xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 98a52692)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19 
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31 
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38 
39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41 	int feature_bit = 0;
42 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43 
44 	xstate_bv &= XFEATURE_MASK_EXTEND;
45 	while (xstate_bv) {
46 		if (xstate_bv & 0x1) {
47 		        u32 eax, ebx, ecx, edx, offset;
48 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49 			/* ECX[1]: 64B alignment in compacted form */
50 			if (compacted)
51 				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52 			else
53 				offset = ebx;
54 			ret = max(ret, offset + eax);
55 		}
56 
57 		xstate_bv >>= 1;
58 		feature_bit++;
59 	}
60 
61 	return ret;
62 }
63 
64 #define F feature_bit
65 
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name)						\
68 ({								\
69 	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
70 	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
71 })
72 
73 /*
74  * Magic value used by KVM when querying userspace-provided CPUID entries and
75  * doesn't care about the CPIUD index because the index of the function in
76  * question is not significant.  Note, this magic value must have at least one
77  * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78  * to avoid false positives when processing guest CPUID input.
79  */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81 
82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85 	struct kvm_cpuid_entry2 *e;
86 	int i;
87 
88 	/*
89 	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90 	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
91 	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92 	 * typically disabled in KVM only when KVM is in a performance critical
93 	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94 	 * if this rule is violated, this assertion is purely to flag potential
95 	 * performance issues.  If this fires, consider moving the lookup out
96 	 * of the hotpath, e.g. by caching information during CPUID updates.
97 	 */
98 	lockdep_assert_irqs_enabled();
99 
100 	for (i = 0; i < nent; i++) {
101 		e = &entries[i];
102 
103 		if (e->function != function)
104 			continue;
105 
106 		/*
107 		 * If the index isn't significant, use the first entry with a
108 		 * matching function.  It's userspace's responsibilty to not
109 		 * provide "duplicate" entries in all cases.
110 		 */
111 		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112 			return e;
113 
114 
115 		/*
116 		 * Similarly, use the first matching entry if KVM is doing a
117 		 * lookup (as opposed to emulating CPUID) for a function that's
118 		 * architecturally defined as not having a significant index.
119 		 */
120 		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121 			/*
122 			 * Direct lookups from KVM should not diverge from what
123 			 * KVM defines internally (the architectural behavior).
124 			 */
125 			WARN_ON_ONCE(cpuid_function_is_indexed(function));
126 			return e;
127 		}
128 	}
129 
130 	return NULL;
131 }
132 
133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134 			   struct kvm_cpuid_entry2 *entries,
135 			   int nent)
136 {
137 	struct kvm_cpuid_entry2 *best;
138 	u64 xfeatures;
139 
140 	/*
141 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
142 	 * canonical address checks; exit if it is ever changed.
143 	 */
144 	best = cpuid_entry2_find(entries, nent, 0x80000008,
145 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146 	if (best) {
147 		int vaddr_bits = (best->eax & 0xff00) >> 8;
148 
149 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150 			return -EINVAL;
151 	}
152 
153 	/*
154 	 * Exposing dynamic xfeatures to the guest requires additional
155 	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156 	 */
157 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
158 	if (!best)
159 		return 0;
160 
161 	xfeatures = best->eax | ((u64)best->edx << 32);
162 	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163 	if (!xfeatures)
164 		return 0;
165 
166 	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168 
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171 				 int nent)
172 {
173 	struct kvm_cpuid_entry2 *orig;
174 	int i;
175 
176 	if (nent != vcpu->arch.cpuid_nent)
177 		return -EINVAL;
178 
179 	for (i = 0; i < nent; i++) {
180 		orig = &vcpu->arch.cpuid_entries[i];
181 		if (e2[i].function != orig->function ||
182 		    e2[i].index != orig->index ||
183 		    e2[i].flags != orig->flags ||
184 		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185 		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186 			return -EINVAL;
187 	}
188 
189 	return 0;
190 }
191 
192 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
193 							    const char *sig)
194 {
195 	struct kvm_hypervisor_cpuid cpuid = {};
196 	struct kvm_cpuid_entry2 *entry;
197 	u32 base;
198 
199 	for_each_possible_hypervisor_cpuid_base(base) {
200 		entry = kvm_find_cpuid_entry(vcpu, base);
201 
202 		if (entry) {
203 			u32 signature[3];
204 
205 			signature[0] = entry->ebx;
206 			signature[1] = entry->ecx;
207 			signature[2] = entry->edx;
208 
209 			if (!memcmp(signature, sig, sizeof(signature))) {
210 				cpuid.base = base;
211 				cpuid.limit = entry->eax;
212 				break;
213 			}
214 		}
215 	}
216 
217 	return cpuid;
218 }
219 
220 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
221 					      struct kvm_cpuid_entry2 *entries, int nent)
222 {
223 	u32 base = vcpu->arch.kvm_cpuid.base;
224 
225 	if (!base)
226 		return NULL;
227 
228 	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
229 				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
230 }
231 
232 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
233 {
234 	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
235 					     vcpu->arch.cpuid_nent);
236 }
237 
238 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
239 {
240 	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
241 
242 	/*
243 	 * save the feature bitmap to avoid cpuid lookup for every PV
244 	 * operation
245 	 */
246 	if (best)
247 		vcpu->arch.pv_cpuid.features = best->eax;
248 }
249 
250 /*
251  * Calculate guest's supported XCR0 taking into account guest CPUID data and
252  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
253  */
254 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
255 {
256 	struct kvm_cpuid_entry2 *best;
257 
258 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
259 	if (!best)
260 		return 0;
261 
262 	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
263 }
264 
265 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
266 				       int nent)
267 {
268 	struct kvm_cpuid_entry2 *best;
269 
270 	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
271 	if (best) {
272 		/* Update OSXSAVE bit */
273 		if (boot_cpu_has(X86_FEATURE_XSAVE))
274 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
275 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
276 
277 		cpuid_entry_change(best, X86_FEATURE_APIC,
278 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
279 	}
280 
281 	best = cpuid_entry2_find(entries, nent, 7, 0);
282 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
283 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
284 				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
285 
286 	best = cpuid_entry2_find(entries, nent, 0xD, 0);
287 	if (best)
288 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
289 
290 	best = cpuid_entry2_find(entries, nent, 0xD, 1);
291 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
292 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
293 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
294 
295 	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
296 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
297 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
298 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
299 
300 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
301 		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
302 		if (best)
303 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
304 					   vcpu->arch.ia32_misc_enable_msr &
305 					   MSR_IA32_MISC_ENABLE_MWAIT);
306 	}
307 }
308 
309 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
310 {
311 	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
312 }
313 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
314 
315 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
316 {
317 	struct kvm_cpuid_entry2 *entry;
318 
319 	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
320 				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
321 	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
322 }
323 
324 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
325 {
326 	struct kvm_lapic *apic = vcpu->arch.apic;
327 	struct kvm_cpuid_entry2 *best;
328 	bool allow_gbpages;
329 
330 	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
331 	bitmap_zero(vcpu->arch.governed_features.enabled,
332 		    KVM_MAX_NR_GOVERNED_FEATURES);
333 
334 	/*
335 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
336 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
337 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
338 	 * walk for performance and complexity reasons.  Not to mention KVM
339 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
340 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
341 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
342 	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
343 	 * and can install smaller shadow pages if the host lacks 1GiB support.
344 	 */
345 	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
346 				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
347 	if (allow_gbpages)
348 		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
349 
350 	best = kvm_find_cpuid_entry(vcpu, 1);
351 	if (best && apic) {
352 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
353 			apic->lapic_timer.timer_mode_mask = 3 << 17;
354 		else
355 			apic->lapic_timer.timer_mode_mask = 1 << 17;
356 
357 		kvm_apic_set_version(vcpu);
358 	}
359 
360 	vcpu->arch.guest_supported_xcr0 =
361 		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
362 
363 	kvm_update_pv_runtime(vcpu);
364 
365 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
366 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
367 
368 	kvm_pmu_refresh(vcpu);
369 	vcpu->arch.cr4_guest_rsvd_bits =
370 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
371 
372 	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
373 						    vcpu->arch.cpuid_nent));
374 
375 	/* Invoke the vendor callback only after the above state is updated. */
376 	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
377 
378 	/*
379 	 * Except for the MMU, which needs to do its thing any vendor specific
380 	 * adjustments to the reserved GPA bits.
381 	 */
382 	kvm_mmu_after_set_cpuid(vcpu);
383 }
384 
385 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
386 {
387 	struct kvm_cpuid_entry2 *best;
388 
389 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
390 	if (!best || best->eax < 0x80000008)
391 		goto not_found;
392 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
393 	if (best)
394 		return best->eax & 0xff;
395 not_found:
396 	return 36;
397 }
398 
399 /*
400  * This "raw" version returns the reserved GPA bits without any adjustments for
401  * encryption technologies that usurp bits.  The raw mask should be used if and
402  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
403  */
404 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
405 {
406 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
407 }
408 
409 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
410                         int nent)
411 {
412 	int r;
413 
414 	__kvm_update_cpuid_runtime(vcpu, e2, nent);
415 
416 	/*
417 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
418 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
419 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
420 	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
421 	 * the core vCPU model on the fly. It would've been better to forbid any
422 	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
423 	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
424 	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
425 	 * whether the supplied CPUID data is equal to what's already set.
426 	 */
427 	if (kvm_vcpu_has_run(vcpu)) {
428 		r = kvm_cpuid_check_equal(vcpu, e2, nent);
429 		if (r)
430 			return r;
431 
432 		kvfree(e2);
433 		return 0;
434 	}
435 
436 	if (kvm_cpuid_has_hyperv(e2, nent)) {
437 		r = kvm_hv_vcpu_init(vcpu);
438 		if (r)
439 			return r;
440 	}
441 
442 	r = kvm_check_cpuid(vcpu, e2, nent);
443 	if (r)
444 		return r;
445 
446 	kvfree(vcpu->arch.cpuid_entries);
447 	vcpu->arch.cpuid_entries = e2;
448 	vcpu->arch.cpuid_nent = nent;
449 
450 	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
451 	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
452 	kvm_vcpu_after_set_cpuid(vcpu);
453 
454 	return 0;
455 }
456 
457 /* when an old userspace process fills a new kernel module */
458 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
459 			     struct kvm_cpuid *cpuid,
460 			     struct kvm_cpuid_entry __user *entries)
461 {
462 	int r, i;
463 	struct kvm_cpuid_entry *e = NULL;
464 	struct kvm_cpuid_entry2 *e2 = NULL;
465 
466 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
467 		return -E2BIG;
468 
469 	if (cpuid->nent) {
470 		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
471 		if (IS_ERR(e))
472 			return PTR_ERR(e);
473 
474 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
475 		if (!e2) {
476 			r = -ENOMEM;
477 			goto out_free_cpuid;
478 		}
479 	}
480 	for (i = 0; i < cpuid->nent; i++) {
481 		e2[i].function = e[i].function;
482 		e2[i].eax = e[i].eax;
483 		e2[i].ebx = e[i].ebx;
484 		e2[i].ecx = e[i].ecx;
485 		e2[i].edx = e[i].edx;
486 		e2[i].index = 0;
487 		e2[i].flags = 0;
488 		e2[i].padding[0] = 0;
489 		e2[i].padding[1] = 0;
490 		e2[i].padding[2] = 0;
491 	}
492 
493 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
494 	if (r)
495 		kvfree(e2);
496 
497 out_free_cpuid:
498 	kvfree(e);
499 
500 	return r;
501 }
502 
503 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
504 			      struct kvm_cpuid2 *cpuid,
505 			      struct kvm_cpuid_entry2 __user *entries)
506 {
507 	struct kvm_cpuid_entry2 *e2 = NULL;
508 	int r;
509 
510 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
511 		return -E2BIG;
512 
513 	if (cpuid->nent) {
514 		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
515 		if (IS_ERR(e2))
516 			return PTR_ERR(e2);
517 	}
518 
519 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
520 	if (r)
521 		kvfree(e2);
522 
523 	return r;
524 }
525 
526 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
527 			      struct kvm_cpuid2 *cpuid,
528 			      struct kvm_cpuid_entry2 __user *entries)
529 {
530 	if (cpuid->nent < vcpu->arch.cpuid_nent)
531 		return -E2BIG;
532 
533 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
534 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
535 		return -EFAULT;
536 
537 	cpuid->nent = vcpu->arch.cpuid_nent;
538 	return 0;
539 }
540 
541 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
542 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
543 {
544 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
545 	struct kvm_cpuid_entry2 entry;
546 
547 	reverse_cpuid_check(leaf);
548 
549 	cpuid_count(cpuid.function, cpuid.index,
550 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
551 
552 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
553 }
554 
555 static __always_inline
556 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
557 {
558 	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
559 	BUILD_BUG_ON(leaf < NCAPINTS);
560 
561 	kvm_cpu_caps[leaf] = mask;
562 
563 	__kvm_cpu_cap_mask(leaf);
564 }
565 
566 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
567 {
568 	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
569 	BUILD_BUG_ON(leaf >= NCAPINTS);
570 
571 	kvm_cpu_caps[leaf] &= mask;
572 
573 	__kvm_cpu_cap_mask(leaf);
574 }
575 
576 void kvm_set_cpu_caps(void)
577 {
578 #ifdef CONFIG_X86_64
579 	unsigned int f_gbpages = F(GBPAGES);
580 	unsigned int f_lm = F(LM);
581 	unsigned int f_xfd = F(XFD);
582 #else
583 	unsigned int f_gbpages = 0;
584 	unsigned int f_lm = 0;
585 	unsigned int f_xfd = 0;
586 #endif
587 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
588 
589 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
590 		     sizeof(boot_cpu_data.x86_capability));
591 
592 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
593 	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
594 
595 	kvm_cpu_cap_mask(CPUID_1_ECX,
596 		/*
597 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
598 		 * advertised to guests via CPUID!
599 		 */
600 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
601 		0 /* DS-CPL, VMX, SMX, EST */ |
602 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
603 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
604 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
605 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
606 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
607 		F(F16C) | F(RDRAND)
608 	);
609 	/* KVM emulates x2apic in software irrespective of host support. */
610 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
611 
612 	kvm_cpu_cap_mask(CPUID_1_EDX,
613 		F(FPU) | F(VME) | F(DE) | F(PSE) |
614 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
615 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
616 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
617 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
618 		0 /* Reserved, DS, ACPI */ | F(MMX) |
619 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
620 		0 /* HTT, TM, Reserved, PBE */
621 	);
622 
623 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
624 		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
625 		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
626 		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
627 		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
628 		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
629 		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
630 		F(AVX512VL));
631 
632 	kvm_cpu_cap_mask(CPUID_7_ECX,
633 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
634 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
635 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
636 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
637 		F(SGX_LC) | F(BUS_LOCK_DETECT)
638 	);
639 	/* Set LA57 based on hardware capability. */
640 	if (cpuid_ecx(7) & F(LA57))
641 		kvm_cpu_cap_set(X86_FEATURE_LA57);
642 
643 	/*
644 	 * PKU not yet implemented for shadow paging and requires OSPKE
645 	 * to be set on the host. Clear it if that is not the case
646 	 */
647 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
648 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
649 
650 	kvm_cpu_cap_mask(CPUID_7_EDX,
651 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
652 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
653 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
654 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
655 		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
656 	);
657 
658 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
659 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
660 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
661 
662 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
663 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
664 	if (boot_cpu_has(X86_FEATURE_STIBP))
665 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
666 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
667 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
668 
669 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
670 		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
671 		F(FZRM) | F(FSRS) | F(FSRC) |
672 		F(AMX_FP16) | F(AVX_IFMA)
673 	);
674 
675 	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
676 		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
677 		F(AMX_COMPLEX)
678 	);
679 
680 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
681 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
682 	);
683 
684 	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
685 		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
686 	);
687 
688 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
689 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
690 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
691 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
692 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
693 		F(TOPOEXT) | 0 /* PERFCTR_CORE */
694 	);
695 
696 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
697 		F(FPU) | F(VME) | F(DE) | F(PSE) |
698 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
699 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
700 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
701 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
702 		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
703 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
704 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
705 	);
706 
707 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
708 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
709 
710 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
711 		SF(CONSTANT_TSC)
712 	);
713 
714 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
715 		F(CLZERO) | F(XSAVEERPTR) |
716 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
717 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
718 		F(AMD_PSFD)
719 	);
720 
721 	/*
722 	 * AMD has separate bits for each SPEC_CTRL bit.
723 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
724 	 * record that in cpufeatures so use them.
725 	 */
726 	if (boot_cpu_has(X86_FEATURE_IBPB))
727 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
728 	if (boot_cpu_has(X86_FEATURE_IBRS))
729 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
730 	if (boot_cpu_has(X86_FEATURE_STIBP))
731 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
732 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
733 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
734 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
735 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
736 	/*
737 	 * The preference is to use SPEC CTRL MSR instead of the
738 	 * VIRT_SPEC MSR.
739 	 */
740 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
741 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
742 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
743 
744 	/*
745 	 * Hide all SVM features by default, SVM will set the cap bits for
746 	 * features it emulates and/or exposes for L1.
747 	 */
748 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
749 
750 	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
751 		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
752 		F(SME_COHERENT));
753 
754 	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
755 		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
756 		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */
757 	);
758 
759 	if (cpu_feature_enabled(X86_FEATURE_SRSO_NO))
760 		kvm_cpu_cap_set(X86_FEATURE_SRSO_NO);
761 
762 	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
763 		F(PERFMON_V2)
764 	);
765 
766 	/*
767 	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
768 	 * KVM's supported CPUID if the feature is reported as supported by the
769 	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
770 	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
771 	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
772 	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
773 	 * the mask with the raw host CPUID, and reporting support in AMD's
774 	 * leaf can make it easier for userspace to detect the feature.
775 	 */
776 	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
777 		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
778 	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
779 		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
780 	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
781 
782 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
783 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
784 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
785 		F(PMM) | F(PMM_EN)
786 	);
787 
788 	/*
789 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
790 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
791 	 * should never happen, but the guest will likely crash if RDTSCP or
792 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
793 	 * the past.  For example, the sanity check may fire if this instance of
794 	 * KVM is running as L1 on top of an older, broken KVM.
795 	 */
796 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
797 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
798 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
799 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
800 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
801 	}
802 }
803 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
804 
805 struct kvm_cpuid_array {
806 	struct kvm_cpuid_entry2 *entries;
807 	int maxnent;
808 	int nent;
809 };
810 
811 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
812 {
813 	if (array->nent >= array->maxnent)
814 		return NULL;
815 
816 	return &array->entries[array->nent++];
817 }
818 
819 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
820 					      u32 function, u32 index)
821 {
822 	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
823 
824 	if (!entry)
825 		return NULL;
826 
827 	memset(entry, 0, sizeof(*entry));
828 	entry->function = function;
829 	entry->index = index;
830 	switch (function & 0xC0000000) {
831 	case 0x40000000:
832 		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
833 		return entry;
834 
835 	case 0x80000000:
836 		/*
837 		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
838 		 * would result in out-of-bounds calls to do_host_cpuid.
839 		 */
840 		{
841 			static int max_cpuid_80000000;
842 			if (!READ_ONCE(max_cpuid_80000000))
843 				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
844 			if (function > READ_ONCE(max_cpuid_80000000))
845 				return entry;
846 		}
847 		break;
848 
849 	default:
850 		break;
851 	}
852 
853 	cpuid_count(entry->function, entry->index,
854 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
855 
856 	if (cpuid_function_is_indexed(function))
857 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
858 
859 	return entry;
860 }
861 
862 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
863 {
864 	struct kvm_cpuid_entry2 *entry;
865 
866 	if (array->nent >= array->maxnent)
867 		return -E2BIG;
868 
869 	entry = &array->entries[array->nent];
870 	entry->function = func;
871 	entry->index = 0;
872 	entry->flags = 0;
873 
874 	switch (func) {
875 	case 0:
876 		entry->eax = 7;
877 		++array->nent;
878 		break;
879 	case 1:
880 		entry->ecx = F(MOVBE);
881 		++array->nent;
882 		break;
883 	case 7:
884 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
885 		entry->eax = 0;
886 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
887 			entry->ecx = F(RDPID);
888 		++array->nent;
889 		break;
890 	default:
891 		break;
892 	}
893 
894 	return 0;
895 }
896 
897 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
898 {
899 	struct kvm_cpuid_entry2 *entry;
900 	int r, i, max_idx;
901 
902 	/* all calls to cpuid_count() should be made on the same cpu */
903 	get_cpu();
904 
905 	r = -E2BIG;
906 
907 	entry = do_host_cpuid(array, function, 0);
908 	if (!entry)
909 		goto out;
910 
911 	switch (function) {
912 	case 0:
913 		/* Limited to the highest leaf implemented in KVM. */
914 		entry->eax = min(entry->eax, 0x1fU);
915 		break;
916 	case 1:
917 		cpuid_entry_override(entry, CPUID_1_EDX);
918 		cpuid_entry_override(entry, CPUID_1_ECX);
919 		break;
920 	case 2:
921 		/*
922 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
923 		 * CPUID(function=2, index=0) may return different results each
924 		 * time, with the least-significant byte in EAX enumerating the
925 		 * number of times software should do CPUID(2, 0).
926 		 *
927 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
928 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
929 		 * return 01H. Software should ignore this value and not
930 		 * interpret it as an informational descriptor", while AMD's
931 		 * APM states that CPUID(2) is reserved.
932 		 *
933 		 * WARN if a frankenstein CPU that supports virtualization and
934 		 * a stateful CPUID.0x2 is encountered.
935 		 */
936 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
937 		break;
938 	/* functions 4 and 0x8000001d have additional index. */
939 	case 4:
940 	case 0x8000001d:
941 		/*
942 		 * Read entries until the cache type in the previous entry is
943 		 * zero, i.e. indicates an invalid entry.
944 		 */
945 		for (i = 1; entry->eax & 0x1f; ++i) {
946 			entry = do_host_cpuid(array, function, i);
947 			if (!entry)
948 				goto out;
949 		}
950 		break;
951 	case 6: /* Thermal management */
952 		entry->eax = 0x4; /* allow ARAT */
953 		entry->ebx = 0;
954 		entry->ecx = 0;
955 		entry->edx = 0;
956 		break;
957 	/* function 7 has additional index. */
958 	case 7:
959 		entry->eax = min(entry->eax, 1u);
960 		cpuid_entry_override(entry, CPUID_7_0_EBX);
961 		cpuid_entry_override(entry, CPUID_7_ECX);
962 		cpuid_entry_override(entry, CPUID_7_EDX);
963 
964 		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
965 		if (entry->eax == 1) {
966 			entry = do_host_cpuid(array, function, 1);
967 			if (!entry)
968 				goto out;
969 
970 			cpuid_entry_override(entry, CPUID_7_1_EAX);
971 			cpuid_entry_override(entry, CPUID_7_1_EDX);
972 			entry->ebx = 0;
973 			entry->ecx = 0;
974 		}
975 		break;
976 	case 0xa: { /* Architectural Performance Monitoring */
977 		union cpuid10_eax eax;
978 		union cpuid10_edx edx;
979 
980 		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
981 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
982 			break;
983 		}
984 
985 		eax.split.version_id = kvm_pmu_cap.version;
986 		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
987 		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
988 		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
989 		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
990 		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
991 
992 		if (kvm_pmu_cap.version)
993 			edx.split.anythread_deprecated = 1;
994 		edx.split.reserved1 = 0;
995 		edx.split.reserved2 = 0;
996 
997 		entry->eax = eax.full;
998 		entry->ebx = kvm_pmu_cap.events_mask;
999 		entry->ecx = 0;
1000 		entry->edx = edx.full;
1001 		break;
1002 	}
1003 	case 0x1f:
1004 	case 0xb:
1005 		/*
1006 		 * No topology; a valid topology is indicated by the presence
1007 		 * of subleaf 1.
1008 		 */
1009 		entry->eax = entry->ebx = entry->ecx = 0;
1010 		break;
1011 	case 0xd: {
1012 		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1013 		u64 permitted_xss = kvm_caps.supported_xss;
1014 
1015 		entry->eax &= permitted_xcr0;
1016 		entry->ebx = xstate_required_size(permitted_xcr0, false);
1017 		entry->ecx = entry->ebx;
1018 		entry->edx &= permitted_xcr0 >> 32;
1019 		if (!permitted_xcr0)
1020 			break;
1021 
1022 		entry = do_host_cpuid(array, function, 1);
1023 		if (!entry)
1024 			goto out;
1025 
1026 		cpuid_entry_override(entry, CPUID_D_1_EAX);
1027 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1028 			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1029 							  true);
1030 		else {
1031 			WARN_ON_ONCE(permitted_xss != 0);
1032 			entry->ebx = 0;
1033 		}
1034 		entry->ecx &= permitted_xss;
1035 		entry->edx &= permitted_xss >> 32;
1036 
1037 		for (i = 2; i < 64; ++i) {
1038 			bool s_state;
1039 			if (permitted_xcr0 & BIT_ULL(i))
1040 				s_state = false;
1041 			else if (permitted_xss & BIT_ULL(i))
1042 				s_state = true;
1043 			else
1044 				continue;
1045 
1046 			entry = do_host_cpuid(array, function, i);
1047 			if (!entry)
1048 				goto out;
1049 
1050 			/*
1051 			 * The supported check above should have filtered out
1052 			 * invalid sub-leafs.  Only valid sub-leafs should
1053 			 * reach this point, and they should have a non-zero
1054 			 * save state size.  Furthermore, check whether the
1055 			 * processor agrees with permitted_xcr0/permitted_xss
1056 			 * on whether this is an XCR0- or IA32_XSS-managed area.
1057 			 */
1058 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1059 				--array->nent;
1060 				continue;
1061 			}
1062 
1063 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1064 				entry->ecx &= ~BIT_ULL(2);
1065 			entry->edx = 0;
1066 		}
1067 		break;
1068 	}
1069 	case 0x12:
1070 		/* Intel SGX */
1071 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1072 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1073 			break;
1074 		}
1075 
1076 		/*
1077 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1078 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1079 		 * are restricted by kernel and KVM capabilities (like most
1080 		 * feature flags), while enclave size is unrestricted.
1081 		 */
1082 		cpuid_entry_override(entry, CPUID_12_EAX);
1083 		entry->ebx &= SGX_MISC_EXINFO;
1084 
1085 		entry = do_host_cpuid(array, function, 1);
1086 		if (!entry)
1087 			goto out;
1088 
1089 		/*
1090 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1091 		 * feature flags.  Advertise all supported flags, including
1092 		 * privileged attributes that require explicit opt-in from
1093 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1094 		 * expected to derive it from supported XCR0.
1095 		 */
1096 		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1097 		entry->ebx &= 0;
1098 		break;
1099 	/* Intel PT */
1100 	case 0x14:
1101 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1102 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1103 			break;
1104 		}
1105 
1106 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1107 			if (!do_host_cpuid(array, function, i))
1108 				goto out;
1109 		}
1110 		break;
1111 	/* Intel AMX TILE */
1112 	case 0x1d:
1113 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1114 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1115 			break;
1116 		}
1117 
1118 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1119 			if (!do_host_cpuid(array, function, i))
1120 				goto out;
1121 		}
1122 		break;
1123 	case 0x1e: /* TMUL information */
1124 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1125 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1126 			break;
1127 		}
1128 		break;
1129 	case KVM_CPUID_SIGNATURE: {
1130 		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1131 		entry->eax = KVM_CPUID_FEATURES;
1132 		entry->ebx = sigptr[0];
1133 		entry->ecx = sigptr[1];
1134 		entry->edx = sigptr[2];
1135 		break;
1136 	}
1137 	case KVM_CPUID_FEATURES:
1138 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1139 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1140 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1141 			     (1 << KVM_FEATURE_ASYNC_PF) |
1142 			     (1 << KVM_FEATURE_PV_EOI) |
1143 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1144 			     (1 << KVM_FEATURE_PV_UNHALT) |
1145 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1146 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1147 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1148 			     (1 << KVM_FEATURE_POLL_CONTROL) |
1149 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1150 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1151 
1152 		if (sched_info_on())
1153 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1154 
1155 		entry->ebx = 0;
1156 		entry->ecx = 0;
1157 		entry->edx = 0;
1158 		break;
1159 	case 0x80000000:
1160 		entry->eax = min(entry->eax, 0x80000022);
1161 		/*
1162 		 * Serializing LFENCE is reported in a multitude of ways, and
1163 		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1164 		 * userspace by providing the CPUID leaf ourselves.
1165 		 *
1166 		 * However, only do it if the host has CPUID leaf 0x8000001d.
1167 		 * QEMU thinks that it can query the host blindly for that
1168 		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1169 		 * above.  The processor merrily returns values from the
1170 		 * highest Intel leaf which QEMU tries to use as the guest's
1171 		 * 0x8000001d.  Even worse, this can result in an infinite
1172 		 * loop if said highest leaf has no subleaves indexed by ECX.
1173 		 */
1174 		if (entry->eax >= 0x8000001d &&
1175 		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1176 		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1177 			entry->eax = max(entry->eax, 0x80000021);
1178 		break;
1179 	case 0x80000001:
1180 		entry->ebx &= ~GENMASK(27, 16);
1181 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1182 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1183 		break;
1184 	case 0x80000005:
1185 		/*  Pass host L1 cache and TLB info. */
1186 		break;
1187 	case 0x80000006:
1188 		/* Drop reserved bits, pass host L2 cache and TLB info. */
1189 		entry->edx &= ~GENMASK(17, 16);
1190 		break;
1191 	case 0x80000007: /* Advanced power management */
1192 		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1193 
1194 		/* mask against host */
1195 		entry->edx &= boot_cpu_data.x86_power;
1196 		entry->eax = entry->ebx = entry->ecx = 0;
1197 		break;
1198 	case 0x80000008: {
1199 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1200 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1201 		unsigned phys_as = entry->eax & 0xff;
1202 
1203 		/*
1204 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1205 		 * the guest operates in the same PA space as the host, i.e.
1206 		 * reductions in MAXPHYADDR for memory encryption affect shadow
1207 		 * paging, too.
1208 		 *
1209 		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1210 		 * provided, use the raw bare metal MAXPHYADDR as reductions to
1211 		 * the HPAs do not affect GPAs.
1212 		 */
1213 		if (!tdp_enabled)
1214 			g_phys_as = boot_cpu_data.x86_phys_bits;
1215 		else if (!g_phys_as)
1216 			g_phys_as = phys_as;
1217 
1218 		entry->eax = g_phys_as | (virt_as << 8);
1219 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1220 		entry->edx = 0;
1221 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1222 		break;
1223 	}
1224 	case 0x8000000A:
1225 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1226 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1227 			break;
1228 		}
1229 		entry->eax = 1; /* SVM revision 1 */
1230 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1231 				   ASID emulation to nested SVM */
1232 		entry->ecx = 0; /* Reserved */
1233 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1234 		break;
1235 	case 0x80000019:
1236 		entry->ecx = entry->edx = 0;
1237 		break;
1238 	case 0x8000001a:
1239 		entry->eax &= GENMASK(2, 0);
1240 		entry->ebx = entry->ecx = entry->edx = 0;
1241 		break;
1242 	case 0x8000001e:
1243 		/* Do not return host topology information.  */
1244 		entry->eax = entry->ebx = entry->ecx = 0;
1245 		entry->edx = 0; /* reserved */
1246 		break;
1247 	case 0x8000001F:
1248 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1249 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1250 		} else {
1251 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1252 			/* Clear NumVMPL since KVM does not support VMPL.  */
1253 			entry->ebx &= ~GENMASK(31, 12);
1254 			/*
1255 			 * Enumerate '0' for "PA bits reduction", the adjusted
1256 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1257 			 */
1258 			entry->ebx &= ~GENMASK(11, 6);
1259 		}
1260 		break;
1261 	case 0x80000020:
1262 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1263 		break;
1264 	case 0x80000021:
1265 		entry->ebx = entry->ecx = entry->edx = 0;
1266 		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1267 		break;
1268 	/* AMD Extended Performance Monitoring and Debug */
1269 	case 0x80000022: {
1270 		union cpuid_0x80000022_ebx ebx;
1271 
1272 		entry->ecx = entry->edx = 0;
1273 		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1274 			entry->eax = entry->ebx;
1275 			break;
1276 		}
1277 
1278 		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1279 
1280 		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1281 			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1282 		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1283 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1284 		else
1285 			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1286 
1287 		entry->ebx = ebx.full;
1288 		break;
1289 	}
1290 	/*Add support for Centaur's CPUID instruction*/
1291 	case 0xC0000000:
1292 		/*Just support up to 0xC0000004 now*/
1293 		entry->eax = min(entry->eax, 0xC0000004);
1294 		break;
1295 	case 0xC0000001:
1296 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1297 		break;
1298 	case 3: /* Processor serial number */
1299 	case 5: /* MONITOR/MWAIT */
1300 	case 0xC0000002:
1301 	case 0xC0000003:
1302 	case 0xC0000004:
1303 	default:
1304 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1305 		break;
1306 	}
1307 
1308 	r = 0;
1309 
1310 out:
1311 	put_cpu();
1312 
1313 	return r;
1314 }
1315 
1316 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1317 			 unsigned int type)
1318 {
1319 	if (type == KVM_GET_EMULATED_CPUID)
1320 		return __do_cpuid_func_emulated(array, func);
1321 
1322 	return __do_cpuid_func(array, func);
1323 }
1324 
1325 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1326 
1327 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1328 			  unsigned int type)
1329 {
1330 	u32 limit;
1331 	int r;
1332 
1333 	if (func == CENTAUR_CPUID_SIGNATURE &&
1334 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1335 		return 0;
1336 
1337 	r = do_cpuid_func(array, func, type);
1338 	if (r)
1339 		return r;
1340 
1341 	limit = array->entries[array->nent - 1].eax;
1342 	for (func = func + 1; func <= limit; ++func) {
1343 		r = do_cpuid_func(array, func, type);
1344 		if (r)
1345 			break;
1346 	}
1347 
1348 	return r;
1349 }
1350 
1351 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1352 				 __u32 num_entries, unsigned int ioctl_type)
1353 {
1354 	int i;
1355 	__u32 pad[3];
1356 
1357 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1358 		return false;
1359 
1360 	/*
1361 	 * We want to make sure that ->padding is being passed clean from
1362 	 * userspace in case we want to use it for something in the future.
1363 	 *
1364 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1365 	 * have to give ourselves satisfied only with the emulated side. /me
1366 	 * sheds a tear.
1367 	 */
1368 	for (i = 0; i < num_entries; i++) {
1369 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1370 			return true;
1371 
1372 		if (pad[0] || pad[1] || pad[2])
1373 			return true;
1374 	}
1375 	return false;
1376 }
1377 
1378 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1379 			    struct kvm_cpuid_entry2 __user *entries,
1380 			    unsigned int type)
1381 {
1382 	static const u32 funcs[] = {
1383 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1384 	};
1385 
1386 	struct kvm_cpuid_array array = {
1387 		.nent = 0,
1388 	};
1389 	int r, i;
1390 
1391 	if (cpuid->nent < 1)
1392 		return -E2BIG;
1393 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1394 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1395 
1396 	if (sanity_check_entries(entries, cpuid->nent, type))
1397 		return -EINVAL;
1398 
1399 	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1400 	if (!array.entries)
1401 		return -ENOMEM;
1402 
1403 	array.maxnent = cpuid->nent;
1404 
1405 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1406 		r = get_cpuid_func(&array, funcs[i], type);
1407 		if (r)
1408 			goto out_free;
1409 	}
1410 	cpuid->nent = array.nent;
1411 
1412 	if (copy_to_user(entries, array.entries,
1413 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1414 		r = -EFAULT;
1415 
1416 out_free:
1417 	kvfree(array.entries);
1418 	return r;
1419 }
1420 
1421 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1422 						    u32 function, u32 index)
1423 {
1424 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1425 				 function, index);
1426 }
1427 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1428 
1429 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1430 					      u32 function)
1431 {
1432 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1433 				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1436 
1437 /*
1438  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1439  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1440  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1441  * range.  Centaur/VIA follows Intel semantics.
1442  *
1443  * A leaf is considered out-of-range if its function is higher than the maximum
1444  * supported leaf of its associated class or if its associated class does not
1445  * exist.
1446  *
1447  * There are three primary classes to be considered, with their respective
1448  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1449  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1450  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1451  *
1452  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1453  *  - Hypervisor: 0x40000000 - 0x4fffffff
1454  *  - Extended:   0x80000000 - 0xbfffffff
1455  *  - Centaur:    0xc0000000 - 0xcfffffff
1456  *
1457  * The Hypervisor class is further subdivided into sub-classes that each act as
1458  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1459  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1460  * CPUID sub-classes are:
1461  *
1462  *  - HyperV:     0x40000000 - 0x400000ff
1463  *  - KVM:        0x40000100 - 0x400001ff
1464  */
1465 static struct kvm_cpuid_entry2 *
1466 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1467 {
1468 	struct kvm_cpuid_entry2 *basic, *class;
1469 	u32 function = *fn_ptr;
1470 
1471 	basic = kvm_find_cpuid_entry(vcpu, 0);
1472 	if (!basic)
1473 		return NULL;
1474 
1475 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1476 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1477 		return NULL;
1478 
1479 	if (function >= 0x40000000 && function <= 0x4fffffff)
1480 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1481 	else if (function >= 0xc0000000)
1482 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1483 	else
1484 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1485 
1486 	if (class && function <= class->eax)
1487 		return NULL;
1488 
1489 	/*
1490 	 * Leaf specific adjustments are also applied when redirecting to the
1491 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1492 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1493 	 * needs to be pulled from CPUID.0xb.1.
1494 	 */
1495 	*fn_ptr = basic->eax;
1496 
1497 	/*
1498 	 * The class does not exist or the requested function is out of range;
1499 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1500 	 * the original requested leaf is observed!
1501 	 */
1502 	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1503 }
1504 
1505 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1506 	       u32 *ecx, u32 *edx, bool exact_only)
1507 {
1508 	u32 orig_function = *eax, function = *eax, index = *ecx;
1509 	struct kvm_cpuid_entry2 *entry;
1510 	bool exact, used_max_basic = false;
1511 
1512 	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1513 	exact = !!entry;
1514 
1515 	if (!entry && !exact_only) {
1516 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1517 		used_max_basic = !!entry;
1518 	}
1519 
1520 	if (entry) {
1521 		*eax = entry->eax;
1522 		*ebx = entry->ebx;
1523 		*ecx = entry->ecx;
1524 		*edx = entry->edx;
1525 		if (function == 7 && index == 0) {
1526 			u64 data;
1527 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1528 			    (data & TSX_CTRL_CPUID_CLEAR))
1529 				*ebx &= ~(F(RTM) | F(HLE));
1530 		} else if (function == 0x80000007) {
1531 			if (kvm_hv_invtsc_suppressed(vcpu))
1532 				*edx &= ~SF(CONSTANT_TSC);
1533 		}
1534 	} else {
1535 		*eax = *ebx = *ecx = *edx = 0;
1536 		/*
1537 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1538 		 * and EDX is always the x2APIC ID, even for undefined
1539 		 * subleaves. Index 1 will exist iff the leaf is
1540 		 * implemented, so we pass through CL iff leaf 1
1541 		 * exists. EDX can be copied from any existing index.
1542 		 */
1543 		if (function == 0xb || function == 0x1f) {
1544 			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1545 			if (entry) {
1546 				*ecx = index & 0xff;
1547 				*edx = entry->edx;
1548 			}
1549 		}
1550 	}
1551 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1552 			used_max_basic);
1553 	return exact;
1554 }
1555 EXPORT_SYMBOL_GPL(kvm_cpuid);
1556 
1557 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1558 {
1559 	u32 eax, ebx, ecx, edx;
1560 
1561 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1562 		return 1;
1563 
1564 	eax = kvm_rax_read(vcpu);
1565 	ecx = kvm_rcx_read(vcpu);
1566 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1567 	kvm_rax_write(vcpu, eax);
1568 	kvm_rbx_write(vcpu, ebx);
1569 	kvm_rcx_write(vcpu, ecx);
1570 	kvm_rdx_write(vcpu, edx);
1571 	return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1574