xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 95e9fd10)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 
26 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
27 {
28 	struct kvm_cpuid_entry2 *best;
29 	struct kvm_lapic *apic = vcpu->arch.apic;
30 
31 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
32 	if (!best)
33 		return;
34 
35 	/* Update OSXSAVE bit */
36 	if (cpu_has_xsave && best->function == 0x1) {
37 		best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
38 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
39 			best->ecx |= bit(X86_FEATURE_OSXSAVE);
40 	}
41 
42 	if (apic) {
43 		if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
44 			apic->lapic_timer.timer_mode_mask = 3 << 17;
45 		else
46 			apic->lapic_timer.timer_mode_mask = 1 << 17;
47 	}
48 
49 	kvm_pmu_cpuid_update(vcpu);
50 }
51 
52 static int is_efer_nx(void)
53 {
54 	unsigned long long efer = 0;
55 
56 	rdmsrl_safe(MSR_EFER, &efer);
57 	return efer & EFER_NX;
58 }
59 
60 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
61 {
62 	int i;
63 	struct kvm_cpuid_entry2 *e, *entry;
64 
65 	entry = NULL;
66 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
67 		e = &vcpu->arch.cpuid_entries[i];
68 		if (e->function == 0x80000001) {
69 			entry = e;
70 			break;
71 		}
72 	}
73 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
74 		entry->edx &= ~(1 << 20);
75 		printk(KERN_INFO "kvm: guest NX capability removed\n");
76 	}
77 }
78 
79 /* when an old userspace process fills a new kernel module */
80 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
81 			     struct kvm_cpuid *cpuid,
82 			     struct kvm_cpuid_entry __user *entries)
83 {
84 	int r, i;
85 	struct kvm_cpuid_entry *cpuid_entries;
86 
87 	r = -E2BIG;
88 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
89 		goto out;
90 	r = -ENOMEM;
91 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
92 	if (!cpuid_entries)
93 		goto out;
94 	r = -EFAULT;
95 	if (copy_from_user(cpuid_entries, entries,
96 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
97 		goto out_free;
98 	for (i = 0; i < cpuid->nent; i++) {
99 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
100 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
101 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
102 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
103 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
104 		vcpu->arch.cpuid_entries[i].index = 0;
105 		vcpu->arch.cpuid_entries[i].flags = 0;
106 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
107 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
108 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
109 	}
110 	vcpu->arch.cpuid_nent = cpuid->nent;
111 	cpuid_fix_nx_cap(vcpu);
112 	r = 0;
113 	kvm_apic_set_version(vcpu);
114 	kvm_x86_ops->cpuid_update(vcpu);
115 	kvm_update_cpuid(vcpu);
116 
117 out_free:
118 	vfree(cpuid_entries);
119 out:
120 	return r;
121 }
122 
123 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
124 			      struct kvm_cpuid2 *cpuid,
125 			      struct kvm_cpuid_entry2 __user *entries)
126 {
127 	int r;
128 
129 	r = -E2BIG;
130 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
131 		goto out;
132 	r = -EFAULT;
133 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
134 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
135 		goto out;
136 	vcpu->arch.cpuid_nent = cpuid->nent;
137 	kvm_apic_set_version(vcpu);
138 	kvm_x86_ops->cpuid_update(vcpu);
139 	kvm_update_cpuid(vcpu);
140 	return 0;
141 
142 out:
143 	return r;
144 }
145 
146 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
147 			      struct kvm_cpuid2 *cpuid,
148 			      struct kvm_cpuid_entry2 __user *entries)
149 {
150 	int r;
151 
152 	r = -E2BIG;
153 	if (cpuid->nent < vcpu->arch.cpuid_nent)
154 		goto out;
155 	r = -EFAULT;
156 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
157 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
158 		goto out;
159 	return 0;
160 
161 out:
162 	cpuid->nent = vcpu->arch.cpuid_nent;
163 	return r;
164 }
165 
166 static void cpuid_mask(u32 *word, int wordnum)
167 {
168 	*word &= boot_cpu_data.x86_capability[wordnum];
169 }
170 
171 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
172 			   u32 index)
173 {
174 	entry->function = function;
175 	entry->index = index;
176 	cpuid_count(entry->function, entry->index,
177 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
178 	entry->flags = 0;
179 }
180 
181 static bool supported_xcr0_bit(unsigned bit)
182 {
183 	u64 mask = ((u64)1 << bit);
184 
185 	return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
186 }
187 
188 #define F(x) bit(X86_FEATURE_##x)
189 
190 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
191 			 u32 index, int *nent, int maxnent)
192 {
193 	int r;
194 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
195 #ifdef CONFIG_X86_64
196 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
197 				? F(GBPAGES) : 0;
198 	unsigned f_lm = F(LM);
199 #else
200 	unsigned f_gbpages = 0;
201 	unsigned f_lm = 0;
202 #endif
203 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
204 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
205 
206 	/* cpuid 1.edx */
207 	const u32 kvm_supported_word0_x86_features =
208 		F(FPU) | F(VME) | F(DE) | F(PSE) |
209 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
210 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
211 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
212 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
213 		0 /* Reserved, DS, ACPI */ | F(MMX) |
214 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
215 		0 /* HTT, TM, Reserved, PBE */;
216 	/* cpuid 0x80000001.edx */
217 	const u32 kvm_supported_word1_x86_features =
218 		F(FPU) | F(VME) | F(DE) | F(PSE) |
219 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
220 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
221 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
222 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
223 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
224 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
225 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
226 	/* cpuid 1.ecx */
227 	const u32 kvm_supported_word4_x86_features =
228 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
229 		0 /* DS-CPL, VMX, SMX, EST */ |
230 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
231 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
232 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
233 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
234 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
235 		F(F16C) | F(RDRAND);
236 	/* cpuid 0x80000001.ecx */
237 	const u32 kvm_supported_word6_x86_features =
238 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
239 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
240 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
241 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
242 
243 	/* cpuid 0xC0000001.edx */
244 	const u32 kvm_supported_word5_x86_features =
245 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
246 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
247 		F(PMM) | F(PMM_EN);
248 
249 	/* cpuid 7.0.ebx */
250 	const u32 kvm_supported_word9_x86_features =
251 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
252 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
253 
254 	/* all calls to cpuid_count() should be made on the same cpu */
255 	get_cpu();
256 
257 	r = -E2BIG;
258 
259 	if (*nent >= maxnent)
260 		goto out;
261 
262 	do_cpuid_1_ent(entry, function, index);
263 	++*nent;
264 
265 	switch (function) {
266 	case 0:
267 		entry->eax = min(entry->eax, (u32)0xd);
268 		break;
269 	case 1:
270 		entry->edx &= kvm_supported_word0_x86_features;
271 		cpuid_mask(&entry->edx, 0);
272 		entry->ecx &= kvm_supported_word4_x86_features;
273 		cpuid_mask(&entry->ecx, 4);
274 		/* we support x2apic emulation even if host does not support
275 		 * it since we emulate x2apic in software */
276 		entry->ecx |= F(X2APIC);
277 		break;
278 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
279 	 * may return different values. This forces us to get_cpu() before
280 	 * issuing the first command, and also to emulate this annoying behavior
281 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
282 	case 2: {
283 		int t, times = entry->eax & 0xff;
284 
285 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
286 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
287 		for (t = 1; t < times; ++t) {
288 			if (*nent >= maxnent)
289 				goto out;
290 
291 			do_cpuid_1_ent(&entry[t], function, 0);
292 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
293 			++*nent;
294 		}
295 		break;
296 	}
297 	/* function 4 has additional index. */
298 	case 4: {
299 		int i, cache_type;
300 
301 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
302 		/* read more entries until cache_type is zero */
303 		for (i = 1; ; ++i) {
304 			if (*nent >= maxnent)
305 				goto out;
306 
307 			cache_type = entry[i - 1].eax & 0x1f;
308 			if (!cache_type)
309 				break;
310 			do_cpuid_1_ent(&entry[i], function, i);
311 			entry[i].flags |=
312 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
313 			++*nent;
314 		}
315 		break;
316 	}
317 	case 7: {
318 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
319 		/* Mask ebx against host capbability word 9 */
320 		if (index == 0) {
321 			entry->ebx &= kvm_supported_word9_x86_features;
322 			cpuid_mask(&entry->ebx, 9);
323 		} else
324 			entry->ebx = 0;
325 		entry->eax = 0;
326 		entry->ecx = 0;
327 		entry->edx = 0;
328 		break;
329 	}
330 	case 9:
331 		break;
332 	case 0xa: { /* Architectural Performance Monitoring */
333 		struct x86_pmu_capability cap;
334 		union cpuid10_eax eax;
335 		union cpuid10_edx edx;
336 
337 		perf_get_x86_pmu_capability(&cap);
338 
339 		/*
340 		 * Only support guest architectural pmu on a host
341 		 * with architectural pmu.
342 		 */
343 		if (!cap.version)
344 			memset(&cap, 0, sizeof(cap));
345 
346 		eax.split.version_id = min(cap.version, 2);
347 		eax.split.num_counters = cap.num_counters_gp;
348 		eax.split.bit_width = cap.bit_width_gp;
349 		eax.split.mask_length = cap.events_mask_len;
350 
351 		edx.split.num_counters_fixed = cap.num_counters_fixed;
352 		edx.split.bit_width_fixed = cap.bit_width_fixed;
353 		edx.split.reserved = 0;
354 
355 		entry->eax = eax.full;
356 		entry->ebx = cap.events_mask;
357 		entry->ecx = 0;
358 		entry->edx = edx.full;
359 		break;
360 	}
361 	/* function 0xb has additional index. */
362 	case 0xb: {
363 		int i, level_type;
364 
365 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
366 		/* read more entries until level_type is zero */
367 		for (i = 1; ; ++i) {
368 			if (*nent >= maxnent)
369 				goto out;
370 
371 			level_type = entry[i - 1].ecx & 0xff00;
372 			if (!level_type)
373 				break;
374 			do_cpuid_1_ent(&entry[i], function, i);
375 			entry[i].flags |=
376 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
377 			++*nent;
378 		}
379 		break;
380 	}
381 	case 0xd: {
382 		int idx, i;
383 
384 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
385 		for (idx = 1, i = 1; idx < 64; ++idx) {
386 			if (*nent >= maxnent)
387 				goto out;
388 
389 			do_cpuid_1_ent(&entry[i], function, idx);
390 			if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
391 				continue;
392 			entry[i].flags |=
393 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
394 			++*nent;
395 			++i;
396 		}
397 		break;
398 	}
399 	case KVM_CPUID_SIGNATURE: {
400 		char signature[12] = "KVMKVMKVM\0\0";
401 		u32 *sigptr = (u32 *)signature;
402 		entry->eax = KVM_CPUID_FEATURES;
403 		entry->ebx = sigptr[0];
404 		entry->ecx = sigptr[1];
405 		entry->edx = sigptr[2];
406 		break;
407 	}
408 	case KVM_CPUID_FEATURES:
409 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
410 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
411 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
412 			     (1 << KVM_FEATURE_ASYNC_PF) |
413 			     (1 << KVM_FEATURE_PV_EOI) |
414 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
415 
416 		if (sched_info_on())
417 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
418 
419 		entry->ebx = 0;
420 		entry->ecx = 0;
421 		entry->edx = 0;
422 		break;
423 	case 0x80000000:
424 		entry->eax = min(entry->eax, 0x8000001a);
425 		break;
426 	case 0x80000001:
427 		entry->edx &= kvm_supported_word1_x86_features;
428 		cpuid_mask(&entry->edx, 1);
429 		entry->ecx &= kvm_supported_word6_x86_features;
430 		cpuid_mask(&entry->ecx, 6);
431 		break;
432 	case 0x80000008: {
433 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
434 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
435 		unsigned phys_as = entry->eax & 0xff;
436 
437 		if (!g_phys_as)
438 			g_phys_as = phys_as;
439 		entry->eax = g_phys_as | (virt_as << 8);
440 		entry->ebx = entry->edx = 0;
441 		break;
442 	}
443 	case 0x80000019:
444 		entry->ecx = entry->edx = 0;
445 		break;
446 	case 0x8000001a:
447 		break;
448 	case 0x8000001d:
449 		break;
450 	/*Add support for Centaur's CPUID instruction*/
451 	case 0xC0000000:
452 		/*Just support up to 0xC0000004 now*/
453 		entry->eax = min(entry->eax, 0xC0000004);
454 		break;
455 	case 0xC0000001:
456 		entry->edx &= kvm_supported_word5_x86_features;
457 		cpuid_mask(&entry->edx, 5);
458 		break;
459 	case 3: /* Processor serial number */
460 	case 5: /* MONITOR/MWAIT */
461 	case 6: /* Thermal management */
462 	case 0x80000007: /* Advanced power management */
463 	case 0xC0000002:
464 	case 0xC0000003:
465 	case 0xC0000004:
466 	default:
467 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
468 		break;
469 	}
470 
471 	kvm_x86_ops->set_supported_cpuid(function, entry);
472 
473 	r = 0;
474 
475 out:
476 	put_cpu();
477 
478 	return r;
479 }
480 
481 #undef F
482 
483 struct kvm_cpuid_param {
484 	u32 func;
485 	u32 idx;
486 	bool has_leaf_count;
487 	bool (*qualifier)(struct kvm_cpuid_param *param);
488 };
489 
490 static bool is_centaur_cpu(struct kvm_cpuid_param *param)
491 {
492 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
493 }
494 
495 int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
496 				      struct kvm_cpuid_entry2 __user *entries)
497 {
498 	struct kvm_cpuid_entry2 *cpuid_entries;
499 	int limit, nent = 0, r = -E2BIG, i;
500 	u32 func;
501 	static struct kvm_cpuid_param param[] = {
502 		{ .func = 0, .has_leaf_count = true },
503 		{ .func = 0x80000000, .has_leaf_count = true },
504 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
505 		{ .func = KVM_CPUID_SIGNATURE },
506 		{ .func = KVM_CPUID_FEATURES },
507 	};
508 
509 	if (cpuid->nent < 1)
510 		goto out;
511 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
512 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
513 	r = -ENOMEM;
514 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
515 	if (!cpuid_entries)
516 		goto out;
517 
518 	r = 0;
519 	for (i = 0; i < ARRAY_SIZE(param); i++) {
520 		struct kvm_cpuid_param *ent = &param[i];
521 
522 		if (ent->qualifier && !ent->qualifier(ent))
523 			continue;
524 
525 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
526 				&nent, cpuid->nent);
527 
528 		if (r)
529 			goto out_free;
530 
531 		if (!ent->has_leaf_count)
532 			continue;
533 
534 		limit = cpuid_entries[nent - 1].eax;
535 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
536 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
537 				     &nent, cpuid->nent);
538 
539 		if (r)
540 			goto out_free;
541 	}
542 
543 	r = -EFAULT;
544 	if (copy_to_user(entries, cpuid_entries,
545 			 nent * sizeof(struct kvm_cpuid_entry2)))
546 		goto out_free;
547 	cpuid->nent = nent;
548 	r = 0;
549 
550 out_free:
551 	vfree(cpuid_entries);
552 out:
553 	return r;
554 }
555 
556 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
557 {
558 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
559 	int j, nent = vcpu->arch.cpuid_nent;
560 
561 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
562 	/* when no next entry is found, the current entry[i] is reselected */
563 	for (j = i + 1; ; j = (j + 1) % nent) {
564 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
565 		if (ej->function == e->function) {
566 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
567 			return j;
568 		}
569 	}
570 	return 0; /* silence gcc, even though control never reaches here */
571 }
572 
573 /* find an entry with matching function, matching index (if needed), and that
574  * should be read next (if it's stateful) */
575 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
576 	u32 function, u32 index)
577 {
578 	if (e->function != function)
579 		return 0;
580 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
581 		return 0;
582 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
583 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
584 		return 0;
585 	return 1;
586 }
587 
588 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
589 					      u32 function, u32 index)
590 {
591 	int i;
592 	struct kvm_cpuid_entry2 *best = NULL;
593 
594 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
595 		struct kvm_cpuid_entry2 *e;
596 
597 		e = &vcpu->arch.cpuid_entries[i];
598 		if (is_matching_cpuid_entry(e, function, index)) {
599 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
600 				move_to_next_stateful_cpuid_entry(vcpu, i);
601 			best = e;
602 			break;
603 		}
604 	}
605 	return best;
606 }
607 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
608 
609 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
610 {
611 	struct kvm_cpuid_entry2 *best;
612 
613 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
614 	if (!best || best->eax < 0x80000008)
615 		goto not_found;
616 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
617 	if (best)
618 		return best->eax & 0xff;
619 not_found:
620 	return 36;
621 }
622 
623 /*
624  * If no match is found, check whether we exceed the vCPU's limit
625  * and return the content of the highest valid _standard_ leaf instead.
626  * This is to satisfy the CPUID specification.
627  */
628 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
629                                                   u32 function, u32 index)
630 {
631 	struct kvm_cpuid_entry2 *maxlevel;
632 
633 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
634 	if (!maxlevel || maxlevel->eax >= function)
635 		return NULL;
636 	if (function & 0x80000000) {
637 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
638 		if (!maxlevel)
639 			return NULL;
640 	}
641 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
642 }
643 
644 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
645 {
646 	u32 function = *eax, index = *ecx;
647 	struct kvm_cpuid_entry2 *best;
648 
649 	best = kvm_find_cpuid_entry(vcpu, function, index);
650 
651 	if (!best)
652 		best = check_cpuid_limit(vcpu, function, index);
653 
654 	if (best) {
655 		*eax = best->eax;
656 		*ebx = best->ebx;
657 		*ecx = best->ecx;
658 		*edx = best->edx;
659 	} else
660 		*eax = *ebx = *ecx = *edx = 0;
661 }
662 
663 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
664 {
665 	u32 function, eax, ebx, ecx, edx;
666 
667 	function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
668 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
669 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
670 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
671 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
672 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
673 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
674 	kvm_x86_ops->skip_emulated_instruction(vcpu);
675 	trace_kvm_cpuid(function, eax, ebx, ecx, edx);
676 }
677 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
678