xref: /openbmc/linux/arch/x86/kvm/cpuid.h (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_CPUID_H
3 #define ARCH_X86_KVM_CPUID_H
4 
5 #include "x86.h"
6 #include <asm/cpu.h>
7 #include <asm/processor.h>
8 
9 extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
10 void kvm_set_cpu_caps(void);
11 
12 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
13 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
14 					      u32 function, u32 index);
15 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
16 			    struct kvm_cpuid_entry2 __user *entries,
17 			    unsigned int type);
18 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
19 			     struct kvm_cpuid *cpuid,
20 			     struct kvm_cpuid_entry __user *entries);
21 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
22 			      struct kvm_cpuid2 *cpuid,
23 			      struct kvm_cpuid_entry2 __user *entries);
24 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
25 			      struct kvm_cpuid2 *cpuid,
26 			      struct kvm_cpuid_entry2 __user *entries);
27 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
28 	       u32 *ecx, u32 *edx, bool exact_only);
29 
30 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);
31 
32 static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
33 {
34 	return vcpu->arch.maxphyaddr;
35 }
36 
37 struct cpuid_reg {
38 	u32 function;
39 	u32 index;
40 	int reg;
41 };
42 
43 static const struct cpuid_reg reverse_cpuid[] = {
44 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
45 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
46 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
47 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
48 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
49 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
50 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
51 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
52 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
53 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
54 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
55 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
56 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
57 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
58 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
59 };
60 
61 /*
62  * Reverse CPUID and its derivatives can only be used for hardware-defined
63  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
64  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
65  * is nonsensical as the bit number/mask is an arbitrary software-defined value
66  * and can't be used by KVM to query/control guest capabilities.  And obviously
67  * the leaf being queried must have an entry in the lookup table.
68  */
69 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
70 {
71 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
72 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
73 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
74 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
75 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
76 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
77 }
78 
79 /*
80  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
81  * the hardware defined bit number (stored in bits 4:0) and a software defined
82  * "word" (stored in bits 31:5).  The word is used to index into arrays of
83  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
84  */
85 static __always_inline u32 __feature_bit(int x86_feature)
86 {
87 	reverse_cpuid_check(x86_feature / 32);
88 	return 1 << (x86_feature & 31);
89 }
90 
91 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
92 
93 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
94 {
95 	unsigned int x86_leaf = x86_feature / 32;
96 
97 	reverse_cpuid_check(x86_leaf);
98 	return reverse_cpuid[x86_leaf];
99 }
100 
101 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
102 						  u32 reg)
103 {
104 	switch (reg) {
105 	case CPUID_EAX:
106 		return &entry->eax;
107 	case CPUID_EBX:
108 		return &entry->ebx;
109 	case CPUID_ECX:
110 		return &entry->ecx;
111 	case CPUID_EDX:
112 		return &entry->edx;
113 	default:
114 		BUILD_BUG();
115 		return NULL;
116 	}
117 }
118 
119 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
120 						unsigned int x86_feature)
121 {
122 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
123 
124 	return __cpuid_entry_get_reg(entry, cpuid.reg);
125 }
126 
127 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
128 					   unsigned int x86_feature)
129 {
130 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
131 
132 	return *reg & __feature_bit(x86_feature);
133 }
134 
135 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
136 					    unsigned int x86_feature)
137 {
138 	return cpuid_entry_get(entry, x86_feature);
139 }
140 
141 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
142 					      unsigned int x86_feature)
143 {
144 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
145 
146 	*reg &= ~__feature_bit(x86_feature);
147 }
148 
149 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
150 					    unsigned int x86_feature)
151 {
152 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
153 
154 	*reg |= __feature_bit(x86_feature);
155 }
156 
157 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
158 					       unsigned int x86_feature,
159 					       bool set)
160 {
161 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
162 
163 	/*
164 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
165 	 * compiler into using CMOV instead of Jcc when possible.
166 	 */
167 	if (set)
168 		*reg |= __feature_bit(x86_feature);
169 	else
170 		*reg &= ~__feature_bit(x86_feature);
171 }
172 
173 static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
174 						 enum cpuid_leafs leaf)
175 {
176 	u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);
177 
178 	BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
179 	*reg = kvm_cpu_caps[leaf];
180 }
181 
182 static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
183 						     unsigned int x86_feature)
184 {
185 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
186 	struct kvm_cpuid_entry2 *entry;
187 
188 	entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index);
189 	if (!entry)
190 		return NULL;
191 
192 	return __cpuid_entry_get_reg(entry, cpuid.reg);
193 }
194 
195 static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
196 					    unsigned int x86_feature)
197 {
198 	u32 *reg;
199 
200 	reg = guest_cpuid_get_register(vcpu, x86_feature);
201 	if (!reg)
202 		return false;
203 
204 	return *reg & __feature_bit(x86_feature);
205 }
206 
207 static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
208 					      unsigned int x86_feature)
209 {
210 	u32 *reg;
211 
212 	reg = guest_cpuid_get_register(vcpu, x86_feature);
213 	if (reg)
214 		*reg &= ~__feature_bit(x86_feature);
215 }
216 
217 static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
218 {
219 	struct kvm_cpuid_entry2 *best;
220 
221 	best = kvm_find_cpuid_entry(vcpu, 0, 0);
222 	return best &&
223 	       (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
224 		is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
225 }
226 
227 static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
228 {
229 	struct kvm_cpuid_entry2 *best;
230 
231 	best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
232 	if (!best)
233 		return -1;
234 
235 	return x86_family(best->eax);
236 }
237 
238 static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
239 {
240 	struct kvm_cpuid_entry2 *best;
241 
242 	best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
243 	if (!best)
244 		return -1;
245 
246 	return x86_model(best->eax);
247 }
248 
249 static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
250 {
251 	struct kvm_cpuid_entry2 *best;
252 
253 	best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
254 	if (!best)
255 		return -1;
256 
257 	return x86_stepping(best->eax);
258 }
259 
260 static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
261 {
262 	return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
263 }
264 
265 static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
266 {
267 	return vcpu->arch.msr_misc_features_enables &
268 		  MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
269 }
270 
271 static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
272 {
273 	unsigned int x86_leaf = x86_feature / 32;
274 
275 	reverse_cpuid_check(x86_leaf);
276 	kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
277 }
278 
279 static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
280 {
281 	unsigned int x86_leaf = x86_feature / 32;
282 
283 	reverse_cpuid_check(x86_leaf);
284 	kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
285 }
286 
287 static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
288 {
289 	unsigned int x86_leaf = x86_feature / 32;
290 
291 	reverse_cpuid_check(x86_leaf);
292 	return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
293 }
294 
295 static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
296 {
297 	return !!kvm_cpu_cap_get(x86_feature);
298 }
299 
300 static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
301 {
302 	if (boot_cpu_has(x86_feature))
303 		kvm_cpu_cap_set(x86_feature);
304 }
305 
306 static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
307 {
308 	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
309 }
310 
311 #endif
312