1 /* 2 * KVM Microsoft Hyper-V emulation 3 * 4 * derived from arch/x86/kvm/x86.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com> 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 * Andrey Smetanin <asmetanin@virtuozzo.com> 18 * 19 * This work is licensed under the terms of the GNU GPL, version 2. See 20 * the COPYING file in the top-level directory. 21 * 22 */ 23 24 #include "x86.h" 25 #include "lapic.h" 26 #include "ioapic.h" 27 #include "hyperv.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/highmem.h> 31 #include <linux/sched/cputime.h> 32 #include <linux/eventfd.h> 33 34 #include <asm/apicdef.h> 35 #include <trace/events/kvm.h> 36 37 #include "trace.h" 38 39 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64) 40 41 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, 42 bool vcpu_kick); 43 44 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) 45 { 46 return atomic64_read(&synic->sint[sint]); 47 } 48 49 static inline int synic_get_sint_vector(u64 sint_value) 50 { 51 if (sint_value & HV_SYNIC_SINT_MASKED) 52 return -1; 53 return sint_value & HV_SYNIC_SINT_VECTOR_MASK; 54 } 55 56 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic, 57 int vector) 58 { 59 int i; 60 61 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 62 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) 63 return true; 64 } 65 return false; 66 } 67 68 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic, 69 int vector) 70 { 71 int i; 72 u64 sint_value; 73 74 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 75 sint_value = synic_read_sint(synic, i); 76 if (synic_get_sint_vector(sint_value) == vector && 77 sint_value & HV_SYNIC_SINT_AUTO_EOI) 78 return true; 79 } 80 return false; 81 } 82 83 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic, 84 int vector) 85 { 86 if (vector < HV_SYNIC_FIRST_VALID_VECTOR) 87 return; 88 89 if (synic_has_vector_connected(synic, vector)) 90 __set_bit(vector, synic->vec_bitmap); 91 else 92 __clear_bit(vector, synic->vec_bitmap); 93 94 if (synic_has_vector_auto_eoi(synic, vector)) 95 __set_bit(vector, synic->auto_eoi_bitmap); 96 else 97 __clear_bit(vector, synic->auto_eoi_bitmap); 98 } 99 100 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint, 101 u64 data, bool host) 102 { 103 int vector, old_vector; 104 bool masked; 105 106 vector = data & HV_SYNIC_SINT_VECTOR_MASK; 107 masked = data & HV_SYNIC_SINT_MASKED; 108 109 /* 110 * Valid vectors are 16-255, however, nested Hyper-V attempts to write 111 * default '0x10000' value on boot and this should not #GP. We need to 112 * allow zero-initing the register from host as well. 113 */ 114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked) 115 return 1; 116 /* 117 * Guest may configure multiple SINTs to use the same vector, so 118 * we maintain a bitmap of vectors handled by synic, and a 119 * bitmap of vectors with auto-eoi behavior. The bitmaps are 120 * updated here, and atomically queried on fast paths. 121 */ 122 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK; 123 124 atomic64_set(&synic->sint[sint], data); 125 126 synic_update_vector(synic, old_vector); 127 128 synic_update_vector(synic, vector); 129 130 /* Load SynIC vectors into EOI exit bitmap */ 131 kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic)); 132 return 0; 133 } 134 135 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx) 136 { 137 struct kvm_vcpu *vcpu = NULL; 138 int i; 139 140 if (vpidx >= KVM_MAX_VCPUS) 141 return NULL; 142 143 vcpu = kvm_get_vcpu(kvm, vpidx); 144 if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx) 145 return vcpu; 146 kvm_for_each_vcpu(i, vcpu, kvm) 147 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx) 148 return vcpu; 149 return NULL; 150 } 151 152 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) 153 { 154 struct kvm_vcpu *vcpu; 155 struct kvm_vcpu_hv_synic *synic; 156 157 vcpu = get_vcpu_by_vpidx(kvm, vpidx); 158 if (!vcpu) 159 return NULL; 160 synic = vcpu_to_synic(vcpu); 161 return (synic->active) ? synic : NULL; 162 } 163 164 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) 165 { 166 struct kvm *kvm = vcpu->kvm; 167 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu); 168 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); 169 struct kvm_vcpu_hv_stimer *stimer; 170 int gsi, idx; 171 172 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); 173 174 /* Try to deliver pending Hyper-V SynIC timers messages */ 175 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { 176 stimer = &hv_vcpu->stimer[idx]; 177 if (stimer->msg_pending && stimer->config.enable && 178 !stimer->config.direct_mode && 179 stimer->config.sintx == sint) 180 stimer_mark_pending(stimer, false); 181 } 182 183 idx = srcu_read_lock(&kvm->irq_srcu); 184 gsi = atomic_read(&synic->sint_to_gsi[sint]); 185 if (gsi != -1) 186 kvm_notify_acked_gsi(kvm, gsi); 187 srcu_read_unlock(&kvm->irq_srcu, idx); 188 } 189 190 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr) 191 { 192 struct kvm_vcpu *vcpu = synic_to_vcpu(synic); 193 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv; 194 195 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC; 196 hv_vcpu->exit.u.synic.msr = msr; 197 hv_vcpu->exit.u.synic.control = synic->control; 198 hv_vcpu->exit.u.synic.evt_page = synic->evt_page; 199 hv_vcpu->exit.u.synic.msg_page = synic->msg_page; 200 201 kvm_make_request(KVM_REQ_HV_EXIT, vcpu); 202 } 203 204 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic, 205 u32 msr, u64 data, bool host) 206 { 207 struct kvm_vcpu *vcpu = synic_to_vcpu(synic); 208 int ret; 209 210 if (!synic->active && !host) 211 return 1; 212 213 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host); 214 215 ret = 0; 216 switch (msr) { 217 case HV_X64_MSR_SCONTROL: 218 synic->control = data; 219 if (!host) 220 synic_exit(synic, msr); 221 break; 222 case HV_X64_MSR_SVERSION: 223 if (!host) { 224 ret = 1; 225 break; 226 } 227 synic->version = data; 228 break; 229 case HV_X64_MSR_SIEFP: 230 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host && 231 !synic->dont_zero_synic_pages) 232 if (kvm_clear_guest(vcpu->kvm, 233 data & PAGE_MASK, PAGE_SIZE)) { 234 ret = 1; 235 break; 236 } 237 synic->evt_page = data; 238 if (!host) 239 synic_exit(synic, msr); 240 break; 241 case HV_X64_MSR_SIMP: 242 if ((data & HV_SYNIC_SIMP_ENABLE) && !host && 243 !synic->dont_zero_synic_pages) 244 if (kvm_clear_guest(vcpu->kvm, 245 data & PAGE_MASK, PAGE_SIZE)) { 246 ret = 1; 247 break; 248 } 249 synic->msg_page = data; 250 if (!host) 251 synic_exit(synic, msr); 252 break; 253 case HV_X64_MSR_EOM: { 254 int i; 255 256 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) 257 kvm_hv_notify_acked_sint(vcpu, i); 258 break; 259 } 260 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 261 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host); 262 break; 263 default: 264 ret = 1; 265 break; 266 } 267 return ret; 268 } 269 270 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata, 271 bool host) 272 { 273 int ret; 274 275 if (!synic->active && !host) 276 return 1; 277 278 ret = 0; 279 switch (msr) { 280 case HV_X64_MSR_SCONTROL: 281 *pdata = synic->control; 282 break; 283 case HV_X64_MSR_SVERSION: 284 *pdata = synic->version; 285 break; 286 case HV_X64_MSR_SIEFP: 287 *pdata = synic->evt_page; 288 break; 289 case HV_X64_MSR_SIMP: 290 *pdata = synic->msg_page; 291 break; 292 case HV_X64_MSR_EOM: 293 *pdata = 0; 294 break; 295 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 296 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]); 297 break; 298 default: 299 ret = 1; 300 break; 301 } 302 return ret; 303 } 304 305 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint) 306 { 307 struct kvm_vcpu *vcpu = synic_to_vcpu(synic); 308 struct kvm_lapic_irq irq; 309 int ret, vector; 310 311 if (sint >= ARRAY_SIZE(synic->sint)) 312 return -EINVAL; 313 314 vector = synic_get_sint_vector(synic_read_sint(synic, sint)); 315 if (vector < 0) 316 return -ENOENT; 317 318 memset(&irq, 0, sizeof(irq)); 319 irq.shorthand = APIC_DEST_SELF; 320 irq.dest_mode = APIC_DEST_PHYSICAL; 321 irq.delivery_mode = APIC_DM_FIXED; 322 irq.vector = vector; 323 irq.level = 1; 324 325 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL); 326 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret); 327 return ret; 328 } 329 330 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint) 331 { 332 struct kvm_vcpu_hv_synic *synic; 333 334 synic = synic_get(kvm, vpidx); 335 if (!synic) 336 return -EINVAL; 337 338 return synic_set_irq(synic, sint); 339 } 340 341 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector) 342 { 343 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu); 344 int i; 345 346 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector); 347 348 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) 349 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) 350 kvm_hv_notify_acked_sint(vcpu, i); 351 } 352 353 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi) 354 { 355 struct kvm_vcpu_hv_synic *synic; 356 357 synic = synic_get(kvm, vpidx); 358 if (!synic) 359 return -EINVAL; 360 361 if (sint >= ARRAY_SIZE(synic->sint_to_gsi)) 362 return -EINVAL; 363 364 atomic_set(&synic->sint_to_gsi[sint], gsi); 365 return 0; 366 } 367 368 void kvm_hv_irq_routing_update(struct kvm *kvm) 369 { 370 struct kvm_irq_routing_table *irq_rt; 371 struct kvm_kernel_irq_routing_entry *e; 372 u32 gsi; 373 374 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu, 375 lockdep_is_held(&kvm->irq_lock)); 376 377 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) { 378 hlist_for_each_entry(e, &irq_rt->map[gsi], link) { 379 if (e->type == KVM_IRQ_ROUTING_HV_SINT) 380 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu, 381 e->hv_sint.sint, gsi); 382 } 383 } 384 } 385 386 static void synic_init(struct kvm_vcpu_hv_synic *synic) 387 { 388 int i; 389 390 memset(synic, 0, sizeof(*synic)); 391 synic->version = HV_SYNIC_VERSION_1; 392 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 393 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED); 394 atomic_set(&synic->sint_to_gsi[i], -1); 395 } 396 } 397 398 static u64 get_time_ref_counter(struct kvm *kvm) 399 { 400 struct kvm_hv *hv = &kvm->arch.hyperv; 401 struct kvm_vcpu *vcpu; 402 u64 tsc; 403 404 /* 405 * The guest has not set up the TSC page or the clock isn't 406 * stable, fall back to get_kvmclock_ns. 407 */ 408 if (!hv->tsc_ref.tsc_sequence) 409 return div_u64(get_kvmclock_ns(kvm), 100); 410 411 vcpu = kvm_get_vcpu(kvm, 0); 412 tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 413 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64) 414 + hv->tsc_ref.tsc_offset; 415 } 416 417 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, 418 bool vcpu_kick) 419 { 420 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); 421 422 set_bit(stimer->index, 423 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap); 424 kvm_make_request(KVM_REQ_HV_STIMER, vcpu); 425 if (vcpu_kick) 426 kvm_vcpu_kick(vcpu); 427 } 428 429 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer) 430 { 431 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); 432 433 trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id, 434 stimer->index); 435 436 hrtimer_cancel(&stimer->timer); 437 clear_bit(stimer->index, 438 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap); 439 stimer->msg_pending = false; 440 stimer->exp_time = 0; 441 } 442 443 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer) 444 { 445 struct kvm_vcpu_hv_stimer *stimer; 446 447 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer); 448 trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id, 449 stimer->index); 450 stimer_mark_pending(stimer, true); 451 452 return HRTIMER_NORESTART; 453 } 454 455 /* 456 * stimer_start() assumptions: 457 * a) stimer->count is not equal to 0 458 * b) stimer->config has HV_STIMER_ENABLE flag 459 */ 460 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) 461 { 462 u64 time_now; 463 ktime_t ktime_now; 464 465 time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm); 466 ktime_now = ktime_get(); 467 468 if (stimer->config.periodic) { 469 if (stimer->exp_time) { 470 if (time_now >= stimer->exp_time) { 471 u64 remainder; 472 473 div64_u64_rem(time_now - stimer->exp_time, 474 stimer->count, &remainder); 475 stimer->exp_time = 476 time_now + (stimer->count - remainder); 477 } 478 } else 479 stimer->exp_time = time_now + stimer->count; 480 481 trace_kvm_hv_stimer_start_periodic( 482 stimer_to_vcpu(stimer)->vcpu_id, 483 stimer->index, 484 time_now, stimer->exp_time); 485 486 hrtimer_start(&stimer->timer, 487 ktime_add_ns(ktime_now, 488 100 * (stimer->exp_time - time_now)), 489 HRTIMER_MODE_ABS); 490 return 0; 491 } 492 stimer->exp_time = stimer->count; 493 if (time_now >= stimer->count) { 494 /* 495 * Expire timer according to Hypervisor Top-Level Functional 496 * specification v4(15.3.1): 497 * "If a one shot is enabled and the specified count is in 498 * the past, it will expire immediately." 499 */ 500 stimer_mark_pending(stimer, false); 501 return 0; 502 } 503 504 trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id, 505 stimer->index, 506 time_now, stimer->count); 507 508 hrtimer_start(&stimer->timer, 509 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)), 510 HRTIMER_MODE_ABS); 511 return 0; 512 } 513 514 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, 515 bool host) 516 { 517 union hv_stimer_config new_config = {.as_uint64 = config}, 518 old_config = {.as_uint64 = stimer->config.as_uint64}; 519 520 trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id, 521 stimer->index, config, host); 522 523 stimer_cleanup(stimer); 524 if (old_config.enable && 525 !new_config.direct_mode && new_config.sintx == 0) 526 new_config.enable = 0; 527 stimer->config.as_uint64 = new_config.as_uint64; 528 529 if (stimer->config.enable) 530 stimer_mark_pending(stimer, false); 531 532 return 0; 533 } 534 535 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, 536 bool host) 537 { 538 trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id, 539 stimer->index, count, host); 540 541 stimer_cleanup(stimer); 542 stimer->count = count; 543 if (stimer->count == 0) 544 stimer->config.enable = 0; 545 else if (stimer->config.auto_enable) 546 stimer->config.enable = 1; 547 548 if (stimer->config.enable) 549 stimer_mark_pending(stimer, false); 550 551 return 0; 552 } 553 554 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) 555 { 556 *pconfig = stimer->config.as_uint64; 557 return 0; 558 } 559 560 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) 561 { 562 *pcount = stimer->count; 563 return 0; 564 } 565 566 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, 567 struct hv_message *src_msg, bool no_retry) 568 { 569 struct kvm_vcpu *vcpu = synic_to_vcpu(synic); 570 int msg_off = offsetof(struct hv_message_page, sint_message[sint]); 571 gfn_t msg_page_gfn; 572 struct hv_message_header hv_hdr; 573 int r; 574 575 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) 576 return -ENOENT; 577 578 msg_page_gfn = synic->msg_page >> PAGE_SHIFT; 579 580 /* 581 * Strictly following the spec-mandated ordering would assume setting 582 * .msg_pending before checking .message_type. However, this function 583 * is only called in vcpu context so the entire update is atomic from 584 * guest POV and thus the exact order here doesn't matter. 585 */ 586 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type, 587 msg_off + offsetof(struct hv_message, 588 header.message_type), 589 sizeof(hv_hdr.message_type)); 590 if (r < 0) 591 return r; 592 593 if (hv_hdr.message_type != HVMSG_NONE) { 594 if (no_retry) 595 return 0; 596 597 hv_hdr.message_flags.msg_pending = 1; 598 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, 599 &hv_hdr.message_flags, 600 msg_off + 601 offsetof(struct hv_message, 602 header.message_flags), 603 sizeof(hv_hdr.message_flags)); 604 if (r < 0) 605 return r; 606 return -EAGAIN; 607 } 608 609 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off, 610 sizeof(src_msg->header) + 611 src_msg->header.payload_size); 612 if (r < 0) 613 return r; 614 615 r = synic_set_irq(synic, sint); 616 if (r < 0) 617 return r; 618 if (r == 0) 619 return -EFAULT; 620 return 0; 621 } 622 623 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) 624 { 625 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); 626 struct hv_message *msg = &stimer->msg; 627 struct hv_timer_message_payload *payload = 628 (struct hv_timer_message_payload *)&msg->u.payload; 629 630 /* 631 * To avoid piling up periodic ticks, don't retry message 632 * delivery for them (within "lazy" lost ticks policy). 633 */ 634 bool no_retry = stimer->config.periodic; 635 636 payload->expiration_time = stimer->exp_time; 637 payload->delivery_time = get_time_ref_counter(vcpu->kvm); 638 return synic_deliver_msg(vcpu_to_synic(vcpu), 639 stimer->config.sintx, msg, 640 no_retry); 641 } 642 643 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer) 644 { 645 struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); 646 struct kvm_lapic_irq irq = { 647 .delivery_mode = APIC_DM_FIXED, 648 .vector = stimer->config.apic_vector 649 }; 650 651 return !kvm_apic_set_irq(vcpu, &irq, NULL); 652 } 653 654 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) 655 { 656 int r, direct = stimer->config.direct_mode; 657 658 stimer->msg_pending = true; 659 if (!direct) 660 r = stimer_send_msg(stimer); 661 else 662 r = stimer_notify_direct(stimer); 663 trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id, 664 stimer->index, direct, r); 665 if (!r) { 666 stimer->msg_pending = false; 667 if (!(stimer->config.periodic)) 668 stimer->config.enable = 0; 669 } 670 } 671 672 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) 673 { 674 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); 675 struct kvm_vcpu_hv_stimer *stimer; 676 u64 time_now, exp_time; 677 int i; 678 679 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 680 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { 681 stimer = &hv_vcpu->stimer[i]; 682 if (stimer->config.enable) { 683 exp_time = stimer->exp_time; 684 685 if (exp_time) { 686 time_now = 687 get_time_ref_counter(vcpu->kvm); 688 if (time_now >= exp_time) 689 stimer_expiration(stimer); 690 } 691 692 if ((stimer->config.enable) && 693 stimer->count) { 694 if (!stimer->msg_pending) 695 stimer_start(stimer); 696 } else 697 stimer_cleanup(stimer); 698 } 699 } 700 } 701 702 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu) 703 { 704 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); 705 int i; 706 707 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 708 stimer_cleanup(&hv_vcpu->stimer[i]); 709 } 710 711 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu) 712 { 713 if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) 714 return false; 715 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 716 } 717 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled); 718 719 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu, 720 struct hv_vp_assist_page *assist_page) 721 { 722 if (!kvm_hv_assist_page_enabled(vcpu)) 723 return false; 724 return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, 725 assist_page, sizeof(*assist_page)); 726 } 727 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page); 728 729 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer) 730 { 731 struct hv_message *msg = &stimer->msg; 732 struct hv_timer_message_payload *payload = 733 (struct hv_timer_message_payload *)&msg->u.payload; 734 735 memset(&msg->header, 0, sizeof(msg->header)); 736 msg->header.message_type = HVMSG_TIMER_EXPIRED; 737 msg->header.payload_size = sizeof(*payload); 738 739 payload->timer_index = stimer->index; 740 payload->expiration_time = 0; 741 payload->delivery_time = 0; 742 } 743 744 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index) 745 { 746 memset(stimer, 0, sizeof(*stimer)); 747 stimer->index = timer_index; 748 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 749 stimer->timer.function = stimer_timer_callback; 750 stimer_prepare_msg(stimer); 751 } 752 753 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu) 754 { 755 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); 756 int i; 757 758 synic_init(&hv_vcpu->synic); 759 760 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 761 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 762 stimer_init(&hv_vcpu->stimer[i], i); 763 } 764 765 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu) 766 { 767 struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); 768 769 hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu); 770 } 771 772 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages) 773 { 774 struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu); 775 776 /* 777 * Hyper-V SynIC auto EOI SINT's are 778 * not compatible with APICV, so deactivate APICV 779 */ 780 kvm_vcpu_deactivate_apicv(vcpu); 781 synic->active = true; 782 synic->dont_zero_synic_pages = dont_zero_synic_pages; 783 return 0; 784 } 785 786 static bool kvm_hv_msr_partition_wide(u32 msr) 787 { 788 bool r = false; 789 790 switch (msr) { 791 case HV_X64_MSR_GUEST_OS_ID: 792 case HV_X64_MSR_HYPERCALL: 793 case HV_X64_MSR_REFERENCE_TSC: 794 case HV_X64_MSR_TIME_REF_COUNT: 795 case HV_X64_MSR_CRASH_CTL: 796 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 797 case HV_X64_MSR_RESET: 798 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 799 case HV_X64_MSR_TSC_EMULATION_CONTROL: 800 case HV_X64_MSR_TSC_EMULATION_STATUS: 801 r = true; 802 break; 803 } 804 805 return r; 806 } 807 808 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu, 809 u32 index, u64 *pdata) 810 { 811 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; 812 813 if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param))) 814 return -EINVAL; 815 816 *pdata = hv->hv_crash_param[index]; 817 return 0; 818 } 819 820 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata) 821 { 822 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; 823 824 *pdata = hv->hv_crash_ctl; 825 return 0; 826 } 827 828 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host) 829 { 830 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; 831 832 if (host) 833 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY; 834 835 if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) { 836 837 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", 838 hv->hv_crash_param[0], 839 hv->hv_crash_param[1], 840 hv->hv_crash_param[2], 841 hv->hv_crash_param[3], 842 hv->hv_crash_param[4]); 843 844 /* Send notification about crash to user space */ 845 kvm_make_request(KVM_REQ_HV_CRASH, vcpu); 846 } 847 848 return 0; 849 } 850 851 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu, 852 u32 index, u64 data) 853 { 854 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; 855 856 if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param))) 857 return -EINVAL; 858 859 hv->hv_crash_param[index] = data; 860 return 0; 861 } 862 863 /* 864 * The kvmclock and Hyper-V TSC page use similar formulas, and converting 865 * between them is possible: 866 * 867 * kvmclock formula: 868 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32) 869 * + system_time 870 * 871 * Hyper-V formula: 872 * nsec/100 = ticks * scale / 2^64 + offset 873 * 874 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula. 875 * By dividing the kvmclock formula by 100 and equating what's left we get: 876 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 877 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100 878 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100 879 * 880 * Now expand the kvmclock formula and divide by 100: 881 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32) 882 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) 883 * + system_time 884 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 885 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100 886 * + system_time / 100 887 * 888 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64: 889 * nsec/100 = ticks * scale / 2^64 890 * - tsc_timestamp * scale / 2^64 891 * + system_time / 100 892 * 893 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out: 894 * offset = system_time / 100 - tsc_timestamp * scale / 2^64 895 * 896 * These two equivalencies are implemented in this function. 897 */ 898 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock, 899 HV_REFERENCE_TSC_PAGE *tsc_ref) 900 { 901 u64 max_mul; 902 903 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT)) 904 return false; 905 906 /* 907 * check if scale would overflow, if so we use the time ref counter 908 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64 909 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift) 910 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift) 911 */ 912 max_mul = 100ull << (32 - hv_clock->tsc_shift); 913 if (hv_clock->tsc_to_system_mul >= max_mul) 914 return false; 915 916 /* 917 * Otherwise compute the scale and offset according to the formulas 918 * derived above. 919 */ 920 tsc_ref->tsc_scale = 921 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift), 922 hv_clock->tsc_to_system_mul, 923 100); 924 925 tsc_ref->tsc_offset = hv_clock->system_time; 926 do_div(tsc_ref->tsc_offset, 100); 927 tsc_ref->tsc_offset -= 928 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64); 929 return true; 930 } 931 932 void kvm_hv_setup_tsc_page(struct kvm *kvm, 933 struct pvclock_vcpu_time_info *hv_clock) 934 { 935 struct kvm_hv *hv = &kvm->arch.hyperv; 936 u32 tsc_seq; 937 u64 gfn; 938 939 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence)); 940 BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0); 941 942 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 943 return; 944 945 mutex_lock(&kvm->arch.hyperv.hv_lock); 946 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 947 goto out_unlock; 948 949 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 950 /* 951 * Because the TSC parameters only vary when there is a 952 * change in the master clock, do not bother with caching. 953 */ 954 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn), 955 &tsc_seq, sizeof(tsc_seq)))) 956 goto out_unlock; 957 958 /* 959 * While we're computing and writing the parameters, force the 960 * guest to use the time reference count MSR. 961 */ 962 hv->tsc_ref.tsc_sequence = 0; 963 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), 964 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) 965 goto out_unlock; 966 967 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref)) 968 goto out_unlock; 969 970 /* Ensure sequence is zero before writing the rest of the struct. */ 971 smp_wmb(); 972 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) 973 goto out_unlock; 974 975 /* 976 * Now switch to the TSC page mechanism by writing the sequence. 977 */ 978 tsc_seq++; 979 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0) 980 tsc_seq = 1; 981 982 /* Write the struct entirely before the non-zero sequence. */ 983 smp_wmb(); 984 985 hv->tsc_ref.tsc_sequence = tsc_seq; 986 kvm_write_guest(kvm, gfn_to_gpa(gfn), 987 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)); 988 out_unlock: 989 mutex_unlock(&kvm->arch.hyperv.hv_lock); 990 } 991 992 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data, 993 bool host) 994 { 995 struct kvm *kvm = vcpu->kvm; 996 struct kvm_hv *hv = &kvm->arch.hyperv; 997 998 switch (msr) { 999 case HV_X64_MSR_GUEST_OS_ID: 1000 hv->hv_guest_os_id = data; 1001 /* setting guest os id to zero disables hypercall page */ 1002 if (!hv->hv_guest_os_id) 1003 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1004 break; 1005 case HV_X64_MSR_HYPERCALL: { 1006 u64 gfn; 1007 unsigned long addr; 1008 u8 instructions[4]; 1009 1010 /* if guest os id is not set hypercall should remain disabled */ 1011 if (!hv->hv_guest_os_id) 1012 break; 1013 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1014 hv->hv_hypercall = data; 1015 break; 1016 } 1017 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; 1018 addr = gfn_to_hva(kvm, gfn); 1019 if (kvm_is_error_hva(addr)) 1020 return 1; 1021 kvm_x86_ops->patch_hypercall(vcpu, instructions); 1022 ((unsigned char *)instructions)[3] = 0xc3; /* ret */ 1023 if (__copy_to_user((void __user *)addr, instructions, 4)) 1024 return 1; 1025 hv->hv_hypercall = data; 1026 mark_page_dirty(kvm, gfn); 1027 break; 1028 } 1029 case HV_X64_MSR_REFERENCE_TSC: 1030 hv->hv_tsc_page = data; 1031 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) 1032 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1033 break; 1034 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1035 return kvm_hv_msr_set_crash_data(vcpu, 1036 msr - HV_X64_MSR_CRASH_P0, 1037 data); 1038 case HV_X64_MSR_CRASH_CTL: 1039 return kvm_hv_msr_set_crash_ctl(vcpu, data, host); 1040 case HV_X64_MSR_RESET: 1041 if (data == 1) { 1042 vcpu_debug(vcpu, "hyper-v reset requested\n"); 1043 kvm_make_request(KVM_REQ_HV_RESET, vcpu); 1044 } 1045 break; 1046 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1047 hv->hv_reenlightenment_control = data; 1048 break; 1049 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1050 hv->hv_tsc_emulation_control = data; 1051 break; 1052 case HV_X64_MSR_TSC_EMULATION_STATUS: 1053 hv->hv_tsc_emulation_status = data; 1054 break; 1055 case HV_X64_MSR_TIME_REF_COUNT: 1056 /* read-only, but still ignore it if host-initiated */ 1057 if (!host) 1058 return 1; 1059 break; 1060 default: 1061 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n", 1062 msr, data); 1063 return 1; 1064 } 1065 return 0; 1066 } 1067 1068 /* Calculate cpu time spent by current task in 100ns units */ 1069 static u64 current_task_runtime_100ns(void) 1070 { 1071 u64 utime, stime; 1072 1073 task_cputime_adjusted(current, &utime, &stime); 1074 1075 return div_u64(utime + stime, 100); 1076 } 1077 1078 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 1079 { 1080 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv; 1081 1082 switch (msr) { 1083 case HV_X64_MSR_VP_INDEX: { 1084 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; 1085 int vcpu_idx = kvm_vcpu_get_idx(vcpu); 1086 u32 new_vp_index = (u32)data; 1087 1088 if (!host || new_vp_index >= KVM_MAX_VCPUS) 1089 return 1; 1090 1091 if (new_vp_index == hv_vcpu->vp_index) 1092 return 0; 1093 1094 /* 1095 * The VP index is initialized to vcpu_index by 1096 * kvm_hv_vcpu_postcreate so they initially match. Now the 1097 * VP index is changing, adjust num_mismatched_vp_indexes if 1098 * it now matches or no longer matches vcpu_idx. 1099 */ 1100 if (hv_vcpu->vp_index == vcpu_idx) 1101 atomic_inc(&hv->num_mismatched_vp_indexes); 1102 else if (new_vp_index == vcpu_idx) 1103 atomic_dec(&hv->num_mismatched_vp_indexes); 1104 1105 hv_vcpu->vp_index = new_vp_index; 1106 break; 1107 } 1108 case HV_X64_MSR_VP_ASSIST_PAGE: { 1109 u64 gfn; 1110 unsigned long addr; 1111 1112 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) { 1113 hv_vcpu->hv_vapic = data; 1114 if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0)) 1115 return 1; 1116 break; 1117 } 1118 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT; 1119 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn); 1120 if (kvm_is_error_hva(addr)) 1121 return 1; 1122 1123 /* 1124 * Clear apic_assist portion of f(struct hv_vp_assist_page 1125 * only, there can be valuable data in the rest which needs 1126 * to be preserved e.g. on migration. 1127 */ 1128 if (__clear_user((void __user *)addr, sizeof(u32))) 1129 return 1; 1130 hv_vcpu->hv_vapic = data; 1131 kvm_vcpu_mark_page_dirty(vcpu, gfn); 1132 if (kvm_lapic_enable_pv_eoi(vcpu, 1133 gfn_to_gpa(gfn) | KVM_MSR_ENABLED, 1134 sizeof(struct hv_vp_assist_page))) 1135 return 1; 1136 break; 1137 } 1138 case HV_X64_MSR_EOI: 1139 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1140 case HV_X64_MSR_ICR: 1141 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1142 case HV_X64_MSR_TPR: 1143 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1144 case HV_X64_MSR_VP_RUNTIME: 1145 if (!host) 1146 return 1; 1147 hv_vcpu->runtime_offset = data - current_task_runtime_100ns(); 1148 break; 1149 case HV_X64_MSR_SCONTROL: 1150 case HV_X64_MSR_SVERSION: 1151 case HV_X64_MSR_SIEFP: 1152 case HV_X64_MSR_SIMP: 1153 case HV_X64_MSR_EOM: 1154 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1155 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host); 1156 case HV_X64_MSR_STIMER0_CONFIG: 1157 case HV_X64_MSR_STIMER1_CONFIG: 1158 case HV_X64_MSR_STIMER2_CONFIG: 1159 case HV_X64_MSR_STIMER3_CONFIG: { 1160 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; 1161 1162 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index), 1163 data, host); 1164 } 1165 case HV_X64_MSR_STIMER0_COUNT: 1166 case HV_X64_MSR_STIMER1_COUNT: 1167 case HV_X64_MSR_STIMER2_COUNT: 1168 case HV_X64_MSR_STIMER3_COUNT: { 1169 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; 1170 1171 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index), 1172 data, host); 1173 } 1174 case HV_X64_MSR_TSC_FREQUENCY: 1175 case HV_X64_MSR_APIC_FREQUENCY: 1176 /* read-only, but still ignore it if host-initiated */ 1177 if (!host) 1178 return 1; 1179 break; 1180 default: 1181 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n", 1182 msr, data); 1183 return 1; 1184 } 1185 1186 return 0; 1187 } 1188 1189 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 1190 { 1191 u64 data = 0; 1192 struct kvm *kvm = vcpu->kvm; 1193 struct kvm_hv *hv = &kvm->arch.hyperv; 1194 1195 switch (msr) { 1196 case HV_X64_MSR_GUEST_OS_ID: 1197 data = hv->hv_guest_os_id; 1198 break; 1199 case HV_X64_MSR_HYPERCALL: 1200 data = hv->hv_hypercall; 1201 break; 1202 case HV_X64_MSR_TIME_REF_COUNT: 1203 data = get_time_ref_counter(kvm); 1204 break; 1205 case HV_X64_MSR_REFERENCE_TSC: 1206 data = hv->hv_tsc_page; 1207 break; 1208 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1209 return kvm_hv_msr_get_crash_data(vcpu, 1210 msr - HV_X64_MSR_CRASH_P0, 1211 pdata); 1212 case HV_X64_MSR_CRASH_CTL: 1213 return kvm_hv_msr_get_crash_ctl(vcpu, pdata); 1214 case HV_X64_MSR_RESET: 1215 data = 0; 1216 break; 1217 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1218 data = hv->hv_reenlightenment_control; 1219 break; 1220 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1221 data = hv->hv_tsc_emulation_control; 1222 break; 1223 case HV_X64_MSR_TSC_EMULATION_STATUS: 1224 data = hv->hv_tsc_emulation_status; 1225 break; 1226 default: 1227 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1228 return 1; 1229 } 1230 1231 *pdata = data; 1232 return 0; 1233 } 1234 1235 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, 1236 bool host) 1237 { 1238 u64 data = 0; 1239 struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv; 1240 1241 switch (msr) { 1242 case HV_X64_MSR_VP_INDEX: 1243 data = hv_vcpu->vp_index; 1244 break; 1245 case HV_X64_MSR_EOI: 1246 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1247 case HV_X64_MSR_ICR: 1248 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1249 case HV_X64_MSR_TPR: 1250 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1251 case HV_X64_MSR_VP_ASSIST_PAGE: 1252 data = hv_vcpu->hv_vapic; 1253 break; 1254 case HV_X64_MSR_VP_RUNTIME: 1255 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset; 1256 break; 1257 case HV_X64_MSR_SCONTROL: 1258 case HV_X64_MSR_SVERSION: 1259 case HV_X64_MSR_SIEFP: 1260 case HV_X64_MSR_SIMP: 1261 case HV_X64_MSR_EOM: 1262 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1263 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host); 1264 case HV_X64_MSR_STIMER0_CONFIG: 1265 case HV_X64_MSR_STIMER1_CONFIG: 1266 case HV_X64_MSR_STIMER2_CONFIG: 1267 case HV_X64_MSR_STIMER3_CONFIG: { 1268 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; 1269 1270 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index), 1271 pdata); 1272 } 1273 case HV_X64_MSR_STIMER0_COUNT: 1274 case HV_X64_MSR_STIMER1_COUNT: 1275 case HV_X64_MSR_STIMER2_COUNT: 1276 case HV_X64_MSR_STIMER3_COUNT: { 1277 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; 1278 1279 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index), 1280 pdata); 1281 } 1282 case HV_X64_MSR_TSC_FREQUENCY: 1283 data = (u64)vcpu->arch.virtual_tsc_khz * 1000; 1284 break; 1285 case HV_X64_MSR_APIC_FREQUENCY: 1286 data = APIC_BUS_FREQUENCY; 1287 break; 1288 default: 1289 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1290 return 1; 1291 } 1292 *pdata = data; 1293 return 0; 1294 } 1295 1296 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 1297 { 1298 if (kvm_hv_msr_partition_wide(msr)) { 1299 int r; 1300 1301 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock); 1302 r = kvm_hv_set_msr_pw(vcpu, msr, data, host); 1303 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock); 1304 return r; 1305 } else 1306 return kvm_hv_set_msr(vcpu, msr, data, host); 1307 } 1308 1309 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 1310 { 1311 if (kvm_hv_msr_partition_wide(msr)) { 1312 int r; 1313 1314 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock); 1315 r = kvm_hv_get_msr_pw(vcpu, msr, pdata); 1316 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock); 1317 return r; 1318 } else 1319 return kvm_hv_get_msr(vcpu, msr, pdata, host); 1320 } 1321 1322 static __always_inline unsigned long *sparse_set_to_vcpu_mask( 1323 struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask, 1324 u64 *vp_bitmap, unsigned long *vcpu_bitmap) 1325 { 1326 struct kvm_hv *hv = &kvm->arch.hyperv; 1327 struct kvm_vcpu *vcpu; 1328 int i, bank, sbank = 0; 1329 1330 memset(vp_bitmap, 0, 1331 KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap)); 1332 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask, 1333 KVM_HV_MAX_SPARSE_VCPU_SET_BITS) 1334 vp_bitmap[bank] = sparse_banks[sbank++]; 1335 1336 if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) { 1337 /* for all vcpus vp_index == vcpu_idx */ 1338 return (unsigned long *)vp_bitmap; 1339 } 1340 1341 bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS); 1342 kvm_for_each_vcpu(i, vcpu, kvm) { 1343 if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index, 1344 (unsigned long *)vp_bitmap)) 1345 __set_bit(i, vcpu_bitmap); 1346 } 1347 return vcpu_bitmap; 1348 } 1349 1350 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa, 1351 u16 rep_cnt, bool ex) 1352 { 1353 struct kvm *kvm = current_vcpu->kvm; 1354 struct kvm_vcpu_hv *hv_vcpu = ¤t_vcpu->arch.hyperv; 1355 struct hv_tlb_flush_ex flush_ex; 1356 struct hv_tlb_flush flush; 1357 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; 1358 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS); 1359 unsigned long *vcpu_mask; 1360 u64 valid_bank_mask; 1361 u64 sparse_banks[64]; 1362 int sparse_banks_len; 1363 bool all_cpus; 1364 1365 if (!ex) { 1366 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush)))) 1367 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1368 1369 trace_kvm_hv_flush_tlb(flush.processor_mask, 1370 flush.address_space, flush.flags); 1371 1372 valid_bank_mask = BIT_ULL(0); 1373 sparse_banks[0] = flush.processor_mask; 1374 1375 /* 1376 * Work around possible WS2012 bug: it sends hypercalls 1377 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear, 1378 * while also expecting us to flush something and crashing if 1379 * we don't. Let's treat processor_mask == 0 same as 1380 * HV_FLUSH_ALL_PROCESSORS. 1381 */ 1382 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) || 1383 flush.processor_mask == 0; 1384 } else { 1385 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex, 1386 sizeof(flush_ex)))) 1387 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1388 1389 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, 1390 flush_ex.hv_vp_set.format, 1391 flush_ex.address_space, 1392 flush_ex.flags); 1393 1394 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask; 1395 all_cpus = flush_ex.hv_vp_set.format != 1396 HV_GENERIC_SET_SPARSE_4K; 1397 1398 sparse_banks_len = 1399 bitmap_weight((unsigned long *)&valid_bank_mask, 64) * 1400 sizeof(sparse_banks[0]); 1401 1402 if (!sparse_banks_len && !all_cpus) 1403 goto ret_success; 1404 1405 if (!all_cpus && 1406 kvm_read_guest(kvm, 1407 ingpa + offsetof(struct hv_tlb_flush_ex, 1408 hv_vp_set.bank_contents), 1409 sparse_banks, 1410 sparse_banks_len)) 1411 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1412 } 1413 1414 cpumask_clear(&hv_vcpu->tlb_flush); 1415 1416 vcpu_mask = all_cpus ? NULL : 1417 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, 1418 vp_bitmap, vcpu_bitmap); 1419 1420 /* 1421 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't 1422 * analyze it here, flush TLB regardless of the specified address space. 1423 */ 1424 kvm_make_vcpus_request_mask(kvm, 1425 KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP, 1426 vcpu_mask, &hv_vcpu->tlb_flush); 1427 1428 ret_success: 1429 /* We always do full TLB flush, set rep_done = rep_cnt. */ 1430 return (u64)HV_STATUS_SUCCESS | 1431 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET); 1432 } 1433 1434 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector, 1435 unsigned long *vcpu_bitmap) 1436 { 1437 struct kvm_lapic_irq irq = { 1438 .delivery_mode = APIC_DM_FIXED, 1439 .vector = vector 1440 }; 1441 struct kvm_vcpu *vcpu; 1442 int i; 1443 1444 kvm_for_each_vcpu(i, vcpu, kvm) { 1445 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 1446 continue; 1447 1448 /* We fail only when APIC is disabled */ 1449 kvm_apic_set_irq(vcpu, &irq, NULL); 1450 } 1451 } 1452 1453 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa, 1454 bool ex, bool fast) 1455 { 1456 struct kvm *kvm = current_vcpu->kvm; 1457 struct hv_send_ipi_ex send_ipi_ex; 1458 struct hv_send_ipi send_ipi; 1459 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; 1460 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS); 1461 unsigned long *vcpu_mask; 1462 unsigned long valid_bank_mask; 1463 u64 sparse_banks[64]; 1464 int sparse_banks_len; 1465 u32 vector; 1466 bool all_cpus; 1467 1468 if (!ex) { 1469 if (!fast) { 1470 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi, 1471 sizeof(send_ipi)))) 1472 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1473 sparse_banks[0] = send_ipi.cpu_mask; 1474 vector = send_ipi.vector; 1475 } else { 1476 /* 'reserved' part of hv_send_ipi should be 0 */ 1477 if (unlikely(ingpa >> 32 != 0)) 1478 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1479 sparse_banks[0] = outgpa; 1480 vector = (u32)ingpa; 1481 } 1482 all_cpus = false; 1483 valid_bank_mask = BIT_ULL(0); 1484 1485 trace_kvm_hv_send_ipi(vector, sparse_banks[0]); 1486 } else { 1487 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex, 1488 sizeof(send_ipi_ex)))) 1489 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1490 1491 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector, 1492 send_ipi_ex.vp_set.format, 1493 send_ipi_ex.vp_set.valid_bank_mask); 1494 1495 vector = send_ipi_ex.vector; 1496 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask; 1497 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) * 1498 sizeof(sparse_banks[0]); 1499 1500 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL; 1501 1502 if (!sparse_banks_len) 1503 goto ret_success; 1504 1505 if (!all_cpus && 1506 kvm_read_guest(kvm, 1507 ingpa + offsetof(struct hv_send_ipi_ex, 1508 vp_set.bank_contents), 1509 sparse_banks, 1510 sparse_banks_len)) 1511 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1512 } 1513 1514 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR)) 1515 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1516 1517 vcpu_mask = all_cpus ? NULL : 1518 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, 1519 vp_bitmap, vcpu_bitmap); 1520 1521 kvm_send_ipi_to_many(kvm, vector, vcpu_mask); 1522 1523 ret_success: 1524 return HV_STATUS_SUCCESS; 1525 } 1526 1527 bool kvm_hv_hypercall_enabled(struct kvm *kvm) 1528 { 1529 return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE; 1530 } 1531 1532 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 1533 { 1534 bool longmode; 1535 1536 longmode = is_64_bit_mode(vcpu); 1537 if (longmode) 1538 kvm_register_write(vcpu, VCPU_REGS_RAX, result); 1539 else { 1540 kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32); 1541 kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff); 1542 } 1543 } 1544 1545 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result) 1546 { 1547 kvm_hv_hypercall_set_result(vcpu, result); 1548 ++vcpu->stat.hypercalls; 1549 return kvm_skip_emulated_instruction(vcpu); 1550 } 1551 1552 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 1553 { 1554 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result); 1555 } 1556 1557 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param) 1558 { 1559 struct eventfd_ctx *eventfd; 1560 1561 if (unlikely(!fast)) { 1562 int ret; 1563 gpa_t gpa = param; 1564 1565 if ((gpa & (__alignof__(param) - 1)) || 1566 offset_in_page(gpa) + sizeof(param) > PAGE_SIZE) 1567 return HV_STATUS_INVALID_ALIGNMENT; 1568 1569 ret = kvm_vcpu_read_guest(vcpu, gpa, ¶m, sizeof(param)); 1570 if (ret < 0) 1571 return HV_STATUS_INVALID_ALIGNMENT; 1572 } 1573 1574 /* 1575 * Per spec, bits 32-47 contain the extra "flag number". However, we 1576 * have no use for it, and in all known usecases it is zero, so just 1577 * report lookup failure if it isn't. 1578 */ 1579 if (param & 0xffff00000000ULL) 1580 return HV_STATUS_INVALID_PORT_ID; 1581 /* remaining bits are reserved-zero */ 1582 if (param & ~KVM_HYPERV_CONN_ID_MASK) 1583 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1584 1585 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */ 1586 rcu_read_lock(); 1587 eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param); 1588 rcu_read_unlock(); 1589 if (!eventfd) 1590 return HV_STATUS_INVALID_PORT_ID; 1591 1592 eventfd_signal(eventfd, 1); 1593 return HV_STATUS_SUCCESS; 1594 } 1595 1596 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 1597 { 1598 u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS; 1599 uint16_t code, rep_idx, rep_cnt; 1600 bool fast, longmode, rep; 1601 1602 /* 1603 * hypercall generates UD from non zero cpl and real mode 1604 * per HYPER-V spec 1605 */ 1606 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { 1607 kvm_queue_exception(vcpu, UD_VECTOR); 1608 return 1; 1609 } 1610 1611 longmode = is_64_bit_mode(vcpu); 1612 1613 if (!longmode) { 1614 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | 1615 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); 1616 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | 1617 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); 1618 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | 1619 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); 1620 } 1621 #ifdef CONFIG_X86_64 1622 else { 1623 param = kvm_register_read(vcpu, VCPU_REGS_RCX); 1624 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); 1625 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); 1626 } 1627 #endif 1628 1629 code = param & 0xffff; 1630 fast = !!(param & HV_HYPERCALL_FAST_BIT); 1631 rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff; 1632 rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff; 1633 rep = !!(rep_cnt || rep_idx); 1634 1635 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); 1636 1637 switch (code) { 1638 case HVCALL_NOTIFY_LONG_SPIN_WAIT: 1639 if (unlikely(rep)) { 1640 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1641 break; 1642 } 1643 kvm_vcpu_on_spin(vcpu, true); 1644 break; 1645 case HVCALL_SIGNAL_EVENT: 1646 if (unlikely(rep)) { 1647 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1648 break; 1649 } 1650 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa); 1651 if (ret != HV_STATUS_INVALID_PORT_ID) 1652 break; 1653 /* fall through - maybe userspace knows this conn_id. */ 1654 case HVCALL_POST_MESSAGE: 1655 /* don't bother userspace if it has no way to handle it */ 1656 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) { 1657 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1658 break; 1659 } 1660 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 1661 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; 1662 vcpu->run->hyperv.u.hcall.input = param; 1663 vcpu->run->hyperv.u.hcall.params[0] = ingpa; 1664 vcpu->run->hyperv.u.hcall.params[1] = outgpa; 1665 vcpu->arch.complete_userspace_io = 1666 kvm_hv_hypercall_complete_userspace; 1667 return 0; 1668 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 1669 if (unlikely(fast || !rep_cnt || rep_idx)) { 1670 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1671 break; 1672 } 1673 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false); 1674 break; 1675 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 1676 if (unlikely(fast || rep)) { 1677 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1678 break; 1679 } 1680 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false); 1681 break; 1682 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 1683 if (unlikely(fast || !rep_cnt || rep_idx)) { 1684 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1685 break; 1686 } 1687 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true); 1688 break; 1689 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 1690 if (unlikely(fast || rep)) { 1691 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1692 break; 1693 } 1694 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true); 1695 break; 1696 case HVCALL_SEND_IPI: 1697 if (unlikely(rep)) { 1698 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1699 break; 1700 } 1701 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast); 1702 break; 1703 case HVCALL_SEND_IPI_EX: 1704 if (unlikely(fast || rep)) { 1705 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 1706 break; 1707 } 1708 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false); 1709 break; 1710 default: 1711 ret = HV_STATUS_INVALID_HYPERCALL_CODE; 1712 break; 1713 } 1714 1715 return kvm_hv_hypercall_complete(vcpu, ret); 1716 } 1717 1718 void kvm_hv_init_vm(struct kvm *kvm) 1719 { 1720 mutex_init(&kvm->arch.hyperv.hv_lock); 1721 idr_init(&kvm->arch.hyperv.conn_to_evt); 1722 } 1723 1724 void kvm_hv_destroy_vm(struct kvm *kvm) 1725 { 1726 struct eventfd_ctx *eventfd; 1727 int i; 1728 1729 idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i) 1730 eventfd_ctx_put(eventfd); 1731 idr_destroy(&kvm->arch.hyperv.conn_to_evt); 1732 } 1733 1734 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd) 1735 { 1736 struct kvm_hv *hv = &kvm->arch.hyperv; 1737 struct eventfd_ctx *eventfd; 1738 int ret; 1739 1740 eventfd = eventfd_ctx_fdget(fd); 1741 if (IS_ERR(eventfd)) 1742 return PTR_ERR(eventfd); 1743 1744 mutex_lock(&hv->hv_lock); 1745 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1, 1746 GFP_KERNEL_ACCOUNT); 1747 mutex_unlock(&hv->hv_lock); 1748 1749 if (ret >= 0) 1750 return 0; 1751 1752 if (ret == -ENOSPC) 1753 ret = -EEXIST; 1754 eventfd_ctx_put(eventfd); 1755 return ret; 1756 } 1757 1758 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id) 1759 { 1760 struct kvm_hv *hv = &kvm->arch.hyperv; 1761 struct eventfd_ctx *eventfd; 1762 1763 mutex_lock(&hv->hv_lock); 1764 eventfd = idr_remove(&hv->conn_to_evt, conn_id); 1765 mutex_unlock(&hv->hv_lock); 1766 1767 if (!eventfd) 1768 return -ENOENT; 1769 1770 synchronize_srcu(&kvm->srcu); 1771 eventfd_ctx_put(eventfd); 1772 return 0; 1773 } 1774 1775 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) 1776 { 1777 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) || 1778 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK)) 1779 return -EINVAL; 1780 1781 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN) 1782 return kvm_hv_eventfd_deassign(kvm, args->conn_id); 1783 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); 1784 } 1785 1786 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, 1787 struct kvm_cpuid_entry2 __user *entries) 1788 { 1789 uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu); 1790 struct kvm_cpuid_entry2 cpuid_entries[] = { 1791 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS }, 1792 { .function = HYPERV_CPUID_INTERFACE }, 1793 { .function = HYPERV_CPUID_VERSION }, 1794 { .function = HYPERV_CPUID_FEATURES }, 1795 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO }, 1796 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS }, 1797 { .function = HYPERV_CPUID_NESTED_FEATURES }, 1798 }; 1799 int i, nent = ARRAY_SIZE(cpuid_entries); 1800 1801 /* Skip NESTED_FEATURES if eVMCS is not supported */ 1802 if (!evmcs_ver) 1803 --nent; 1804 1805 if (cpuid->nent < nent) 1806 return -E2BIG; 1807 1808 if (cpuid->nent > nent) 1809 cpuid->nent = nent; 1810 1811 for (i = 0; i < nent; i++) { 1812 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i]; 1813 u32 signature[3]; 1814 1815 switch (ent->function) { 1816 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS: 1817 memcpy(signature, "Linux KVM Hv", 12); 1818 1819 ent->eax = HYPERV_CPUID_NESTED_FEATURES; 1820 ent->ebx = signature[0]; 1821 ent->ecx = signature[1]; 1822 ent->edx = signature[2]; 1823 break; 1824 1825 case HYPERV_CPUID_INTERFACE: 1826 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); 1827 ent->eax = signature[0]; 1828 break; 1829 1830 case HYPERV_CPUID_VERSION: 1831 /* 1832 * We implement some Hyper-V 2016 functions so let's use 1833 * this version. 1834 */ 1835 ent->eax = 0x00003839; 1836 ent->ebx = 0x000A0000; 1837 break; 1838 1839 case HYPERV_CPUID_FEATURES: 1840 ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; 1841 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE; 1842 ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE; 1843 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE; 1844 ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; 1845 ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; 1846 ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE; 1847 ent->eax |= HV_X64_MSR_RESET_AVAILABLE; 1848 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE; 1849 ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS; 1850 ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT; 1851 1852 ent->ebx |= HV_X64_POST_MESSAGES; 1853 ent->ebx |= HV_X64_SIGNAL_EVENTS; 1854 1855 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE; 1856 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; 1857 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE; 1858 1859 break; 1860 1861 case HYPERV_CPUID_ENLIGHTMENT_INFO: 1862 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; 1863 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; 1864 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; 1865 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED; 1866 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED; 1867 if (evmcs_ver) 1868 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 1869 1870 /* 1871 * Default number of spinlock retry attempts, matches 1872 * HyperV 2016. 1873 */ 1874 ent->ebx = 0x00000FFF; 1875 1876 break; 1877 1878 case HYPERV_CPUID_IMPLEMENT_LIMITS: 1879 /* Maximum number of virtual processors */ 1880 ent->eax = KVM_MAX_VCPUS; 1881 /* 1882 * Maximum number of logical processors, matches 1883 * HyperV 2016. 1884 */ 1885 ent->ebx = 64; 1886 1887 break; 1888 1889 case HYPERV_CPUID_NESTED_FEATURES: 1890 ent->eax = evmcs_ver; 1891 1892 break; 1893 1894 default: 1895 break; 1896 } 1897 } 1898 1899 if (copy_to_user(entries, cpuid_entries, 1900 nent * sizeof(struct kvm_cpuid_entry2))) 1901 return -EFAULT; 1902 1903 return 0; 1904 } 1905