xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17 
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26 
27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29 	int feature_bit = 0;
30 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31 
32 	xstate_bv &= XFEATURE_MASK_EXTEND;
33 	while (xstate_bv) {
34 		if (xstate_bv & 0x1) {
35 		        u32 eax, ebx, ecx, edx, offset;
36 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37 			offset = compacted ? ret : ebx;
38 			ret = max(ret, offset + eax);
39 		}
40 
41 		xstate_bv >>= 1;
42 		feature_bit++;
43 	}
44 
45 	return ret;
46 }
47 
48 bool kvm_mpx_supported(void)
49 {
50 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51 		 && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54 
55 u64 kvm_supported_xcr0(void)
56 {
57 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58 
59 	if (!kvm_mpx_supported())
60 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61 
62 	return xcr0;
63 }
64 
65 #define F(x) bit(X86_FEATURE_##x)
66 
67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69 	struct kvm_cpuid_entry2 *best;
70 	struct kvm_lapic *apic = vcpu->arch.apic;
71 
72 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
73 	if (!best)
74 		return 0;
75 
76 	/* Update OSXSAVE bit */
77 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78 		best->ecx &= ~F(OSXSAVE);
79 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80 			best->ecx |= F(OSXSAVE);
81 	}
82 
83 	best->edx &= ~F(APIC);
84 	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85 		best->edx |= F(APIC);
86 
87 	if (apic) {
88 		if (best->ecx & F(TSC_DEADLINE_TIMER))
89 			apic->lapic_timer.timer_mode_mask = 3 << 17;
90 		else
91 			apic->lapic_timer.timer_mode_mask = 1 << 17;
92 	}
93 
94 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
95 	if (best) {
96 		/* Update OSPKE bit */
97 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98 			best->ecx &= ~F(OSPKE);
99 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100 				best->ecx |= F(OSPKE);
101 		}
102 	}
103 
104 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105 	if (!best) {
106 		vcpu->arch.guest_supported_xcr0 = 0;
107 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108 	} else {
109 		vcpu->arch.guest_supported_xcr0 =
110 			(best->eax | ((u64)best->edx << 32)) &
111 			kvm_supported_xcr0();
112 		vcpu->arch.guest_xstate_size = best->ebx =
113 			xstate_required_size(vcpu->arch.xcr0, false);
114 	}
115 
116 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119 
120 	/*
121 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
122 	 * canonical address checks; exit if it is ever changed.
123 	 */
124 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 	if (best) {
126 		int vaddr_bits = (best->eax & 0xff00) >> 8;
127 
128 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129 			return -EINVAL;
130 	}
131 
132 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136 
137 	/* Update physical-address width */
138 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
139 	kvm_mmu_reset_context(vcpu);
140 
141 	kvm_pmu_refresh(vcpu);
142 	return 0;
143 }
144 
145 static int is_efer_nx(void)
146 {
147 	unsigned long long efer = 0;
148 
149 	rdmsrl_safe(MSR_EFER, &efer);
150 	return efer & EFER_NX;
151 }
152 
153 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
154 {
155 	int i;
156 	struct kvm_cpuid_entry2 *e, *entry;
157 
158 	entry = NULL;
159 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
160 		e = &vcpu->arch.cpuid_entries[i];
161 		if (e->function == 0x80000001) {
162 			entry = e;
163 			break;
164 		}
165 	}
166 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
167 		entry->edx &= ~F(NX);
168 		printk(KERN_INFO "kvm: guest NX capability removed\n");
169 	}
170 }
171 
172 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
173 {
174 	struct kvm_cpuid_entry2 *best;
175 
176 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
177 	if (!best || best->eax < 0x80000008)
178 		goto not_found;
179 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
180 	if (best)
181 		return best->eax & 0xff;
182 not_found:
183 	return 36;
184 }
185 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
186 
187 /* when an old userspace process fills a new kernel module */
188 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
189 			     struct kvm_cpuid *cpuid,
190 			     struct kvm_cpuid_entry __user *entries)
191 {
192 	int r, i;
193 	struct kvm_cpuid_entry *cpuid_entries = NULL;
194 
195 	r = -E2BIG;
196 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
197 		goto out;
198 	r = -ENOMEM;
199 	if (cpuid->nent) {
200 		cpuid_entries =
201 			vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
202 					   cpuid->nent));
203 		if (!cpuid_entries)
204 			goto out;
205 		r = -EFAULT;
206 		if (copy_from_user(cpuid_entries, entries,
207 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
208 			goto out;
209 	}
210 	for (i = 0; i < cpuid->nent; i++) {
211 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
212 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
213 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
214 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
215 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
216 		vcpu->arch.cpuid_entries[i].index = 0;
217 		vcpu->arch.cpuid_entries[i].flags = 0;
218 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
219 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
220 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
221 	}
222 	vcpu->arch.cpuid_nent = cpuid->nent;
223 	cpuid_fix_nx_cap(vcpu);
224 	kvm_apic_set_version(vcpu);
225 	kvm_x86_ops->cpuid_update(vcpu);
226 	r = kvm_update_cpuid(vcpu);
227 
228 out:
229 	vfree(cpuid_entries);
230 	return r;
231 }
232 
233 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
234 			      struct kvm_cpuid2 *cpuid,
235 			      struct kvm_cpuid_entry2 __user *entries)
236 {
237 	int r;
238 
239 	r = -E2BIG;
240 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
241 		goto out;
242 	r = -EFAULT;
243 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
244 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
245 		goto out;
246 	vcpu->arch.cpuid_nent = cpuid->nent;
247 	kvm_apic_set_version(vcpu);
248 	kvm_x86_ops->cpuid_update(vcpu);
249 	r = kvm_update_cpuid(vcpu);
250 out:
251 	return r;
252 }
253 
254 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
255 			      struct kvm_cpuid2 *cpuid,
256 			      struct kvm_cpuid_entry2 __user *entries)
257 {
258 	int r;
259 
260 	r = -E2BIG;
261 	if (cpuid->nent < vcpu->arch.cpuid_nent)
262 		goto out;
263 	r = -EFAULT;
264 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
265 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
266 		goto out;
267 	return 0;
268 
269 out:
270 	cpuid->nent = vcpu->arch.cpuid_nent;
271 	return r;
272 }
273 
274 static void cpuid_mask(u32 *word, int wordnum)
275 {
276 	*word &= boot_cpu_data.x86_capability[wordnum];
277 }
278 
279 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
280 			   u32 index)
281 {
282 	entry->function = function;
283 	entry->index = index;
284 	cpuid_count(entry->function, entry->index,
285 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
286 	entry->flags = 0;
287 }
288 
289 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
290 				   u32 func, u32 index, int *nent, int maxnent)
291 {
292 	switch (func) {
293 	case 0:
294 		entry->eax = 7;
295 		++*nent;
296 		break;
297 	case 1:
298 		entry->ecx = F(MOVBE);
299 		++*nent;
300 		break;
301 	case 7:
302 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
303 		if (index == 0)
304 			entry->ecx = F(RDPID);
305 		++*nent;
306 	default:
307 		break;
308 	}
309 
310 	entry->function = func;
311 	entry->index = index;
312 
313 	return 0;
314 }
315 
316 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
317 				 u32 index, int *nent, int maxnent)
318 {
319 	int r;
320 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
321 #ifdef CONFIG_X86_64
322 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
323 				? F(GBPAGES) : 0;
324 	unsigned f_lm = F(LM);
325 #else
326 	unsigned f_gbpages = 0;
327 	unsigned f_lm = 0;
328 #endif
329 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
330 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
331 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
332 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
333 	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
334 	unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
335 	unsigned f_la57 = 0;
336 
337 	/* cpuid 1.edx */
338 	const u32 kvm_cpuid_1_edx_x86_features =
339 		F(FPU) | F(VME) | F(DE) | F(PSE) |
340 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
341 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
342 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
343 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
344 		0 /* Reserved, DS, ACPI */ | F(MMX) |
345 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
346 		0 /* HTT, TM, Reserved, PBE */;
347 	/* cpuid 0x80000001.edx */
348 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
349 		F(FPU) | F(VME) | F(DE) | F(PSE) |
350 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
351 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
352 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
353 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
354 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
355 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
356 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
357 	/* cpuid 1.ecx */
358 	const u32 kvm_cpuid_1_ecx_x86_features =
359 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
360 		 * but *not* advertised to guests via CPUID ! */
361 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
362 		0 /* DS-CPL, VMX, SMX, EST */ |
363 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
364 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
365 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
366 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
367 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
368 		F(F16C) | F(RDRAND);
369 	/* cpuid 0x80000001.ecx */
370 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
371 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
372 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
373 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
374 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
375 		F(TOPOEXT) | F(PERFCTR_CORE);
376 
377 	/* cpuid 0x80000008.ebx */
378 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
379 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
380 		F(AMD_SSB_NO) | F(AMD_STIBP);
381 
382 	/* cpuid 0xC0000001.edx */
383 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
384 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
385 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
386 		F(PMM) | F(PMM_EN);
387 
388 	/* cpuid 7.0.ebx */
389 	const u32 kvm_cpuid_7_0_ebx_x86_features =
390 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
391 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
392 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
393 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
394 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
395 
396 	/* cpuid 0xD.1.eax */
397 	const u32 kvm_cpuid_D_1_eax_x86_features =
398 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
399 
400 	/* cpuid 7.0.ecx*/
401 	const u32 kvm_cpuid_7_0_ecx_x86_features =
402 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
403 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
404 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
405 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B);
406 
407 	/* cpuid 7.0.edx*/
408 	const u32 kvm_cpuid_7_0_edx_x86_features =
409 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
410 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
411 		F(MD_CLEAR);
412 
413 	/* all calls to cpuid_count() should be made on the same cpu */
414 	get_cpu();
415 
416 	r = -E2BIG;
417 
418 	if (*nent >= maxnent)
419 		goto out;
420 
421 	do_cpuid_1_ent(entry, function, index);
422 	++*nent;
423 
424 	switch (function) {
425 	case 0:
426 		entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd));
427 		break;
428 	case 1:
429 		entry->edx &= kvm_cpuid_1_edx_x86_features;
430 		cpuid_mask(&entry->edx, CPUID_1_EDX);
431 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
432 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
433 		/* we support x2apic emulation even if host does not support
434 		 * it since we emulate x2apic in software */
435 		entry->ecx |= F(X2APIC);
436 		break;
437 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
438 	 * may return different values. This forces us to get_cpu() before
439 	 * issuing the first command, and also to emulate this annoying behavior
440 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
441 	case 2: {
442 		int t, times = entry->eax & 0xff;
443 
444 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
445 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
446 		for (t = 1; t < times; ++t) {
447 			if (*nent >= maxnent)
448 				goto out;
449 
450 			do_cpuid_1_ent(&entry[t], function, 0);
451 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
452 			++*nent;
453 		}
454 		break;
455 	}
456 	/* functions 4 and 0x8000001d have additional index. */
457 	case 4:
458 	case 0x8000001d: {
459 		int i, cache_type;
460 
461 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
462 		/* read more entries until cache_type is zero */
463 		for (i = 1; ; ++i) {
464 			if (*nent >= maxnent)
465 				goto out;
466 
467 			cache_type = entry[i - 1].eax & 0x1f;
468 			if (!cache_type)
469 				break;
470 			do_cpuid_1_ent(&entry[i], function, i);
471 			entry[i].flags |=
472 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
473 			++*nent;
474 		}
475 		break;
476 	}
477 	case 6: /* Thermal management */
478 		entry->eax = 0x4; /* allow ARAT */
479 		entry->ebx = 0;
480 		entry->ecx = 0;
481 		entry->edx = 0;
482 		break;
483 	case 7: {
484 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
485 		/* Mask ebx against host capability word 9 */
486 		if (index == 0) {
487 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
488 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
489 			// TSC_ADJUST is emulated
490 			entry->ebx |= F(TSC_ADJUST);
491 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
492 			f_la57 = entry->ecx & F(LA57);
493 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
494 			/* Set LA57 based on hardware capability. */
495 			entry->ecx |= f_la57;
496 			entry->ecx |= f_umip;
497 			/* PKU is not yet implemented for shadow paging. */
498 			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
499 				entry->ecx &= ~F(PKU);
500 			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
501 			cpuid_mask(&entry->edx, CPUID_7_EDX);
502 			/*
503 			 * We emulate ARCH_CAPABILITIES in software even
504 			 * if the host doesn't support it.
505 			 */
506 			entry->edx |= F(ARCH_CAPABILITIES);
507 		} else {
508 			entry->ebx = 0;
509 			entry->ecx = 0;
510 			entry->edx = 0;
511 		}
512 		entry->eax = 0;
513 		break;
514 	}
515 	case 9:
516 		break;
517 	case 0xa: { /* Architectural Performance Monitoring */
518 		struct x86_pmu_capability cap;
519 		union cpuid10_eax eax;
520 		union cpuid10_edx edx;
521 
522 		perf_get_x86_pmu_capability(&cap);
523 
524 		/*
525 		 * Only support guest architectural pmu on a host
526 		 * with architectural pmu.
527 		 */
528 		if (!cap.version)
529 			memset(&cap, 0, sizeof(cap));
530 
531 		eax.split.version_id = min(cap.version, 2);
532 		eax.split.num_counters = cap.num_counters_gp;
533 		eax.split.bit_width = cap.bit_width_gp;
534 		eax.split.mask_length = cap.events_mask_len;
535 
536 		edx.split.num_counters_fixed = cap.num_counters_fixed;
537 		edx.split.bit_width_fixed = cap.bit_width_fixed;
538 		edx.split.reserved = 0;
539 
540 		entry->eax = eax.full;
541 		entry->ebx = cap.events_mask;
542 		entry->ecx = 0;
543 		entry->edx = edx.full;
544 		break;
545 	}
546 	/* function 0xb has additional index. */
547 	case 0xb: {
548 		int i, level_type;
549 
550 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
551 		/* read more entries until level_type is zero */
552 		for (i = 1; ; ++i) {
553 			if (*nent >= maxnent)
554 				goto out;
555 
556 			level_type = entry[i - 1].ecx & 0xff00;
557 			if (!level_type)
558 				break;
559 			do_cpuid_1_ent(&entry[i], function, i);
560 			entry[i].flags |=
561 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
562 			++*nent;
563 		}
564 		break;
565 	}
566 	case 0xd: {
567 		int idx, i;
568 		u64 supported = kvm_supported_xcr0();
569 
570 		entry->eax &= supported;
571 		entry->ebx = xstate_required_size(supported, false);
572 		entry->ecx = entry->ebx;
573 		entry->edx &= supported >> 32;
574 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
575 		if (!supported)
576 			break;
577 
578 		for (idx = 1, i = 1; idx < 64; ++idx) {
579 			u64 mask = ((u64)1 << idx);
580 			if (*nent >= maxnent)
581 				goto out;
582 
583 			do_cpuid_1_ent(&entry[i], function, idx);
584 			if (idx == 1) {
585 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
586 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
587 				entry[i].ebx = 0;
588 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
589 					entry[i].ebx =
590 						xstate_required_size(supported,
591 								     true);
592 			} else {
593 				if (entry[i].eax == 0 || !(supported & mask))
594 					continue;
595 				if (WARN_ON_ONCE(entry[i].ecx & 1))
596 					continue;
597 			}
598 			entry[i].ecx = 0;
599 			entry[i].edx = 0;
600 			entry[i].flags |=
601 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
602 			++*nent;
603 			++i;
604 		}
605 		break;
606 	}
607 	/* Intel PT */
608 	case 0x14: {
609 		int t, times = entry->eax;
610 
611 		if (!f_intel_pt)
612 			break;
613 
614 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
615 		for (t = 1; t <= times; ++t) {
616 			if (*nent >= maxnent)
617 				goto out;
618 			do_cpuid_1_ent(&entry[t], function, t);
619 			entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
620 			++*nent;
621 		}
622 		break;
623 	}
624 	case KVM_CPUID_SIGNATURE: {
625 		static const char signature[12] = "KVMKVMKVM\0\0";
626 		const u32 *sigptr = (const u32 *)signature;
627 		entry->eax = KVM_CPUID_FEATURES;
628 		entry->ebx = sigptr[0];
629 		entry->ecx = sigptr[1];
630 		entry->edx = sigptr[2];
631 		break;
632 	}
633 	case KVM_CPUID_FEATURES:
634 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
635 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
636 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
637 			     (1 << KVM_FEATURE_ASYNC_PF) |
638 			     (1 << KVM_FEATURE_PV_EOI) |
639 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
640 			     (1 << KVM_FEATURE_PV_UNHALT) |
641 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
642 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
643 			     (1 << KVM_FEATURE_PV_SEND_IPI);
644 
645 		if (sched_info_on())
646 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
647 
648 		entry->ebx = 0;
649 		entry->ecx = 0;
650 		entry->edx = 0;
651 		break;
652 	case 0x80000000:
653 		entry->eax = min(entry->eax, 0x8000001f);
654 		break;
655 	case 0x80000001:
656 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
657 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
658 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
659 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
660 		break;
661 	case 0x80000007: /* Advanced power management */
662 		/* invariant TSC is CPUID.80000007H:EDX[8] */
663 		entry->edx &= (1 << 8);
664 		/* mask against host */
665 		entry->edx &= boot_cpu_data.x86_power;
666 		entry->eax = entry->ebx = entry->ecx = 0;
667 		break;
668 	case 0x80000008: {
669 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
670 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
671 		unsigned phys_as = entry->eax & 0xff;
672 
673 		if (!g_phys_as)
674 			g_phys_as = phys_as;
675 		entry->eax = g_phys_as | (virt_as << 8);
676 		entry->edx = 0;
677 		/*
678 		 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
679 		 * hardware cpuid
680 		 */
681 		if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
682 			entry->ebx |= F(AMD_IBPB);
683 		if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
684 			entry->ebx |= F(AMD_IBRS);
685 		if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
686 			entry->ebx |= F(VIRT_SSBD);
687 		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
688 		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
689 		/*
690 		 * The preference is to use SPEC CTRL MSR instead of the
691 		 * VIRT_SPEC MSR.
692 		 */
693 		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
694 		    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
695 			entry->ebx |= F(VIRT_SSBD);
696 		break;
697 	}
698 	case 0x80000019:
699 		entry->ecx = entry->edx = 0;
700 		break;
701 	case 0x8000001a:
702 	case 0x8000001e:
703 		break;
704 	/*Add support for Centaur's CPUID instruction*/
705 	case 0xC0000000:
706 		/*Just support up to 0xC0000004 now*/
707 		entry->eax = min(entry->eax, 0xC0000004);
708 		break;
709 	case 0xC0000001:
710 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
711 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
712 		break;
713 	case 3: /* Processor serial number */
714 	case 5: /* MONITOR/MWAIT */
715 	case 0xC0000002:
716 	case 0xC0000003:
717 	case 0xC0000004:
718 	default:
719 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
720 		break;
721 	}
722 
723 	kvm_x86_ops->set_supported_cpuid(function, entry);
724 
725 	r = 0;
726 
727 out:
728 	put_cpu();
729 
730 	return r;
731 }
732 
733 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
734 			u32 idx, int *nent, int maxnent, unsigned int type)
735 {
736 	if (type == KVM_GET_EMULATED_CPUID)
737 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
738 
739 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
740 }
741 
742 #undef F
743 
744 struct kvm_cpuid_param {
745 	u32 func;
746 	u32 idx;
747 	bool has_leaf_count;
748 	bool (*qualifier)(const struct kvm_cpuid_param *param);
749 };
750 
751 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
752 {
753 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
754 }
755 
756 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
757 				 __u32 num_entries, unsigned int ioctl_type)
758 {
759 	int i;
760 	__u32 pad[3];
761 
762 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
763 		return false;
764 
765 	/*
766 	 * We want to make sure that ->padding is being passed clean from
767 	 * userspace in case we want to use it for something in the future.
768 	 *
769 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
770 	 * have to give ourselves satisfied only with the emulated side. /me
771 	 * sheds a tear.
772 	 */
773 	for (i = 0; i < num_entries; i++) {
774 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
775 			return true;
776 
777 		if (pad[0] || pad[1] || pad[2])
778 			return true;
779 	}
780 	return false;
781 }
782 
783 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
784 			    struct kvm_cpuid_entry2 __user *entries,
785 			    unsigned int type)
786 {
787 	struct kvm_cpuid_entry2 *cpuid_entries;
788 	int limit, nent = 0, r = -E2BIG, i;
789 	u32 func;
790 	static const struct kvm_cpuid_param param[] = {
791 		{ .func = 0, .has_leaf_count = true },
792 		{ .func = 0x80000000, .has_leaf_count = true },
793 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
794 		{ .func = KVM_CPUID_SIGNATURE },
795 		{ .func = KVM_CPUID_FEATURES },
796 	};
797 
798 	if (cpuid->nent < 1)
799 		goto out;
800 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
801 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
802 
803 	if (sanity_check_entries(entries, cpuid->nent, type))
804 		return -EINVAL;
805 
806 	r = -ENOMEM;
807 	cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
808 					   cpuid->nent));
809 	if (!cpuid_entries)
810 		goto out;
811 
812 	r = 0;
813 	for (i = 0; i < ARRAY_SIZE(param); i++) {
814 		const struct kvm_cpuid_param *ent = &param[i];
815 
816 		if (ent->qualifier && !ent->qualifier(ent))
817 			continue;
818 
819 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
820 				&nent, cpuid->nent, type);
821 
822 		if (r)
823 			goto out_free;
824 
825 		if (!ent->has_leaf_count)
826 			continue;
827 
828 		limit = cpuid_entries[nent - 1].eax;
829 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
830 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
831 				     &nent, cpuid->nent, type);
832 
833 		if (r)
834 			goto out_free;
835 	}
836 
837 	r = -EFAULT;
838 	if (copy_to_user(entries, cpuid_entries,
839 			 nent * sizeof(struct kvm_cpuid_entry2)))
840 		goto out_free;
841 	cpuid->nent = nent;
842 	r = 0;
843 
844 out_free:
845 	vfree(cpuid_entries);
846 out:
847 	return r;
848 }
849 
850 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
851 {
852 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
853 	struct kvm_cpuid_entry2 *ej;
854 	int j = i;
855 	int nent = vcpu->arch.cpuid_nent;
856 
857 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
858 	/* when no next entry is found, the current entry[i] is reselected */
859 	do {
860 		j = (j + 1) % nent;
861 		ej = &vcpu->arch.cpuid_entries[j];
862 	} while (ej->function != e->function);
863 
864 	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
865 
866 	return j;
867 }
868 
869 /* find an entry with matching function, matching index (if needed), and that
870  * should be read next (if it's stateful) */
871 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
872 	u32 function, u32 index)
873 {
874 	if (e->function != function)
875 		return 0;
876 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
877 		return 0;
878 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
879 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
880 		return 0;
881 	return 1;
882 }
883 
884 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
885 					      u32 function, u32 index)
886 {
887 	int i;
888 	struct kvm_cpuid_entry2 *best = NULL;
889 
890 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
891 		struct kvm_cpuid_entry2 *e;
892 
893 		e = &vcpu->arch.cpuid_entries[i];
894 		if (is_matching_cpuid_entry(e, function, index)) {
895 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
896 				move_to_next_stateful_cpuid_entry(vcpu, i);
897 			best = e;
898 			break;
899 		}
900 	}
901 	return best;
902 }
903 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
904 
905 /*
906  * If no match is found, check whether we exceed the vCPU's limit
907  * and return the content of the highest valid _standard_ leaf instead.
908  * This is to satisfy the CPUID specification.
909  */
910 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
911                                                   u32 function, u32 index)
912 {
913 	struct kvm_cpuid_entry2 *maxlevel;
914 
915 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
916 	if (!maxlevel || maxlevel->eax >= function)
917 		return NULL;
918 	if (function & 0x80000000) {
919 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
920 		if (!maxlevel)
921 			return NULL;
922 	}
923 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
924 }
925 
926 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
927 	       u32 *ecx, u32 *edx, bool check_limit)
928 {
929 	u32 function = *eax, index = *ecx;
930 	struct kvm_cpuid_entry2 *best;
931 	bool entry_found = true;
932 
933 	best = kvm_find_cpuid_entry(vcpu, function, index);
934 
935 	if (!best) {
936 		entry_found = false;
937 		if (!check_limit)
938 			goto out;
939 
940 		best = check_cpuid_limit(vcpu, function, index);
941 	}
942 
943 out:
944 	if (best) {
945 		*eax = best->eax;
946 		*ebx = best->ebx;
947 		*ecx = best->ecx;
948 		*edx = best->edx;
949 	} else
950 		*eax = *ebx = *ecx = *edx = 0;
951 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
952 	return entry_found;
953 }
954 EXPORT_SYMBOL_GPL(kvm_cpuid);
955 
956 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
957 {
958 	u32 eax, ebx, ecx, edx;
959 
960 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
961 		return 1;
962 
963 	eax = kvm_rax_read(vcpu);
964 	ecx = kvm_rcx_read(vcpu);
965 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
966 	kvm_rax_write(vcpu, eax);
967 	kvm_rbx_write(vcpu, ebx);
968 	kvm_rcx_write(vcpu, ecx);
969 	kvm_rdx_write(vcpu, edx);
970 	return kvm_skip_emulated_instruction(vcpu);
971 }
972 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
973