1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * cpuid support routines 5 * 6 * derived from arch/x86/kvm/x86.c 7 * 8 * Copyright 2011 Red Hat, Inc. and/or its affiliates. 9 * Copyright IBM Corporation, 2008 10 */ 11 12 #include <linux/kvm_host.h> 13 #include <linux/export.h> 14 #include <linux/vmalloc.h> 15 #include <linux/uaccess.h> 16 #include <linux/sched/stat.h> 17 18 #include <asm/processor.h> 19 #include <asm/user.h> 20 #include <asm/fpu/xstate.h> 21 #include <asm/sgx.h> 22 #include "cpuid.h" 23 #include "lapic.h" 24 #include "mmu.h" 25 #include "trace.h" 26 #include "pmu.h" 27 28 /* 29 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be 30 * aligned to sizeof(unsigned long) because it's not accessed via bitops. 31 */ 32 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly; 33 EXPORT_SYMBOL_GPL(kvm_cpu_caps); 34 35 u32 xstate_required_size(u64 xstate_bv, bool compacted) 36 { 37 int feature_bit = 0; 38 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 39 40 xstate_bv &= XFEATURE_MASK_EXTEND; 41 while (xstate_bv) { 42 if (xstate_bv & 0x1) { 43 u32 eax, ebx, ecx, edx, offset; 44 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); 45 /* ECX[1]: 64B alignment in compacted form */ 46 if (compacted) 47 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret; 48 else 49 offset = ebx; 50 ret = max(ret, offset + eax); 51 } 52 53 xstate_bv >>= 1; 54 feature_bit++; 55 } 56 57 return ret; 58 } 59 60 /* 61 * This one is tied to SSB in the user API, and not 62 * visible in /proc/cpuinfo. 63 */ 64 #define KVM_X86_FEATURE_PSFD (13*32+28) /* Predictive Store Forwarding Disable */ 65 66 #define F feature_bit 67 #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0) 68 69 70 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find( 71 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index) 72 { 73 struct kvm_cpuid_entry2 *e; 74 int i; 75 76 for (i = 0; i < nent; i++) { 77 e = &entries[i]; 78 79 if (e->function == function && 80 (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)) 81 return e; 82 } 83 84 return NULL; 85 } 86 87 static int kvm_check_cpuid(struct kvm_vcpu *vcpu, 88 struct kvm_cpuid_entry2 *entries, 89 int nent) 90 { 91 struct kvm_cpuid_entry2 *best; 92 u64 xfeatures; 93 94 /* 95 * The existing code assumes virtual address is 48-bit or 57-bit in the 96 * canonical address checks; exit if it is ever changed. 97 */ 98 best = cpuid_entry2_find(entries, nent, 0x80000008, 0); 99 if (best) { 100 int vaddr_bits = (best->eax & 0xff00) >> 8; 101 102 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) 103 return -EINVAL; 104 } 105 106 /* 107 * Exposing dynamic xfeatures to the guest requires additional 108 * enabling in the FPU, e.g. to expand the guest XSAVE state size. 109 */ 110 best = cpuid_entry2_find(entries, nent, 0xd, 0); 111 if (!best) 112 return 0; 113 114 xfeatures = best->eax | ((u64)best->edx << 32); 115 xfeatures &= XFEATURE_MASK_USER_DYNAMIC; 116 if (!xfeatures) 117 return 0; 118 119 return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures); 120 } 121 122 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */ 123 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, 124 int nent) 125 { 126 struct kvm_cpuid_entry2 *orig; 127 int i; 128 129 if (nent != vcpu->arch.cpuid_nent) 130 return -EINVAL; 131 132 for (i = 0; i < nent; i++) { 133 orig = &vcpu->arch.cpuid_entries[i]; 134 if (e2[i].function != orig->function || 135 e2[i].index != orig->index || 136 e2[i].flags != orig->flags || 137 e2[i].eax != orig->eax || e2[i].ebx != orig->ebx || 138 e2[i].ecx != orig->ecx || e2[i].edx != orig->edx) 139 return -EINVAL; 140 } 141 142 return 0; 143 } 144 145 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu) 146 { 147 u32 function; 148 struct kvm_cpuid_entry2 *entry; 149 150 vcpu->arch.kvm_cpuid_base = 0; 151 152 for_each_possible_hypervisor_cpuid_base(function) { 153 entry = kvm_find_cpuid_entry(vcpu, function, 0); 154 155 if (entry) { 156 u32 signature[3]; 157 158 signature[0] = entry->ebx; 159 signature[1] = entry->ecx; 160 signature[2] = entry->edx; 161 162 BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE)); 163 if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) { 164 vcpu->arch.kvm_cpuid_base = function; 165 break; 166 } 167 } 168 } 169 } 170 171 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu, 172 struct kvm_cpuid_entry2 *entries, int nent) 173 { 174 u32 base = vcpu->arch.kvm_cpuid_base; 175 176 if (!base) 177 return NULL; 178 179 return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES, 0); 180 } 181 182 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu) 183 { 184 return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries, 185 vcpu->arch.cpuid_nent); 186 } 187 188 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu) 189 { 190 struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu); 191 192 /* 193 * save the feature bitmap to avoid cpuid lookup for every PV 194 * operation 195 */ 196 if (best) 197 vcpu->arch.pv_cpuid.features = best->eax; 198 } 199 200 /* 201 * Calculate guest's supported XCR0 taking into account guest CPUID data and 202 * supported_xcr0 (comprised of host configuration and KVM_SUPPORTED_XCR0). 203 */ 204 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent) 205 { 206 struct kvm_cpuid_entry2 *best; 207 208 best = cpuid_entry2_find(entries, nent, 0xd, 0); 209 if (!best) 210 return 0; 211 212 return (best->eax | ((u64)best->edx << 32)) & supported_xcr0; 213 } 214 215 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries, 216 int nent) 217 { 218 struct kvm_cpuid_entry2 *best; 219 u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent); 220 221 best = cpuid_entry2_find(entries, nent, 1, 0); 222 if (best) { 223 /* Update OSXSAVE bit */ 224 if (boot_cpu_has(X86_FEATURE_XSAVE)) 225 cpuid_entry_change(best, X86_FEATURE_OSXSAVE, 226 kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)); 227 228 cpuid_entry_change(best, X86_FEATURE_APIC, 229 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE); 230 } 231 232 best = cpuid_entry2_find(entries, nent, 7, 0); 233 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) 234 cpuid_entry_change(best, X86_FEATURE_OSPKE, 235 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)); 236 237 best = cpuid_entry2_find(entries, nent, 0xD, 0); 238 if (best) 239 best->ebx = xstate_required_size(vcpu->arch.xcr0, false); 240 241 best = cpuid_entry2_find(entries, nent, 0xD, 1); 242 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) || 243 cpuid_entry_has(best, X86_FEATURE_XSAVEC))) 244 best->ebx = xstate_required_size(vcpu->arch.xcr0, true); 245 246 best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent); 247 if (kvm_hlt_in_guest(vcpu->kvm) && best && 248 (best->eax & (1 << KVM_FEATURE_PV_UNHALT))) 249 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); 250 251 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) { 252 best = cpuid_entry2_find(entries, nent, 0x1, 0); 253 if (best) 254 cpuid_entry_change(best, X86_FEATURE_MWAIT, 255 vcpu->arch.ia32_misc_enable_msr & 256 MSR_IA32_MISC_ENABLE_MWAIT); 257 } 258 259 /* 260 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate 261 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's 262 * requested XCR0 value. The enclave's XFRM must be a subset of XCRO 263 * at the time of EENTER, thus adjust the allowed XFRM by the guest's 264 * supported XCR0. Similar to XCR0 handling, FP and SSE are forced to 265 * '1' even on CPUs that don't support XSAVE. 266 */ 267 best = cpuid_entry2_find(entries, nent, 0x12, 0x1); 268 if (best) { 269 best->ecx &= guest_supported_xcr0 & 0xffffffff; 270 best->edx &= guest_supported_xcr0 >> 32; 271 best->ecx |= XFEATURE_MASK_FPSSE; 272 } 273 } 274 275 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu) 276 { 277 __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent); 278 } 279 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime); 280 281 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 282 { 283 struct kvm_lapic *apic = vcpu->arch.apic; 284 struct kvm_cpuid_entry2 *best; 285 u64 guest_supported_xcr0; 286 287 best = kvm_find_cpuid_entry(vcpu, 1, 0); 288 if (best && apic) { 289 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER)) 290 apic->lapic_timer.timer_mode_mask = 3 << 17; 291 else 292 apic->lapic_timer.timer_mode_mask = 1 << 17; 293 294 kvm_apic_set_version(vcpu); 295 } 296 297 guest_supported_xcr0 = 298 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent); 299 300 vcpu->arch.guest_fpu.fpstate->user_xfeatures = guest_supported_xcr0; 301 302 kvm_update_pv_runtime(vcpu); 303 304 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 305 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 306 307 kvm_pmu_refresh(vcpu); 308 vcpu->arch.cr4_guest_rsvd_bits = 309 __cr4_reserved_bits(guest_cpuid_has, vcpu); 310 311 kvm_hv_set_cpuid(vcpu); 312 313 /* Invoke the vendor callback only after the above state is updated. */ 314 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu); 315 316 /* 317 * Except for the MMU, which needs to do its thing any vendor specific 318 * adjustments to the reserved GPA bits. 319 */ 320 kvm_mmu_after_set_cpuid(vcpu); 321 } 322 323 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) 324 { 325 struct kvm_cpuid_entry2 *best; 326 327 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); 328 if (!best || best->eax < 0x80000008) 329 goto not_found; 330 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); 331 if (best) 332 return best->eax & 0xff; 333 not_found: 334 return 36; 335 } 336 337 /* 338 * This "raw" version returns the reserved GPA bits without any adjustments for 339 * encryption technologies that usurp bits. The raw mask should be used if and 340 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs. 341 */ 342 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu) 343 { 344 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63); 345 } 346 347 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, 348 int nent) 349 { 350 int r; 351 352 __kvm_update_cpuid_runtime(vcpu, e2, nent); 353 354 /* 355 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as 356 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't 357 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page 358 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with 359 * the core vCPU model on the fly. It would've been better to forbid any 360 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately 361 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do 362 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check 363 * whether the supplied CPUID data is equal to what's already set. 364 */ 365 if (vcpu->arch.last_vmentry_cpu != -1) { 366 r = kvm_cpuid_check_equal(vcpu, e2, nent); 367 if (r) 368 return r; 369 370 kvfree(e2); 371 return 0; 372 } 373 374 r = kvm_check_cpuid(vcpu, e2, nent); 375 if (r) 376 return r; 377 378 kvfree(vcpu->arch.cpuid_entries); 379 vcpu->arch.cpuid_entries = e2; 380 vcpu->arch.cpuid_nent = nent; 381 382 kvm_update_kvm_cpuid_base(vcpu); 383 kvm_vcpu_after_set_cpuid(vcpu); 384 385 return 0; 386 } 387 388 /* when an old userspace process fills a new kernel module */ 389 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, 390 struct kvm_cpuid *cpuid, 391 struct kvm_cpuid_entry __user *entries) 392 { 393 int r, i; 394 struct kvm_cpuid_entry *e = NULL; 395 struct kvm_cpuid_entry2 *e2 = NULL; 396 397 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 398 return -E2BIG; 399 400 if (cpuid->nent) { 401 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent)); 402 if (IS_ERR(e)) 403 return PTR_ERR(e); 404 405 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT); 406 if (!e2) { 407 r = -ENOMEM; 408 goto out_free_cpuid; 409 } 410 } 411 for (i = 0; i < cpuid->nent; i++) { 412 e2[i].function = e[i].function; 413 e2[i].eax = e[i].eax; 414 e2[i].ebx = e[i].ebx; 415 e2[i].ecx = e[i].ecx; 416 e2[i].edx = e[i].edx; 417 e2[i].index = 0; 418 e2[i].flags = 0; 419 e2[i].padding[0] = 0; 420 e2[i].padding[1] = 0; 421 e2[i].padding[2] = 0; 422 } 423 424 r = kvm_set_cpuid(vcpu, e2, cpuid->nent); 425 if (r) 426 kvfree(e2); 427 428 out_free_cpuid: 429 kvfree(e); 430 431 return r; 432 } 433 434 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, 435 struct kvm_cpuid2 *cpuid, 436 struct kvm_cpuid_entry2 __user *entries) 437 { 438 struct kvm_cpuid_entry2 *e2 = NULL; 439 int r; 440 441 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 442 return -E2BIG; 443 444 if (cpuid->nent) { 445 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent)); 446 if (IS_ERR(e2)) 447 return PTR_ERR(e2); 448 } 449 450 r = kvm_set_cpuid(vcpu, e2, cpuid->nent); 451 if (r) 452 kvfree(e2); 453 454 return r; 455 } 456 457 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, 458 struct kvm_cpuid2 *cpuid, 459 struct kvm_cpuid_entry2 __user *entries) 460 { 461 int r; 462 463 r = -E2BIG; 464 if (cpuid->nent < vcpu->arch.cpuid_nent) 465 goto out; 466 r = -EFAULT; 467 if (copy_to_user(entries, vcpu->arch.cpuid_entries, 468 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) 469 goto out; 470 return 0; 471 472 out: 473 cpuid->nent = vcpu->arch.cpuid_nent; 474 return r; 475 } 476 477 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */ 478 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf) 479 { 480 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); 481 struct kvm_cpuid_entry2 entry; 482 483 reverse_cpuid_check(leaf); 484 485 cpuid_count(cpuid.function, cpuid.index, 486 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx); 487 488 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg); 489 } 490 491 static __always_inline 492 void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask) 493 { 494 /* Use kvm_cpu_cap_mask for non-scattered leafs. */ 495 BUILD_BUG_ON(leaf < NCAPINTS); 496 497 kvm_cpu_caps[leaf] = mask; 498 499 __kvm_cpu_cap_mask(leaf); 500 } 501 502 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask) 503 { 504 /* Use kvm_cpu_cap_init_scattered for scattered leafs. */ 505 BUILD_BUG_ON(leaf >= NCAPINTS); 506 507 kvm_cpu_caps[leaf] &= mask; 508 509 __kvm_cpu_cap_mask(leaf); 510 } 511 512 void kvm_set_cpu_caps(void) 513 { 514 #ifdef CONFIG_X86_64 515 unsigned int f_gbpages = F(GBPAGES); 516 unsigned int f_lm = F(LM); 517 unsigned int f_xfd = F(XFD); 518 #else 519 unsigned int f_gbpages = 0; 520 unsigned int f_lm = 0; 521 unsigned int f_xfd = 0; 522 #endif 523 memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps)); 524 525 BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) > 526 sizeof(boot_cpu_data.x86_capability)); 527 528 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability, 529 sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps))); 530 531 kvm_cpu_cap_mask(CPUID_1_ECX, 532 /* 533 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not* 534 * advertised to guests via CPUID! 535 */ 536 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | 537 0 /* DS-CPL, VMX, SMX, EST */ | 538 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | 539 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) | 540 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | 541 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | 542 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | 543 F(F16C) | F(RDRAND) 544 ); 545 /* KVM emulates x2apic in software irrespective of host support. */ 546 kvm_cpu_cap_set(X86_FEATURE_X2APIC); 547 548 kvm_cpu_cap_mask(CPUID_1_EDX, 549 F(FPU) | F(VME) | F(DE) | F(PSE) | 550 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 551 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | 552 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 553 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | 554 0 /* Reserved, DS, ACPI */ | F(MMX) | 555 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | 556 0 /* HTT, TM, Reserved, PBE */ 557 ); 558 559 kvm_cpu_cap_mask(CPUID_7_0_EBX, 560 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | 561 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) | 562 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) | 563 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) | 564 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) | 565 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) | 566 F(AVX512VL)); 567 568 kvm_cpu_cap_mask(CPUID_7_ECX, 569 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) | 570 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) | 571 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) | 572 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ | 573 F(SGX_LC) | F(BUS_LOCK_DETECT) 574 ); 575 /* Set LA57 based on hardware capability. */ 576 if (cpuid_ecx(7) & F(LA57)) 577 kvm_cpu_cap_set(X86_FEATURE_LA57); 578 579 /* 580 * PKU not yet implemented for shadow paging and requires OSPKE 581 * to be set on the host. Clear it if that is not the case 582 */ 583 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) 584 kvm_cpu_cap_clear(X86_FEATURE_PKU); 585 586 kvm_cpu_cap_mask(CPUID_7_EDX, 587 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | 588 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) | 589 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) | 590 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) | 591 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) 592 ); 593 594 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */ 595 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST); 596 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES); 597 598 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS)) 599 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL); 600 if (boot_cpu_has(X86_FEATURE_STIBP)) 601 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP); 602 if (boot_cpu_has(X86_FEATURE_AMD_SSBD)) 603 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD); 604 605 kvm_cpu_cap_mask(CPUID_7_1_EAX, 606 F(AVX_VNNI) | F(AVX512_BF16) 607 ); 608 609 kvm_cpu_cap_mask(CPUID_D_1_EAX, 610 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd 611 ); 612 613 kvm_cpu_cap_init_scattered(CPUID_12_EAX, 614 SF(SGX1) | SF(SGX2) 615 ); 616 617 kvm_cpu_cap_mask(CPUID_8000_0001_ECX, 618 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | 619 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | 620 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | 621 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) | 622 F(TOPOEXT) | 0 /* PERFCTR_CORE */ 623 ); 624 625 kvm_cpu_cap_mask(CPUID_8000_0001_EDX, 626 F(FPU) | F(VME) | F(DE) | F(PSE) | 627 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 628 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | 629 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 630 F(PAT) | F(PSE36) | 0 /* Reserved */ | 631 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | 632 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) | 633 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW) 634 ); 635 636 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64)) 637 kvm_cpu_cap_set(X86_FEATURE_GBPAGES); 638 639 kvm_cpu_cap_mask(CPUID_8000_0008_EBX, 640 F(CLZERO) | F(XSAVEERPTR) | 641 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | 642 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) | 643 __feature_bit(KVM_X86_FEATURE_PSFD) 644 ); 645 646 /* 647 * AMD has separate bits for each SPEC_CTRL bit. 648 * arch/x86/kernel/cpu/bugs.c is kind enough to 649 * record that in cpufeatures so use them. 650 */ 651 if (boot_cpu_has(X86_FEATURE_IBPB)) 652 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB); 653 if (boot_cpu_has(X86_FEATURE_IBRS)) 654 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS); 655 if (boot_cpu_has(X86_FEATURE_STIBP)) 656 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP); 657 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD)) 658 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD); 659 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 660 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO); 661 /* 662 * The preference is to use SPEC CTRL MSR instead of the 663 * VIRT_SPEC MSR. 664 */ 665 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 666 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 667 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 668 669 /* 670 * Hide all SVM features by default, SVM will set the cap bits for 671 * features it emulates and/or exposes for L1. 672 */ 673 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0); 674 675 kvm_cpu_cap_mask(CPUID_8000_001F_EAX, 676 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) | 677 F(SME_COHERENT)); 678 679 kvm_cpu_cap_mask(CPUID_C000_0001_EDX, 680 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | 681 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | 682 F(PMM) | F(PMM_EN) 683 ); 684 685 /* 686 * Hide RDTSCP and RDPID if either feature is reported as supported but 687 * probing MSR_TSC_AUX failed. This is purely a sanity check and 688 * should never happen, but the guest will likely crash if RDTSCP or 689 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in 690 * the past. For example, the sanity check may fire if this instance of 691 * KVM is running as L1 on top of an older, broken KVM. 692 */ 693 if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) || 694 kvm_cpu_cap_has(X86_FEATURE_RDPID)) && 695 !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) { 696 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 697 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 698 } 699 } 700 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps); 701 702 struct kvm_cpuid_array { 703 struct kvm_cpuid_entry2 *entries; 704 int maxnent; 705 int nent; 706 }; 707 708 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array, 709 u32 function, u32 index) 710 { 711 struct kvm_cpuid_entry2 *entry; 712 713 if (array->nent >= array->maxnent) 714 return NULL; 715 716 entry = &array->entries[array->nent++]; 717 718 entry->function = function; 719 entry->index = index; 720 entry->flags = 0; 721 722 cpuid_count(entry->function, entry->index, 723 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); 724 725 switch (function) { 726 case 4: 727 case 7: 728 case 0xb: 729 case 0xd: 730 case 0xf: 731 case 0x10: 732 case 0x12: 733 case 0x14: 734 case 0x17: 735 case 0x18: 736 case 0x1d: 737 case 0x1e: 738 case 0x1f: 739 case 0x8000001d: 740 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 741 break; 742 } 743 744 return entry; 745 } 746 747 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func) 748 { 749 struct kvm_cpuid_entry2 *entry; 750 751 if (array->nent >= array->maxnent) 752 return -E2BIG; 753 754 entry = &array->entries[array->nent]; 755 entry->function = func; 756 entry->index = 0; 757 entry->flags = 0; 758 759 switch (func) { 760 case 0: 761 entry->eax = 7; 762 ++array->nent; 763 break; 764 case 1: 765 entry->ecx = F(MOVBE); 766 ++array->nent; 767 break; 768 case 7: 769 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 770 entry->eax = 0; 771 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 772 entry->ecx = F(RDPID); 773 ++array->nent; 774 break; 775 default: 776 break; 777 } 778 779 return 0; 780 } 781 782 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function) 783 { 784 struct kvm_cpuid_entry2 *entry; 785 int r, i, max_idx; 786 787 /* all calls to cpuid_count() should be made on the same cpu */ 788 get_cpu(); 789 790 r = -E2BIG; 791 792 entry = do_host_cpuid(array, function, 0); 793 if (!entry) 794 goto out; 795 796 switch (function) { 797 case 0: 798 /* Limited to the highest leaf implemented in KVM. */ 799 entry->eax = min(entry->eax, 0x1fU); 800 break; 801 case 1: 802 cpuid_entry_override(entry, CPUID_1_EDX); 803 cpuid_entry_override(entry, CPUID_1_ECX); 804 break; 805 case 2: 806 /* 807 * On ancient CPUs, function 2 entries are STATEFUL. That is, 808 * CPUID(function=2, index=0) may return different results each 809 * time, with the least-significant byte in EAX enumerating the 810 * number of times software should do CPUID(2, 0). 811 * 812 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less 813 * idiotic. Intel's SDM states that EAX & 0xff "will always 814 * return 01H. Software should ignore this value and not 815 * interpret it as an informational descriptor", while AMD's 816 * APM states that CPUID(2) is reserved. 817 * 818 * WARN if a frankenstein CPU that supports virtualization and 819 * a stateful CPUID.0x2 is encountered. 820 */ 821 WARN_ON_ONCE((entry->eax & 0xff) > 1); 822 break; 823 /* functions 4 and 0x8000001d have additional index. */ 824 case 4: 825 case 0x8000001d: 826 /* 827 * Read entries until the cache type in the previous entry is 828 * zero, i.e. indicates an invalid entry. 829 */ 830 for (i = 1; entry->eax & 0x1f; ++i) { 831 entry = do_host_cpuid(array, function, i); 832 if (!entry) 833 goto out; 834 } 835 break; 836 case 6: /* Thermal management */ 837 entry->eax = 0x4; /* allow ARAT */ 838 entry->ebx = 0; 839 entry->ecx = 0; 840 entry->edx = 0; 841 break; 842 /* function 7 has additional index. */ 843 case 7: 844 entry->eax = min(entry->eax, 1u); 845 cpuid_entry_override(entry, CPUID_7_0_EBX); 846 cpuid_entry_override(entry, CPUID_7_ECX); 847 cpuid_entry_override(entry, CPUID_7_EDX); 848 849 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */ 850 if (entry->eax == 1) { 851 entry = do_host_cpuid(array, function, 1); 852 if (!entry) 853 goto out; 854 855 cpuid_entry_override(entry, CPUID_7_1_EAX); 856 entry->ebx = 0; 857 entry->ecx = 0; 858 entry->edx = 0; 859 } 860 break; 861 case 9: 862 break; 863 case 0xa: { /* Architectural Performance Monitoring */ 864 struct x86_pmu_capability cap; 865 union cpuid10_eax eax; 866 union cpuid10_edx edx; 867 868 perf_get_x86_pmu_capability(&cap); 869 870 /* 871 * The guest architecture pmu is only supported if the architecture 872 * pmu exists on the host and the module parameters allow it. 873 */ 874 if (!cap.version || !enable_pmu) 875 memset(&cap, 0, sizeof(cap)); 876 877 eax.split.version_id = min(cap.version, 2); 878 eax.split.num_counters = cap.num_counters_gp; 879 eax.split.bit_width = cap.bit_width_gp; 880 eax.split.mask_length = cap.events_mask_len; 881 882 edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS); 883 edx.split.bit_width_fixed = cap.bit_width_fixed; 884 if (cap.version) 885 edx.split.anythread_deprecated = 1; 886 edx.split.reserved1 = 0; 887 edx.split.reserved2 = 0; 888 889 entry->eax = eax.full; 890 entry->ebx = cap.events_mask; 891 entry->ecx = 0; 892 entry->edx = edx.full; 893 break; 894 } 895 /* 896 * Per Intel's SDM, the 0x1f is a superset of 0xb, 897 * thus they can be handled by common code. 898 */ 899 case 0x1f: 900 case 0xb: 901 /* 902 * Populate entries until the level type (ECX[15:8]) of the 903 * previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is 904 * the starting entry, filled by the primary do_host_cpuid(). 905 */ 906 for (i = 1; entry->ecx & 0xff00; ++i) { 907 entry = do_host_cpuid(array, function, i); 908 if (!entry) 909 goto out; 910 } 911 break; 912 case 0xd: { 913 u64 permitted_xcr0 = supported_xcr0 & xstate_get_guest_group_perm(); 914 u64 permitted_xss = supported_xss; 915 916 entry->eax &= permitted_xcr0; 917 entry->ebx = xstate_required_size(permitted_xcr0, false); 918 entry->ecx = entry->ebx; 919 entry->edx &= permitted_xcr0 >> 32; 920 if (!permitted_xcr0) 921 break; 922 923 entry = do_host_cpuid(array, function, 1); 924 if (!entry) 925 goto out; 926 927 cpuid_entry_override(entry, CPUID_D_1_EAX); 928 if (entry->eax & (F(XSAVES)|F(XSAVEC))) 929 entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss, 930 true); 931 else { 932 WARN_ON_ONCE(permitted_xss != 0); 933 entry->ebx = 0; 934 } 935 entry->ecx &= permitted_xss; 936 entry->edx &= permitted_xss >> 32; 937 938 for (i = 2; i < 64; ++i) { 939 bool s_state; 940 if (permitted_xcr0 & BIT_ULL(i)) 941 s_state = false; 942 else if (permitted_xss & BIT_ULL(i)) 943 s_state = true; 944 else 945 continue; 946 947 entry = do_host_cpuid(array, function, i); 948 if (!entry) 949 goto out; 950 951 /* 952 * The supported check above should have filtered out 953 * invalid sub-leafs. Only valid sub-leafs should 954 * reach this point, and they should have a non-zero 955 * save state size. Furthermore, check whether the 956 * processor agrees with permitted_xcr0/permitted_xss 957 * on whether this is an XCR0- or IA32_XSS-managed area. 958 */ 959 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) { 960 --array->nent; 961 continue; 962 } 963 964 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 965 entry->ecx &= ~BIT_ULL(2); 966 entry->edx = 0; 967 } 968 break; 969 } 970 case 0x12: 971 /* Intel SGX */ 972 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) { 973 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 974 break; 975 } 976 977 /* 978 * Index 0: Sub-features, MISCSELECT (a.k.a extended features) 979 * and max enclave sizes. The SGX sub-features and MISCSELECT 980 * are restricted by kernel and KVM capabilities (like most 981 * feature flags), while enclave size is unrestricted. 982 */ 983 cpuid_entry_override(entry, CPUID_12_EAX); 984 entry->ebx &= SGX_MISC_EXINFO; 985 986 entry = do_host_cpuid(array, function, 1); 987 if (!entry) 988 goto out; 989 990 /* 991 * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la 992 * feature flags. Advertise all supported flags, including 993 * privileged attributes that require explicit opt-in from 994 * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is 995 * expected to derive it from supported XCR0. 996 */ 997 entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT | 998 SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY | 999 SGX_ATTR_KSS; 1000 entry->ebx &= 0; 1001 break; 1002 /* Intel PT */ 1003 case 0x14: 1004 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) { 1005 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1006 break; 1007 } 1008 1009 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { 1010 if (!do_host_cpuid(array, function, i)) 1011 goto out; 1012 } 1013 break; 1014 /* Intel AMX TILE */ 1015 case 0x1d: 1016 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { 1017 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1018 break; 1019 } 1020 1021 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { 1022 if (!do_host_cpuid(array, function, i)) 1023 goto out; 1024 } 1025 break; 1026 case 0x1e: /* TMUL information */ 1027 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { 1028 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1029 break; 1030 } 1031 break; 1032 case KVM_CPUID_SIGNATURE: { 1033 const u32 *sigptr = (const u32 *)KVM_SIGNATURE; 1034 entry->eax = KVM_CPUID_FEATURES; 1035 entry->ebx = sigptr[0]; 1036 entry->ecx = sigptr[1]; 1037 entry->edx = sigptr[2]; 1038 break; 1039 } 1040 case KVM_CPUID_FEATURES: 1041 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | 1042 (1 << KVM_FEATURE_NOP_IO_DELAY) | 1043 (1 << KVM_FEATURE_CLOCKSOURCE2) | 1044 (1 << KVM_FEATURE_ASYNC_PF) | 1045 (1 << KVM_FEATURE_PV_EOI) | 1046 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | 1047 (1 << KVM_FEATURE_PV_UNHALT) | 1048 (1 << KVM_FEATURE_PV_TLB_FLUSH) | 1049 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | 1050 (1 << KVM_FEATURE_PV_SEND_IPI) | 1051 (1 << KVM_FEATURE_POLL_CONTROL) | 1052 (1 << KVM_FEATURE_PV_SCHED_YIELD) | 1053 (1 << KVM_FEATURE_ASYNC_PF_INT); 1054 1055 if (sched_info_on()) 1056 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); 1057 1058 entry->ebx = 0; 1059 entry->ecx = 0; 1060 entry->edx = 0; 1061 break; 1062 case 0x80000000: 1063 entry->eax = min(entry->eax, 0x8000001f); 1064 break; 1065 case 0x80000001: 1066 cpuid_entry_override(entry, CPUID_8000_0001_EDX); 1067 cpuid_entry_override(entry, CPUID_8000_0001_ECX); 1068 break; 1069 case 0x80000006: 1070 /* L2 cache and TLB: pass through host info. */ 1071 break; 1072 case 0x80000007: /* Advanced power management */ 1073 /* invariant TSC is CPUID.80000007H:EDX[8] */ 1074 entry->edx &= (1 << 8); 1075 /* mask against host */ 1076 entry->edx &= boot_cpu_data.x86_power; 1077 entry->eax = entry->ebx = entry->ecx = 0; 1078 break; 1079 case 0x80000008: { 1080 unsigned g_phys_as = (entry->eax >> 16) & 0xff; 1081 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); 1082 unsigned phys_as = entry->eax & 0xff; 1083 1084 /* 1085 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as 1086 * the guest operates in the same PA space as the host, i.e. 1087 * reductions in MAXPHYADDR for memory encryption affect shadow 1088 * paging, too. 1089 * 1090 * If TDP is enabled but an explicit guest MAXPHYADDR is not 1091 * provided, use the raw bare metal MAXPHYADDR as reductions to 1092 * the HPAs do not affect GPAs. 1093 */ 1094 if (!tdp_enabled) 1095 g_phys_as = boot_cpu_data.x86_phys_bits; 1096 else if (!g_phys_as) 1097 g_phys_as = phys_as; 1098 1099 entry->eax = g_phys_as | (virt_as << 8); 1100 entry->edx = 0; 1101 cpuid_entry_override(entry, CPUID_8000_0008_EBX); 1102 break; 1103 } 1104 case 0x8000000A: 1105 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) { 1106 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1107 break; 1108 } 1109 entry->eax = 1; /* SVM revision 1 */ 1110 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper 1111 ASID emulation to nested SVM */ 1112 entry->ecx = 0; /* Reserved */ 1113 cpuid_entry_override(entry, CPUID_8000_000A_EDX); 1114 break; 1115 case 0x80000019: 1116 entry->ecx = entry->edx = 0; 1117 break; 1118 case 0x8000001a: 1119 case 0x8000001e: 1120 break; 1121 case 0x8000001F: 1122 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) { 1123 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1124 } else { 1125 cpuid_entry_override(entry, CPUID_8000_001F_EAX); 1126 1127 /* 1128 * Enumerate '0' for "PA bits reduction", the adjusted 1129 * MAXPHYADDR is enumerated directly (see 0x80000008). 1130 */ 1131 entry->ebx &= ~GENMASK(11, 6); 1132 } 1133 break; 1134 /*Add support for Centaur's CPUID instruction*/ 1135 case 0xC0000000: 1136 /*Just support up to 0xC0000004 now*/ 1137 entry->eax = min(entry->eax, 0xC0000004); 1138 break; 1139 case 0xC0000001: 1140 cpuid_entry_override(entry, CPUID_C000_0001_EDX); 1141 break; 1142 case 3: /* Processor serial number */ 1143 case 5: /* MONITOR/MWAIT */ 1144 case 0xC0000002: 1145 case 0xC0000003: 1146 case 0xC0000004: 1147 default: 1148 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1149 break; 1150 } 1151 1152 r = 0; 1153 1154 out: 1155 put_cpu(); 1156 1157 return r; 1158 } 1159 1160 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func, 1161 unsigned int type) 1162 { 1163 if (type == KVM_GET_EMULATED_CPUID) 1164 return __do_cpuid_func_emulated(array, func); 1165 1166 return __do_cpuid_func(array, func); 1167 } 1168 1169 #define CENTAUR_CPUID_SIGNATURE 0xC0000000 1170 1171 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func, 1172 unsigned int type) 1173 { 1174 u32 limit; 1175 int r; 1176 1177 if (func == CENTAUR_CPUID_SIGNATURE && 1178 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR) 1179 return 0; 1180 1181 r = do_cpuid_func(array, func, type); 1182 if (r) 1183 return r; 1184 1185 limit = array->entries[array->nent - 1].eax; 1186 for (func = func + 1; func <= limit; ++func) { 1187 r = do_cpuid_func(array, func, type); 1188 if (r) 1189 break; 1190 } 1191 1192 return r; 1193 } 1194 1195 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, 1196 __u32 num_entries, unsigned int ioctl_type) 1197 { 1198 int i; 1199 __u32 pad[3]; 1200 1201 if (ioctl_type != KVM_GET_EMULATED_CPUID) 1202 return false; 1203 1204 /* 1205 * We want to make sure that ->padding is being passed clean from 1206 * userspace in case we want to use it for something in the future. 1207 * 1208 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we 1209 * have to give ourselves satisfied only with the emulated side. /me 1210 * sheds a tear. 1211 */ 1212 for (i = 0; i < num_entries; i++) { 1213 if (copy_from_user(pad, entries[i].padding, sizeof(pad))) 1214 return true; 1215 1216 if (pad[0] || pad[1] || pad[2]) 1217 return true; 1218 } 1219 return false; 1220 } 1221 1222 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, 1223 struct kvm_cpuid_entry2 __user *entries, 1224 unsigned int type) 1225 { 1226 static const u32 funcs[] = { 1227 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE, 1228 }; 1229 1230 struct kvm_cpuid_array array = { 1231 .nent = 0, 1232 }; 1233 int r, i; 1234 1235 if (cpuid->nent < 1) 1236 return -E2BIG; 1237 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 1238 cpuid->nent = KVM_MAX_CPUID_ENTRIES; 1239 1240 if (sanity_check_entries(entries, cpuid->nent, type)) 1241 return -EINVAL; 1242 1243 array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2), 1244 cpuid->nent)); 1245 if (!array.entries) 1246 return -ENOMEM; 1247 1248 array.maxnent = cpuid->nent; 1249 1250 for (i = 0; i < ARRAY_SIZE(funcs); i++) { 1251 r = get_cpuid_func(&array, funcs[i], type); 1252 if (r) 1253 goto out_free; 1254 } 1255 cpuid->nent = array.nent; 1256 1257 if (copy_to_user(entries, array.entries, 1258 array.nent * sizeof(struct kvm_cpuid_entry2))) 1259 r = -EFAULT; 1260 1261 out_free: 1262 vfree(array.entries); 1263 return r; 1264 } 1265 1266 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, 1267 u32 function, u32 index) 1268 { 1269 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent, 1270 function, index); 1271 } 1272 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); 1273 1274 /* 1275 * Intel CPUID semantics treats any query for an out-of-range leaf as if the 1276 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics 1277 * returns all zeroes for any undefined leaf, whether or not the leaf is in 1278 * range. Centaur/VIA follows Intel semantics. 1279 * 1280 * A leaf is considered out-of-range if its function is higher than the maximum 1281 * supported leaf of its associated class or if its associated class does not 1282 * exist. 1283 * 1284 * There are three primary classes to be considered, with their respective 1285 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary 1286 * class exists if a guest CPUID entry for its <base> leaf exists. For a given 1287 * class, CPUID.<base>.EAX contains the max supported leaf for the class. 1288 * 1289 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff 1290 * - Hypervisor: 0x40000000 - 0x4fffffff 1291 * - Extended: 0x80000000 - 0xbfffffff 1292 * - Centaur: 0xc0000000 - 0xcfffffff 1293 * 1294 * The Hypervisor class is further subdivided into sub-classes that each act as 1295 * their own independent class associated with a 0x100 byte range. E.g. if Qemu 1296 * is advertising support for both HyperV and KVM, the resulting Hypervisor 1297 * CPUID sub-classes are: 1298 * 1299 * - HyperV: 0x40000000 - 0x400000ff 1300 * - KVM: 0x40000100 - 0x400001ff 1301 */ 1302 static struct kvm_cpuid_entry2 * 1303 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index) 1304 { 1305 struct kvm_cpuid_entry2 *basic, *class; 1306 u32 function = *fn_ptr; 1307 1308 basic = kvm_find_cpuid_entry(vcpu, 0, 0); 1309 if (!basic) 1310 return NULL; 1311 1312 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) || 1313 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx)) 1314 return NULL; 1315 1316 if (function >= 0x40000000 && function <= 0x4fffffff) 1317 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0); 1318 else if (function >= 0xc0000000) 1319 class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0); 1320 else 1321 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0); 1322 1323 if (class && function <= class->eax) 1324 return NULL; 1325 1326 /* 1327 * Leaf specific adjustments are also applied when redirecting to the 1328 * max basic entry, e.g. if the max basic leaf is 0xb but there is no 1329 * entry for CPUID.0xb.index (see below), then the output value for EDX 1330 * needs to be pulled from CPUID.0xb.1. 1331 */ 1332 *fn_ptr = basic->eax; 1333 1334 /* 1335 * The class does not exist or the requested function is out of range; 1336 * the effective CPUID entry is the max basic leaf. Note, the index of 1337 * the original requested leaf is observed! 1338 */ 1339 return kvm_find_cpuid_entry(vcpu, basic->eax, index); 1340 } 1341 1342 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, 1343 u32 *ecx, u32 *edx, bool exact_only) 1344 { 1345 u32 orig_function = *eax, function = *eax, index = *ecx; 1346 struct kvm_cpuid_entry2 *entry; 1347 bool exact, used_max_basic = false; 1348 1349 entry = kvm_find_cpuid_entry(vcpu, function, index); 1350 exact = !!entry; 1351 1352 if (!entry && !exact_only) { 1353 entry = get_out_of_range_cpuid_entry(vcpu, &function, index); 1354 used_max_basic = !!entry; 1355 } 1356 1357 if (entry) { 1358 *eax = entry->eax; 1359 *ebx = entry->ebx; 1360 *ecx = entry->ecx; 1361 *edx = entry->edx; 1362 if (function == 7 && index == 0) { 1363 u64 data; 1364 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) && 1365 (data & TSX_CTRL_CPUID_CLEAR)) 1366 *ebx &= ~(F(RTM) | F(HLE)); 1367 } 1368 } else { 1369 *eax = *ebx = *ecx = *edx = 0; 1370 /* 1371 * When leaf 0BH or 1FH is defined, CL is pass-through 1372 * and EDX is always the x2APIC ID, even for undefined 1373 * subleaves. Index 1 will exist iff the leaf is 1374 * implemented, so we pass through CL iff leaf 1 1375 * exists. EDX can be copied from any existing index. 1376 */ 1377 if (function == 0xb || function == 0x1f) { 1378 entry = kvm_find_cpuid_entry(vcpu, function, 1); 1379 if (entry) { 1380 *ecx = index & 0xff; 1381 *edx = entry->edx; 1382 } 1383 } 1384 } 1385 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact, 1386 used_max_basic); 1387 return exact; 1388 } 1389 EXPORT_SYMBOL_GPL(kvm_cpuid); 1390 1391 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) 1392 { 1393 u32 eax, ebx, ecx, edx; 1394 1395 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) 1396 return 1; 1397 1398 eax = kvm_rax_read(vcpu); 1399 ecx = kvm_rcx_read(vcpu); 1400 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false); 1401 kvm_rax_write(vcpu, eax); 1402 kvm_rbx_write(vcpu, ebx); 1403 kvm_rcx_write(vcpu, ecx); 1404 kvm_rdx_write(vcpu, edx); 1405 return kvm_skip_emulated_instruction(vcpu); 1406 } 1407 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); 1408