1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * KVM Microsoft Hyper-V emulation 4 * 5 * derived from arch/x86/kvm/x86.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com> 12 * 13 * Authors: 14 * Avi Kivity <avi@qumranet.com> 15 * Yaniv Kamay <yaniv@qumranet.com> 16 * Amit Shah <amit.shah@qumranet.com> 17 * Ben-Ami Yassour <benami@il.ibm.com> 18 * Andrey Smetanin <asmetanin@virtuozzo.com> 19 */ 20 21 #include "x86.h" 22 #include "lapic.h" 23 #include "ioapic.h" 24 #include "cpuid.h" 25 #include "hyperv.h" 26 #include "xen.h" 27 28 #include <linux/cpu.h> 29 #include <linux/kvm_host.h> 30 #include <linux/highmem.h> 31 #include <linux/sched/cputime.h> 32 #include <linux/eventfd.h> 33 34 #include <asm/apicdef.h> 35 #include <trace/events/kvm.h> 36 37 #include "trace.h" 38 #include "irq.h" 39 #include "fpu.h" 40 41 /* "Hv#1" signature */ 42 #define HYPERV_CPUID_SIGNATURE_EAX 0x31237648 43 44 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64) 45 46 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, 47 bool vcpu_kick); 48 49 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) 50 { 51 return atomic64_read(&synic->sint[sint]); 52 } 53 54 static inline int synic_get_sint_vector(u64 sint_value) 55 { 56 if (sint_value & HV_SYNIC_SINT_MASKED) 57 return -1; 58 return sint_value & HV_SYNIC_SINT_VECTOR_MASK; 59 } 60 61 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic, 62 int vector) 63 { 64 int i; 65 66 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 67 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) 68 return true; 69 } 70 return false; 71 } 72 73 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic, 74 int vector) 75 { 76 int i; 77 u64 sint_value; 78 79 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 80 sint_value = synic_read_sint(synic, i); 81 if (synic_get_sint_vector(sint_value) == vector && 82 sint_value & HV_SYNIC_SINT_AUTO_EOI) 83 return true; 84 } 85 return false; 86 } 87 88 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic, 89 int vector) 90 { 91 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 92 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 93 int auto_eoi_old, auto_eoi_new; 94 95 if (vector < HV_SYNIC_FIRST_VALID_VECTOR) 96 return; 97 98 if (synic_has_vector_connected(synic, vector)) 99 __set_bit(vector, synic->vec_bitmap); 100 else 101 __clear_bit(vector, synic->vec_bitmap); 102 103 auto_eoi_old = bitmap_weight(synic->auto_eoi_bitmap, 256); 104 105 if (synic_has_vector_auto_eoi(synic, vector)) 106 __set_bit(vector, synic->auto_eoi_bitmap); 107 else 108 __clear_bit(vector, synic->auto_eoi_bitmap); 109 110 auto_eoi_new = bitmap_weight(synic->auto_eoi_bitmap, 256); 111 112 if (!!auto_eoi_old == !!auto_eoi_new) 113 return; 114 115 mutex_lock(&vcpu->kvm->arch.apicv_update_lock); 116 117 if (auto_eoi_new) 118 hv->synic_auto_eoi_used++; 119 else 120 hv->synic_auto_eoi_used--; 121 122 __kvm_request_apicv_update(vcpu->kvm, 123 !hv->synic_auto_eoi_used, 124 APICV_INHIBIT_REASON_HYPERV); 125 126 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock); 127 } 128 129 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint, 130 u64 data, bool host) 131 { 132 int vector, old_vector; 133 bool masked; 134 135 vector = data & HV_SYNIC_SINT_VECTOR_MASK; 136 masked = data & HV_SYNIC_SINT_MASKED; 137 138 /* 139 * Valid vectors are 16-255, however, nested Hyper-V attempts to write 140 * default '0x10000' value on boot and this should not #GP. We need to 141 * allow zero-initing the register from host as well. 142 */ 143 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked) 144 return 1; 145 /* 146 * Guest may configure multiple SINTs to use the same vector, so 147 * we maintain a bitmap of vectors handled by synic, and a 148 * bitmap of vectors with auto-eoi behavior. The bitmaps are 149 * updated here, and atomically queried on fast paths. 150 */ 151 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK; 152 153 atomic64_set(&synic->sint[sint], data); 154 155 synic_update_vector(synic, old_vector); 156 157 synic_update_vector(synic, vector); 158 159 /* Load SynIC vectors into EOI exit bitmap */ 160 kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic)); 161 return 0; 162 } 163 164 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx) 165 { 166 struct kvm_vcpu *vcpu = NULL; 167 int i; 168 169 if (vpidx >= KVM_MAX_VCPUS) 170 return NULL; 171 172 vcpu = kvm_get_vcpu(kvm, vpidx); 173 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx) 174 return vcpu; 175 kvm_for_each_vcpu(i, vcpu, kvm) 176 if (kvm_hv_get_vpindex(vcpu) == vpidx) 177 return vcpu; 178 return NULL; 179 } 180 181 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) 182 { 183 struct kvm_vcpu *vcpu; 184 struct kvm_vcpu_hv_synic *synic; 185 186 vcpu = get_vcpu_by_vpidx(kvm, vpidx); 187 if (!vcpu || !to_hv_vcpu(vcpu)) 188 return NULL; 189 synic = to_hv_synic(vcpu); 190 return (synic->active) ? synic : NULL; 191 } 192 193 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) 194 { 195 struct kvm *kvm = vcpu->kvm; 196 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 197 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 198 struct kvm_vcpu_hv_stimer *stimer; 199 int gsi, idx; 200 201 trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); 202 203 /* Try to deliver pending Hyper-V SynIC timers messages */ 204 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { 205 stimer = &hv_vcpu->stimer[idx]; 206 if (stimer->msg_pending && stimer->config.enable && 207 !stimer->config.direct_mode && 208 stimer->config.sintx == sint) 209 stimer_mark_pending(stimer, false); 210 } 211 212 idx = srcu_read_lock(&kvm->irq_srcu); 213 gsi = atomic_read(&synic->sint_to_gsi[sint]); 214 if (gsi != -1) 215 kvm_notify_acked_gsi(kvm, gsi); 216 srcu_read_unlock(&kvm->irq_srcu, idx); 217 } 218 219 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr) 220 { 221 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 222 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 223 224 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC; 225 hv_vcpu->exit.u.synic.msr = msr; 226 hv_vcpu->exit.u.synic.control = synic->control; 227 hv_vcpu->exit.u.synic.evt_page = synic->evt_page; 228 hv_vcpu->exit.u.synic.msg_page = synic->msg_page; 229 230 kvm_make_request(KVM_REQ_HV_EXIT, vcpu); 231 } 232 233 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic, 234 u32 msr, u64 data, bool host) 235 { 236 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 237 int ret; 238 239 if (!synic->active && !host) 240 return 1; 241 242 trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host); 243 244 ret = 0; 245 switch (msr) { 246 case HV_X64_MSR_SCONTROL: 247 synic->control = data; 248 if (!host) 249 synic_exit(synic, msr); 250 break; 251 case HV_X64_MSR_SVERSION: 252 if (!host) { 253 ret = 1; 254 break; 255 } 256 synic->version = data; 257 break; 258 case HV_X64_MSR_SIEFP: 259 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host && 260 !synic->dont_zero_synic_pages) 261 if (kvm_clear_guest(vcpu->kvm, 262 data & PAGE_MASK, PAGE_SIZE)) { 263 ret = 1; 264 break; 265 } 266 synic->evt_page = data; 267 if (!host) 268 synic_exit(synic, msr); 269 break; 270 case HV_X64_MSR_SIMP: 271 if ((data & HV_SYNIC_SIMP_ENABLE) && !host && 272 !synic->dont_zero_synic_pages) 273 if (kvm_clear_guest(vcpu->kvm, 274 data & PAGE_MASK, PAGE_SIZE)) { 275 ret = 1; 276 break; 277 } 278 synic->msg_page = data; 279 if (!host) 280 synic_exit(synic, msr); 281 break; 282 case HV_X64_MSR_EOM: { 283 int i; 284 285 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) 286 kvm_hv_notify_acked_sint(vcpu, i); 287 break; 288 } 289 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 290 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host); 291 break; 292 default: 293 ret = 1; 294 break; 295 } 296 return ret; 297 } 298 299 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu) 300 { 301 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 302 303 return hv_vcpu->cpuid_cache.syndbg_cap_eax & 304 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 305 } 306 307 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu) 308 { 309 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 310 311 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL) 312 hv->hv_syndbg.control.status = 313 vcpu->run->hyperv.u.syndbg.status; 314 return 1; 315 } 316 317 static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr) 318 { 319 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 320 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 321 322 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG; 323 hv_vcpu->exit.u.syndbg.msr = msr; 324 hv_vcpu->exit.u.syndbg.control = syndbg->control.control; 325 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page; 326 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page; 327 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page; 328 vcpu->arch.complete_userspace_io = 329 kvm_hv_syndbg_complete_userspace; 330 331 kvm_make_request(KVM_REQ_HV_EXIT, vcpu); 332 } 333 334 static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 335 { 336 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 337 338 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) 339 return 1; 340 341 trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id, 342 to_hv_vcpu(vcpu)->vp_index, msr, data); 343 switch (msr) { 344 case HV_X64_MSR_SYNDBG_CONTROL: 345 syndbg->control.control = data; 346 if (!host) 347 syndbg_exit(vcpu, msr); 348 break; 349 case HV_X64_MSR_SYNDBG_STATUS: 350 syndbg->control.status = data; 351 break; 352 case HV_X64_MSR_SYNDBG_SEND_BUFFER: 353 syndbg->control.send_page = data; 354 break; 355 case HV_X64_MSR_SYNDBG_RECV_BUFFER: 356 syndbg->control.recv_page = data; 357 break; 358 case HV_X64_MSR_SYNDBG_PENDING_BUFFER: 359 syndbg->control.pending_page = data; 360 if (!host) 361 syndbg_exit(vcpu, msr); 362 break; 363 case HV_X64_MSR_SYNDBG_OPTIONS: 364 syndbg->options = data; 365 break; 366 default: 367 break; 368 } 369 370 return 0; 371 } 372 373 static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 374 { 375 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 376 377 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host) 378 return 1; 379 380 switch (msr) { 381 case HV_X64_MSR_SYNDBG_CONTROL: 382 *pdata = syndbg->control.control; 383 break; 384 case HV_X64_MSR_SYNDBG_STATUS: 385 *pdata = syndbg->control.status; 386 break; 387 case HV_X64_MSR_SYNDBG_SEND_BUFFER: 388 *pdata = syndbg->control.send_page; 389 break; 390 case HV_X64_MSR_SYNDBG_RECV_BUFFER: 391 *pdata = syndbg->control.recv_page; 392 break; 393 case HV_X64_MSR_SYNDBG_PENDING_BUFFER: 394 *pdata = syndbg->control.pending_page; 395 break; 396 case HV_X64_MSR_SYNDBG_OPTIONS: 397 *pdata = syndbg->options; 398 break; 399 default: 400 break; 401 } 402 403 trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata); 404 405 return 0; 406 } 407 408 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata, 409 bool host) 410 { 411 int ret; 412 413 if (!synic->active && !host) 414 return 1; 415 416 ret = 0; 417 switch (msr) { 418 case HV_X64_MSR_SCONTROL: 419 *pdata = synic->control; 420 break; 421 case HV_X64_MSR_SVERSION: 422 *pdata = synic->version; 423 break; 424 case HV_X64_MSR_SIEFP: 425 *pdata = synic->evt_page; 426 break; 427 case HV_X64_MSR_SIMP: 428 *pdata = synic->msg_page; 429 break; 430 case HV_X64_MSR_EOM: 431 *pdata = 0; 432 break; 433 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 434 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]); 435 break; 436 default: 437 ret = 1; 438 break; 439 } 440 return ret; 441 } 442 443 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint) 444 { 445 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 446 struct kvm_lapic_irq irq; 447 int ret, vector; 448 449 if (sint >= ARRAY_SIZE(synic->sint)) 450 return -EINVAL; 451 452 vector = synic_get_sint_vector(synic_read_sint(synic, sint)); 453 if (vector < 0) 454 return -ENOENT; 455 456 memset(&irq, 0, sizeof(irq)); 457 irq.shorthand = APIC_DEST_SELF; 458 irq.dest_mode = APIC_DEST_PHYSICAL; 459 irq.delivery_mode = APIC_DM_FIXED; 460 irq.vector = vector; 461 irq.level = 1; 462 463 ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL); 464 trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret); 465 return ret; 466 } 467 468 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint) 469 { 470 struct kvm_vcpu_hv_synic *synic; 471 472 synic = synic_get(kvm, vpidx); 473 if (!synic) 474 return -EINVAL; 475 476 return synic_set_irq(synic, sint); 477 } 478 479 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector) 480 { 481 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 482 int i; 483 484 trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector); 485 486 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) 487 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector) 488 kvm_hv_notify_acked_sint(vcpu, i); 489 } 490 491 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi) 492 { 493 struct kvm_vcpu_hv_synic *synic; 494 495 synic = synic_get(kvm, vpidx); 496 if (!synic) 497 return -EINVAL; 498 499 if (sint >= ARRAY_SIZE(synic->sint_to_gsi)) 500 return -EINVAL; 501 502 atomic_set(&synic->sint_to_gsi[sint], gsi); 503 return 0; 504 } 505 506 void kvm_hv_irq_routing_update(struct kvm *kvm) 507 { 508 struct kvm_irq_routing_table *irq_rt; 509 struct kvm_kernel_irq_routing_entry *e; 510 u32 gsi; 511 512 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu, 513 lockdep_is_held(&kvm->irq_lock)); 514 515 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) { 516 hlist_for_each_entry(e, &irq_rt->map[gsi], link) { 517 if (e->type == KVM_IRQ_ROUTING_HV_SINT) 518 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu, 519 e->hv_sint.sint, gsi); 520 } 521 } 522 } 523 524 static void synic_init(struct kvm_vcpu_hv_synic *synic) 525 { 526 int i; 527 528 memset(synic, 0, sizeof(*synic)); 529 synic->version = HV_SYNIC_VERSION_1; 530 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) { 531 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED); 532 atomic_set(&synic->sint_to_gsi[i], -1); 533 } 534 } 535 536 static u64 get_time_ref_counter(struct kvm *kvm) 537 { 538 struct kvm_hv *hv = to_kvm_hv(kvm); 539 struct kvm_vcpu *vcpu; 540 u64 tsc; 541 542 /* 543 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up, 544 * is broken, disabled or being updated. 545 */ 546 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET) 547 return div_u64(get_kvmclock_ns(kvm), 100); 548 549 vcpu = kvm_get_vcpu(kvm, 0); 550 tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 551 return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64) 552 + hv->tsc_ref.tsc_offset; 553 } 554 555 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, 556 bool vcpu_kick) 557 { 558 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 559 560 set_bit(stimer->index, 561 to_hv_vcpu(vcpu)->stimer_pending_bitmap); 562 kvm_make_request(KVM_REQ_HV_STIMER, vcpu); 563 if (vcpu_kick) 564 kvm_vcpu_kick(vcpu); 565 } 566 567 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer) 568 { 569 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 570 571 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id, 572 stimer->index); 573 574 hrtimer_cancel(&stimer->timer); 575 clear_bit(stimer->index, 576 to_hv_vcpu(vcpu)->stimer_pending_bitmap); 577 stimer->msg_pending = false; 578 stimer->exp_time = 0; 579 } 580 581 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer) 582 { 583 struct kvm_vcpu_hv_stimer *stimer; 584 585 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer); 586 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id, 587 stimer->index); 588 stimer_mark_pending(stimer, true); 589 590 return HRTIMER_NORESTART; 591 } 592 593 /* 594 * stimer_start() assumptions: 595 * a) stimer->count is not equal to 0 596 * b) stimer->config has HV_STIMER_ENABLE flag 597 */ 598 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) 599 { 600 u64 time_now; 601 ktime_t ktime_now; 602 603 time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm); 604 ktime_now = ktime_get(); 605 606 if (stimer->config.periodic) { 607 if (stimer->exp_time) { 608 if (time_now >= stimer->exp_time) { 609 u64 remainder; 610 611 div64_u64_rem(time_now - stimer->exp_time, 612 stimer->count, &remainder); 613 stimer->exp_time = 614 time_now + (stimer->count - remainder); 615 } 616 } else 617 stimer->exp_time = time_now + stimer->count; 618 619 trace_kvm_hv_stimer_start_periodic( 620 hv_stimer_to_vcpu(stimer)->vcpu_id, 621 stimer->index, 622 time_now, stimer->exp_time); 623 624 hrtimer_start(&stimer->timer, 625 ktime_add_ns(ktime_now, 626 100 * (stimer->exp_time - time_now)), 627 HRTIMER_MODE_ABS); 628 return 0; 629 } 630 stimer->exp_time = stimer->count; 631 if (time_now >= stimer->count) { 632 /* 633 * Expire timer according to Hypervisor Top-Level Functional 634 * specification v4(15.3.1): 635 * "If a one shot is enabled and the specified count is in 636 * the past, it will expire immediately." 637 */ 638 stimer_mark_pending(stimer, false); 639 return 0; 640 } 641 642 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id, 643 stimer->index, 644 time_now, stimer->count); 645 646 hrtimer_start(&stimer->timer, 647 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)), 648 HRTIMER_MODE_ABS); 649 return 0; 650 } 651 652 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, 653 bool host) 654 { 655 union hv_stimer_config new_config = {.as_uint64 = config}, 656 old_config = {.as_uint64 = stimer->config.as_uint64}; 657 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 658 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 659 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 660 661 if (!synic->active && !host) 662 return 1; 663 664 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode && 665 !(hv_vcpu->cpuid_cache.features_edx & 666 HV_STIMER_DIRECT_MODE_AVAILABLE))) 667 return 1; 668 669 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id, 670 stimer->index, config, host); 671 672 stimer_cleanup(stimer); 673 if (old_config.enable && 674 !new_config.direct_mode && new_config.sintx == 0) 675 new_config.enable = 0; 676 stimer->config.as_uint64 = new_config.as_uint64; 677 678 if (stimer->config.enable) 679 stimer_mark_pending(stimer, false); 680 681 return 0; 682 } 683 684 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, 685 bool host) 686 { 687 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 688 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu); 689 690 if (!synic->active && !host) 691 return 1; 692 693 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id, 694 stimer->index, count, host); 695 696 stimer_cleanup(stimer); 697 stimer->count = count; 698 if (stimer->count == 0) 699 stimer->config.enable = 0; 700 else if (stimer->config.auto_enable) 701 stimer->config.enable = 1; 702 703 if (stimer->config.enable) 704 stimer_mark_pending(stimer, false); 705 706 return 0; 707 } 708 709 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) 710 { 711 *pconfig = stimer->config.as_uint64; 712 return 0; 713 } 714 715 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) 716 { 717 *pcount = stimer->count; 718 return 0; 719 } 720 721 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, 722 struct hv_message *src_msg, bool no_retry) 723 { 724 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic); 725 int msg_off = offsetof(struct hv_message_page, sint_message[sint]); 726 gfn_t msg_page_gfn; 727 struct hv_message_header hv_hdr; 728 int r; 729 730 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) 731 return -ENOENT; 732 733 msg_page_gfn = synic->msg_page >> PAGE_SHIFT; 734 735 /* 736 * Strictly following the spec-mandated ordering would assume setting 737 * .msg_pending before checking .message_type. However, this function 738 * is only called in vcpu context so the entire update is atomic from 739 * guest POV and thus the exact order here doesn't matter. 740 */ 741 r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type, 742 msg_off + offsetof(struct hv_message, 743 header.message_type), 744 sizeof(hv_hdr.message_type)); 745 if (r < 0) 746 return r; 747 748 if (hv_hdr.message_type != HVMSG_NONE) { 749 if (no_retry) 750 return 0; 751 752 hv_hdr.message_flags.msg_pending = 1; 753 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, 754 &hv_hdr.message_flags, 755 msg_off + 756 offsetof(struct hv_message, 757 header.message_flags), 758 sizeof(hv_hdr.message_flags)); 759 if (r < 0) 760 return r; 761 return -EAGAIN; 762 } 763 764 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off, 765 sizeof(src_msg->header) + 766 src_msg->header.payload_size); 767 if (r < 0) 768 return r; 769 770 r = synic_set_irq(synic, sint); 771 if (r < 0) 772 return r; 773 if (r == 0) 774 return -EFAULT; 775 return 0; 776 } 777 778 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) 779 { 780 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 781 struct hv_message *msg = &stimer->msg; 782 struct hv_timer_message_payload *payload = 783 (struct hv_timer_message_payload *)&msg->u.payload; 784 785 /* 786 * To avoid piling up periodic ticks, don't retry message 787 * delivery for them (within "lazy" lost ticks policy). 788 */ 789 bool no_retry = stimer->config.periodic; 790 791 payload->expiration_time = stimer->exp_time; 792 payload->delivery_time = get_time_ref_counter(vcpu->kvm); 793 return synic_deliver_msg(to_hv_synic(vcpu), 794 stimer->config.sintx, msg, 795 no_retry); 796 } 797 798 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer) 799 { 800 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer); 801 struct kvm_lapic_irq irq = { 802 .delivery_mode = APIC_DM_FIXED, 803 .vector = stimer->config.apic_vector 804 }; 805 806 if (lapic_in_kernel(vcpu)) 807 return !kvm_apic_set_irq(vcpu, &irq, NULL); 808 return 0; 809 } 810 811 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) 812 { 813 int r, direct = stimer->config.direct_mode; 814 815 stimer->msg_pending = true; 816 if (!direct) 817 r = stimer_send_msg(stimer); 818 else 819 r = stimer_notify_direct(stimer); 820 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id, 821 stimer->index, direct, r); 822 if (!r) { 823 stimer->msg_pending = false; 824 if (!(stimer->config.periodic)) 825 stimer->config.enable = 0; 826 } 827 } 828 829 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) 830 { 831 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 832 struct kvm_vcpu_hv_stimer *stimer; 833 u64 time_now, exp_time; 834 int i; 835 836 if (!hv_vcpu) 837 return; 838 839 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 840 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { 841 stimer = &hv_vcpu->stimer[i]; 842 if (stimer->config.enable) { 843 exp_time = stimer->exp_time; 844 845 if (exp_time) { 846 time_now = 847 get_time_ref_counter(vcpu->kvm); 848 if (time_now >= exp_time) 849 stimer_expiration(stimer); 850 } 851 852 if ((stimer->config.enable) && 853 stimer->count) { 854 if (!stimer->msg_pending) 855 stimer_start(stimer); 856 } else 857 stimer_cleanup(stimer); 858 } 859 } 860 } 861 862 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu) 863 { 864 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 865 int i; 866 867 if (!hv_vcpu) 868 return; 869 870 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 871 stimer_cleanup(&hv_vcpu->stimer[i]); 872 873 kfree(hv_vcpu); 874 vcpu->arch.hyperv = NULL; 875 } 876 877 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu) 878 { 879 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 880 881 if (!hv_vcpu) 882 return false; 883 884 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) 885 return false; 886 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED; 887 } 888 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled); 889 890 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu, 891 struct hv_vp_assist_page *assist_page) 892 { 893 if (!kvm_hv_assist_page_enabled(vcpu)) 894 return false; 895 return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, 896 assist_page, sizeof(*assist_page)); 897 } 898 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page); 899 900 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer) 901 { 902 struct hv_message *msg = &stimer->msg; 903 struct hv_timer_message_payload *payload = 904 (struct hv_timer_message_payload *)&msg->u.payload; 905 906 memset(&msg->header, 0, sizeof(msg->header)); 907 msg->header.message_type = HVMSG_TIMER_EXPIRED; 908 msg->header.payload_size = sizeof(*payload); 909 910 payload->timer_index = stimer->index; 911 payload->expiration_time = 0; 912 payload->delivery_time = 0; 913 } 914 915 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index) 916 { 917 memset(stimer, 0, sizeof(*stimer)); 918 stimer->index = timer_index; 919 hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 920 stimer->timer.function = stimer_timer_callback; 921 stimer_prepare_msg(stimer); 922 } 923 924 static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu) 925 { 926 struct kvm_vcpu_hv *hv_vcpu; 927 int i; 928 929 hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT); 930 if (!hv_vcpu) 931 return -ENOMEM; 932 933 vcpu->arch.hyperv = hv_vcpu; 934 hv_vcpu->vcpu = vcpu; 935 936 synic_init(&hv_vcpu->synic); 937 938 bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); 939 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) 940 stimer_init(&hv_vcpu->stimer[i], i); 941 942 hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu); 943 944 return 0; 945 } 946 947 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages) 948 { 949 struct kvm_vcpu_hv_synic *synic; 950 int r; 951 952 if (!to_hv_vcpu(vcpu)) { 953 r = kvm_hv_vcpu_init(vcpu); 954 if (r) 955 return r; 956 } 957 958 synic = to_hv_synic(vcpu); 959 960 synic->active = true; 961 synic->dont_zero_synic_pages = dont_zero_synic_pages; 962 synic->control = HV_SYNIC_CONTROL_ENABLE; 963 return 0; 964 } 965 966 static bool kvm_hv_msr_partition_wide(u32 msr) 967 { 968 bool r = false; 969 970 switch (msr) { 971 case HV_X64_MSR_GUEST_OS_ID: 972 case HV_X64_MSR_HYPERCALL: 973 case HV_X64_MSR_REFERENCE_TSC: 974 case HV_X64_MSR_TIME_REF_COUNT: 975 case HV_X64_MSR_CRASH_CTL: 976 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 977 case HV_X64_MSR_RESET: 978 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 979 case HV_X64_MSR_TSC_EMULATION_CONTROL: 980 case HV_X64_MSR_TSC_EMULATION_STATUS: 981 case HV_X64_MSR_SYNDBG_OPTIONS: 982 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 983 r = true; 984 break; 985 } 986 987 return r; 988 } 989 990 static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata) 991 { 992 struct kvm_hv *hv = to_kvm_hv(kvm); 993 size_t size = ARRAY_SIZE(hv->hv_crash_param); 994 995 if (WARN_ON_ONCE(index >= size)) 996 return -EINVAL; 997 998 *pdata = hv->hv_crash_param[array_index_nospec(index, size)]; 999 return 0; 1000 } 1001 1002 static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata) 1003 { 1004 struct kvm_hv *hv = to_kvm_hv(kvm); 1005 1006 *pdata = hv->hv_crash_ctl; 1007 return 0; 1008 } 1009 1010 static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data) 1011 { 1012 struct kvm_hv *hv = to_kvm_hv(kvm); 1013 1014 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY; 1015 1016 return 0; 1017 } 1018 1019 static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data) 1020 { 1021 struct kvm_hv *hv = to_kvm_hv(kvm); 1022 size_t size = ARRAY_SIZE(hv->hv_crash_param); 1023 1024 if (WARN_ON_ONCE(index >= size)) 1025 return -EINVAL; 1026 1027 hv->hv_crash_param[array_index_nospec(index, size)] = data; 1028 return 0; 1029 } 1030 1031 /* 1032 * The kvmclock and Hyper-V TSC page use similar formulas, and converting 1033 * between them is possible: 1034 * 1035 * kvmclock formula: 1036 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32) 1037 * + system_time 1038 * 1039 * Hyper-V formula: 1040 * nsec/100 = ticks * scale / 2^64 + offset 1041 * 1042 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula. 1043 * By dividing the kvmclock formula by 100 and equating what's left we get: 1044 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1045 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100 1046 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100 1047 * 1048 * Now expand the kvmclock formula and divide by 100: 1049 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32) 1050 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) 1051 * + system_time 1052 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1053 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100 1054 * + system_time / 100 1055 * 1056 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64: 1057 * nsec/100 = ticks * scale / 2^64 1058 * - tsc_timestamp * scale / 2^64 1059 * + system_time / 100 1060 * 1061 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out: 1062 * offset = system_time / 100 - tsc_timestamp * scale / 2^64 1063 * 1064 * These two equivalencies are implemented in this function. 1065 */ 1066 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock, 1067 struct ms_hyperv_tsc_page *tsc_ref) 1068 { 1069 u64 max_mul; 1070 1071 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT)) 1072 return false; 1073 1074 /* 1075 * check if scale would overflow, if so we use the time ref counter 1076 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64 1077 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift) 1078 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift) 1079 */ 1080 max_mul = 100ull << (32 - hv_clock->tsc_shift); 1081 if (hv_clock->tsc_to_system_mul >= max_mul) 1082 return false; 1083 1084 /* 1085 * Otherwise compute the scale and offset according to the formulas 1086 * derived above. 1087 */ 1088 tsc_ref->tsc_scale = 1089 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift), 1090 hv_clock->tsc_to_system_mul, 1091 100); 1092 1093 tsc_ref->tsc_offset = hv_clock->system_time; 1094 do_div(tsc_ref->tsc_offset, 100); 1095 tsc_ref->tsc_offset -= 1096 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64); 1097 return true; 1098 } 1099 1100 /* 1101 * Don't touch TSC page values if the guest has opted for TSC emulation after 1102 * migration. KVM doesn't fully support reenlightenment notifications and TSC 1103 * access emulation and Hyper-V is known to expect the values in TSC page to 1104 * stay constant before TSC access emulation is disabled from guest side 1105 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC 1106 * frequency and guest visible TSC value across migration (and prevent it when 1107 * TSC scaling is unsupported). 1108 */ 1109 static inline bool tsc_page_update_unsafe(struct kvm_hv *hv) 1110 { 1111 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) && 1112 hv->hv_tsc_emulation_control; 1113 } 1114 1115 void kvm_hv_setup_tsc_page(struct kvm *kvm, 1116 struct pvclock_vcpu_time_info *hv_clock) 1117 { 1118 struct kvm_hv *hv = to_kvm_hv(kvm); 1119 u32 tsc_seq; 1120 u64 gfn; 1121 1122 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence)); 1123 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0); 1124 1125 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN || 1126 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET) 1127 return; 1128 1129 mutex_lock(&hv->hv_lock); 1130 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1131 goto out_unlock; 1132 1133 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1134 /* 1135 * Because the TSC parameters only vary when there is a 1136 * change in the master clock, do not bother with caching. 1137 */ 1138 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn), 1139 &tsc_seq, sizeof(tsc_seq)))) 1140 goto out_err; 1141 1142 if (tsc_seq && tsc_page_update_unsafe(hv)) { 1143 if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) 1144 goto out_err; 1145 1146 hv->hv_tsc_page_status = HV_TSC_PAGE_SET; 1147 goto out_unlock; 1148 } 1149 1150 /* 1151 * While we're computing and writing the parameters, force the 1152 * guest to use the time reference count MSR. 1153 */ 1154 hv->tsc_ref.tsc_sequence = 0; 1155 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), 1156 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) 1157 goto out_err; 1158 1159 if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref)) 1160 goto out_err; 1161 1162 /* Ensure sequence is zero before writing the rest of the struct. */ 1163 smp_wmb(); 1164 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref))) 1165 goto out_err; 1166 1167 /* 1168 * Now switch to the TSC page mechanism by writing the sequence. 1169 */ 1170 tsc_seq++; 1171 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0) 1172 tsc_seq = 1; 1173 1174 /* Write the struct entirely before the non-zero sequence. */ 1175 smp_wmb(); 1176 1177 hv->tsc_ref.tsc_sequence = tsc_seq; 1178 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), 1179 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) 1180 goto out_err; 1181 1182 hv->hv_tsc_page_status = HV_TSC_PAGE_SET; 1183 goto out_unlock; 1184 1185 out_err: 1186 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN; 1187 out_unlock: 1188 mutex_unlock(&hv->hv_lock); 1189 } 1190 1191 void kvm_hv_invalidate_tsc_page(struct kvm *kvm) 1192 { 1193 struct kvm_hv *hv = to_kvm_hv(kvm); 1194 u64 gfn; 1195 int idx; 1196 1197 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN || 1198 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET || 1199 tsc_page_update_unsafe(hv)) 1200 return; 1201 1202 mutex_lock(&hv->hv_lock); 1203 1204 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)) 1205 goto out_unlock; 1206 1207 /* Preserve HV_TSC_PAGE_GUEST_CHANGED/HV_TSC_PAGE_HOST_CHANGED states */ 1208 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET) 1209 hv->hv_tsc_page_status = HV_TSC_PAGE_UPDATING; 1210 1211 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT; 1212 1213 hv->tsc_ref.tsc_sequence = 0; 1214 1215 /* 1216 * Take the srcu lock as memslots will be accessed to check the gfn 1217 * cache generation against the memslots generation. 1218 */ 1219 idx = srcu_read_lock(&kvm->srcu); 1220 if (kvm_write_guest(kvm, gfn_to_gpa(gfn), 1221 &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence))) 1222 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN; 1223 srcu_read_unlock(&kvm->srcu, idx); 1224 1225 out_unlock: 1226 mutex_unlock(&hv->hv_lock); 1227 } 1228 1229 1230 static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr) 1231 { 1232 if (!hv_vcpu->enforce_cpuid) 1233 return true; 1234 1235 switch (msr) { 1236 case HV_X64_MSR_GUEST_OS_ID: 1237 case HV_X64_MSR_HYPERCALL: 1238 return hv_vcpu->cpuid_cache.features_eax & 1239 HV_MSR_HYPERCALL_AVAILABLE; 1240 case HV_X64_MSR_VP_RUNTIME: 1241 return hv_vcpu->cpuid_cache.features_eax & 1242 HV_MSR_VP_RUNTIME_AVAILABLE; 1243 case HV_X64_MSR_TIME_REF_COUNT: 1244 return hv_vcpu->cpuid_cache.features_eax & 1245 HV_MSR_TIME_REF_COUNT_AVAILABLE; 1246 case HV_X64_MSR_VP_INDEX: 1247 return hv_vcpu->cpuid_cache.features_eax & 1248 HV_MSR_VP_INDEX_AVAILABLE; 1249 case HV_X64_MSR_RESET: 1250 return hv_vcpu->cpuid_cache.features_eax & 1251 HV_MSR_RESET_AVAILABLE; 1252 case HV_X64_MSR_REFERENCE_TSC: 1253 return hv_vcpu->cpuid_cache.features_eax & 1254 HV_MSR_REFERENCE_TSC_AVAILABLE; 1255 case HV_X64_MSR_SCONTROL: 1256 case HV_X64_MSR_SVERSION: 1257 case HV_X64_MSR_SIEFP: 1258 case HV_X64_MSR_SIMP: 1259 case HV_X64_MSR_EOM: 1260 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1261 return hv_vcpu->cpuid_cache.features_eax & 1262 HV_MSR_SYNIC_AVAILABLE; 1263 case HV_X64_MSR_STIMER0_CONFIG: 1264 case HV_X64_MSR_STIMER1_CONFIG: 1265 case HV_X64_MSR_STIMER2_CONFIG: 1266 case HV_X64_MSR_STIMER3_CONFIG: 1267 case HV_X64_MSR_STIMER0_COUNT: 1268 case HV_X64_MSR_STIMER1_COUNT: 1269 case HV_X64_MSR_STIMER2_COUNT: 1270 case HV_X64_MSR_STIMER3_COUNT: 1271 return hv_vcpu->cpuid_cache.features_eax & 1272 HV_MSR_SYNTIMER_AVAILABLE; 1273 case HV_X64_MSR_EOI: 1274 case HV_X64_MSR_ICR: 1275 case HV_X64_MSR_TPR: 1276 case HV_X64_MSR_VP_ASSIST_PAGE: 1277 return hv_vcpu->cpuid_cache.features_eax & 1278 HV_MSR_APIC_ACCESS_AVAILABLE; 1279 break; 1280 case HV_X64_MSR_TSC_FREQUENCY: 1281 case HV_X64_MSR_APIC_FREQUENCY: 1282 return hv_vcpu->cpuid_cache.features_eax & 1283 HV_ACCESS_FREQUENCY_MSRS; 1284 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1285 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1286 case HV_X64_MSR_TSC_EMULATION_STATUS: 1287 return hv_vcpu->cpuid_cache.features_eax & 1288 HV_ACCESS_REENLIGHTENMENT; 1289 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1290 case HV_X64_MSR_CRASH_CTL: 1291 return hv_vcpu->cpuid_cache.features_edx & 1292 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; 1293 case HV_X64_MSR_SYNDBG_OPTIONS: 1294 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1295 return hv_vcpu->cpuid_cache.features_edx & 1296 HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1297 default: 1298 break; 1299 } 1300 1301 return false; 1302 } 1303 1304 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data, 1305 bool host) 1306 { 1307 struct kvm *kvm = vcpu->kvm; 1308 struct kvm_hv *hv = to_kvm_hv(kvm); 1309 1310 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) 1311 return 1; 1312 1313 switch (msr) { 1314 case HV_X64_MSR_GUEST_OS_ID: 1315 hv->hv_guest_os_id = data; 1316 /* setting guest os id to zero disables hypercall page */ 1317 if (!hv->hv_guest_os_id) 1318 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; 1319 break; 1320 case HV_X64_MSR_HYPERCALL: { 1321 u8 instructions[9]; 1322 int i = 0; 1323 u64 addr; 1324 1325 /* if guest os id is not set hypercall should remain disabled */ 1326 if (!hv->hv_guest_os_id) 1327 break; 1328 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { 1329 hv->hv_hypercall = data; 1330 break; 1331 } 1332 1333 /* 1334 * If Xen and Hyper-V hypercalls are both enabled, disambiguate 1335 * the same way Xen itself does, by setting the bit 31 of EAX 1336 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just 1337 * going to be clobbered on 64-bit. 1338 */ 1339 if (kvm_xen_hypercall_enabled(kvm)) { 1340 /* orl $0x80000000, %eax */ 1341 instructions[i++] = 0x0d; 1342 instructions[i++] = 0x00; 1343 instructions[i++] = 0x00; 1344 instructions[i++] = 0x00; 1345 instructions[i++] = 0x80; 1346 } 1347 1348 /* vmcall/vmmcall */ 1349 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i); 1350 i += 3; 1351 1352 /* ret */ 1353 ((unsigned char *)instructions)[i++] = 0xc3; 1354 1355 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK; 1356 if (kvm_vcpu_write_guest(vcpu, addr, instructions, i)) 1357 return 1; 1358 hv->hv_hypercall = data; 1359 break; 1360 } 1361 case HV_X64_MSR_REFERENCE_TSC: 1362 hv->hv_tsc_page = data; 1363 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) { 1364 if (!host) 1365 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED; 1366 else 1367 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED; 1368 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1369 } else { 1370 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET; 1371 } 1372 break; 1373 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1374 return kvm_hv_msr_set_crash_data(kvm, 1375 msr - HV_X64_MSR_CRASH_P0, 1376 data); 1377 case HV_X64_MSR_CRASH_CTL: 1378 if (host) 1379 return kvm_hv_msr_set_crash_ctl(kvm, data); 1380 1381 if (data & HV_CRASH_CTL_CRASH_NOTIFY) { 1382 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", 1383 hv->hv_crash_param[0], 1384 hv->hv_crash_param[1], 1385 hv->hv_crash_param[2], 1386 hv->hv_crash_param[3], 1387 hv->hv_crash_param[4]); 1388 1389 /* Send notification about crash to user space */ 1390 kvm_make_request(KVM_REQ_HV_CRASH, vcpu); 1391 } 1392 break; 1393 case HV_X64_MSR_RESET: 1394 if (data == 1) { 1395 vcpu_debug(vcpu, "hyper-v reset requested\n"); 1396 kvm_make_request(KVM_REQ_HV_RESET, vcpu); 1397 } 1398 break; 1399 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1400 hv->hv_reenlightenment_control = data; 1401 break; 1402 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1403 hv->hv_tsc_emulation_control = data; 1404 break; 1405 case HV_X64_MSR_TSC_EMULATION_STATUS: 1406 if (data && !host) 1407 return 1; 1408 1409 hv->hv_tsc_emulation_status = data; 1410 break; 1411 case HV_X64_MSR_TIME_REF_COUNT: 1412 /* read-only, but still ignore it if host-initiated */ 1413 if (!host) 1414 return 1; 1415 break; 1416 case HV_X64_MSR_SYNDBG_OPTIONS: 1417 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1418 return syndbg_set_msr(vcpu, msr, data, host); 1419 default: 1420 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n", 1421 msr, data); 1422 return 1; 1423 } 1424 return 0; 1425 } 1426 1427 /* Calculate cpu time spent by current task in 100ns units */ 1428 static u64 current_task_runtime_100ns(void) 1429 { 1430 u64 utime, stime; 1431 1432 task_cputime_adjusted(current, &utime, &stime); 1433 1434 return div_u64(utime + stime, 100); 1435 } 1436 1437 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 1438 { 1439 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1440 1441 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) 1442 return 1; 1443 1444 switch (msr) { 1445 case HV_X64_MSR_VP_INDEX: { 1446 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1447 int vcpu_idx = kvm_vcpu_get_idx(vcpu); 1448 u32 new_vp_index = (u32)data; 1449 1450 if (!host || new_vp_index >= KVM_MAX_VCPUS) 1451 return 1; 1452 1453 if (new_vp_index == hv_vcpu->vp_index) 1454 return 0; 1455 1456 /* 1457 * The VP index is initialized to vcpu_index by 1458 * kvm_hv_vcpu_postcreate so they initially match. Now the 1459 * VP index is changing, adjust num_mismatched_vp_indexes if 1460 * it now matches or no longer matches vcpu_idx. 1461 */ 1462 if (hv_vcpu->vp_index == vcpu_idx) 1463 atomic_inc(&hv->num_mismatched_vp_indexes); 1464 else if (new_vp_index == vcpu_idx) 1465 atomic_dec(&hv->num_mismatched_vp_indexes); 1466 1467 hv_vcpu->vp_index = new_vp_index; 1468 break; 1469 } 1470 case HV_X64_MSR_VP_ASSIST_PAGE: { 1471 u64 gfn; 1472 unsigned long addr; 1473 1474 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) { 1475 hv_vcpu->hv_vapic = data; 1476 if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0)) 1477 return 1; 1478 break; 1479 } 1480 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT; 1481 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn); 1482 if (kvm_is_error_hva(addr)) 1483 return 1; 1484 1485 /* 1486 * Clear apic_assist portion of struct hv_vp_assist_page 1487 * only, there can be valuable data in the rest which needs 1488 * to be preserved e.g. on migration. 1489 */ 1490 if (__put_user(0, (u32 __user *)addr)) 1491 return 1; 1492 hv_vcpu->hv_vapic = data; 1493 kvm_vcpu_mark_page_dirty(vcpu, gfn); 1494 if (kvm_lapic_enable_pv_eoi(vcpu, 1495 gfn_to_gpa(gfn) | KVM_MSR_ENABLED, 1496 sizeof(struct hv_vp_assist_page))) 1497 return 1; 1498 break; 1499 } 1500 case HV_X64_MSR_EOI: 1501 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); 1502 case HV_X64_MSR_ICR: 1503 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); 1504 case HV_X64_MSR_TPR: 1505 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); 1506 case HV_X64_MSR_VP_RUNTIME: 1507 if (!host) 1508 return 1; 1509 hv_vcpu->runtime_offset = data - current_task_runtime_100ns(); 1510 break; 1511 case HV_X64_MSR_SCONTROL: 1512 case HV_X64_MSR_SVERSION: 1513 case HV_X64_MSR_SIEFP: 1514 case HV_X64_MSR_SIMP: 1515 case HV_X64_MSR_EOM: 1516 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1517 return synic_set_msr(to_hv_synic(vcpu), msr, data, host); 1518 case HV_X64_MSR_STIMER0_CONFIG: 1519 case HV_X64_MSR_STIMER1_CONFIG: 1520 case HV_X64_MSR_STIMER2_CONFIG: 1521 case HV_X64_MSR_STIMER3_CONFIG: { 1522 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; 1523 1524 return stimer_set_config(to_hv_stimer(vcpu, timer_index), 1525 data, host); 1526 } 1527 case HV_X64_MSR_STIMER0_COUNT: 1528 case HV_X64_MSR_STIMER1_COUNT: 1529 case HV_X64_MSR_STIMER2_COUNT: 1530 case HV_X64_MSR_STIMER3_COUNT: { 1531 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; 1532 1533 return stimer_set_count(to_hv_stimer(vcpu, timer_index), 1534 data, host); 1535 } 1536 case HV_X64_MSR_TSC_FREQUENCY: 1537 case HV_X64_MSR_APIC_FREQUENCY: 1538 /* read-only, but still ignore it if host-initiated */ 1539 if (!host) 1540 return 1; 1541 break; 1542 default: 1543 vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n", 1544 msr, data); 1545 return 1; 1546 } 1547 1548 return 0; 1549 } 1550 1551 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, 1552 bool host) 1553 { 1554 u64 data = 0; 1555 struct kvm *kvm = vcpu->kvm; 1556 struct kvm_hv *hv = to_kvm_hv(kvm); 1557 1558 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr))) 1559 return 1; 1560 1561 switch (msr) { 1562 case HV_X64_MSR_GUEST_OS_ID: 1563 data = hv->hv_guest_os_id; 1564 break; 1565 case HV_X64_MSR_HYPERCALL: 1566 data = hv->hv_hypercall; 1567 break; 1568 case HV_X64_MSR_TIME_REF_COUNT: 1569 data = get_time_ref_counter(kvm); 1570 break; 1571 case HV_X64_MSR_REFERENCE_TSC: 1572 data = hv->hv_tsc_page; 1573 break; 1574 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 1575 return kvm_hv_msr_get_crash_data(kvm, 1576 msr - HV_X64_MSR_CRASH_P0, 1577 pdata); 1578 case HV_X64_MSR_CRASH_CTL: 1579 return kvm_hv_msr_get_crash_ctl(kvm, pdata); 1580 case HV_X64_MSR_RESET: 1581 data = 0; 1582 break; 1583 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 1584 data = hv->hv_reenlightenment_control; 1585 break; 1586 case HV_X64_MSR_TSC_EMULATION_CONTROL: 1587 data = hv->hv_tsc_emulation_control; 1588 break; 1589 case HV_X64_MSR_TSC_EMULATION_STATUS: 1590 data = hv->hv_tsc_emulation_status; 1591 break; 1592 case HV_X64_MSR_SYNDBG_OPTIONS: 1593 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 1594 return syndbg_get_msr(vcpu, msr, pdata, host); 1595 default: 1596 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1597 return 1; 1598 } 1599 1600 *pdata = data; 1601 return 0; 1602 } 1603 1604 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, 1605 bool host) 1606 { 1607 u64 data = 0; 1608 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1609 1610 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr))) 1611 return 1; 1612 1613 switch (msr) { 1614 case HV_X64_MSR_VP_INDEX: 1615 data = hv_vcpu->vp_index; 1616 break; 1617 case HV_X64_MSR_EOI: 1618 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); 1619 case HV_X64_MSR_ICR: 1620 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); 1621 case HV_X64_MSR_TPR: 1622 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); 1623 case HV_X64_MSR_VP_ASSIST_PAGE: 1624 data = hv_vcpu->hv_vapic; 1625 break; 1626 case HV_X64_MSR_VP_RUNTIME: 1627 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset; 1628 break; 1629 case HV_X64_MSR_SCONTROL: 1630 case HV_X64_MSR_SVERSION: 1631 case HV_X64_MSR_SIEFP: 1632 case HV_X64_MSR_SIMP: 1633 case HV_X64_MSR_EOM: 1634 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 1635 return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host); 1636 case HV_X64_MSR_STIMER0_CONFIG: 1637 case HV_X64_MSR_STIMER1_CONFIG: 1638 case HV_X64_MSR_STIMER2_CONFIG: 1639 case HV_X64_MSR_STIMER3_CONFIG: { 1640 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2; 1641 1642 return stimer_get_config(to_hv_stimer(vcpu, timer_index), 1643 pdata); 1644 } 1645 case HV_X64_MSR_STIMER0_COUNT: 1646 case HV_X64_MSR_STIMER1_COUNT: 1647 case HV_X64_MSR_STIMER2_COUNT: 1648 case HV_X64_MSR_STIMER3_COUNT: { 1649 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2; 1650 1651 return stimer_get_count(to_hv_stimer(vcpu, timer_index), 1652 pdata); 1653 } 1654 case HV_X64_MSR_TSC_FREQUENCY: 1655 data = (u64)vcpu->arch.virtual_tsc_khz * 1000; 1656 break; 1657 case HV_X64_MSR_APIC_FREQUENCY: 1658 data = APIC_BUS_FREQUENCY; 1659 break; 1660 default: 1661 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); 1662 return 1; 1663 } 1664 *pdata = data; 1665 return 0; 1666 } 1667 1668 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host) 1669 { 1670 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1671 1672 if (!host && !vcpu->arch.hyperv_enabled) 1673 return 1; 1674 1675 if (!to_hv_vcpu(vcpu)) { 1676 if (kvm_hv_vcpu_init(vcpu)) 1677 return 1; 1678 } 1679 1680 if (kvm_hv_msr_partition_wide(msr)) { 1681 int r; 1682 1683 mutex_lock(&hv->hv_lock); 1684 r = kvm_hv_set_msr_pw(vcpu, msr, data, host); 1685 mutex_unlock(&hv->hv_lock); 1686 return r; 1687 } else 1688 return kvm_hv_set_msr(vcpu, msr, data, host); 1689 } 1690 1691 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 1692 { 1693 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 1694 1695 if (!host && !vcpu->arch.hyperv_enabled) 1696 return 1; 1697 1698 if (!to_hv_vcpu(vcpu)) { 1699 if (kvm_hv_vcpu_init(vcpu)) 1700 return 1; 1701 } 1702 1703 if (kvm_hv_msr_partition_wide(msr)) { 1704 int r; 1705 1706 mutex_lock(&hv->hv_lock); 1707 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host); 1708 mutex_unlock(&hv->hv_lock); 1709 return r; 1710 } else 1711 return kvm_hv_get_msr(vcpu, msr, pdata, host); 1712 } 1713 1714 static __always_inline unsigned long *sparse_set_to_vcpu_mask( 1715 struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask, 1716 u64 *vp_bitmap, unsigned long *vcpu_bitmap) 1717 { 1718 struct kvm_hv *hv = to_kvm_hv(kvm); 1719 struct kvm_vcpu *vcpu; 1720 int i, bank, sbank = 0; 1721 1722 memset(vp_bitmap, 0, 1723 KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap)); 1724 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask, 1725 KVM_HV_MAX_SPARSE_VCPU_SET_BITS) 1726 vp_bitmap[bank] = sparse_banks[sbank++]; 1727 1728 if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) { 1729 /* for all vcpus vp_index == vcpu_idx */ 1730 return (unsigned long *)vp_bitmap; 1731 } 1732 1733 bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS); 1734 kvm_for_each_vcpu(i, vcpu, kvm) { 1735 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap)) 1736 __set_bit(i, vcpu_bitmap); 1737 } 1738 return vcpu_bitmap; 1739 } 1740 1741 struct kvm_hv_hcall { 1742 u64 param; 1743 u64 ingpa; 1744 u64 outgpa; 1745 u16 code; 1746 u16 rep_cnt; 1747 u16 rep_idx; 1748 bool fast; 1749 bool rep; 1750 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS]; 1751 }; 1752 1753 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex) 1754 { 1755 int i; 1756 gpa_t gpa; 1757 struct kvm *kvm = vcpu->kvm; 1758 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 1759 struct hv_tlb_flush_ex flush_ex; 1760 struct hv_tlb_flush flush; 1761 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; 1762 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS); 1763 unsigned long *vcpu_mask; 1764 u64 valid_bank_mask; 1765 u64 sparse_banks[64]; 1766 int sparse_banks_len; 1767 bool all_cpus; 1768 1769 if (!ex) { 1770 if (hc->fast) { 1771 flush.address_space = hc->ingpa; 1772 flush.flags = hc->outgpa; 1773 flush.processor_mask = sse128_lo(hc->xmm[0]); 1774 } else { 1775 if (unlikely(kvm_read_guest(kvm, hc->ingpa, 1776 &flush, sizeof(flush)))) 1777 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1778 } 1779 1780 trace_kvm_hv_flush_tlb(flush.processor_mask, 1781 flush.address_space, flush.flags); 1782 1783 valid_bank_mask = BIT_ULL(0); 1784 sparse_banks[0] = flush.processor_mask; 1785 1786 /* 1787 * Work around possible WS2012 bug: it sends hypercalls 1788 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear, 1789 * while also expecting us to flush something and crashing if 1790 * we don't. Let's treat processor_mask == 0 same as 1791 * HV_FLUSH_ALL_PROCESSORS. 1792 */ 1793 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) || 1794 flush.processor_mask == 0; 1795 } else { 1796 if (hc->fast) { 1797 flush_ex.address_space = hc->ingpa; 1798 flush_ex.flags = hc->outgpa; 1799 memcpy(&flush_ex.hv_vp_set, 1800 &hc->xmm[0], sizeof(hc->xmm[0])); 1801 } else { 1802 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex, 1803 sizeof(flush_ex)))) 1804 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1805 } 1806 1807 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask, 1808 flush_ex.hv_vp_set.format, 1809 flush_ex.address_space, 1810 flush_ex.flags); 1811 1812 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask; 1813 all_cpus = flush_ex.hv_vp_set.format != 1814 HV_GENERIC_SET_SPARSE_4K; 1815 1816 sparse_banks_len = bitmap_weight((unsigned long *)&valid_bank_mask, 64); 1817 1818 if (!sparse_banks_len && !all_cpus) 1819 goto ret_success; 1820 1821 if (!all_cpus) { 1822 if (hc->fast) { 1823 if (sparse_banks_len > HV_HYPERCALL_MAX_XMM_REGISTERS - 1) 1824 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1825 for (i = 0; i < sparse_banks_len; i += 2) { 1826 sparse_banks[i] = sse128_lo(hc->xmm[i / 2 + 1]); 1827 sparse_banks[i + 1] = sse128_hi(hc->xmm[i / 2 + 1]); 1828 } 1829 } else { 1830 gpa = hc->ingpa + offsetof(struct hv_tlb_flush_ex, 1831 hv_vp_set.bank_contents); 1832 if (unlikely(kvm_read_guest(kvm, gpa, sparse_banks, 1833 sparse_banks_len * 1834 sizeof(sparse_banks[0])))) 1835 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1836 } 1837 } 1838 } 1839 1840 cpumask_clear(&hv_vcpu->tlb_flush); 1841 1842 vcpu_mask = all_cpus ? NULL : 1843 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, 1844 vp_bitmap, vcpu_bitmap); 1845 1846 /* 1847 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't 1848 * analyze it here, flush TLB regardless of the specified address space. 1849 */ 1850 kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST, 1851 NULL, vcpu_mask, &hv_vcpu->tlb_flush); 1852 1853 ret_success: 1854 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */ 1855 return (u64)HV_STATUS_SUCCESS | 1856 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET); 1857 } 1858 1859 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector, 1860 unsigned long *vcpu_bitmap) 1861 { 1862 struct kvm_lapic_irq irq = { 1863 .delivery_mode = APIC_DM_FIXED, 1864 .vector = vector 1865 }; 1866 struct kvm_vcpu *vcpu; 1867 int i; 1868 1869 kvm_for_each_vcpu(i, vcpu, kvm) { 1870 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 1871 continue; 1872 1873 /* We fail only when APIC is disabled */ 1874 kvm_apic_set_irq(vcpu, &irq, NULL); 1875 } 1876 } 1877 1878 static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex) 1879 { 1880 struct kvm *kvm = vcpu->kvm; 1881 struct hv_send_ipi_ex send_ipi_ex; 1882 struct hv_send_ipi send_ipi; 1883 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS]; 1884 DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS); 1885 unsigned long *vcpu_mask; 1886 unsigned long valid_bank_mask; 1887 u64 sparse_banks[64]; 1888 int sparse_banks_len; 1889 u32 vector; 1890 bool all_cpus; 1891 1892 if (!ex) { 1893 if (!hc->fast) { 1894 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi, 1895 sizeof(send_ipi)))) 1896 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1897 sparse_banks[0] = send_ipi.cpu_mask; 1898 vector = send_ipi.vector; 1899 } else { 1900 /* 'reserved' part of hv_send_ipi should be 0 */ 1901 if (unlikely(hc->ingpa >> 32 != 0)) 1902 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1903 sparse_banks[0] = hc->outgpa; 1904 vector = (u32)hc->ingpa; 1905 } 1906 all_cpus = false; 1907 valid_bank_mask = BIT_ULL(0); 1908 1909 trace_kvm_hv_send_ipi(vector, sparse_banks[0]); 1910 } else { 1911 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex, 1912 sizeof(send_ipi_ex)))) 1913 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1914 1915 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector, 1916 send_ipi_ex.vp_set.format, 1917 send_ipi_ex.vp_set.valid_bank_mask); 1918 1919 vector = send_ipi_ex.vector; 1920 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask; 1921 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) * 1922 sizeof(sparse_banks[0]); 1923 1924 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL; 1925 1926 if (!sparse_banks_len) 1927 goto ret_success; 1928 1929 if (!all_cpus && 1930 kvm_read_guest(kvm, 1931 hc->ingpa + offsetof(struct hv_send_ipi_ex, 1932 vp_set.bank_contents), 1933 sparse_banks, 1934 sparse_banks_len)) 1935 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1936 } 1937 1938 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR)) 1939 return HV_STATUS_INVALID_HYPERCALL_INPUT; 1940 1941 vcpu_mask = all_cpus ? NULL : 1942 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, 1943 vp_bitmap, vcpu_bitmap); 1944 1945 kvm_send_ipi_to_many(kvm, vector, vcpu_mask); 1946 1947 ret_success: 1948 return HV_STATUS_SUCCESS; 1949 } 1950 1951 void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu) 1952 { 1953 struct kvm_cpuid_entry2 *entry; 1954 struct kvm_vcpu_hv *hv_vcpu; 1955 1956 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0); 1957 if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX) { 1958 vcpu->arch.hyperv_enabled = true; 1959 } else { 1960 vcpu->arch.hyperv_enabled = false; 1961 return; 1962 } 1963 1964 if (!to_hv_vcpu(vcpu) && kvm_hv_vcpu_init(vcpu)) 1965 return; 1966 1967 hv_vcpu = to_hv_vcpu(vcpu); 1968 1969 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES, 0); 1970 if (entry) { 1971 hv_vcpu->cpuid_cache.features_eax = entry->eax; 1972 hv_vcpu->cpuid_cache.features_ebx = entry->ebx; 1973 hv_vcpu->cpuid_cache.features_edx = entry->edx; 1974 } else { 1975 hv_vcpu->cpuid_cache.features_eax = 0; 1976 hv_vcpu->cpuid_cache.features_ebx = 0; 1977 hv_vcpu->cpuid_cache.features_edx = 0; 1978 } 1979 1980 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO, 0); 1981 if (entry) { 1982 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax; 1983 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx; 1984 } else { 1985 hv_vcpu->cpuid_cache.enlightenments_eax = 0; 1986 hv_vcpu->cpuid_cache.enlightenments_ebx = 0; 1987 } 1988 1989 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES, 0); 1990 if (entry) 1991 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax; 1992 else 1993 hv_vcpu->cpuid_cache.syndbg_cap_eax = 0; 1994 } 1995 1996 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce) 1997 { 1998 struct kvm_vcpu_hv *hv_vcpu; 1999 int ret = 0; 2000 2001 if (!to_hv_vcpu(vcpu)) { 2002 if (enforce) { 2003 ret = kvm_hv_vcpu_init(vcpu); 2004 if (ret) 2005 return ret; 2006 } else { 2007 return 0; 2008 } 2009 } 2010 2011 hv_vcpu = to_hv_vcpu(vcpu); 2012 hv_vcpu->enforce_cpuid = enforce; 2013 2014 return ret; 2015 } 2016 2017 bool kvm_hv_hypercall_enabled(struct kvm_vcpu *vcpu) 2018 { 2019 return vcpu->arch.hyperv_enabled && to_kvm_hv(vcpu->kvm)->hv_guest_os_id; 2020 } 2021 2022 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) 2023 { 2024 bool longmode; 2025 2026 longmode = is_64_bit_mode(vcpu); 2027 if (longmode) 2028 kvm_rax_write(vcpu, result); 2029 else { 2030 kvm_rdx_write(vcpu, result >> 32); 2031 kvm_rax_write(vcpu, result & 0xffffffff); 2032 } 2033 } 2034 2035 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result) 2036 { 2037 trace_kvm_hv_hypercall_done(result); 2038 kvm_hv_hypercall_set_result(vcpu, result); 2039 ++vcpu->stat.hypercalls; 2040 return kvm_skip_emulated_instruction(vcpu); 2041 } 2042 2043 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu) 2044 { 2045 return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result); 2046 } 2047 2048 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc) 2049 { 2050 struct kvm_hv *hv = to_kvm_hv(vcpu->kvm); 2051 struct eventfd_ctx *eventfd; 2052 2053 if (unlikely(!hc->fast)) { 2054 int ret; 2055 gpa_t gpa = hc->ingpa; 2056 2057 if ((gpa & (__alignof__(hc->ingpa) - 1)) || 2058 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE) 2059 return HV_STATUS_INVALID_ALIGNMENT; 2060 2061 ret = kvm_vcpu_read_guest(vcpu, gpa, 2062 &hc->ingpa, sizeof(hc->ingpa)); 2063 if (ret < 0) 2064 return HV_STATUS_INVALID_ALIGNMENT; 2065 } 2066 2067 /* 2068 * Per spec, bits 32-47 contain the extra "flag number". However, we 2069 * have no use for it, and in all known usecases it is zero, so just 2070 * report lookup failure if it isn't. 2071 */ 2072 if (hc->ingpa & 0xffff00000000ULL) 2073 return HV_STATUS_INVALID_PORT_ID; 2074 /* remaining bits are reserved-zero */ 2075 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK) 2076 return HV_STATUS_INVALID_HYPERCALL_INPUT; 2077 2078 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */ 2079 rcu_read_lock(); 2080 eventfd = idr_find(&hv->conn_to_evt, hc->ingpa); 2081 rcu_read_unlock(); 2082 if (!eventfd) 2083 return HV_STATUS_INVALID_PORT_ID; 2084 2085 eventfd_signal(eventfd, 1); 2086 return HV_STATUS_SUCCESS; 2087 } 2088 2089 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc) 2090 { 2091 switch (hc->code) { 2092 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2093 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2094 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2095 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2096 return true; 2097 } 2098 2099 return false; 2100 } 2101 2102 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc) 2103 { 2104 int reg; 2105 2106 kvm_fpu_get(); 2107 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++) 2108 _kvm_read_sse_reg(reg, &hc->xmm[reg]); 2109 kvm_fpu_put(); 2110 } 2111 2112 static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code) 2113 { 2114 if (!hv_vcpu->enforce_cpuid) 2115 return true; 2116 2117 switch (code) { 2118 case HVCALL_NOTIFY_LONG_SPIN_WAIT: 2119 return hv_vcpu->cpuid_cache.enlightenments_ebx && 2120 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX; 2121 case HVCALL_POST_MESSAGE: 2122 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES; 2123 case HVCALL_SIGNAL_EVENT: 2124 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS; 2125 case HVCALL_POST_DEBUG_DATA: 2126 case HVCALL_RETRIEVE_DEBUG_DATA: 2127 case HVCALL_RESET_DEBUG_SESSION: 2128 /* 2129 * Return 'true' when SynDBG is disabled so the resulting code 2130 * will be HV_STATUS_INVALID_HYPERCALL_CODE. 2131 */ 2132 return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) || 2133 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING; 2134 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2135 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2136 if (!(hv_vcpu->cpuid_cache.enlightenments_eax & 2137 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) 2138 return false; 2139 fallthrough; 2140 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2141 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2142 return hv_vcpu->cpuid_cache.enlightenments_eax & 2143 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; 2144 case HVCALL_SEND_IPI_EX: 2145 if (!(hv_vcpu->cpuid_cache.enlightenments_eax & 2146 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) 2147 return false; 2148 fallthrough; 2149 case HVCALL_SEND_IPI: 2150 return hv_vcpu->cpuid_cache.enlightenments_eax & 2151 HV_X64_CLUSTER_IPI_RECOMMENDED; 2152 default: 2153 break; 2154 } 2155 2156 return true; 2157 } 2158 2159 int kvm_hv_hypercall(struct kvm_vcpu *vcpu) 2160 { 2161 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 2162 struct kvm_hv_hcall hc; 2163 u64 ret = HV_STATUS_SUCCESS; 2164 2165 /* 2166 * hypercall generates UD from non zero cpl and real mode 2167 * per HYPER-V spec 2168 */ 2169 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) { 2170 kvm_queue_exception(vcpu, UD_VECTOR); 2171 return 1; 2172 } 2173 2174 #ifdef CONFIG_X86_64 2175 if (is_64_bit_mode(vcpu)) { 2176 hc.param = kvm_rcx_read(vcpu); 2177 hc.ingpa = kvm_rdx_read(vcpu); 2178 hc.outgpa = kvm_r8_read(vcpu); 2179 } else 2180 #endif 2181 { 2182 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) | 2183 (kvm_rax_read(vcpu) & 0xffffffff); 2184 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) | 2185 (kvm_rcx_read(vcpu) & 0xffffffff); 2186 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) | 2187 (kvm_rsi_read(vcpu) & 0xffffffff); 2188 } 2189 2190 hc.code = hc.param & 0xffff; 2191 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT); 2192 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff; 2193 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff; 2194 hc.rep = !!(hc.rep_cnt || hc.rep_idx); 2195 2196 trace_kvm_hv_hypercall(hc.code, hc.fast, hc.rep_cnt, hc.rep_idx, 2197 hc.ingpa, hc.outgpa); 2198 2199 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) { 2200 ret = HV_STATUS_ACCESS_DENIED; 2201 goto hypercall_complete; 2202 } 2203 2204 if (hc.fast && is_xmm_fast_hypercall(&hc)) { 2205 if (unlikely(hv_vcpu->enforce_cpuid && 2206 !(hv_vcpu->cpuid_cache.features_edx & 2207 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) { 2208 kvm_queue_exception(vcpu, UD_VECTOR); 2209 return 1; 2210 } 2211 2212 kvm_hv_hypercall_read_xmm(&hc); 2213 } 2214 2215 switch (hc.code) { 2216 case HVCALL_NOTIFY_LONG_SPIN_WAIT: 2217 if (unlikely(hc.rep)) { 2218 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2219 break; 2220 } 2221 kvm_vcpu_on_spin(vcpu, true); 2222 break; 2223 case HVCALL_SIGNAL_EVENT: 2224 if (unlikely(hc.rep)) { 2225 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2226 break; 2227 } 2228 ret = kvm_hvcall_signal_event(vcpu, &hc); 2229 if (ret != HV_STATUS_INVALID_PORT_ID) 2230 break; 2231 fallthrough; /* maybe userspace knows this conn_id */ 2232 case HVCALL_POST_MESSAGE: 2233 /* don't bother userspace if it has no way to handle it */ 2234 if (unlikely(hc.rep || !to_hv_synic(vcpu)->active)) { 2235 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2236 break; 2237 } 2238 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 2239 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; 2240 vcpu->run->hyperv.u.hcall.input = hc.param; 2241 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa; 2242 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa; 2243 vcpu->arch.complete_userspace_io = 2244 kvm_hv_hypercall_complete_userspace; 2245 return 0; 2246 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST: 2247 if (unlikely(!hc.rep_cnt || hc.rep_idx)) { 2248 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2249 break; 2250 } 2251 ret = kvm_hv_flush_tlb(vcpu, &hc, false); 2252 break; 2253 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE: 2254 if (unlikely(hc.rep)) { 2255 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2256 break; 2257 } 2258 ret = kvm_hv_flush_tlb(vcpu, &hc, false); 2259 break; 2260 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX: 2261 if (unlikely(!hc.rep_cnt || hc.rep_idx)) { 2262 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2263 break; 2264 } 2265 ret = kvm_hv_flush_tlb(vcpu, &hc, true); 2266 break; 2267 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX: 2268 if (unlikely(hc.rep)) { 2269 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2270 break; 2271 } 2272 ret = kvm_hv_flush_tlb(vcpu, &hc, true); 2273 break; 2274 case HVCALL_SEND_IPI: 2275 if (unlikely(hc.rep)) { 2276 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2277 break; 2278 } 2279 ret = kvm_hv_send_ipi(vcpu, &hc, false); 2280 break; 2281 case HVCALL_SEND_IPI_EX: 2282 if (unlikely(hc.fast || hc.rep)) { 2283 ret = HV_STATUS_INVALID_HYPERCALL_INPUT; 2284 break; 2285 } 2286 ret = kvm_hv_send_ipi(vcpu, &hc, true); 2287 break; 2288 case HVCALL_POST_DEBUG_DATA: 2289 case HVCALL_RETRIEVE_DEBUG_DATA: 2290 if (unlikely(hc.fast)) { 2291 ret = HV_STATUS_INVALID_PARAMETER; 2292 break; 2293 } 2294 fallthrough; 2295 case HVCALL_RESET_DEBUG_SESSION: { 2296 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu); 2297 2298 if (!kvm_hv_is_syndbg_enabled(vcpu)) { 2299 ret = HV_STATUS_INVALID_HYPERCALL_CODE; 2300 break; 2301 } 2302 2303 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) { 2304 ret = HV_STATUS_OPERATION_DENIED; 2305 break; 2306 } 2307 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 2308 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL; 2309 vcpu->run->hyperv.u.hcall.input = hc.param; 2310 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa; 2311 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa; 2312 vcpu->arch.complete_userspace_io = 2313 kvm_hv_hypercall_complete_userspace; 2314 return 0; 2315 } 2316 default: 2317 ret = HV_STATUS_INVALID_HYPERCALL_CODE; 2318 break; 2319 } 2320 2321 hypercall_complete: 2322 return kvm_hv_hypercall_complete(vcpu, ret); 2323 } 2324 2325 void kvm_hv_init_vm(struct kvm *kvm) 2326 { 2327 struct kvm_hv *hv = to_kvm_hv(kvm); 2328 2329 mutex_init(&hv->hv_lock); 2330 idr_init(&hv->conn_to_evt); 2331 } 2332 2333 void kvm_hv_destroy_vm(struct kvm *kvm) 2334 { 2335 struct kvm_hv *hv = to_kvm_hv(kvm); 2336 struct eventfd_ctx *eventfd; 2337 int i; 2338 2339 idr_for_each_entry(&hv->conn_to_evt, eventfd, i) 2340 eventfd_ctx_put(eventfd); 2341 idr_destroy(&hv->conn_to_evt); 2342 } 2343 2344 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd) 2345 { 2346 struct kvm_hv *hv = to_kvm_hv(kvm); 2347 struct eventfd_ctx *eventfd; 2348 int ret; 2349 2350 eventfd = eventfd_ctx_fdget(fd); 2351 if (IS_ERR(eventfd)) 2352 return PTR_ERR(eventfd); 2353 2354 mutex_lock(&hv->hv_lock); 2355 ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1, 2356 GFP_KERNEL_ACCOUNT); 2357 mutex_unlock(&hv->hv_lock); 2358 2359 if (ret >= 0) 2360 return 0; 2361 2362 if (ret == -ENOSPC) 2363 ret = -EEXIST; 2364 eventfd_ctx_put(eventfd); 2365 return ret; 2366 } 2367 2368 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id) 2369 { 2370 struct kvm_hv *hv = to_kvm_hv(kvm); 2371 struct eventfd_ctx *eventfd; 2372 2373 mutex_lock(&hv->hv_lock); 2374 eventfd = idr_remove(&hv->conn_to_evt, conn_id); 2375 mutex_unlock(&hv->hv_lock); 2376 2377 if (!eventfd) 2378 return -ENOENT; 2379 2380 synchronize_srcu(&kvm->srcu); 2381 eventfd_ctx_put(eventfd); 2382 return 0; 2383 } 2384 2385 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) 2386 { 2387 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) || 2388 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK)) 2389 return -EINVAL; 2390 2391 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN) 2392 return kvm_hv_eventfd_deassign(kvm, args->conn_id); 2393 return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); 2394 } 2395 2396 int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, 2397 struct kvm_cpuid_entry2 __user *entries) 2398 { 2399 uint16_t evmcs_ver = 0; 2400 struct kvm_cpuid_entry2 cpuid_entries[] = { 2401 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS }, 2402 { .function = HYPERV_CPUID_INTERFACE }, 2403 { .function = HYPERV_CPUID_VERSION }, 2404 { .function = HYPERV_CPUID_FEATURES }, 2405 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO }, 2406 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS }, 2407 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS }, 2408 { .function = HYPERV_CPUID_SYNDBG_INTERFACE }, 2409 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES }, 2410 { .function = HYPERV_CPUID_NESTED_FEATURES }, 2411 }; 2412 int i, nent = ARRAY_SIZE(cpuid_entries); 2413 2414 if (kvm_x86_ops.nested_ops->get_evmcs_version) 2415 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu); 2416 2417 /* Skip NESTED_FEATURES if eVMCS is not supported */ 2418 if (!evmcs_ver) 2419 --nent; 2420 2421 if (cpuid->nent < nent) 2422 return -E2BIG; 2423 2424 if (cpuid->nent > nent) 2425 cpuid->nent = nent; 2426 2427 for (i = 0; i < nent; i++) { 2428 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i]; 2429 u32 signature[3]; 2430 2431 switch (ent->function) { 2432 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS: 2433 memcpy(signature, "Linux KVM Hv", 12); 2434 2435 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 2436 ent->ebx = signature[0]; 2437 ent->ecx = signature[1]; 2438 ent->edx = signature[2]; 2439 break; 2440 2441 case HYPERV_CPUID_INTERFACE: 2442 ent->eax = HYPERV_CPUID_SIGNATURE_EAX; 2443 break; 2444 2445 case HYPERV_CPUID_VERSION: 2446 /* 2447 * We implement some Hyper-V 2016 functions so let's use 2448 * this version. 2449 */ 2450 ent->eax = 0x00003839; 2451 ent->ebx = 0x000A0000; 2452 break; 2453 2454 case HYPERV_CPUID_FEATURES: 2455 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE; 2456 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE; 2457 ent->eax |= HV_MSR_SYNIC_AVAILABLE; 2458 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE; 2459 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE; 2460 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE; 2461 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE; 2462 ent->eax |= HV_MSR_RESET_AVAILABLE; 2463 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE; 2464 ent->eax |= HV_ACCESS_FREQUENCY_MSRS; 2465 ent->eax |= HV_ACCESS_REENLIGHTENMENT; 2466 2467 ent->ebx |= HV_POST_MESSAGES; 2468 ent->ebx |= HV_SIGNAL_EVENTS; 2469 2470 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE; 2471 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE; 2472 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; 2473 2474 ent->ebx |= HV_DEBUGGING; 2475 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE; 2476 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 2477 2478 /* 2479 * Direct Synthetic timers only make sense with in-kernel 2480 * LAPIC 2481 */ 2482 if (!vcpu || lapic_in_kernel(vcpu)) 2483 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE; 2484 2485 break; 2486 2487 case HYPERV_CPUID_ENLIGHTMENT_INFO: 2488 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; 2489 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; 2490 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; 2491 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED; 2492 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED; 2493 if (evmcs_ver) 2494 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; 2495 if (!cpu_smt_possible()) 2496 ent->eax |= HV_X64_NO_NONARCH_CORESHARING; 2497 2498 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED; 2499 /* 2500 * Default number of spinlock retry attempts, matches 2501 * HyperV 2016. 2502 */ 2503 ent->ebx = 0x00000FFF; 2504 2505 break; 2506 2507 case HYPERV_CPUID_IMPLEMENT_LIMITS: 2508 /* Maximum number of virtual processors */ 2509 ent->eax = KVM_MAX_VCPUS; 2510 /* 2511 * Maximum number of logical processors, matches 2512 * HyperV 2016. 2513 */ 2514 ent->ebx = 64; 2515 2516 break; 2517 2518 case HYPERV_CPUID_NESTED_FEATURES: 2519 ent->eax = evmcs_ver; 2520 2521 break; 2522 2523 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS: 2524 memcpy(signature, "Linux KVM Hv", 12); 2525 2526 ent->eax = 0; 2527 ent->ebx = signature[0]; 2528 ent->ecx = signature[1]; 2529 ent->edx = signature[2]; 2530 break; 2531 2532 case HYPERV_CPUID_SYNDBG_INTERFACE: 2533 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 2534 ent->eax = signature[0]; 2535 break; 2536 2537 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES: 2538 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 2539 break; 2540 2541 default: 2542 break; 2543 } 2544 } 2545 2546 if (copy_to_user(entries, cpuid_entries, 2547 nent * sizeof(struct kvm_cpuid_entry2))) 2548 return -EFAULT; 2549 2550 return 0; 2551 } 2552