1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * cpuid support routines 5 * 6 * derived from arch/x86/kvm/x86.c 7 * 8 * Copyright 2011 Red Hat, Inc. and/or its affiliates. 9 * Copyright IBM Corporation, 2008 10 */ 11 12 #include <linux/kvm_host.h> 13 #include <linux/export.h> 14 #include <linux/vmalloc.h> 15 #include <linux/uaccess.h> 16 #include <linux/sched/stat.h> 17 18 #include <asm/processor.h> 19 #include <asm/user.h> 20 #include <asm/fpu/xstate.h> 21 #include "cpuid.h" 22 #include "lapic.h" 23 #include "mmu.h" 24 #include "trace.h" 25 #include "pmu.h" 26 27 static u32 xstate_required_size(u64 xstate_bv, bool compacted) 28 { 29 int feature_bit = 0; 30 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 31 32 xstate_bv &= XFEATURE_MASK_EXTEND; 33 while (xstate_bv) { 34 if (xstate_bv & 0x1) { 35 u32 eax, ebx, ecx, edx, offset; 36 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); 37 offset = compacted ? ret : ebx; 38 ret = max(ret, offset + eax); 39 } 40 41 xstate_bv >>= 1; 42 feature_bit++; 43 } 44 45 return ret; 46 } 47 48 bool kvm_mpx_supported(void) 49 { 50 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) 51 && kvm_x86_ops->mpx_supported()); 52 } 53 EXPORT_SYMBOL_GPL(kvm_mpx_supported); 54 55 u64 kvm_supported_xcr0(void) 56 { 57 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0; 58 59 if (!kvm_mpx_supported()) 60 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 61 62 return xcr0; 63 } 64 65 #define F(x) bit(X86_FEATURE_##x) 66 67 int kvm_update_cpuid(struct kvm_vcpu *vcpu) 68 { 69 struct kvm_cpuid_entry2 *best; 70 struct kvm_lapic *apic = vcpu->arch.apic; 71 72 best = kvm_find_cpuid_entry(vcpu, 1, 0); 73 if (!best) 74 return 0; 75 76 /* Update OSXSAVE bit */ 77 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) { 78 best->ecx &= ~F(OSXSAVE); 79 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) 80 best->ecx |= F(OSXSAVE); 81 } 82 83 best->edx &= ~F(APIC); 84 if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE) 85 best->edx |= F(APIC); 86 87 if (apic) { 88 if (best->ecx & F(TSC_DEADLINE_TIMER)) 89 apic->lapic_timer.timer_mode_mask = 3 << 17; 90 else 91 apic->lapic_timer.timer_mode_mask = 1 << 17; 92 } 93 94 best = kvm_find_cpuid_entry(vcpu, 7, 0); 95 if (best) { 96 /* Update OSPKE bit */ 97 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) { 98 best->ecx &= ~F(OSPKE); 99 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) 100 best->ecx |= F(OSPKE); 101 } 102 } 103 104 best = kvm_find_cpuid_entry(vcpu, 0xD, 0); 105 if (!best) { 106 vcpu->arch.guest_supported_xcr0 = 0; 107 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 108 } else { 109 vcpu->arch.guest_supported_xcr0 = 110 (best->eax | ((u64)best->edx << 32)) & 111 kvm_supported_xcr0(); 112 vcpu->arch.guest_xstate_size = best->ebx = 113 xstate_required_size(vcpu->arch.xcr0, false); 114 } 115 116 best = kvm_find_cpuid_entry(vcpu, 0xD, 1); 117 if (best && (best->eax & (F(XSAVES) | F(XSAVEC)))) 118 best->ebx = xstate_required_size(vcpu->arch.xcr0, true); 119 120 /* 121 * The existing code assumes virtual address is 48-bit or 57-bit in the 122 * canonical address checks; exit if it is ever changed. 123 */ 124 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); 125 if (best) { 126 int vaddr_bits = (best->eax & 0xff00) >> 8; 127 128 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) 129 return -EINVAL; 130 } 131 132 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0); 133 if (kvm_hlt_in_guest(vcpu->kvm) && best && 134 (best->eax & (1 << KVM_FEATURE_PV_UNHALT))) 135 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); 136 137 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) { 138 best = kvm_find_cpuid_entry(vcpu, 0x1, 0); 139 if (best) { 140 if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT) 141 best->ecx |= F(MWAIT); 142 else 143 best->ecx &= ~F(MWAIT); 144 } 145 } 146 147 /* Update physical-address width */ 148 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 149 kvm_mmu_reset_context(vcpu); 150 151 kvm_pmu_refresh(vcpu); 152 return 0; 153 } 154 155 static int is_efer_nx(void) 156 { 157 unsigned long long efer = 0; 158 159 rdmsrl_safe(MSR_EFER, &efer); 160 return efer & EFER_NX; 161 } 162 163 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) 164 { 165 int i; 166 struct kvm_cpuid_entry2 *e, *entry; 167 168 entry = NULL; 169 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { 170 e = &vcpu->arch.cpuid_entries[i]; 171 if (e->function == 0x80000001) { 172 entry = e; 173 break; 174 } 175 } 176 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) { 177 entry->edx &= ~F(NX); 178 printk(KERN_INFO "kvm: guest NX capability removed\n"); 179 } 180 } 181 182 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) 183 { 184 struct kvm_cpuid_entry2 *best; 185 186 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); 187 if (!best || best->eax < 0x80000008) 188 goto not_found; 189 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); 190 if (best) 191 return best->eax & 0xff; 192 not_found: 193 return 36; 194 } 195 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr); 196 197 /* when an old userspace process fills a new kernel module */ 198 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, 199 struct kvm_cpuid *cpuid, 200 struct kvm_cpuid_entry __user *entries) 201 { 202 int r, i; 203 struct kvm_cpuid_entry *cpuid_entries = NULL; 204 205 r = -E2BIG; 206 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 207 goto out; 208 r = -ENOMEM; 209 if (cpuid->nent) { 210 cpuid_entries = 211 vmalloc(array_size(sizeof(struct kvm_cpuid_entry), 212 cpuid->nent)); 213 if (!cpuid_entries) 214 goto out; 215 r = -EFAULT; 216 if (copy_from_user(cpuid_entries, entries, 217 cpuid->nent * sizeof(struct kvm_cpuid_entry))) 218 goto out; 219 } 220 for (i = 0; i < cpuid->nent; i++) { 221 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; 222 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; 223 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; 224 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; 225 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; 226 vcpu->arch.cpuid_entries[i].index = 0; 227 vcpu->arch.cpuid_entries[i].flags = 0; 228 vcpu->arch.cpuid_entries[i].padding[0] = 0; 229 vcpu->arch.cpuid_entries[i].padding[1] = 0; 230 vcpu->arch.cpuid_entries[i].padding[2] = 0; 231 } 232 vcpu->arch.cpuid_nent = cpuid->nent; 233 cpuid_fix_nx_cap(vcpu); 234 kvm_apic_set_version(vcpu); 235 kvm_x86_ops->cpuid_update(vcpu); 236 r = kvm_update_cpuid(vcpu); 237 238 out: 239 vfree(cpuid_entries); 240 return r; 241 } 242 243 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, 244 struct kvm_cpuid2 *cpuid, 245 struct kvm_cpuid_entry2 __user *entries) 246 { 247 int r; 248 249 r = -E2BIG; 250 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 251 goto out; 252 r = -EFAULT; 253 if (copy_from_user(&vcpu->arch.cpuid_entries, entries, 254 cpuid->nent * sizeof(struct kvm_cpuid_entry2))) 255 goto out; 256 vcpu->arch.cpuid_nent = cpuid->nent; 257 kvm_apic_set_version(vcpu); 258 kvm_x86_ops->cpuid_update(vcpu); 259 r = kvm_update_cpuid(vcpu); 260 out: 261 return r; 262 } 263 264 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, 265 struct kvm_cpuid2 *cpuid, 266 struct kvm_cpuid_entry2 __user *entries) 267 { 268 int r; 269 270 r = -E2BIG; 271 if (cpuid->nent < vcpu->arch.cpuid_nent) 272 goto out; 273 r = -EFAULT; 274 if (copy_to_user(entries, &vcpu->arch.cpuid_entries, 275 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) 276 goto out; 277 return 0; 278 279 out: 280 cpuid->nent = vcpu->arch.cpuid_nent; 281 return r; 282 } 283 284 static void cpuid_mask(u32 *word, int wordnum) 285 { 286 *word &= boot_cpu_data.x86_capability[wordnum]; 287 } 288 289 static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function, 290 u32 index) 291 { 292 entry->function = function; 293 entry->index = index; 294 entry->flags = 0; 295 296 cpuid_count(entry->function, entry->index, 297 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); 298 299 switch (function) { 300 case 2: 301 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; 302 break; 303 case 4: 304 case 7: 305 case 0xb: 306 case 0xd: 307 case 0xf: 308 case 0x10: 309 case 0x12: 310 case 0x14: 311 case 0x17: 312 case 0x18: 313 case 0x1f: 314 case 0x8000001d: 315 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 316 break; 317 } 318 } 319 320 static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, 321 u32 func, int *nent, int maxnent) 322 { 323 entry->function = func; 324 entry->index = 0; 325 entry->flags = 0; 326 327 switch (func) { 328 case 0: 329 entry->eax = 7; 330 ++*nent; 331 break; 332 case 1: 333 entry->ecx = F(MOVBE); 334 ++*nent; 335 break; 336 case 7: 337 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 338 entry->eax = 0; 339 entry->ecx = F(RDPID); 340 ++*nent; 341 default: 342 break; 343 } 344 345 return 0; 346 } 347 348 static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index) 349 { 350 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0; 351 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0; 352 unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0; 353 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0; 354 unsigned f_la57; 355 356 /* cpuid 7.0.ebx */ 357 const u32 kvm_cpuid_7_0_ebx_x86_features = 358 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) | 359 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) | 360 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) | 361 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) | 362 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt; 363 364 /* cpuid 7.0.ecx*/ 365 const u32 kvm_cpuid_7_0_ecx_x86_features = 366 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) | 367 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) | 368 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) | 369 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/; 370 371 /* cpuid 7.0.edx*/ 372 const u32 kvm_cpuid_7_0_edx_x86_features = 373 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | 374 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) | 375 F(MD_CLEAR); 376 377 /* cpuid 7.1.eax */ 378 const u32 kvm_cpuid_7_1_eax_x86_features = 379 F(AVX512_BF16); 380 381 switch (index) { 382 case 0: 383 entry->eax = min(entry->eax, 1u); 384 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features; 385 cpuid_mask(&entry->ebx, CPUID_7_0_EBX); 386 /* TSC_ADJUST is emulated */ 387 entry->ebx |= F(TSC_ADJUST); 388 389 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features; 390 f_la57 = entry->ecx & F(LA57); 391 cpuid_mask(&entry->ecx, CPUID_7_ECX); 392 /* Set LA57 based on hardware capability. */ 393 entry->ecx |= f_la57; 394 entry->ecx |= f_umip; 395 /* PKU is not yet implemented for shadow paging. */ 396 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) 397 entry->ecx &= ~F(PKU); 398 399 entry->edx &= kvm_cpuid_7_0_edx_x86_features; 400 cpuid_mask(&entry->edx, CPUID_7_EDX); 401 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS)) 402 entry->edx |= F(SPEC_CTRL); 403 if (boot_cpu_has(X86_FEATURE_STIBP)) 404 entry->edx |= F(INTEL_STIBP); 405 if (boot_cpu_has(X86_FEATURE_SSBD)) 406 entry->edx |= F(SPEC_CTRL_SSBD); 407 /* 408 * We emulate ARCH_CAPABILITIES in software even 409 * if the host doesn't support it. 410 */ 411 entry->edx |= F(ARCH_CAPABILITIES); 412 break; 413 case 1: 414 entry->eax &= kvm_cpuid_7_1_eax_x86_features; 415 entry->ebx = 0; 416 entry->ecx = 0; 417 entry->edx = 0; 418 break; 419 default: 420 WARN_ON_ONCE(1); 421 entry->eax = 0; 422 entry->ebx = 0; 423 entry->ecx = 0; 424 entry->edx = 0; 425 break; 426 } 427 } 428 429 static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function, 430 int *nent, int maxnent) 431 { 432 int r; 433 unsigned f_nx = is_efer_nx() ? F(NX) : 0; 434 #ifdef CONFIG_X86_64 435 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL) 436 ? F(GBPAGES) : 0; 437 unsigned f_lm = F(LM); 438 #else 439 unsigned f_gbpages = 0; 440 unsigned f_lm = 0; 441 #endif 442 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0; 443 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0; 444 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0; 445 446 /* cpuid 1.edx */ 447 const u32 kvm_cpuid_1_edx_x86_features = 448 F(FPU) | F(VME) | F(DE) | F(PSE) | 449 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 450 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | 451 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 452 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | 453 0 /* Reserved, DS, ACPI */ | F(MMX) | 454 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | 455 0 /* HTT, TM, Reserved, PBE */; 456 /* cpuid 0x80000001.edx */ 457 const u32 kvm_cpuid_8000_0001_edx_x86_features = 458 F(FPU) | F(VME) | F(DE) | F(PSE) | 459 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 460 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | 461 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 462 F(PAT) | F(PSE36) | 0 /* Reserved */ | 463 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | 464 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp | 465 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); 466 /* cpuid 1.ecx */ 467 const u32 kvm_cpuid_1_ecx_x86_features = 468 /* NOTE: MONITOR (and MWAIT) are emulated as NOP, 469 * but *not* advertised to guests via CPUID ! */ 470 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | 471 0 /* DS-CPL, VMX, SMX, EST */ | 472 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | 473 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ | 474 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | 475 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | 476 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | 477 F(F16C) | F(RDRAND); 478 /* cpuid 0x80000001.ecx */ 479 const u32 kvm_cpuid_8000_0001_ecx_x86_features = 480 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | 481 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | 482 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | 483 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) | 484 F(TOPOEXT) | F(PERFCTR_CORE); 485 486 /* cpuid 0x80000008.ebx */ 487 const u32 kvm_cpuid_8000_0008_ebx_x86_features = 488 F(CLZERO) | F(XSAVEERPTR) | 489 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | 490 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON); 491 492 /* cpuid 0xC0000001.edx */ 493 const u32 kvm_cpuid_C000_0001_edx_x86_features = 494 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | 495 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | 496 F(PMM) | F(PMM_EN); 497 498 /* cpuid 0xD.1.eax */ 499 const u32 kvm_cpuid_D_1_eax_x86_features = 500 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves; 501 502 /* all calls to cpuid_count() should be made on the same cpu */ 503 get_cpu(); 504 505 r = -E2BIG; 506 507 if (*nent >= maxnent) 508 goto out; 509 510 do_host_cpuid(entry, function, 0); 511 ++*nent; 512 513 switch (function) { 514 case 0: 515 /* Limited to the highest leaf implemented in KVM. */ 516 entry->eax = min(entry->eax, 0x1fU); 517 break; 518 case 1: 519 entry->edx &= kvm_cpuid_1_edx_x86_features; 520 cpuid_mask(&entry->edx, CPUID_1_EDX); 521 entry->ecx &= kvm_cpuid_1_ecx_x86_features; 522 cpuid_mask(&entry->ecx, CPUID_1_ECX); 523 /* we support x2apic emulation even if host does not support 524 * it since we emulate x2apic in software */ 525 entry->ecx |= F(X2APIC); 526 break; 527 /* function 2 entries are STATEFUL. That is, repeated cpuid commands 528 * may return different values. This forces us to get_cpu() before 529 * issuing the first command, and also to emulate this annoying behavior 530 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ 531 case 2: { 532 int t, times = entry->eax & 0xff; 533 534 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; 535 for (t = 1; t < times; ++t) { 536 if (*nent >= maxnent) 537 goto out; 538 539 do_host_cpuid(&entry[t], function, 0); 540 ++*nent; 541 } 542 break; 543 } 544 /* functions 4 and 0x8000001d have additional index. */ 545 case 4: 546 case 0x8000001d: { 547 int i, cache_type; 548 549 /* read more entries until cache_type is zero */ 550 for (i = 1; ; ++i) { 551 if (*nent >= maxnent) 552 goto out; 553 554 cache_type = entry[i - 1].eax & 0x1f; 555 if (!cache_type) 556 break; 557 do_host_cpuid(&entry[i], function, i); 558 ++*nent; 559 } 560 break; 561 } 562 case 6: /* Thermal management */ 563 entry->eax = 0x4; /* allow ARAT */ 564 entry->ebx = 0; 565 entry->ecx = 0; 566 entry->edx = 0; 567 break; 568 /* function 7 has additional index. */ 569 case 7: { 570 int i; 571 572 for (i = 0; ; ) { 573 do_cpuid_7_mask(&entry[i], i); 574 if (i == entry->eax) 575 break; 576 if (*nent >= maxnent) 577 goto out; 578 579 ++i; 580 do_host_cpuid(&entry[i], function, i); 581 ++*nent; 582 } 583 break; 584 } 585 case 9: 586 break; 587 case 0xa: { /* Architectural Performance Monitoring */ 588 struct x86_pmu_capability cap; 589 union cpuid10_eax eax; 590 union cpuid10_edx edx; 591 592 perf_get_x86_pmu_capability(&cap); 593 594 /* 595 * Only support guest architectural pmu on a host 596 * with architectural pmu. 597 */ 598 if (!cap.version) 599 memset(&cap, 0, sizeof(cap)); 600 601 eax.split.version_id = min(cap.version, 2); 602 eax.split.num_counters = cap.num_counters_gp; 603 eax.split.bit_width = cap.bit_width_gp; 604 eax.split.mask_length = cap.events_mask_len; 605 606 edx.split.num_counters_fixed = cap.num_counters_fixed; 607 edx.split.bit_width_fixed = cap.bit_width_fixed; 608 edx.split.reserved = 0; 609 610 entry->eax = eax.full; 611 entry->ebx = cap.events_mask; 612 entry->ecx = 0; 613 entry->edx = edx.full; 614 break; 615 } 616 /* 617 * Per Intel's SDM, the 0x1f is a superset of 0xb, 618 * thus they can be handled by common code. 619 */ 620 case 0x1f: 621 case 0xb: { 622 int i; 623 624 /* 625 * We filled in entry[0] for CPUID(EAX=<function>, 626 * ECX=00H) above. If its level type (ECX[15:8]) is 627 * zero, then the leaf is unimplemented, and we're 628 * done. Otherwise, continue to populate entries 629 * until the level type (ECX[15:8]) of the previously 630 * added entry is zero. 631 */ 632 for (i = 1; entry[i - 1].ecx & 0xff00; ++i) { 633 if (*nent >= maxnent) 634 goto out; 635 636 do_host_cpuid(&entry[i], function, i); 637 ++*nent; 638 } 639 break; 640 } 641 case 0xd: { 642 int idx, i; 643 u64 supported = kvm_supported_xcr0(); 644 645 entry->eax &= supported; 646 entry->ebx = xstate_required_size(supported, false); 647 entry->ecx = entry->ebx; 648 entry->edx &= supported >> 32; 649 if (!supported) 650 break; 651 652 for (idx = 1, i = 1; idx < 64; ++idx) { 653 u64 mask = ((u64)1 << idx); 654 if (*nent >= maxnent) 655 goto out; 656 657 do_host_cpuid(&entry[i], function, idx); 658 if (idx == 1) { 659 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features; 660 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX); 661 entry[i].ebx = 0; 662 if (entry[i].eax & (F(XSAVES)|F(XSAVEC))) 663 entry[i].ebx = 664 xstate_required_size(supported, 665 true); 666 } else { 667 if (entry[i].eax == 0 || !(supported & mask)) 668 continue; 669 if (WARN_ON_ONCE(entry[i].ecx & 1)) 670 continue; 671 } 672 entry[i].ecx = 0; 673 entry[i].edx = 0; 674 ++*nent; 675 ++i; 676 } 677 break; 678 } 679 /* Intel PT */ 680 case 0x14: { 681 int t, times = entry->eax; 682 683 if (!f_intel_pt) 684 break; 685 686 for (t = 1; t <= times; ++t) { 687 if (*nent >= maxnent) 688 goto out; 689 do_host_cpuid(&entry[t], function, t); 690 ++*nent; 691 } 692 break; 693 } 694 case KVM_CPUID_SIGNATURE: { 695 static const char signature[12] = "KVMKVMKVM\0\0"; 696 const u32 *sigptr = (const u32 *)signature; 697 entry->eax = KVM_CPUID_FEATURES; 698 entry->ebx = sigptr[0]; 699 entry->ecx = sigptr[1]; 700 entry->edx = sigptr[2]; 701 break; 702 } 703 case KVM_CPUID_FEATURES: 704 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | 705 (1 << KVM_FEATURE_NOP_IO_DELAY) | 706 (1 << KVM_FEATURE_CLOCKSOURCE2) | 707 (1 << KVM_FEATURE_ASYNC_PF) | 708 (1 << KVM_FEATURE_PV_EOI) | 709 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | 710 (1 << KVM_FEATURE_PV_UNHALT) | 711 (1 << KVM_FEATURE_PV_TLB_FLUSH) | 712 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | 713 (1 << KVM_FEATURE_PV_SEND_IPI) | 714 (1 << KVM_FEATURE_POLL_CONTROL) | 715 (1 << KVM_FEATURE_PV_SCHED_YIELD); 716 717 if (sched_info_on()) 718 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); 719 720 entry->ebx = 0; 721 entry->ecx = 0; 722 entry->edx = 0; 723 break; 724 case 0x80000000: 725 entry->eax = min(entry->eax, 0x8000001f); 726 break; 727 case 0x80000001: 728 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features; 729 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX); 730 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features; 731 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX); 732 break; 733 case 0x80000007: /* Advanced power management */ 734 /* invariant TSC is CPUID.80000007H:EDX[8] */ 735 entry->edx &= (1 << 8); 736 /* mask against host */ 737 entry->edx &= boot_cpu_data.x86_power; 738 entry->eax = entry->ebx = entry->ecx = 0; 739 break; 740 case 0x80000008: { 741 unsigned g_phys_as = (entry->eax >> 16) & 0xff; 742 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); 743 unsigned phys_as = entry->eax & 0xff; 744 745 if (!g_phys_as) 746 g_phys_as = phys_as; 747 entry->eax = g_phys_as | (virt_as << 8); 748 entry->edx = 0; 749 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features; 750 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX); 751 /* 752 * AMD has separate bits for each SPEC_CTRL bit. 753 * arch/x86/kernel/cpu/bugs.c is kind enough to 754 * record that in cpufeatures so use them. 755 */ 756 if (boot_cpu_has(X86_FEATURE_IBPB)) 757 entry->ebx |= F(AMD_IBPB); 758 if (boot_cpu_has(X86_FEATURE_IBRS)) 759 entry->ebx |= F(AMD_IBRS); 760 if (boot_cpu_has(X86_FEATURE_STIBP)) 761 entry->ebx |= F(AMD_STIBP); 762 if (boot_cpu_has(X86_FEATURE_SSBD)) 763 entry->ebx |= F(AMD_SSBD); 764 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 765 entry->ebx |= F(AMD_SSB_NO); 766 /* 767 * The preference is to use SPEC CTRL MSR instead of the 768 * VIRT_SPEC MSR. 769 */ 770 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 771 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 772 entry->ebx |= F(VIRT_SSBD); 773 break; 774 } 775 case 0x80000019: 776 entry->ecx = entry->edx = 0; 777 break; 778 case 0x8000001a: 779 case 0x8000001e: 780 break; 781 /*Add support for Centaur's CPUID instruction*/ 782 case 0xC0000000: 783 /*Just support up to 0xC0000004 now*/ 784 entry->eax = min(entry->eax, 0xC0000004); 785 break; 786 case 0xC0000001: 787 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features; 788 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX); 789 break; 790 case 3: /* Processor serial number */ 791 case 5: /* MONITOR/MWAIT */ 792 case 0xC0000002: 793 case 0xC0000003: 794 case 0xC0000004: 795 default: 796 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 797 break; 798 } 799 800 kvm_x86_ops->set_supported_cpuid(function, entry); 801 802 r = 0; 803 804 out: 805 put_cpu(); 806 807 return r; 808 } 809 810 static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func, 811 int *nent, int maxnent, unsigned int type) 812 { 813 if (type == KVM_GET_EMULATED_CPUID) 814 return __do_cpuid_func_emulated(entry, func, nent, maxnent); 815 816 return __do_cpuid_func(entry, func, nent, maxnent); 817 } 818 819 #undef F 820 821 struct kvm_cpuid_param { 822 u32 func; 823 bool (*qualifier)(const struct kvm_cpuid_param *param); 824 }; 825 826 static bool is_centaur_cpu(const struct kvm_cpuid_param *param) 827 { 828 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR; 829 } 830 831 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, 832 __u32 num_entries, unsigned int ioctl_type) 833 { 834 int i; 835 __u32 pad[3]; 836 837 if (ioctl_type != KVM_GET_EMULATED_CPUID) 838 return false; 839 840 /* 841 * We want to make sure that ->padding is being passed clean from 842 * userspace in case we want to use it for something in the future. 843 * 844 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we 845 * have to give ourselves satisfied only with the emulated side. /me 846 * sheds a tear. 847 */ 848 for (i = 0; i < num_entries; i++) { 849 if (copy_from_user(pad, entries[i].padding, sizeof(pad))) 850 return true; 851 852 if (pad[0] || pad[1] || pad[2]) 853 return true; 854 } 855 return false; 856 } 857 858 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, 859 struct kvm_cpuid_entry2 __user *entries, 860 unsigned int type) 861 { 862 struct kvm_cpuid_entry2 *cpuid_entries; 863 int limit, nent = 0, r = -E2BIG, i; 864 u32 func; 865 static const struct kvm_cpuid_param param[] = { 866 { .func = 0 }, 867 { .func = 0x80000000 }, 868 { .func = 0xC0000000, .qualifier = is_centaur_cpu }, 869 { .func = KVM_CPUID_SIGNATURE }, 870 }; 871 872 if (cpuid->nent < 1) 873 goto out; 874 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 875 cpuid->nent = KVM_MAX_CPUID_ENTRIES; 876 877 if (sanity_check_entries(entries, cpuid->nent, type)) 878 return -EINVAL; 879 880 r = -ENOMEM; 881 cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2), 882 cpuid->nent)); 883 if (!cpuid_entries) 884 goto out; 885 886 r = 0; 887 for (i = 0; i < ARRAY_SIZE(param); i++) { 888 const struct kvm_cpuid_param *ent = ¶m[i]; 889 890 if (ent->qualifier && !ent->qualifier(ent)) 891 continue; 892 893 r = do_cpuid_func(&cpuid_entries[nent], ent->func, 894 &nent, cpuid->nent, type); 895 896 if (r) 897 goto out_free; 898 899 limit = cpuid_entries[nent - 1].eax; 900 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func) 901 r = do_cpuid_func(&cpuid_entries[nent], func, 902 &nent, cpuid->nent, type); 903 904 if (r) 905 goto out_free; 906 } 907 908 r = -EFAULT; 909 if (copy_to_user(entries, cpuid_entries, 910 nent * sizeof(struct kvm_cpuid_entry2))) 911 goto out_free; 912 cpuid->nent = nent; 913 r = 0; 914 915 out_free: 916 vfree(cpuid_entries); 917 out: 918 return r; 919 } 920 921 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) 922 { 923 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; 924 struct kvm_cpuid_entry2 *ej; 925 int j = i; 926 int nent = vcpu->arch.cpuid_nent; 927 928 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; 929 /* when no next entry is found, the current entry[i] is reselected */ 930 do { 931 j = (j + 1) % nent; 932 ej = &vcpu->arch.cpuid_entries[j]; 933 } while (ej->function != e->function); 934 935 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; 936 937 return j; 938 } 939 940 /* find an entry with matching function, matching index (if needed), and that 941 * should be read next (if it's stateful) */ 942 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, 943 u32 function, u32 index) 944 { 945 if (e->function != function) 946 return 0; 947 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) 948 return 0; 949 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && 950 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) 951 return 0; 952 return 1; 953 } 954 955 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, 956 u32 function, u32 index) 957 { 958 int i; 959 struct kvm_cpuid_entry2 *best = NULL; 960 961 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { 962 struct kvm_cpuid_entry2 *e; 963 964 e = &vcpu->arch.cpuid_entries[i]; 965 if (is_matching_cpuid_entry(e, function, index)) { 966 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) 967 move_to_next_stateful_cpuid_entry(vcpu, i); 968 best = e; 969 break; 970 } 971 } 972 return best; 973 } 974 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); 975 976 /* 977 * If the basic or extended CPUID leaf requested is higher than the 978 * maximum supported basic or extended leaf, respectively, then it is 979 * out of range. 980 */ 981 static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function) 982 { 983 struct kvm_cpuid_entry2 *max; 984 985 max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0); 986 return max && function <= max->eax; 987 } 988 989 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, 990 u32 *ecx, u32 *edx, bool check_limit) 991 { 992 u32 function = *eax, index = *ecx; 993 struct kvm_cpuid_entry2 *entry; 994 struct kvm_cpuid_entry2 *max; 995 bool found; 996 997 entry = kvm_find_cpuid_entry(vcpu, function, index); 998 found = entry; 999 /* 1000 * Intel CPUID semantics treats any query for an out-of-range 1001 * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were 1002 * requested. AMD CPUID semantics returns all zeroes for any 1003 * undefined leaf, whether or not the leaf is in range. 1004 */ 1005 if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) && 1006 !cpuid_function_in_range(vcpu, function)) { 1007 max = kvm_find_cpuid_entry(vcpu, 0, 0); 1008 if (max) { 1009 function = max->eax; 1010 entry = kvm_find_cpuid_entry(vcpu, function, index); 1011 } 1012 } 1013 if (entry) { 1014 *eax = entry->eax; 1015 *ebx = entry->ebx; 1016 *ecx = entry->ecx; 1017 *edx = entry->edx; 1018 } else { 1019 *eax = *ebx = *ecx = *edx = 0; 1020 /* 1021 * When leaf 0BH or 1FH is defined, CL is pass-through 1022 * and EDX is always the x2APIC ID, even for undefined 1023 * subleaves. Index 1 will exist iff the leaf is 1024 * implemented, so we pass through CL iff leaf 1 1025 * exists. EDX can be copied from any existing index. 1026 */ 1027 if (function == 0xb || function == 0x1f) { 1028 entry = kvm_find_cpuid_entry(vcpu, function, 1); 1029 if (entry) { 1030 *ecx = index & 0xff; 1031 *edx = entry->edx; 1032 } 1033 } 1034 } 1035 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found); 1036 return found; 1037 } 1038 EXPORT_SYMBOL_GPL(kvm_cpuid); 1039 1040 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) 1041 { 1042 u32 eax, ebx, ecx, edx; 1043 1044 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) 1045 return 1; 1046 1047 eax = kvm_rax_read(vcpu); 1048 ecx = kvm_rcx_read(vcpu); 1049 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true); 1050 kvm_rax_write(vcpu, eax); 1051 kvm_rbx_write(vcpu, ebx); 1052 kvm_rcx_write(vcpu, ecx); 1053 kvm_rdx_write(vcpu, edx); 1054 return kvm_skip_emulated_instruction(vcpu); 1055 } 1056 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); 1057