int ret;
1396 		gpa_t gpa = param;
1397 
1398 		if ((gpa & (__alignof__(param) - 1)) ||
1399 		    offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1400 			return HV_STATUS_INVALID_ALIGNMENT;
1401 
1402 		ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1403 		if (ret < 0)
1404 			return HV_STATUS_INVALID_ALIGNMENT;
1405 	}
1406 
1407 	/*
1408 	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
1409 	 * have no use for it, and in all known usecases it is zero, so just
1410 	 * report lookup failure if it isn't.
1411 	 */
1412 	if (param & 0xffff00000000ULL)
1413 		return HV_STATUS_INVALID_PORT_ID;
1414 	/* remaining bits are reserved-zero */
1415 	if (param & ~KVM_HYPERV_CONN_ID_MASK)
1416 		return HV_STATUS_INVALID_HYPERCALL_INPUT;
1417 
1418 	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1419 	rcu_read_lock();
1420 	eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1421 	rcu_read_unlock();
1422 	if (!eventfd)
1423 		return HV_STATUS_INVALID_PORT_ID;
1424 
1425 	eventfd_signal(eventfd, 1);
1426 	return HV_STATUS_SUCCESS;
1427 }
1428 
1429 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1430 {
1431 	u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1432 	uint16_t code, rep_idx, rep_cnt;
1433 	bool fast, longmode, rep;
1434 
1435 	/*
1436 	 * hypercall generates UD from non zero cpl and real mode
1437 	 * per HYPER-V spec
1438 	 */
1439 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1440 		kvm_queue_exception(vcpu, UD_VECTOR);
1441 		return 1;
1442 	}
1443 
1444 	longmode = is_64_bit_mode(vcpu);
1445 
1446 	if (!longmode) {
1447 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1448 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1449 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1450 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1451 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1452 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1453 	}
1454 #ifdef CONFIG_X86_64
1455 	else {
1456 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1457 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1458 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1459 	}
1460 #endif
1461 
1462 	code = param & 0xffff;
1463 	fast = !!(param & HV_HYPERCALL_FAST_BIT);
1464 	rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1465 	rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1466 	rep = !!(rep_cnt || rep_idx);
1467 
1468 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1469 
1470 	switch (code) {
1471 	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1472 		if (unlikely(rep)) {
1473 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1474 			break;
1475 		}
1476 		kvm_vcpu_on_spin(vcpu, true);
1477 		break;
1478 	case HVCALL_SIGNAL_EVENT:
1479 		if (unlikely(rep)) {
1480 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1481 			break;
1482 		}
1483 		ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1484 		if (ret != HV_STATUS_INVALID_PORT_ID)
1485 			break;
1486 		/* maybe userspace knows this conn_id: fall through */
1487 	case HVCALL_POST_MESSAGE:
1488 		/* don't bother userspace if it has no way to handle it */
1489 		if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1490 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1491 			break;
1492 		}
1493 		vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1494 		vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1495 		vcpu->run->hyperv.u.hcall.input = param;
1496 		vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1497 		vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1498 		vcpu->arch.complete_userspace_io =
1499 				kvm_hv_hypercall_complete_userspace;
1500 		return 0;
1501 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1502 		if (unlikely(fast || !rep_cnt || rep_idx)) {
1503 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1504 			break;
1505 		}
1506 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1507 		break;
1508 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1509 		if (unlikely(fast || rep)) {
1510 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1511 			break;
1512 		}
1513 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1514 		break;
1515 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1516 		if (unlikely(fast || !rep_cnt || rep_idx)) {
1517 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1518 			break;
1519 		}
1520 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1521 		break;
1522 	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1523 		if (unlikely(fast || rep)) {
1524 			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1525 			break;
1526 		}
1527 		ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1528 		break;
1529 	default:
1530 		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1531 		break;
1532 	}
1533 
1534 	return kvm_hv_hypercall_complete(vcpu, ret);
1535 }
1536 
1537 void kvm_hv_init_vm(struct kvm *kvm)
1538 {
1539 	mutex_init(&kvm->arch.hyperv.hv_lock);
1540 	idr_init(&kvm->arch.hyperv.conn_to_evt);
1541 }
1542 
1543 void kvm_hv_destroy_vm(struct kvm *kvm)
1544 {
1545 	struct eventfd_ctx *eventfd;
1546 	int i;
1547 
1548 	idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1549 		eventfd_ctx_put(eventfd);
1550 	idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1551 }
1552 
1553 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1554 {
1555 	struct kvm_hv *hv = &kvm->arch.hyperv;
1556 	struct eventfd_ctx *eventfd;
1557 	int ret;
1558 
1559 	eventfd = eventfd_ctx_fdget(fd);
1560 	if (IS_ERR(eventfd))
1561 		return PTR_ERR(eventfd);
1562 
1563 	mutex_lock(&hv->hv_lock);
1564 	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1565 			GFP_KERNEL);
1566 	mutex_unlock(&hv->hv_lock);
1567 
1568 	if (ret >= 0)
1569 		return 0;
1570 
1571 	if (ret == -ENOSPC)
1572 		ret = -EEXIST;
1573 	eventfd_ctx_put(eventfd);
1574 	return ret;
1575 }
1576 
1577 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1578 {
1579 	struct kvm_hv *hv = &kvm->arch.hyperv;
1580 	struct eventfd_ctx *eventfd;
1581 
1582 	mutex_lock(&hv->hv_lock);
1583 	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1584 	mutex_unlock(&hv->hv_lock);
1585 
1586 	if (!eventfd)
1587 		return -ENOENT;
1588 
1589 	synchronize_srcu(&kvm->srcu);
1590 	eventfd_ctx_put(eventfd);
1591 	return 0;
1592 }
1593 
1594 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1595 {
1596 	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1597 	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1598 		return -EINVAL;
1599 
1600 	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1601 		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1602 	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1603 }
1604