xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision b737eecd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17 
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26 
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33 
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36 	int feature_bit = 0;
37 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38 
39 	xstate_bv &= XFEATURE_MASK_EXTEND;
40 	while (xstate_bv) {
41 		if (xstate_bv & 0x1) {
42 		        u32 eax, ebx, ecx, edx, offset;
43 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44 			offset = compacted ? ret : ebx;
45 			ret = max(ret, offset + eax);
46 		}
47 
48 		xstate_bv >>= 1;
49 		feature_bit++;
50 	}
51 
52 	return ret;
53 }
54 
55 #define F feature_bit
56 
57 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
58 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
59 {
60 	struct kvm_cpuid_entry2 *e;
61 	int i;
62 
63 	for (i = 0; i < nent; i++) {
64 		e = &entries[i];
65 
66 		if (e->function == function && (e->index == index ||
67 		    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
68 			return e;
69 	}
70 
71 	return NULL;
72 }
73 
74 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
75 {
76 	struct kvm_cpuid_entry2 *best;
77 
78 	/*
79 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
80 	 * canonical address checks; exit if it is ever changed.
81 	 */
82 	best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
83 	if (best) {
84 		int vaddr_bits = (best->eax & 0xff00) >> 8;
85 
86 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
87 			return -EINVAL;
88 	}
89 
90 	return 0;
91 }
92 
93 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
94 {
95 	struct kvm_cpuid_entry2 *best;
96 
97 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
98 
99 	/*
100 	 * save the feature bitmap to avoid cpuid lookup for every PV
101 	 * operation
102 	 */
103 	if (best)
104 		vcpu->arch.pv_cpuid.features = best->eax;
105 }
106 
107 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
108 {
109 	struct kvm_cpuid_entry2 *best;
110 
111 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
112 	if (best) {
113 		/* Update OSXSAVE bit */
114 		if (boot_cpu_has(X86_FEATURE_XSAVE))
115 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
116 				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
117 
118 		cpuid_entry_change(best, X86_FEATURE_APIC,
119 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
120 	}
121 
122 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
123 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
124 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
125 				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
126 
127 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
128 	if (best)
129 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
130 
131 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
132 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
133 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
134 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
135 
136 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
137 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
138 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
139 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
140 
141 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
142 		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
143 		if (best)
144 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
145 					   vcpu->arch.ia32_misc_enable_msr &
146 					   MSR_IA32_MISC_ENABLE_MWAIT);
147 	}
148 }
149 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
150 
151 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
152 {
153 	struct kvm_lapic *apic = vcpu->arch.apic;
154 	struct kvm_cpuid_entry2 *best;
155 
156 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
157 	if (best && apic) {
158 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
159 			apic->lapic_timer.timer_mode_mask = 3 << 17;
160 		else
161 			apic->lapic_timer.timer_mode_mask = 1 << 17;
162 
163 		kvm_apic_set_version(vcpu);
164 	}
165 
166 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
167 	if (!best)
168 		vcpu->arch.guest_supported_xcr0 = 0;
169 	else
170 		vcpu->arch.guest_supported_xcr0 =
171 			(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
172 
173 	kvm_update_pv_runtime(vcpu);
174 
175 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
176 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
177 
178 	kvm_pmu_refresh(vcpu);
179 	vcpu->arch.cr4_guest_rsvd_bits =
180 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
181 
182 	kvm_hv_set_cpuid(vcpu);
183 
184 	/* Invoke the vendor callback only after the above state is updated. */
185 	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
186 
187 	/*
188 	 * Except for the MMU, which needs to be reset after any vendor
189 	 * specific adjustments to the reserved GPA bits.
190 	 */
191 	kvm_mmu_reset_context(vcpu);
192 }
193 
194 static int is_efer_nx(void)
195 {
196 	return host_efer & EFER_NX;
197 }
198 
199 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
200 {
201 	int i;
202 	struct kvm_cpuid_entry2 *e, *entry;
203 
204 	entry = NULL;
205 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
206 		e = &vcpu->arch.cpuid_entries[i];
207 		if (e->function == 0x80000001) {
208 			entry = e;
209 			break;
210 		}
211 	}
212 	if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
213 		cpuid_entry_clear(entry, X86_FEATURE_NX);
214 		printk(KERN_INFO "kvm: guest NX capability removed\n");
215 	}
216 }
217 
218 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
219 {
220 	struct kvm_cpuid_entry2 *best;
221 
222 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
223 	if (!best || best->eax < 0x80000008)
224 		goto not_found;
225 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
226 	if (best)
227 		return best->eax & 0xff;
228 not_found:
229 	return 36;
230 }
231 
232 /*
233  * This "raw" version returns the reserved GPA bits without any adjustments for
234  * encryption technologies that usurp bits.  The raw mask should be used if and
235  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
236  */
237 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
238 {
239 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
240 }
241 
242 /* when an old userspace process fills a new kernel module */
243 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
244 			     struct kvm_cpuid *cpuid,
245 			     struct kvm_cpuid_entry __user *entries)
246 {
247 	int r, i;
248 	struct kvm_cpuid_entry *e = NULL;
249 	struct kvm_cpuid_entry2 *e2 = NULL;
250 
251 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
252 		return -E2BIG;
253 
254 	if (cpuid->nent) {
255 		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
256 		if (IS_ERR(e))
257 			return PTR_ERR(e);
258 
259 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
260 		if (!e2) {
261 			r = -ENOMEM;
262 			goto out_free_cpuid;
263 		}
264 	}
265 	for (i = 0; i < cpuid->nent; i++) {
266 		e2[i].function = e[i].function;
267 		e2[i].eax = e[i].eax;
268 		e2[i].ebx = e[i].ebx;
269 		e2[i].ecx = e[i].ecx;
270 		e2[i].edx = e[i].edx;
271 		e2[i].index = 0;
272 		e2[i].flags = 0;
273 		e2[i].padding[0] = 0;
274 		e2[i].padding[1] = 0;
275 		e2[i].padding[2] = 0;
276 	}
277 
278 	r = kvm_check_cpuid(e2, cpuid->nent);
279 	if (r) {
280 		kvfree(e2);
281 		goto out_free_cpuid;
282 	}
283 
284 	kvfree(vcpu->arch.cpuid_entries);
285 	vcpu->arch.cpuid_entries = e2;
286 	vcpu->arch.cpuid_nent = cpuid->nent;
287 
288 	cpuid_fix_nx_cap(vcpu);
289 	kvm_update_cpuid_runtime(vcpu);
290 	kvm_vcpu_after_set_cpuid(vcpu);
291 
292 out_free_cpuid:
293 	kvfree(e);
294 
295 	return r;
296 }
297 
298 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
299 			      struct kvm_cpuid2 *cpuid,
300 			      struct kvm_cpuid_entry2 __user *entries)
301 {
302 	struct kvm_cpuid_entry2 *e2 = NULL;
303 	int r;
304 
305 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
306 		return -E2BIG;
307 
308 	if (cpuid->nent) {
309 		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
310 		if (IS_ERR(e2))
311 			return PTR_ERR(e2);
312 	}
313 
314 	r = kvm_check_cpuid(e2, cpuid->nent);
315 	if (r) {
316 		kvfree(e2);
317 		return r;
318 	}
319 
320 	kvfree(vcpu->arch.cpuid_entries);
321 	vcpu->arch.cpuid_entries = e2;
322 	vcpu->arch.cpuid_nent = cpuid->nent;
323 
324 	kvm_update_cpuid_runtime(vcpu);
325 	kvm_vcpu_after_set_cpuid(vcpu);
326 
327 	return 0;
328 }
329 
330 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
331 			      struct kvm_cpuid2 *cpuid,
332 			      struct kvm_cpuid_entry2 __user *entries)
333 {
334 	int r;
335 
336 	r = -E2BIG;
337 	if (cpuid->nent < vcpu->arch.cpuid_nent)
338 		goto out;
339 	r = -EFAULT;
340 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
341 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
342 		goto out;
343 	return 0;
344 
345 out:
346 	cpuid->nent = vcpu->arch.cpuid_nent;
347 	return r;
348 }
349 
350 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
351 {
352 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
353 	struct kvm_cpuid_entry2 entry;
354 
355 	reverse_cpuid_check(leaf);
356 	kvm_cpu_caps[leaf] &= mask;
357 
358 	cpuid_count(cpuid.function, cpuid.index,
359 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
360 
361 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
362 }
363 
364 void kvm_set_cpu_caps(void)
365 {
366 	unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
367 #ifdef CONFIG_X86_64
368 	unsigned int f_gbpages = F(GBPAGES);
369 	unsigned int f_lm = F(LM);
370 #else
371 	unsigned int f_gbpages = 0;
372 	unsigned int f_lm = 0;
373 #endif
374 
375 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
376 		     sizeof(boot_cpu_data.x86_capability));
377 
378 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
379 	       sizeof(kvm_cpu_caps));
380 
381 	kvm_cpu_cap_mask(CPUID_1_ECX,
382 		/*
383 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
384 		 * advertised to guests via CPUID!
385 		 */
386 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
387 		0 /* DS-CPL, VMX, SMX, EST */ |
388 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
389 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
390 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
391 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
392 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
393 		F(F16C) | F(RDRAND)
394 	);
395 	/* KVM emulates x2apic in software irrespective of host support. */
396 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
397 
398 	kvm_cpu_cap_mask(CPUID_1_EDX,
399 		F(FPU) | F(VME) | F(DE) | F(PSE) |
400 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
401 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
402 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
403 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
404 		0 /* Reserved, DS, ACPI */ | F(MMX) |
405 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
406 		0 /* HTT, TM, Reserved, PBE */
407 	);
408 
409 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
410 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
411 		F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
412 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
413 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
414 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
415 	);
416 
417 	kvm_cpu_cap_mask(CPUID_7_ECX,
418 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
419 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
420 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
421 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
422 	);
423 	/* Set LA57 based on hardware capability. */
424 	if (cpuid_ecx(7) & F(LA57))
425 		kvm_cpu_cap_set(X86_FEATURE_LA57);
426 
427 	/*
428 	 * PKU not yet implemented for shadow paging and requires OSPKE
429 	 * to be set on the host. Clear it if that is not the case
430 	 */
431 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
432 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
433 
434 	kvm_cpu_cap_mask(CPUID_7_EDX,
435 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
436 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
437 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
438 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
439 	);
440 
441 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
442 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
443 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
444 
445 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
446 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
447 	if (boot_cpu_has(X86_FEATURE_STIBP))
448 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
449 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
450 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
451 
452 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
453 		F(AVX_VNNI) | F(AVX512_BF16)
454 	);
455 
456 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
457 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
458 	);
459 
460 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
461 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
462 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
463 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
464 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
465 		F(TOPOEXT) | F(PERFCTR_CORE)
466 	);
467 
468 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
469 		F(FPU) | F(VME) | F(DE) | F(PSE) |
470 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
471 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
472 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
473 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
474 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
475 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
476 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
477 	);
478 
479 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
480 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
481 
482 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
483 		F(CLZERO) | F(XSAVEERPTR) |
484 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
485 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
486 	);
487 
488 	/*
489 	 * AMD has separate bits for each SPEC_CTRL bit.
490 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
491 	 * record that in cpufeatures so use them.
492 	 */
493 	if (boot_cpu_has(X86_FEATURE_IBPB))
494 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
495 	if (boot_cpu_has(X86_FEATURE_IBRS))
496 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
497 	if (boot_cpu_has(X86_FEATURE_STIBP))
498 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
499 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
500 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
501 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
502 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
503 	/*
504 	 * The preference is to use SPEC CTRL MSR instead of the
505 	 * VIRT_SPEC MSR.
506 	 */
507 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
508 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
509 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
510 
511 	/*
512 	 * Hide all SVM features by default, SVM will set the cap bits for
513 	 * features it emulates and/or exposes for L1.
514 	 */
515 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
516 
517 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
518 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
519 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
520 		F(PMM) | F(PMM_EN)
521 	);
522 }
523 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
524 
525 struct kvm_cpuid_array {
526 	struct kvm_cpuid_entry2 *entries;
527 	int maxnent;
528 	int nent;
529 };
530 
531 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
532 					      u32 function, u32 index)
533 {
534 	struct kvm_cpuid_entry2 *entry;
535 
536 	if (array->nent >= array->maxnent)
537 		return NULL;
538 
539 	entry = &array->entries[array->nent++];
540 
541 	entry->function = function;
542 	entry->index = index;
543 	entry->flags = 0;
544 
545 	cpuid_count(entry->function, entry->index,
546 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
547 
548 	switch (function) {
549 	case 4:
550 	case 7:
551 	case 0xb:
552 	case 0xd:
553 	case 0xf:
554 	case 0x10:
555 	case 0x12:
556 	case 0x14:
557 	case 0x17:
558 	case 0x18:
559 	case 0x1f:
560 	case 0x8000001d:
561 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
562 		break;
563 	}
564 
565 	return entry;
566 }
567 
568 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
569 {
570 	struct kvm_cpuid_entry2 *entry;
571 
572 	if (array->nent >= array->maxnent)
573 		return -E2BIG;
574 
575 	entry = &array->entries[array->nent];
576 	entry->function = func;
577 	entry->index = 0;
578 	entry->flags = 0;
579 
580 	switch (func) {
581 	case 0:
582 		entry->eax = 7;
583 		++array->nent;
584 		break;
585 	case 1:
586 		entry->ecx = F(MOVBE);
587 		++array->nent;
588 		break;
589 	case 7:
590 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
591 		entry->eax = 0;
592 		entry->ecx = F(RDPID);
593 		++array->nent;
594 	default:
595 		break;
596 	}
597 
598 	return 0;
599 }
600 
601 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
602 {
603 	struct kvm_cpuid_entry2 *entry;
604 	int r, i, max_idx;
605 
606 	/* all calls to cpuid_count() should be made on the same cpu */
607 	get_cpu();
608 
609 	r = -E2BIG;
610 
611 	entry = do_host_cpuid(array, function, 0);
612 	if (!entry)
613 		goto out;
614 
615 	switch (function) {
616 	case 0:
617 		/* Limited to the highest leaf implemented in KVM. */
618 		entry->eax = min(entry->eax, 0x1fU);
619 		break;
620 	case 1:
621 		cpuid_entry_override(entry, CPUID_1_EDX);
622 		cpuid_entry_override(entry, CPUID_1_ECX);
623 		break;
624 	case 2:
625 		/*
626 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
627 		 * CPUID(function=2, index=0) may return different results each
628 		 * time, with the least-significant byte in EAX enumerating the
629 		 * number of times software should do CPUID(2, 0).
630 		 *
631 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
632 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
633 		 * return 01H. Software should ignore this value and not
634 		 * interpret it as an informational descriptor", while AMD's
635 		 * APM states that CPUID(2) is reserved.
636 		 *
637 		 * WARN if a frankenstein CPU that supports virtualization and
638 		 * a stateful CPUID.0x2 is encountered.
639 		 */
640 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
641 		break;
642 	/* functions 4 and 0x8000001d have additional index. */
643 	case 4:
644 	case 0x8000001d:
645 		/*
646 		 * Read entries until the cache type in the previous entry is
647 		 * zero, i.e. indicates an invalid entry.
648 		 */
649 		for (i = 1; entry->eax & 0x1f; ++i) {
650 			entry = do_host_cpuid(array, function, i);
651 			if (!entry)
652 				goto out;
653 		}
654 		break;
655 	case 6: /* Thermal management */
656 		entry->eax = 0x4; /* allow ARAT */
657 		entry->ebx = 0;
658 		entry->ecx = 0;
659 		entry->edx = 0;
660 		break;
661 	/* function 7 has additional index. */
662 	case 7:
663 		entry->eax = min(entry->eax, 1u);
664 		cpuid_entry_override(entry, CPUID_7_0_EBX);
665 		cpuid_entry_override(entry, CPUID_7_ECX);
666 		cpuid_entry_override(entry, CPUID_7_EDX);
667 
668 		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
669 		if (entry->eax == 1) {
670 			entry = do_host_cpuid(array, function, 1);
671 			if (!entry)
672 				goto out;
673 
674 			cpuid_entry_override(entry, CPUID_7_1_EAX);
675 			entry->ebx = 0;
676 			entry->ecx = 0;
677 			entry->edx = 0;
678 		}
679 		break;
680 	case 9:
681 		break;
682 	case 0xa: { /* Architectural Performance Monitoring */
683 		struct x86_pmu_capability cap;
684 		union cpuid10_eax eax;
685 		union cpuid10_edx edx;
686 
687 		perf_get_x86_pmu_capability(&cap);
688 
689 		/*
690 		 * Only support guest architectural pmu on a host
691 		 * with architectural pmu.
692 		 */
693 		if (!cap.version)
694 			memset(&cap, 0, sizeof(cap));
695 
696 		eax.split.version_id = min(cap.version, 2);
697 		eax.split.num_counters = cap.num_counters_gp;
698 		eax.split.bit_width = cap.bit_width_gp;
699 		eax.split.mask_length = cap.events_mask_len;
700 
701 		edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
702 		edx.split.bit_width_fixed = cap.bit_width_fixed;
703 		edx.split.anythread_deprecated = 1;
704 		edx.split.reserved1 = 0;
705 		edx.split.reserved2 = 0;
706 
707 		entry->eax = eax.full;
708 		entry->ebx = cap.events_mask;
709 		entry->ecx = 0;
710 		entry->edx = edx.full;
711 		break;
712 	}
713 	/*
714 	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
715 	 * thus they can be handled by common code.
716 	 */
717 	case 0x1f:
718 	case 0xb:
719 		/*
720 		 * Populate entries until the level type (ECX[15:8]) of the
721 		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
722 		 * the starting entry, filled by the primary do_host_cpuid().
723 		 */
724 		for (i = 1; entry->ecx & 0xff00; ++i) {
725 			entry = do_host_cpuid(array, function, i);
726 			if (!entry)
727 				goto out;
728 		}
729 		break;
730 	case 0xd:
731 		entry->eax &= supported_xcr0;
732 		entry->ebx = xstate_required_size(supported_xcr0, false);
733 		entry->ecx = entry->ebx;
734 		entry->edx &= supported_xcr0 >> 32;
735 		if (!supported_xcr0)
736 			break;
737 
738 		entry = do_host_cpuid(array, function, 1);
739 		if (!entry)
740 			goto out;
741 
742 		cpuid_entry_override(entry, CPUID_D_1_EAX);
743 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
744 			entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
745 							  true);
746 		else {
747 			WARN_ON_ONCE(supported_xss != 0);
748 			entry->ebx = 0;
749 		}
750 		entry->ecx &= supported_xss;
751 		entry->edx &= supported_xss >> 32;
752 
753 		for (i = 2; i < 64; ++i) {
754 			bool s_state;
755 			if (supported_xcr0 & BIT_ULL(i))
756 				s_state = false;
757 			else if (supported_xss & BIT_ULL(i))
758 				s_state = true;
759 			else
760 				continue;
761 
762 			entry = do_host_cpuid(array, function, i);
763 			if (!entry)
764 				goto out;
765 
766 			/*
767 			 * The supported check above should have filtered out
768 			 * invalid sub-leafs.  Only valid sub-leafs should
769 			 * reach this point, and they should have a non-zero
770 			 * save state size.  Furthermore, check whether the
771 			 * processor agrees with supported_xcr0/supported_xss
772 			 * on whether this is an XCR0- or IA32_XSS-managed area.
773 			 */
774 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
775 				--array->nent;
776 				continue;
777 			}
778 			entry->edx = 0;
779 		}
780 		break;
781 	/* Intel PT */
782 	case 0x14:
783 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
784 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
785 			break;
786 		}
787 
788 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
789 			if (!do_host_cpuid(array, function, i))
790 				goto out;
791 		}
792 		break;
793 	case KVM_CPUID_SIGNATURE: {
794 		static const char signature[12] = "KVMKVMKVM\0\0";
795 		const u32 *sigptr = (const u32 *)signature;
796 		entry->eax = KVM_CPUID_FEATURES;
797 		entry->ebx = sigptr[0];
798 		entry->ecx = sigptr[1];
799 		entry->edx = sigptr[2];
800 		break;
801 	}
802 	case KVM_CPUID_FEATURES:
803 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
804 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
805 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
806 			     (1 << KVM_FEATURE_ASYNC_PF) |
807 			     (1 << KVM_FEATURE_PV_EOI) |
808 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
809 			     (1 << KVM_FEATURE_PV_UNHALT) |
810 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
811 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
812 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
813 			     (1 << KVM_FEATURE_POLL_CONTROL) |
814 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
815 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
816 
817 		if (sched_info_on())
818 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
819 
820 		entry->ebx = 0;
821 		entry->ecx = 0;
822 		entry->edx = 0;
823 		break;
824 	case 0x80000000:
825 		entry->eax = min(entry->eax, 0x8000001f);
826 		break;
827 	case 0x80000001:
828 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
829 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
830 		break;
831 	case 0x80000006:
832 		/* L2 cache and TLB: pass through host info. */
833 		break;
834 	case 0x80000007: /* Advanced power management */
835 		/* invariant TSC is CPUID.80000007H:EDX[8] */
836 		entry->edx &= (1 << 8);
837 		/* mask against host */
838 		entry->edx &= boot_cpu_data.x86_power;
839 		entry->eax = entry->ebx = entry->ecx = 0;
840 		break;
841 	case 0x80000008: {
842 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
843 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
844 		unsigned phys_as = entry->eax & 0xff;
845 
846 		if (!g_phys_as)
847 			g_phys_as = phys_as;
848 		entry->eax = g_phys_as | (virt_as << 8);
849 		entry->edx = 0;
850 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
851 		break;
852 	}
853 	case 0x8000000A:
854 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
855 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
856 			break;
857 		}
858 		entry->eax = 1; /* SVM revision 1 */
859 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
860 				   ASID emulation to nested SVM */
861 		entry->ecx = 0; /* Reserved */
862 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
863 		break;
864 	case 0x80000019:
865 		entry->ecx = entry->edx = 0;
866 		break;
867 	case 0x8000001a:
868 	case 0x8000001e:
869 		break;
870 	/* Support memory encryption cpuid if host supports it */
871 	case 0x8000001F:
872 		if (!boot_cpu_has(X86_FEATURE_SEV))
873 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
874 		break;
875 	/*Add support for Centaur's CPUID instruction*/
876 	case 0xC0000000:
877 		/*Just support up to 0xC0000004 now*/
878 		entry->eax = min(entry->eax, 0xC0000004);
879 		break;
880 	case 0xC0000001:
881 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
882 		break;
883 	case 3: /* Processor serial number */
884 	case 5: /* MONITOR/MWAIT */
885 	case 0xC0000002:
886 	case 0xC0000003:
887 	case 0xC0000004:
888 	default:
889 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
890 		break;
891 	}
892 
893 	r = 0;
894 
895 out:
896 	put_cpu();
897 
898 	return r;
899 }
900 
901 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
902 			 unsigned int type)
903 {
904 	if (type == KVM_GET_EMULATED_CPUID)
905 		return __do_cpuid_func_emulated(array, func);
906 
907 	return __do_cpuid_func(array, func);
908 }
909 
910 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
911 
912 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
913 			  unsigned int type)
914 {
915 	u32 limit;
916 	int r;
917 
918 	if (func == CENTAUR_CPUID_SIGNATURE &&
919 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
920 		return 0;
921 
922 	r = do_cpuid_func(array, func, type);
923 	if (r)
924 		return r;
925 
926 	limit = array->entries[array->nent - 1].eax;
927 	for (func = func + 1; func <= limit; ++func) {
928 		r = do_cpuid_func(array, func, type);
929 		if (r)
930 			break;
931 	}
932 
933 	return r;
934 }
935 
936 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
937 				 __u32 num_entries, unsigned int ioctl_type)
938 {
939 	int i;
940 	__u32 pad[3];
941 
942 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
943 		return false;
944 
945 	/*
946 	 * We want to make sure that ->padding is being passed clean from
947 	 * userspace in case we want to use it for something in the future.
948 	 *
949 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
950 	 * have to give ourselves satisfied only with the emulated side. /me
951 	 * sheds a tear.
952 	 */
953 	for (i = 0; i < num_entries; i++) {
954 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
955 			return true;
956 
957 		if (pad[0] || pad[1] || pad[2])
958 			return true;
959 	}
960 	return false;
961 }
962 
963 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
964 			    struct kvm_cpuid_entry2 __user *entries,
965 			    unsigned int type)
966 {
967 	static const u32 funcs[] = {
968 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
969 	};
970 
971 	struct kvm_cpuid_array array = {
972 		.nent = 0,
973 	};
974 	int r, i;
975 
976 	if (cpuid->nent < 1)
977 		return -E2BIG;
978 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
979 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
980 
981 	if (sanity_check_entries(entries, cpuid->nent, type))
982 		return -EINVAL;
983 
984 	array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
985 					   cpuid->nent));
986 	if (!array.entries)
987 		return -ENOMEM;
988 
989 	array.maxnent = cpuid->nent;
990 
991 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
992 		r = get_cpuid_func(&array, funcs[i], type);
993 		if (r)
994 			goto out_free;
995 	}
996 	cpuid->nent = array.nent;
997 
998 	if (copy_to_user(entries, array.entries,
999 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1000 		r = -EFAULT;
1001 
1002 out_free:
1003 	vfree(array.entries);
1004 	return r;
1005 }
1006 
1007 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1008 					      u32 function, u32 index)
1009 {
1010 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1011 				 function, index);
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1014 
1015 /*
1016  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1017  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1018  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1019  * range.  Centaur/VIA follows Intel semantics.
1020  *
1021  * A leaf is considered out-of-range if its function is higher than the maximum
1022  * supported leaf of its associated class or if its associated class does not
1023  * exist.
1024  *
1025  * There are three primary classes to be considered, with their respective
1026  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1027  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1028  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1029  *
1030  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1031  *  - Hypervisor: 0x40000000 - 0x4fffffff
1032  *  - Extended:   0x80000000 - 0xbfffffff
1033  *  - Centaur:    0xc0000000 - 0xcfffffff
1034  *
1035  * The Hypervisor class is further subdivided into sub-classes that each act as
1036  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
1037  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1038  * CPUID sub-classes are:
1039  *
1040  *  - HyperV:     0x40000000 - 0x400000ff
1041  *  - KVM:        0x40000100 - 0x400001ff
1042  */
1043 static struct kvm_cpuid_entry2 *
1044 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1045 {
1046 	struct kvm_cpuid_entry2 *basic, *class;
1047 	u32 function = *fn_ptr;
1048 
1049 	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1050 	if (!basic)
1051 		return NULL;
1052 
1053 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1054 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1055 		return NULL;
1056 
1057 	if (function >= 0x40000000 && function <= 0x4fffffff)
1058 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1059 	else if (function >= 0xc0000000)
1060 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1061 	else
1062 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1063 
1064 	if (class && function <= class->eax)
1065 		return NULL;
1066 
1067 	/*
1068 	 * Leaf specific adjustments are also applied when redirecting to the
1069 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1070 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1071 	 * needs to be pulled from CPUID.0xb.1.
1072 	 */
1073 	*fn_ptr = basic->eax;
1074 
1075 	/*
1076 	 * The class does not exist or the requested function is out of range;
1077 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1078 	 * the original requested leaf is observed!
1079 	 */
1080 	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1081 }
1082 
1083 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1084 	       u32 *ecx, u32 *edx, bool exact_only)
1085 {
1086 	u32 orig_function = *eax, function = *eax, index = *ecx;
1087 	struct kvm_cpuid_entry2 *entry;
1088 	bool exact, used_max_basic = false;
1089 
1090 	entry = kvm_find_cpuid_entry(vcpu, function, index);
1091 	exact = !!entry;
1092 
1093 	if (!entry && !exact_only) {
1094 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1095 		used_max_basic = !!entry;
1096 	}
1097 
1098 	if (entry) {
1099 		*eax = entry->eax;
1100 		*ebx = entry->ebx;
1101 		*ecx = entry->ecx;
1102 		*edx = entry->edx;
1103 		if (function == 7 && index == 0) {
1104 			u64 data;
1105 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1106 			    (data & TSX_CTRL_CPUID_CLEAR))
1107 				*ebx &= ~(F(RTM) | F(HLE));
1108 		}
1109 	} else {
1110 		*eax = *ebx = *ecx = *edx = 0;
1111 		/*
1112 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1113 		 * and EDX is always the x2APIC ID, even for undefined
1114 		 * subleaves. Index 1 will exist iff the leaf is
1115 		 * implemented, so we pass through CL iff leaf 1
1116 		 * exists. EDX can be copied from any existing index.
1117 		 */
1118 		if (function == 0xb || function == 0x1f) {
1119 			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1120 			if (entry) {
1121 				*ecx = index & 0xff;
1122 				*edx = entry->edx;
1123 			}
1124 		}
1125 	}
1126 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1127 			used_max_basic);
1128 	return exact;
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_cpuid);
1131 
1132 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1133 {
1134 	u32 eax, ebx, ecx, edx;
1135 
1136 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1137 		return 1;
1138 
1139 	eax = kvm_rax_read(vcpu);
1140 	ecx = kvm_rcx_read(vcpu);
1141 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1142 	kvm_rax_write(vcpu, eax);
1143 	kvm_rbx_write(vcpu, ebx);
1144 	kvm_rcx_write(vcpu, ecx);
1145 	kvm_rdx_write(vcpu, edx);
1146 	return kvm_skip_emulated_instruction(vcpu);
1147 }
1148 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1149