1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * cpuid support routines 5 * 6 * derived from arch/x86/kvm/x86.c 7 * 8 * Copyright 2011 Red Hat, Inc. and/or its affiliates. 9 * Copyright IBM Corporation, 2008 10 */ 11 12 #include <linux/kvm_host.h> 13 #include <linux/export.h> 14 #include <linux/vmalloc.h> 15 #include <linux/uaccess.h> 16 #include <linux/sched/stat.h> 17 18 #include <asm/processor.h> 19 #include <asm/user.h> 20 #include <asm/fpu/xstate.h> 21 #include <asm/sgx.h> 22 #include "cpuid.h" 23 #include "lapic.h" 24 #include "mmu.h" 25 #include "trace.h" 26 #include "pmu.h" 27 28 /* 29 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be 30 * aligned to sizeof(unsigned long) because it's not accessed via bitops. 31 */ 32 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly; 33 EXPORT_SYMBOL_GPL(kvm_cpu_caps); 34 35 static u32 xstate_required_size(u64 xstate_bv, bool compacted) 36 { 37 int feature_bit = 0; 38 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 39 40 xstate_bv &= XFEATURE_MASK_EXTEND; 41 while (xstate_bv) { 42 if (xstate_bv & 0x1) { 43 u32 eax, ebx, ecx, edx, offset; 44 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); 45 offset = compacted ? ret : ebx; 46 ret = max(ret, offset + eax); 47 } 48 49 xstate_bv >>= 1; 50 feature_bit++; 51 } 52 53 return ret; 54 } 55 56 /* 57 * This one is tied to SSB in the user API, and not 58 * visible in /proc/cpuinfo. 59 */ 60 #define KVM_X86_FEATURE_PSFD (13*32+28) /* Predictive Store Forwarding Disable */ 61 62 #define F feature_bit 63 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0) 64 65 66 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find( 67 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index) 68 { 69 struct kvm_cpuid_entry2 *e; 70 int i; 71 72 for (i = 0; i < nent; i++) { 73 e = &entries[i]; 74 75 if (e->function == function && 76 (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)) 77 return e; 78 } 79 80 return NULL; 81 } 82 83 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent) 84 { 85 struct kvm_cpuid_entry2 *best; 86 87 /* 88 * The existing code assumes virtual address is 48-bit or 57-bit in the 89 * canonical address checks; exit if it is ever changed. 90 */ 91 best = cpuid_entry2_find(entries, nent, 0x80000008, 0); 92 if (best) { 93 int vaddr_bits = (best->eax & 0xff00) >> 8; 94 95 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) 96 return -EINVAL; 97 } 98 99 return 0; 100 } 101 102 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu) 103 { 104 u32 function; 105 struct kvm_cpuid_entry2 *entry; 106 107 vcpu->arch.kvm_cpuid_base = 0; 108 109 for_each_possible_hypervisor_cpuid_base(function) { 110 entry = kvm_find_cpuid_entry(vcpu, function, 0); 111 112 if (entry) { 113 u32 signature[3]; 114 115 signature[0] = entry->ebx; 116 signature[1] = entry->ecx; 117 signature[2] = entry->edx; 118 119 BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE)); 120 if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) { 121 vcpu->arch.kvm_cpuid_base = function; 122 break; 123 } 124 } 125 } 126 } 127 128 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu) 129 { 130 u32 base = vcpu->arch.kvm_cpuid_base; 131 132 if (!base) 133 return NULL; 134 135 return kvm_find_cpuid_entry(vcpu, base | KVM_CPUID_FEATURES, 0); 136 } 137 138 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu) 139 { 140 struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu); 141 142 /* 143 * save the feature bitmap to avoid cpuid lookup for every PV 144 * operation 145 */ 146 if (best) 147 vcpu->arch.pv_cpuid.features = best->eax; 148 } 149 150 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu) 151 { 152 struct kvm_cpuid_entry2 *best; 153 154 best = kvm_find_cpuid_entry(vcpu, 1, 0); 155 if (best) { 156 /* Update OSXSAVE bit */ 157 if (boot_cpu_has(X86_FEATURE_XSAVE)) 158 cpuid_entry_change(best, X86_FEATURE_OSXSAVE, 159 kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)); 160 161 cpuid_entry_change(best, X86_FEATURE_APIC, 162 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE); 163 } 164 165 best = kvm_find_cpuid_entry(vcpu, 7, 0); 166 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) 167 cpuid_entry_change(best, X86_FEATURE_OSPKE, 168 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)); 169 170 best = kvm_find_cpuid_entry(vcpu, 0xD, 0); 171 if (best) 172 best->ebx = xstate_required_size(vcpu->arch.xcr0, false); 173 174 best = kvm_find_cpuid_entry(vcpu, 0xD, 1); 175 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) || 176 cpuid_entry_has(best, X86_FEATURE_XSAVEC))) 177 best->ebx = xstate_required_size(vcpu->arch.xcr0, true); 178 179 best = kvm_find_kvm_cpuid_features(vcpu); 180 if (kvm_hlt_in_guest(vcpu->kvm) && best && 181 (best->eax & (1 << KVM_FEATURE_PV_UNHALT))) 182 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); 183 184 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) { 185 best = kvm_find_cpuid_entry(vcpu, 0x1, 0); 186 if (best) 187 cpuid_entry_change(best, X86_FEATURE_MWAIT, 188 vcpu->arch.ia32_misc_enable_msr & 189 MSR_IA32_MISC_ENABLE_MWAIT); 190 } 191 } 192 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime); 193 194 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 195 { 196 struct kvm_lapic *apic = vcpu->arch.apic; 197 struct kvm_cpuid_entry2 *best; 198 199 best = kvm_find_cpuid_entry(vcpu, 1, 0); 200 if (best && apic) { 201 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER)) 202 apic->lapic_timer.timer_mode_mask = 3 << 17; 203 else 204 apic->lapic_timer.timer_mode_mask = 1 << 17; 205 206 kvm_apic_set_version(vcpu); 207 } 208 209 best = kvm_find_cpuid_entry(vcpu, 0xD, 0); 210 if (!best) 211 vcpu->arch.guest_supported_xcr0 = 0; 212 else 213 vcpu->arch.guest_supported_xcr0 = 214 (best->eax | ((u64)best->edx << 32)) & supported_xcr0; 215 216 /* 217 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate 218 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's 219 * requested XCR0 value. The enclave's XFRM must be a subset of XCRO 220 * at the time of EENTER, thus adjust the allowed XFRM by the guest's 221 * supported XCR0. Similar to XCR0 handling, FP and SSE are forced to 222 * '1' even on CPUs that don't support XSAVE. 223 */ 224 best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1); 225 if (best) { 226 best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff; 227 best->edx &= vcpu->arch.guest_supported_xcr0 >> 32; 228 best->ecx |= XFEATURE_MASK_FPSSE; 229 } 230 231 kvm_update_pv_runtime(vcpu); 232 233 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 234 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 235 236 kvm_pmu_refresh(vcpu); 237 vcpu->arch.cr4_guest_rsvd_bits = 238 __cr4_reserved_bits(guest_cpuid_has, vcpu); 239 240 kvm_hv_set_cpuid(vcpu); 241 242 /* Invoke the vendor callback only after the above state is updated. */ 243 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu); 244 245 /* 246 * Except for the MMU, which needs to do its thing any vendor specific 247 * adjustments to the reserved GPA bits. 248 */ 249 kvm_mmu_after_set_cpuid(vcpu); 250 } 251 252 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) 253 { 254 struct kvm_cpuid_entry2 *best; 255 256 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); 257 if (!best || best->eax < 0x80000008) 258 goto not_found; 259 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); 260 if (best) 261 return best->eax & 0xff; 262 not_found: 263 return 36; 264 } 265 266 /* 267 * This "raw" version returns the reserved GPA bits without any adjustments for 268 * encryption technologies that usurp bits. The raw mask should be used if and 269 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs. 270 */ 271 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu) 272 { 273 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63); 274 } 275 276 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, 277 int nent) 278 { 279 int r; 280 281 r = kvm_check_cpuid(e2, nent); 282 if (r) 283 return r; 284 285 kvfree(vcpu->arch.cpuid_entries); 286 vcpu->arch.cpuid_entries = e2; 287 vcpu->arch.cpuid_nent = nent; 288 289 kvm_update_kvm_cpuid_base(vcpu); 290 kvm_update_cpuid_runtime(vcpu); 291 kvm_vcpu_after_set_cpuid(vcpu); 292 293 return 0; 294 } 295 296 /* when an old userspace process fills a new kernel module */ 297 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, 298 struct kvm_cpuid *cpuid, 299 struct kvm_cpuid_entry __user *entries) 300 { 301 int r, i; 302 struct kvm_cpuid_entry *e = NULL; 303 struct kvm_cpuid_entry2 *e2 = NULL; 304 305 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 306 return -E2BIG; 307 308 if (cpuid->nent) { 309 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent)); 310 if (IS_ERR(e)) 311 return PTR_ERR(e); 312 313 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT); 314 if (!e2) { 315 r = -ENOMEM; 316 goto out_free_cpuid; 317 } 318 } 319 for (i = 0; i < cpuid->nent; i++) { 320 e2[i].function = e[i].function; 321 e2[i].eax = e[i].eax; 322 e2[i].ebx = e[i].ebx; 323 e2[i].ecx = e[i].ecx; 324 e2[i].edx = e[i].edx; 325 e2[i].index = 0; 326 e2[i].flags = 0; 327 e2[i].padding[0] = 0; 328 e2[i].padding[1] = 0; 329 e2[i].padding[2] = 0; 330 } 331 332 r = kvm_set_cpuid(vcpu, e2, cpuid->nent); 333 if (r) 334 kvfree(e2); 335 336 out_free_cpuid: 337 kvfree(e); 338 339 return r; 340 } 341 342 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, 343 struct kvm_cpuid2 *cpuid, 344 struct kvm_cpuid_entry2 __user *entries) 345 { 346 struct kvm_cpuid_entry2 *e2 = NULL; 347 int r; 348 349 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 350 return -E2BIG; 351 352 if (cpuid->nent) { 353 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent)); 354 if (IS_ERR(e2)) 355 return PTR_ERR(e2); 356 } 357 358 r = kvm_set_cpuid(vcpu, e2, cpuid->nent); 359 if (r) 360 kvfree(e2); 361 362 return r; 363 } 364 365 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, 366 struct kvm_cpuid2 *cpuid, 367 struct kvm_cpuid_entry2 __user *entries) 368 { 369 int r; 370 371 r = -E2BIG; 372 if (cpuid->nent < vcpu->arch.cpuid_nent) 373 goto out; 374 r = -EFAULT; 375 if (copy_to_user(entries, vcpu->arch.cpuid_entries, 376 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) 377 goto out; 378 return 0; 379 380 out: 381 cpuid->nent = vcpu->arch.cpuid_nent; 382 return r; 383 } 384 385 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */ 386 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf) 387 { 388 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); 389 struct kvm_cpuid_entry2 entry; 390 391 reverse_cpuid_check(leaf); 392 393 cpuid_count(cpuid.function, cpuid.index, 394 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx); 395 396 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg); 397 } 398 399 static __always_inline 400 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask) 401 { 402 /* Use kvm_cpu_cap_mask for non-scattered leafs. */ 403 BUILD_BUG_ON(leaf < NCAPINTS); 404 405 kvm_cpu_caps[leaf] = mask; 406 407 __kvm_cpu_cap_mask(leaf); 408 } 409 410 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask) 411 { 412 /* Use kvm_cpu_cap_init_scattered for scattered leafs. */ 413 BUILD_BUG_ON(leaf >= NCAPINTS); 414 415 kvm_cpu_caps[leaf] &= mask; 416 417 __kvm_cpu_cap_mask(leaf); 418 } 419 420 void kvm_set_cpu_caps(void) 421 { 422 #ifdef CONFIG_X86_64 423 unsigned int f_gbpages = F(GBPAGES); 424 unsigned int f_lm = F(LM); 425 #else 426 unsigned int f_gbpages = 0; 427 unsigned int f_lm = 0; 428 #endif 429 memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps)); 430 431 BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) > 432 sizeof(boot_cpu_data.x86_capability)); 433 434 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability, 435 sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps))); 436 437 kvm_cpu_cap_mask(CPUID_1_ECX, 438 /* 439 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not* 440 * advertised to guests via CPUID! 441 */ 442 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | 443 0 /* DS-CPL, VMX, SMX, EST */ | 444 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | 445 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) | 446 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | 447 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | 448 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | 449 F(F16C) | F(RDRAND) 450 ); 451 /* KVM emulates x2apic in software irrespective of host support. */ 452 kvm_cpu_cap_set(X86_FEATURE_X2APIC); 453 454 kvm_cpu_cap_mask(CPUID_1_EDX, 455 F(FPU) | F(VME) | F(DE) | F(PSE) | 456 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 457 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | 458 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 459 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | 460 0 /* Reserved, DS, ACPI */ | F(MMX) | 461 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | 462 0 /* HTT, TM, Reserved, PBE */ 463 ); 464 465 kvm_cpu_cap_mask(CPUID_7_0_EBX, 466 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) | 467 F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) | 468 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) | 469 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) | 470 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/ 471 ); 472 473 kvm_cpu_cap_mask(CPUID_7_ECX, 474 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) | 475 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) | 476 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) | 477 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ | 478 F(SGX_LC) | F(BUS_LOCK_DETECT) 479 ); 480 /* Set LA57 based on hardware capability. */ 481 if (cpuid_ecx(7) & F(LA57)) 482 kvm_cpu_cap_set(X86_FEATURE_LA57); 483 484 /* 485 * PKU not yet implemented for shadow paging and requires OSPKE 486 * to be set on the host. Clear it if that is not the case 487 */ 488 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) 489 kvm_cpu_cap_clear(X86_FEATURE_PKU); 490 491 kvm_cpu_cap_mask(CPUID_7_EDX, 492 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | 493 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) | 494 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) | 495 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) 496 ); 497 498 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */ 499 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST); 500 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES); 501 502 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS)) 503 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL); 504 if (boot_cpu_has(X86_FEATURE_STIBP)) 505 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP); 506 if (boot_cpu_has(X86_FEATURE_AMD_SSBD)) 507 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD); 508 509 kvm_cpu_cap_mask(CPUID_7_1_EAX, 510 F(AVX_VNNI) | F(AVX512_BF16) 511 ); 512 513 kvm_cpu_cap_mask(CPUID_D_1_EAX, 514 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) 515 ); 516 517 kvm_cpu_cap_init_scattered(CPUID_12_EAX, 518 SF(SGX1) | SF(SGX2) 519 ); 520 521 kvm_cpu_cap_mask(CPUID_8000_0001_ECX, 522 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | 523 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | 524 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | 525 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) | 526 F(TOPOEXT) | F(PERFCTR_CORE) 527 ); 528 529 kvm_cpu_cap_mask(CPUID_8000_0001_EDX, 530 F(FPU) | F(VME) | F(DE) | F(PSE) | 531 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 532 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | 533 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 534 F(PAT) | F(PSE36) | 0 /* Reserved */ | 535 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | 536 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) | 537 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW) 538 ); 539 540 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64)) 541 kvm_cpu_cap_set(X86_FEATURE_GBPAGES); 542 543 kvm_cpu_cap_mask(CPUID_8000_0008_EBX, 544 F(CLZERO) | F(XSAVEERPTR) | 545 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | 546 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) | 547 __feature_bit(KVM_X86_FEATURE_PSFD) 548 ); 549 550 /* 551 * AMD has separate bits for each SPEC_CTRL bit. 552 * arch/x86/kernel/cpu/bugs.c is kind enough to 553 * record that in cpufeatures so use them. 554 */ 555 if (boot_cpu_has(X86_FEATURE_IBPB)) 556 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB); 557 if (boot_cpu_has(X86_FEATURE_IBRS)) 558 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS); 559 if (boot_cpu_has(X86_FEATURE_STIBP)) 560 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP); 561 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD)) 562 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD); 563 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 564 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO); 565 /* 566 * The preference is to use SPEC CTRL MSR instead of the 567 * VIRT_SPEC MSR. 568 */ 569 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 570 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 571 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 572 573 /* 574 * Hide all SVM features by default, SVM will set the cap bits for 575 * features it emulates and/or exposes for L1. 576 */ 577 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0); 578 579 kvm_cpu_cap_mask(CPUID_8000_001F_EAX, 580 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) | 581 F(SME_COHERENT)); 582 583 kvm_cpu_cap_mask(CPUID_C000_0001_EDX, 584 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | 585 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | 586 F(PMM) | F(PMM_EN) 587 ); 588 589 /* 590 * Hide RDTSCP and RDPID if either feature is reported as supported but 591 * probing MSR_TSC_AUX failed. This is purely a sanity check and 592 * should never happen, but the guest will likely crash if RDTSCP or 593 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in 594 * the past. For example, the sanity check may fire if this instance of 595 * KVM is running as L1 on top of an older, broken KVM. 596 */ 597 if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) || 598 kvm_cpu_cap_has(X86_FEATURE_RDPID)) && 599 !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) { 600 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 601 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 602 } 603 } 604 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps); 605 606 struct kvm_cpuid_array { 607 struct kvm_cpuid_entry2 *entries; 608 int maxnent; 609 int nent; 610 }; 611 612 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array, 613 u32 function, u32 index) 614 { 615 struct kvm_cpuid_entry2 *entry; 616 617 if (array->nent >= array->maxnent) 618 return NULL; 619 620 entry = &array->entries[array->nent++]; 621 622 entry->function = function; 623 entry->index = index; 624 entry->flags = 0; 625 626 cpuid_count(entry->function, entry->index, 627 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); 628 629 switch (function) { 630 case 4: 631 case 7: 632 case 0xb: 633 case 0xd: 634 case 0xf: 635 case 0x10: 636 case 0x12: 637 case 0x14: 638 case 0x17: 639 case 0x18: 640 case 0x1f: 641 case 0x8000001d: 642 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 643 break; 644 } 645 646 return entry; 647 } 648 649 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func) 650 { 651 struct kvm_cpuid_entry2 *entry; 652 653 if (array->nent >= array->maxnent) 654 return -E2BIG; 655 656 entry = &array->entries[array->nent]; 657 entry->function = func; 658 entry->index = 0; 659 entry->flags = 0; 660 661 switch (func) { 662 case 0: 663 entry->eax = 7; 664 ++array->nent; 665 break; 666 case 1: 667 entry->ecx = F(MOVBE); 668 ++array->nent; 669 break; 670 case 7: 671 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 672 entry->eax = 0; 673 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 674 entry->ecx = F(RDPID); 675 ++array->nent; 676 break; 677 default: 678 break; 679 } 680 681 return 0; 682 } 683 684 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function) 685 { 686 struct kvm_cpuid_entry2 *entry; 687 int r, i, max_idx; 688 689 /* all calls to cpuid_count() should be made on the same cpu */ 690 get_cpu(); 691 692 r = -E2BIG; 693 694 entry = do_host_cpuid(array, function, 0); 695 if (!entry) 696 goto out; 697 698 switch (function) { 699 case 0: 700 /* Limited to the highest leaf implemented in KVM. */ 701 entry->eax = min(entry->eax, 0x1fU); 702 break; 703 case 1: 704 cpuid_entry_override(entry, CPUID_1_EDX); 705 cpuid_entry_override(entry, CPUID_1_ECX); 706 break; 707 case 2: 708 /* 709 * On ancient CPUs, function 2 entries are STATEFUL. That is, 710 * CPUID(function=2, index=0) may return different results each 711 * time, with the least-significant byte in EAX enumerating the 712 * number of times software should do CPUID(2, 0). 713 * 714 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less 715 * idiotic. Intel's SDM states that EAX & 0xff "will always 716 * return 01H. Software should ignore this value and not 717 * interpret it as an informational descriptor", while AMD's 718 * APM states that CPUID(2) is reserved. 719 * 720 * WARN if a frankenstein CPU that supports virtualization and 721 * a stateful CPUID.0x2 is encountered. 722 */ 723 WARN_ON_ONCE((entry->eax & 0xff) > 1); 724 break; 725 /* functions 4 and 0x8000001d have additional index. */ 726 case 4: 727 case 0x8000001d: 728 /* 729 * Read entries until the cache type in the previous entry is 730 * zero, i.e. indicates an invalid entry. 731 */ 732 for (i = 1; entry->eax & 0x1f; ++i) { 733 entry = do_host_cpuid(array, function, i); 734 if (!entry) 735 goto out; 736 } 737 break; 738 case 6: /* Thermal management */ 739 entry->eax = 0x4; /* allow ARAT */ 740 entry->ebx = 0; 741 entry->ecx = 0; 742 entry->edx = 0; 743 break; 744 /* function 7 has additional index. */ 745 case 7: 746 entry->eax = min(entry->eax, 1u); 747 cpuid_entry_override(entry, CPUID_7_0_EBX); 748 cpuid_entry_override(entry, CPUID_7_ECX); 749 cpuid_entry_override(entry, CPUID_7_EDX); 750 751 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */ 752 if (entry->eax == 1) { 753 entry = do_host_cpuid(array, function, 1); 754 if (!entry) 755 goto out; 756 757 cpuid_entry_override(entry, CPUID_7_1_EAX); 758 entry->ebx = 0; 759 entry->ecx = 0; 760 entry->edx = 0; 761 } 762 break; 763 case 9: 764 break; 765 case 0xa: { /* Architectural Performance Monitoring */ 766 struct x86_pmu_capability cap; 767 union cpuid10_eax eax; 768 union cpuid10_edx edx; 769 770 perf_get_x86_pmu_capability(&cap); 771 772 /* 773 * Only support guest architectural pmu on a host 774 * with architectural pmu. 775 */ 776 if (!cap.version) 777 memset(&cap, 0, sizeof(cap)); 778 779 eax.split.version_id = min(cap.version, 2); 780 eax.split.num_counters = cap.num_counters_gp; 781 eax.split.bit_width = cap.bit_width_gp; 782 eax.split.mask_length = cap.events_mask_len; 783 784 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS); 785 edx.split.bit_width_fixed = cap.bit_width_fixed; 786 if (cap.version) 787 edx.split.anythread_deprecated = 1; 788 edx.split.reserved1 = 0; 789 edx.split.reserved2 = 0; 790 791 entry->eax = eax.full; 792 entry->ebx = cap.events_mask; 793 entry->ecx = 0; 794 entry->edx = edx.full; 795 break; 796 } 797 /* 798 * Per Intel's SDM, the 0x1f is a superset of 0xb, 799 * thus they can be handled by common code. 800 */ 801 case 0x1f: 802 case 0xb: 803 /* 804 * Populate entries until the level type (ECX[15:8]) of the 805 * previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is 806 * the starting entry, filled by the primary do_host_cpuid(). 807 */ 808 for (i = 1; entry->ecx & 0xff00; ++i) { 809 entry = do_host_cpuid(array, function, i); 810 if (!entry) 811 goto out; 812 } 813 break; 814 case 0xd: 815 entry->eax &= supported_xcr0; 816 entry->ebx = xstate_required_size(supported_xcr0, false); 817 entry->ecx = entry->ebx; 818 entry->edx &= supported_xcr0 >> 32; 819 if (!supported_xcr0) 820 break; 821 822 entry = do_host_cpuid(array, function, 1); 823 if (!entry) 824 goto out; 825 826 cpuid_entry_override(entry, CPUID_D_1_EAX); 827 if (entry->eax & (F(XSAVES)|F(XSAVEC))) 828 entry->ebx = xstate_required_size(supported_xcr0 | supported_xss, 829 true); 830 else { 831 WARN_ON_ONCE(supported_xss != 0); 832 entry->ebx = 0; 833 } 834 entry->ecx &= supported_xss; 835 entry->edx &= supported_xss >> 32; 836 837 for (i = 2; i < 64; ++i) { 838 bool s_state; 839 if (supported_xcr0 & BIT_ULL(i)) 840 s_state = false; 841 else if (supported_xss & BIT_ULL(i)) 842 s_state = true; 843 else 844 continue; 845 846 entry = do_host_cpuid(array, function, i); 847 if (!entry) 848 goto out; 849 850 /* 851 * The supported check above should have filtered out 852 * invalid sub-leafs. Only valid sub-leafs should 853 * reach this point, and they should have a non-zero 854 * save state size. Furthermore, check whether the 855 * processor agrees with supported_xcr0/supported_xss 856 * on whether this is an XCR0- or IA32_XSS-managed area. 857 */ 858 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) { 859 --array->nent; 860 continue; 861 } 862 entry->edx = 0; 863 } 864 break; 865 case 0x12: 866 /* Intel SGX */ 867 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) { 868 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 869 break; 870 } 871 872 /* 873 * Index 0: Sub-features, MISCSELECT (a.k.a extended features) 874 * and max enclave sizes. The SGX sub-features and MISCSELECT 875 * are restricted by kernel and KVM capabilities (like most 876 * feature flags), while enclave size is unrestricted. 877 */ 878 cpuid_entry_override(entry, CPUID_12_EAX); 879 entry->ebx &= SGX_MISC_EXINFO; 880 881 entry = do_host_cpuid(array, function, 1); 882 if (!entry) 883 goto out; 884 885 /* 886 * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la 887 * feature flags. Advertise all supported flags, including 888 * privileged attributes that require explicit opt-in from 889 * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is 890 * expected to derive it from supported XCR0. 891 */ 892 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT | 893 SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY | 894 SGX_ATTR_KSS; 895 entry->ebx &= 0; 896 break; 897 /* Intel PT */ 898 case 0x14: 899 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) { 900 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 901 break; 902 } 903 904 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { 905 if (!do_host_cpuid(array, function, i)) 906 goto out; 907 } 908 break; 909 case KVM_CPUID_SIGNATURE: { 910 const u32 *sigptr = (const u32 *)KVM_SIGNATURE; 911 entry->eax = KVM_CPUID_FEATURES; 912 entry->ebx = sigptr[0]; 913 entry->ecx = sigptr[1]; 914 entry->edx = sigptr[2]; 915 break; 916 } 917 case KVM_CPUID_FEATURES: 918 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | 919 (1 << KVM_FEATURE_NOP_IO_DELAY) | 920 (1 << KVM_FEATURE_CLOCKSOURCE2) | 921 (1 << KVM_FEATURE_ASYNC_PF) | 922 (1 << KVM_FEATURE_PV_EOI) | 923 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | 924 (1 << KVM_FEATURE_PV_UNHALT) | 925 (1 << KVM_FEATURE_PV_TLB_FLUSH) | 926 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | 927 (1 << KVM_FEATURE_PV_SEND_IPI) | 928 (1 << KVM_FEATURE_POLL_CONTROL) | 929 (1 << KVM_FEATURE_PV_SCHED_YIELD) | 930 (1 << KVM_FEATURE_ASYNC_PF_INT); 931 932 if (sched_info_on()) 933 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); 934 935 entry->ebx = 0; 936 entry->ecx = 0; 937 entry->edx = 0; 938 break; 939 case 0x80000000: 940 entry->eax = min(entry->eax, 0x8000001f); 941 break; 942 case 0x80000001: 943 cpuid_entry_override(entry, CPUID_8000_0001_EDX); 944 cpuid_entry_override(entry, CPUID_8000_0001_ECX); 945 break; 946 case 0x80000006: 947 /* L2 cache and TLB: pass through host info. */ 948 break; 949 case 0x80000007: /* Advanced power management */ 950 /* invariant TSC is CPUID.80000007H:EDX[8] */ 951 entry->edx &= (1 << 8); 952 /* mask against host */ 953 entry->edx &= boot_cpu_data.x86_power; 954 entry->eax = entry->ebx = entry->ecx = 0; 955 break; 956 case 0x80000008: { 957 unsigned g_phys_as = (entry->eax >> 16) & 0xff; 958 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); 959 unsigned phys_as = entry->eax & 0xff; 960 961 /* 962 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as 963 * the guest operates in the same PA space as the host, i.e. 964 * reductions in MAXPHYADDR for memory encryption affect shadow 965 * paging, too. 966 * 967 * If TDP is enabled but an explicit guest MAXPHYADDR is not 968 * provided, use the raw bare metal MAXPHYADDR as reductions to 969 * the HPAs do not affect GPAs. 970 */ 971 if (!tdp_enabled) 972 g_phys_as = boot_cpu_data.x86_phys_bits; 973 else if (!g_phys_as) 974 g_phys_as = phys_as; 975 976 entry->eax = g_phys_as | (virt_as << 8); 977 entry->edx = 0; 978 cpuid_entry_override(entry, CPUID_8000_0008_EBX); 979 break; 980 } 981 case 0x8000000A: 982 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) { 983 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 984 break; 985 } 986 entry->eax = 1; /* SVM revision 1 */ 987 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper 988 ASID emulation to nested SVM */ 989 entry->ecx = 0; /* Reserved */ 990 cpuid_entry_override(entry, CPUID_8000_000A_EDX); 991 break; 992 case 0x80000019: 993 entry->ecx = entry->edx = 0; 994 break; 995 case 0x8000001a: 996 case 0x8000001e: 997 break; 998 case 0x8000001F: 999 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) { 1000 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1001 } else { 1002 cpuid_entry_override(entry, CPUID_8000_001F_EAX); 1003 1004 /* 1005 * Enumerate '0' for "PA bits reduction", the adjusted 1006 * MAXPHYADDR is enumerated directly (see 0x80000008). 1007 */ 1008 entry->ebx &= ~GENMASK(11, 6); 1009 } 1010 break; 1011 /*Add support for Centaur's CPUID instruction*/ 1012 case 0xC0000000: 1013 /*Just support up to 0xC0000004 now*/ 1014 entry->eax = min(entry->eax, 0xC0000004); 1015 break; 1016 case 0xC0000001: 1017 cpuid_entry_override(entry, CPUID_C000_0001_EDX); 1018 break; 1019 case 3: /* Processor serial number */ 1020 case 5: /* MONITOR/MWAIT */ 1021 case 0xC0000002: 1022 case 0xC0000003: 1023 case 0xC0000004: 1024 default: 1025 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1026 break; 1027 } 1028 1029 r = 0; 1030 1031 out: 1032 put_cpu(); 1033 1034 return r; 1035 } 1036 1037 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func, 1038 unsigned int type) 1039 { 1040 if (type == KVM_GET_EMULATED_CPUID) 1041 return __do_cpuid_func_emulated(array, func); 1042 1043 return __do_cpuid_func(array, func); 1044 } 1045 1046 #define CENTAUR_CPUID_SIGNATURE 0xC0000000 1047 1048 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func, 1049 unsigned int type) 1050 { 1051 u32 limit; 1052 int r; 1053 1054 if (func == CENTAUR_CPUID_SIGNATURE && 1055 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR) 1056 return 0; 1057 1058 r = do_cpuid_func(array, func, type); 1059 if (r) 1060 return r; 1061 1062 limit = array->entries[array->nent - 1].eax; 1063 for (func = func + 1; func <= limit; ++func) { 1064 r = do_cpuid_func(array, func, type); 1065 if (r) 1066 break; 1067 } 1068 1069 return r; 1070 } 1071 1072 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, 1073 __u32 num_entries, unsigned int ioctl_type) 1074 { 1075 int i; 1076 __u32 pad[3]; 1077 1078 if (ioctl_type != KVM_GET_EMULATED_CPUID) 1079 return false; 1080 1081 /* 1082 * We want to make sure that ->padding is being passed clean from 1083 * userspace in case we want to use it for something in the future. 1084 * 1085 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we 1086 * have to give ourselves satisfied only with the emulated side. /me 1087 * sheds a tear. 1088 */ 1089 for (i = 0; i < num_entries; i++) { 1090 if (copy_from_user(pad, entries[i].padding, sizeof(pad))) 1091 return true; 1092 1093 if (pad[0] || pad[1] || pad[2]) 1094 return true; 1095 } 1096 return false; 1097 } 1098 1099 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, 1100 struct kvm_cpuid_entry2 __user *entries, 1101 unsigned int type) 1102 { 1103 static const u32 funcs[] = { 1104 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE, 1105 }; 1106 1107 struct kvm_cpuid_array array = { 1108 .nent = 0, 1109 }; 1110 int r, i; 1111 1112 if (cpuid->nent < 1) 1113 return -E2BIG; 1114 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 1115 cpuid->nent = KVM_MAX_CPUID_ENTRIES; 1116 1117 if (sanity_check_entries(entries, cpuid->nent, type)) 1118 return -EINVAL; 1119 1120 array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2), 1121 cpuid->nent)); 1122 if (!array.entries) 1123 return -ENOMEM; 1124 1125 array.maxnent = cpuid->nent; 1126 1127 for (i = 0; i < ARRAY_SIZE(funcs); i++) { 1128 r = get_cpuid_func(&array, funcs[i], type); 1129 if (r) 1130 goto out_free; 1131 } 1132 cpuid->nent = array.nent; 1133 1134 if (copy_to_user(entries, array.entries, 1135 array.nent * sizeof(struct kvm_cpuid_entry2))) 1136 r = -EFAULT; 1137 1138 out_free: 1139 vfree(array.entries); 1140 return r; 1141 } 1142 1143 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, 1144 u32 function, u32 index) 1145 { 1146 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent, 1147 function, index); 1148 } 1149 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); 1150 1151 /* 1152 * Intel CPUID semantics treats any query for an out-of-range leaf as if the 1153 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics 1154 * returns all zeroes for any undefined leaf, whether or not the leaf is in 1155 * range. Centaur/VIA follows Intel semantics. 1156 * 1157 * A leaf is considered out-of-range if its function is higher than the maximum 1158 * supported leaf of its associated class or if its associated class does not 1159 * exist. 1160 * 1161 * There are three primary classes to be considered, with their respective 1162 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary 1163 * class exists if a guest CPUID entry for its <base> leaf exists. For a given 1164 * class, CPUID.<base>.EAX contains the max supported leaf for the class. 1165 * 1166 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff 1167 * - Hypervisor: 0x40000000 - 0x4fffffff 1168 * - Extended: 0x80000000 - 0xbfffffff 1169 * - Centaur: 0xc0000000 - 0xcfffffff 1170 * 1171 * The Hypervisor class is further subdivided into sub-classes that each act as 1172 * their own independent class associated with a 0x100 byte range. E.g. if Qemu 1173 * is advertising support for both HyperV and KVM, the resulting Hypervisor 1174 * CPUID sub-classes are: 1175 * 1176 * - HyperV: 0x40000000 - 0x400000ff 1177 * - KVM: 0x40000100 - 0x400001ff 1178 */ 1179 static struct kvm_cpuid_entry2 * 1180 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index) 1181 { 1182 struct kvm_cpuid_entry2 *basic, *class; 1183 u32 function = *fn_ptr; 1184 1185 basic = kvm_find_cpuid_entry(vcpu, 0, 0); 1186 if (!basic) 1187 return NULL; 1188 1189 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) || 1190 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx)) 1191 return NULL; 1192 1193 if (function >= 0x40000000 && function <= 0x4fffffff) 1194 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0); 1195 else if (function >= 0xc0000000) 1196 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0); 1197 else 1198 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0); 1199 1200 if (class && function <= class->eax) 1201 return NULL; 1202 1203 /* 1204 * Leaf specific adjustments are also applied when redirecting to the 1205 * max basic entry, e.g. if the max basic leaf is 0xb but there is no 1206 * entry for CPUID.0xb.index (see below), then the output value for EDX 1207 * needs to be pulled from CPUID.0xb.1. 1208 */ 1209 *fn_ptr = basic->eax; 1210 1211 /* 1212 * The class does not exist or the requested function is out of range; 1213 * the effective CPUID entry is the max basic leaf. Note, the index of 1214 * the original requested leaf is observed! 1215 */ 1216 return kvm_find_cpuid_entry(vcpu, basic->eax, index); 1217 } 1218 1219 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, 1220 u32 *ecx, u32 *edx, bool exact_only) 1221 { 1222 u32 orig_function = *eax, function = *eax, index = *ecx; 1223 struct kvm_cpuid_entry2 *entry; 1224 bool exact, used_max_basic = false; 1225 1226 entry = kvm_find_cpuid_entry(vcpu, function, index); 1227 exact = !!entry; 1228 1229 if (!entry && !exact_only) { 1230 entry = get_out_of_range_cpuid_entry(vcpu, &function, index); 1231 used_max_basic = !!entry; 1232 } 1233 1234 if (entry) { 1235 *eax = entry->eax; 1236 *ebx = entry->ebx; 1237 *ecx = entry->ecx; 1238 *edx = entry->edx; 1239 if (function == 7 && index == 0) { 1240 u64 data; 1241 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) && 1242 (data & TSX_CTRL_CPUID_CLEAR)) 1243 *ebx &= ~(F(RTM) | F(HLE)); 1244 } 1245 } else { 1246 *eax = *ebx = *ecx = *edx = 0; 1247 /* 1248 * When leaf 0BH or 1FH is defined, CL is pass-through 1249 * and EDX is always the x2APIC ID, even for undefined 1250 * subleaves. Index 1 will exist iff the leaf is 1251 * implemented, so we pass through CL iff leaf 1 1252 * exists. EDX can be copied from any existing index. 1253 */ 1254 if (function == 0xb || function == 0x1f) { 1255 entry = kvm_find_cpuid_entry(vcpu, function, 1); 1256 if (entry) { 1257 *ecx = index & 0xff; 1258 *edx = entry->edx; 1259 } 1260 } 1261 } 1262 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact, 1263 used_max_basic); 1264 return exact; 1265 } 1266 EXPORT_SYMBOL_GPL(kvm_cpuid); 1267 1268 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) 1269 { 1270 u32 eax, ebx, ecx, edx; 1271 1272 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) 1273 return 1; 1274 1275 eax = kvm_rax_read(vcpu); 1276 ecx = kvm_rcx_read(vcpu); 1277 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false); 1278 kvm_rax_write(vcpu, eax); 1279 kvm_rbx_write(vcpu, ebx); 1280 kvm_rcx_write(vcpu, ecx); 1281 kvm_rdx_write(vcpu, edx); 1282 return kvm_skip_emulated_instruction(vcpu); 1283 } 1284 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); 1285