xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 6c9111bc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17 
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26 
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33 
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36 	int feature_bit = 0;
37 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38 
39 	xstate_bv &= XFEATURE_MASK_EXTEND;
40 	while (xstate_bv) {
41 		if (xstate_bv & 0x1) {
42 		        u32 eax, ebx, ecx, edx, offset;
43 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44 			offset = compacted ? ret : ebx;
45 			ret = max(ret, offset + eax);
46 		}
47 
48 		xstate_bv >>= 1;
49 		feature_bit++;
50 	}
51 
52 	return ret;
53 }
54 
55 #define F feature_bit
56 
57 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
58 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
59 {
60 	struct kvm_cpuid_entry2 *e;
61 	int i;
62 
63 	for (i = 0; i < nent; i++) {
64 		e = &entries[i];
65 
66 		if (e->function == function && (e->index == index ||
67 		    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
68 			return e;
69 	}
70 
71 	return NULL;
72 }
73 
74 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
75 {
76 	struct kvm_cpuid_entry2 *best;
77 
78 	/*
79 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
80 	 * canonical address checks; exit if it is ever changed.
81 	 */
82 	best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
83 	if (best) {
84 		int vaddr_bits = (best->eax & 0xff00) >> 8;
85 
86 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
87 			return -EINVAL;
88 	}
89 
90 	return 0;
91 }
92 
93 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
94 {
95 	struct kvm_cpuid_entry2 *best;
96 
97 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
98 	if (best) {
99 		/* Update OSXSAVE bit */
100 		if (boot_cpu_has(X86_FEATURE_XSAVE))
101 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
102 				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
103 
104 		cpuid_entry_change(best, X86_FEATURE_APIC,
105 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
106 	}
107 
108 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
109 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
110 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
111 				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
112 
113 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
114 	if (best)
115 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
116 
117 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
118 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
119 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
120 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
121 
122 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
123 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
124 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
125 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
126 
127 	/*
128 	 * save the feature bitmap to avoid cpuid lookup for every PV
129 	 * operation
130 	 */
131 	if (best)
132 		vcpu->arch.pv_cpuid.features = best->eax;
133 
134 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
135 		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
136 		if (best)
137 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
138 					   vcpu->arch.ia32_misc_enable_msr &
139 					   MSR_IA32_MISC_ENABLE_MWAIT);
140 	}
141 }
142 
143 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
144 {
145 	struct kvm_lapic *apic = vcpu->arch.apic;
146 	struct kvm_cpuid_entry2 *best;
147 
148 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
149 	if (best && apic) {
150 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
151 			apic->lapic_timer.timer_mode_mask = 3 << 17;
152 		else
153 			apic->lapic_timer.timer_mode_mask = 1 << 17;
154 
155 		kvm_apic_set_version(vcpu);
156 	}
157 
158 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
159 	if (!best)
160 		vcpu->arch.guest_supported_xcr0 = 0;
161 	else
162 		vcpu->arch.guest_supported_xcr0 =
163 			(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
164 
165 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
166 	kvm_mmu_reset_context(vcpu);
167 
168 	kvm_pmu_refresh(vcpu);
169 	vcpu->arch.cr4_guest_rsvd_bits =
170 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
171 
172 	/* Invoke the vendor callback only after the above state is updated. */
173 	kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
174 }
175 
176 static int is_efer_nx(void)
177 {
178 	return host_efer & EFER_NX;
179 }
180 
181 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
182 {
183 	int i;
184 	struct kvm_cpuid_entry2 *e, *entry;
185 
186 	entry = NULL;
187 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
188 		e = &vcpu->arch.cpuid_entries[i];
189 		if (e->function == 0x80000001) {
190 			entry = e;
191 			break;
192 		}
193 	}
194 	if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
195 		cpuid_entry_clear(entry, X86_FEATURE_NX);
196 		printk(KERN_INFO "kvm: guest NX capability removed\n");
197 	}
198 }
199 
200 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
201 {
202 	struct kvm_cpuid_entry2 *best;
203 
204 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
205 	if (!best || best->eax < 0x80000008)
206 		goto not_found;
207 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
208 	if (best)
209 		return best->eax & 0xff;
210 not_found:
211 	return 36;
212 }
213 
214 /* when an old userspace process fills a new kernel module */
215 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
216 			     struct kvm_cpuid *cpuid,
217 			     struct kvm_cpuid_entry __user *entries)
218 {
219 	int r, i;
220 	struct kvm_cpuid_entry *e = NULL;
221 	struct kvm_cpuid_entry2 *e2 = NULL;
222 
223 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
224 		return -E2BIG;
225 
226 	if (cpuid->nent) {
227 		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
228 		if (IS_ERR(e))
229 			return PTR_ERR(e);
230 
231 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
232 		if (!e2) {
233 			r = -ENOMEM;
234 			goto out_free_cpuid;
235 		}
236 	}
237 	for (i = 0; i < cpuid->nent; i++) {
238 		e2[i].function = e[i].function;
239 		e2[i].eax = e[i].eax;
240 		e2[i].ebx = e[i].ebx;
241 		e2[i].ecx = e[i].ecx;
242 		e2[i].edx = e[i].edx;
243 		e2[i].index = 0;
244 		e2[i].flags = 0;
245 		e2[i].padding[0] = 0;
246 		e2[i].padding[1] = 0;
247 		e2[i].padding[2] = 0;
248 	}
249 
250 	r = kvm_check_cpuid(e2, cpuid->nent);
251 	if (r) {
252 		kvfree(e2);
253 		goto out_free_cpuid;
254 	}
255 
256 	kvfree(vcpu->arch.cpuid_entries);
257 	vcpu->arch.cpuid_entries = e2;
258 	vcpu->arch.cpuid_nent = cpuid->nent;
259 
260 	cpuid_fix_nx_cap(vcpu);
261 	kvm_update_cpuid_runtime(vcpu);
262 	kvm_vcpu_after_set_cpuid(vcpu);
263 
264 out_free_cpuid:
265 	kvfree(e);
266 
267 	return r;
268 }
269 
270 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
271 			      struct kvm_cpuid2 *cpuid,
272 			      struct kvm_cpuid_entry2 __user *entries)
273 {
274 	struct kvm_cpuid_entry2 *e2 = NULL;
275 	int r;
276 
277 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
278 		return -E2BIG;
279 
280 	if (cpuid->nent) {
281 		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
282 		if (IS_ERR(e2))
283 			return PTR_ERR(e2);
284 	}
285 
286 	r = kvm_check_cpuid(e2, cpuid->nent);
287 	if (r) {
288 		kvfree(e2);
289 		return r;
290 	}
291 
292 	kvfree(vcpu->arch.cpuid_entries);
293 	vcpu->arch.cpuid_entries = e2;
294 	vcpu->arch.cpuid_nent = cpuid->nent;
295 
296 	kvm_update_cpuid_runtime(vcpu);
297 	kvm_vcpu_after_set_cpuid(vcpu);
298 
299 	return 0;
300 }
301 
302 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
303 			      struct kvm_cpuid2 *cpuid,
304 			      struct kvm_cpuid_entry2 __user *entries)
305 {
306 	int r;
307 
308 	r = -E2BIG;
309 	if (cpuid->nent < vcpu->arch.cpuid_nent)
310 		goto out;
311 	r = -EFAULT;
312 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
313 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
314 		goto out;
315 	return 0;
316 
317 out:
318 	cpuid->nent = vcpu->arch.cpuid_nent;
319 	return r;
320 }
321 
322 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
323 {
324 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
325 	struct kvm_cpuid_entry2 entry;
326 
327 	reverse_cpuid_check(leaf);
328 	kvm_cpu_caps[leaf] &= mask;
329 
330 	cpuid_count(cpuid.function, cpuid.index,
331 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
332 
333 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
334 }
335 
336 void kvm_set_cpu_caps(void)
337 {
338 	unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
339 #ifdef CONFIG_X86_64
340 	unsigned int f_gbpages = F(GBPAGES);
341 	unsigned int f_lm = F(LM);
342 #else
343 	unsigned int f_gbpages = 0;
344 	unsigned int f_lm = 0;
345 #endif
346 
347 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
348 		     sizeof(boot_cpu_data.x86_capability));
349 
350 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
351 	       sizeof(kvm_cpu_caps));
352 
353 	kvm_cpu_cap_mask(CPUID_1_ECX,
354 		/*
355 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
356 		 * advertised to guests via CPUID!
357 		 */
358 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
359 		0 /* DS-CPL, VMX, SMX, EST */ |
360 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
361 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
362 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
363 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
364 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
365 		F(F16C) | F(RDRAND)
366 	);
367 	/* KVM emulates x2apic in software irrespective of host support. */
368 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
369 
370 	kvm_cpu_cap_mask(CPUID_1_EDX,
371 		F(FPU) | F(VME) | F(DE) | F(PSE) |
372 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
373 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
374 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
375 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
376 		0 /* Reserved, DS, ACPI */ | F(MMX) |
377 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
378 		0 /* HTT, TM, Reserved, PBE */
379 	);
380 
381 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
382 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
383 		F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
384 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
385 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
386 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
387 	);
388 
389 	kvm_cpu_cap_mask(CPUID_7_ECX,
390 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
391 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
392 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
393 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
394 	);
395 	/* Set LA57 based on hardware capability. */
396 	if (cpuid_ecx(7) & F(LA57))
397 		kvm_cpu_cap_set(X86_FEATURE_LA57);
398 
399 	/*
400 	 * PKU not yet implemented for shadow paging and requires OSPKE
401 	 * to be set on the host. Clear it if that is not the case
402 	 */
403 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
404 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
405 
406 	kvm_cpu_cap_mask(CPUID_7_EDX,
407 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
408 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
409 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
410 		F(SERIALIZE) | F(TSXLDTRK)
411 	);
412 
413 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
414 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
415 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
416 
417 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
418 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
419 	if (boot_cpu_has(X86_FEATURE_STIBP))
420 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
421 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
422 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
423 
424 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
425 		F(AVX512_BF16)
426 	);
427 
428 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
429 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
430 	);
431 
432 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
433 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
434 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
435 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
436 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
437 		F(TOPOEXT) | F(PERFCTR_CORE)
438 	);
439 
440 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
441 		F(FPU) | F(VME) | F(DE) | F(PSE) |
442 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
443 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
444 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
445 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
446 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
447 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
448 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
449 	);
450 
451 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
452 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
453 
454 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
455 		F(CLZERO) | F(XSAVEERPTR) |
456 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
457 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
458 	);
459 
460 	/*
461 	 * AMD has separate bits for each SPEC_CTRL bit.
462 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
463 	 * record that in cpufeatures so use them.
464 	 */
465 	if (boot_cpu_has(X86_FEATURE_IBPB))
466 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
467 	if (boot_cpu_has(X86_FEATURE_IBRS))
468 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
469 	if (boot_cpu_has(X86_FEATURE_STIBP))
470 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
471 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
472 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
473 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
474 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
475 	/*
476 	 * The preference is to use SPEC CTRL MSR instead of the
477 	 * VIRT_SPEC MSR.
478 	 */
479 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
480 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
481 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
482 
483 	/*
484 	 * Hide all SVM features by default, SVM will set the cap bits for
485 	 * features it emulates and/or exposes for L1.
486 	 */
487 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
488 
489 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
490 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
491 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
492 		F(PMM) | F(PMM_EN)
493 	);
494 }
495 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
496 
497 struct kvm_cpuid_array {
498 	struct kvm_cpuid_entry2 *entries;
499 	int maxnent;
500 	int nent;
501 };
502 
503 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
504 					      u32 function, u32 index)
505 {
506 	struct kvm_cpuid_entry2 *entry;
507 
508 	if (array->nent >= array->maxnent)
509 		return NULL;
510 
511 	entry = &array->entries[array->nent++];
512 
513 	entry->function = function;
514 	entry->index = index;
515 	entry->flags = 0;
516 
517 	cpuid_count(entry->function, entry->index,
518 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
519 
520 	switch (function) {
521 	case 4:
522 	case 7:
523 	case 0xb:
524 	case 0xd:
525 	case 0xf:
526 	case 0x10:
527 	case 0x12:
528 	case 0x14:
529 	case 0x17:
530 	case 0x18:
531 	case 0x1f:
532 	case 0x8000001d:
533 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
534 		break;
535 	}
536 
537 	return entry;
538 }
539 
540 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
541 {
542 	struct kvm_cpuid_entry2 *entry;
543 
544 	if (array->nent >= array->maxnent)
545 		return -E2BIG;
546 
547 	entry = &array->entries[array->nent];
548 	entry->function = func;
549 	entry->index = 0;
550 	entry->flags = 0;
551 
552 	switch (func) {
553 	case 0:
554 		entry->eax = 7;
555 		++array->nent;
556 		break;
557 	case 1:
558 		entry->ecx = F(MOVBE);
559 		++array->nent;
560 		break;
561 	case 7:
562 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
563 		entry->eax = 0;
564 		entry->ecx = F(RDPID);
565 		++array->nent;
566 	default:
567 		break;
568 	}
569 
570 	return 0;
571 }
572 
573 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
574 {
575 	struct kvm_cpuid_entry2 *entry;
576 	int r, i, max_idx;
577 
578 	/* all calls to cpuid_count() should be made on the same cpu */
579 	get_cpu();
580 
581 	r = -E2BIG;
582 
583 	entry = do_host_cpuid(array, function, 0);
584 	if (!entry)
585 		goto out;
586 
587 	switch (function) {
588 	case 0:
589 		/* Limited to the highest leaf implemented in KVM. */
590 		entry->eax = min(entry->eax, 0x1fU);
591 		break;
592 	case 1:
593 		cpuid_entry_override(entry, CPUID_1_EDX);
594 		cpuid_entry_override(entry, CPUID_1_ECX);
595 		break;
596 	case 2:
597 		/*
598 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
599 		 * CPUID(function=2, index=0) may return different results each
600 		 * time, with the least-significant byte in EAX enumerating the
601 		 * number of times software should do CPUID(2, 0).
602 		 *
603 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
604 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
605 		 * return 01H. Software should ignore this value and not
606 		 * interpret it as an informational descriptor", while AMD's
607 		 * APM states that CPUID(2) is reserved.
608 		 *
609 		 * WARN if a frankenstein CPU that supports virtualization and
610 		 * a stateful CPUID.0x2 is encountered.
611 		 */
612 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
613 		break;
614 	/* functions 4 and 0x8000001d have additional index. */
615 	case 4:
616 	case 0x8000001d:
617 		/*
618 		 * Read entries until the cache type in the previous entry is
619 		 * zero, i.e. indicates an invalid entry.
620 		 */
621 		for (i = 1; entry->eax & 0x1f; ++i) {
622 			entry = do_host_cpuid(array, function, i);
623 			if (!entry)
624 				goto out;
625 		}
626 		break;
627 	case 6: /* Thermal management */
628 		entry->eax = 0x4; /* allow ARAT */
629 		entry->ebx = 0;
630 		entry->ecx = 0;
631 		entry->edx = 0;
632 		break;
633 	/* function 7 has additional index. */
634 	case 7:
635 		entry->eax = min(entry->eax, 1u);
636 		cpuid_entry_override(entry, CPUID_7_0_EBX);
637 		cpuid_entry_override(entry, CPUID_7_ECX);
638 		cpuid_entry_override(entry, CPUID_7_EDX);
639 
640 		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
641 		if (entry->eax == 1) {
642 			entry = do_host_cpuid(array, function, 1);
643 			if (!entry)
644 				goto out;
645 
646 			cpuid_entry_override(entry, CPUID_7_1_EAX);
647 			entry->ebx = 0;
648 			entry->ecx = 0;
649 			entry->edx = 0;
650 		}
651 		break;
652 	case 9:
653 		break;
654 	case 0xa: { /* Architectural Performance Monitoring */
655 		struct x86_pmu_capability cap;
656 		union cpuid10_eax eax;
657 		union cpuid10_edx edx;
658 
659 		perf_get_x86_pmu_capability(&cap);
660 
661 		/*
662 		 * Only support guest architectural pmu on a host
663 		 * with architectural pmu.
664 		 */
665 		if (!cap.version)
666 			memset(&cap, 0, sizeof(cap));
667 
668 		eax.split.version_id = min(cap.version, 2);
669 		eax.split.num_counters = cap.num_counters_gp;
670 		eax.split.bit_width = cap.bit_width_gp;
671 		eax.split.mask_length = cap.events_mask_len;
672 
673 		edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
674 		edx.split.bit_width_fixed = cap.bit_width_fixed;
675 		edx.split.reserved = 0;
676 
677 		entry->eax = eax.full;
678 		entry->ebx = cap.events_mask;
679 		entry->ecx = 0;
680 		entry->edx = edx.full;
681 		break;
682 	}
683 	/*
684 	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
685 	 * thus they can be handled by common code.
686 	 */
687 	case 0x1f:
688 	case 0xb:
689 		/*
690 		 * Populate entries until the level type (ECX[15:8]) of the
691 		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
692 		 * the starting entry, filled by the primary do_host_cpuid().
693 		 */
694 		for (i = 1; entry->ecx & 0xff00; ++i) {
695 			entry = do_host_cpuid(array, function, i);
696 			if (!entry)
697 				goto out;
698 		}
699 		break;
700 	case 0xd:
701 		entry->eax &= supported_xcr0;
702 		entry->ebx = xstate_required_size(supported_xcr0, false);
703 		entry->ecx = entry->ebx;
704 		entry->edx &= supported_xcr0 >> 32;
705 		if (!supported_xcr0)
706 			break;
707 
708 		entry = do_host_cpuid(array, function, 1);
709 		if (!entry)
710 			goto out;
711 
712 		cpuid_entry_override(entry, CPUID_D_1_EAX);
713 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
714 			entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
715 							  true);
716 		else {
717 			WARN_ON_ONCE(supported_xss != 0);
718 			entry->ebx = 0;
719 		}
720 		entry->ecx &= supported_xss;
721 		entry->edx &= supported_xss >> 32;
722 
723 		for (i = 2; i < 64; ++i) {
724 			bool s_state;
725 			if (supported_xcr0 & BIT_ULL(i))
726 				s_state = false;
727 			else if (supported_xss & BIT_ULL(i))
728 				s_state = true;
729 			else
730 				continue;
731 
732 			entry = do_host_cpuid(array, function, i);
733 			if (!entry)
734 				goto out;
735 
736 			/*
737 			 * The supported check above should have filtered out
738 			 * invalid sub-leafs.  Only valid sub-leafs should
739 			 * reach this point, and they should have a non-zero
740 			 * save state size.  Furthermore, check whether the
741 			 * processor agrees with supported_xcr0/supported_xss
742 			 * on whether this is an XCR0- or IA32_XSS-managed area.
743 			 */
744 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
745 				--array->nent;
746 				continue;
747 			}
748 			entry->edx = 0;
749 		}
750 		break;
751 	/* Intel PT */
752 	case 0x14:
753 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
754 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
755 			break;
756 		}
757 
758 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
759 			if (!do_host_cpuid(array, function, i))
760 				goto out;
761 		}
762 		break;
763 	case KVM_CPUID_SIGNATURE: {
764 		static const char signature[12] = "KVMKVMKVM\0\0";
765 		const u32 *sigptr = (const u32 *)signature;
766 		entry->eax = KVM_CPUID_FEATURES;
767 		entry->ebx = sigptr[0];
768 		entry->ecx = sigptr[1];
769 		entry->edx = sigptr[2];
770 		break;
771 	}
772 	case KVM_CPUID_FEATURES:
773 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
774 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
775 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
776 			     (1 << KVM_FEATURE_ASYNC_PF) |
777 			     (1 << KVM_FEATURE_PV_EOI) |
778 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
779 			     (1 << KVM_FEATURE_PV_UNHALT) |
780 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
781 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
782 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
783 			     (1 << KVM_FEATURE_POLL_CONTROL) |
784 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
785 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
786 
787 		if (sched_info_on())
788 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
789 
790 		entry->ebx = 0;
791 		entry->ecx = 0;
792 		entry->edx = 0;
793 		break;
794 	case 0x80000000:
795 		entry->eax = min(entry->eax, 0x8000001f);
796 		break;
797 	case 0x80000001:
798 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
799 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
800 		break;
801 	case 0x80000006:
802 		/* L2 cache and TLB: pass through host info. */
803 		break;
804 	case 0x80000007: /* Advanced power management */
805 		/* invariant TSC is CPUID.80000007H:EDX[8] */
806 		entry->edx &= (1 << 8);
807 		/* mask against host */
808 		entry->edx &= boot_cpu_data.x86_power;
809 		entry->eax = entry->ebx = entry->ecx = 0;
810 		break;
811 	case 0x80000008: {
812 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
813 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
814 		unsigned phys_as = entry->eax & 0xff;
815 
816 		if (!g_phys_as)
817 			g_phys_as = phys_as;
818 		entry->eax = g_phys_as | (virt_as << 8);
819 		entry->edx = 0;
820 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
821 		break;
822 	}
823 	case 0x8000000A:
824 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
825 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
826 			break;
827 		}
828 		entry->eax = 1; /* SVM revision 1 */
829 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
830 				   ASID emulation to nested SVM */
831 		entry->ecx = 0; /* Reserved */
832 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
833 		break;
834 	case 0x80000019:
835 		entry->ecx = entry->edx = 0;
836 		break;
837 	case 0x8000001a:
838 	case 0x8000001e:
839 		break;
840 	/* Support memory encryption cpuid if host supports it */
841 	case 0x8000001F:
842 		if (!boot_cpu_has(X86_FEATURE_SEV))
843 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
844 		break;
845 	/*Add support for Centaur's CPUID instruction*/
846 	case 0xC0000000:
847 		/*Just support up to 0xC0000004 now*/
848 		entry->eax = min(entry->eax, 0xC0000004);
849 		break;
850 	case 0xC0000001:
851 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
852 		break;
853 	case 3: /* Processor serial number */
854 	case 5: /* MONITOR/MWAIT */
855 	case 0xC0000002:
856 	case 0xC0000003:
857 	case 0xC0000004:
858 	default:
859 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
860 		break;
861 	}
862 
863 	r = 0;
864 
865 out:
866 	put_cpu();
867 
868 	return r;
869 }
870 
871 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
872 			 unsigned int type)
873 {
874 	if (type == KVM_GET_EMULATED_CPUID)
875 		return __do_cpuid_func_emulated(array, func);
876 
877 	return __do_cpuid_func(array, func);
878 }
879 
880 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
881 
882 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
883 			  unsigned int type)
884 {
885 	u32 limit;
886 	int r;
887 
888 	if (func == CENTAUR_CPUID_SIGNATURE &&
889 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
890 		return 0;
891 
892 	r = do_cpuid_func(array, func, type);
893 	if (r)
894 		return r;
895 
896 	limit = array->entries[array->nent - 1].eax;
897 	for (func = func + 1; func <= limit; ++func) {
898 		r = do_cpuid_func(array, func, type);
899 		if (r)
900 			break;
901 	}
902 
903 	return r;
904 }
905 
906 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
907 				 __u32 num_entries, unsigned int ioctl_type)
908 {
909 	int i;
910 	__u32 pad[3];
911 
912 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
913 		return false;
914 
915 	/*
916 	 * We want to make sure that ->padding is being passed clean from
917 	 * userspace in case we want to use it for something in the future.
918 	 *
919 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
920 	 * have to give ourselves satisfied only with the emulated side. /me
921 	 * sheds a tear.
922 	 */
923 	for (i = 0; i < num_entries; i++) {
924 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
925 			return true;
926 
927 		if (pad[0] || pad[1] || pad[2])
928 			return true;
929 	}
930 	return false;
931 }
932 
933 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
934 			    struct kvm_cpuid_entry2 __user *entries,
935 			    unsigned int type)
936 {
937 	static const u32 funcs[] = {
938 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
939 	};
940 
941 	struct kvm_cpuid_array array = {
942 		.nent = 0,
943 	};
944 	int r, i;
945 
946 	if (cpuid->nent < 1)
947 		return -E2BIG;
948 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
949 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
950 
951 	if (sanity_check_entries(entries, cpuid->nent, type))
952 		return -EINVAL;
953 
954 	array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
955 					   cpuid->nent));
956 	if (!array.entries)
957 		return -ENOMEM;
958 
959 	array.maxnent = cpuid->nent;
960 
961 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
962 		r = get_cpuid_func(&array, funcs[i], type);
963 		if (r)
964 			goto out_free;
965 	}
966 	cpuid->nent = array.nent;
967 
968 	if (copy_to_user(entries, array.entries,
969 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
970 		r = -EFAULT;
971 
972 out_free:
973 	vfree(array.entries);
974 	return r;
975 }
976 
977 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
978 					      u32 function, u32 index)
979 {
980 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
981 				 function, index);
982 }
983 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
984 
985 /*
986  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
987  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
988  * returns all zeroes for any undefined leaf, whether or not the leaf is in
989  * range.  Centaur/VIA follows Intel semantics.
990  *
991  * A leaf is considered out-of-range if its function is higher than the maximum
992  * supported leaf of its associated class or if its associated class does not
993  * exist.
994  *
995  * There are three primary classes to be considered, with their respective
996  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
997  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
998  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
999  *
1000  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1001  *  - Hypervisor: 0x40000000 - 0x4fffffff
1002  *  - Extended:   0x80000000 - 0xbfffffff
1003  *  - Centaur:    0xc0000000 - 0xcfffffff
1004  *
1005  * The Hypervisor class is further subdivided into sub-classes that each act as
1006  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
1007  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1008  * CPUID sub-classes are:
1009  *
1010  *  - HyperV:     0x40000000 - 0x400000ff
1011  *  - KVM:        0x40000100 - 0x400001ff
1012  */
1013 static struct kvm_cpuid_entry2 *
1014 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1015 {
1016 	struct kvm_cpuid_entry2 *basic, *class;
1017 	u32 function = *fn_ptr;
1018 
1019 	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1020 	if (!basic)
1021 		return NULL;
1022 
1023 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1024 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1025 		return NULL;
1026 
1027 	if (function >= 0x40000000 && function <= 0x4fffffff)
1028 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1029 	else if (function >= 0xc0000000)
1030 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1031 	else
1032 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1033 
1034 	if (class && function <= class->eax)
1035 		return NULL;
1036 
1037 	/*
1038 	 * Leaf specific adjustments are also applied when redirecting to the
1039 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1040 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1041 	 * needs to be pulled from CPUID.0xb.1.
1042 	 */
1043 	*fn_ptr = basic->eax;
1044 
1045 	/*
1046 	 * The class does not exist or the requested function is out of range;
1047 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1048 	 * the original requested leaf is observed!
1049 	 */
1050 	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1051 }
1052 
1053 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1054 	       u32 *ecx, u32 *edx, bool exact_only)
1055 {
1056 	u32 orig_function = *eax, function = *eax, index = *ecx;
1057 	struct kvm_cpuid_entry2 *entry;
1058 	bool exact, used_max_basic = false;
1059 
1060 	entry = kvm_find_cpuid_entry(vcpu, function, index);
1061 	exact = !!entry;
1062 
1063 	if (!entry && !exact_only) {
1064 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1065 		used_max_basic = !!entry;
1066 	}
1067 
1068 	if (entry) {
1069 		*eax = entry->eax;
1070 		*ebx = entry->ebx;
1071 		*ecx = entry->ecx;
1072 		*edx = entry->edx;
1073 		if (function == 7 && index == 0) {
1074 			u64 data;
1075 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1076 			    (data & TSX_CTRL_CPUID_CLEAR))
1077 				*ebx &= ~(F(RTM) | F(HLE));
1078 		}
1079 	} else {
1080 		*eax = *ebx = *ecx = *edx = 0;
1081 		/*
1082 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1083 		 * and EDX is always the x2APIC ID, even for undefined
1084 		 * subleaves. Index 1 will exist iff the leaf is
1085 		 * implemented, so we pass through CL iff leaf 1
1086 		 * exists. EDX can be copied from any existing index.
1087 		 */
1088 		if (function == 0xb || function == 0x1f) {
1089 			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1090 			if (entry) {
1091 				*ecx = index & 0xff;
1092 				*edx = entry->edx;
1093 			}
1094 		}
1095 	}
1096 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1097 			used_max_basic);
1098 	return exact;
1099 }
1100 EXPORT_SYMBOL_GPL(kvm_cpuid);
1101 
1102 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1103 {
1104 	u32 eax, ebx, ecx, edx;
1105 
1106 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1107 		return 1;
1108 
1109 	eax = kvm_rax_read(vcpu);
1110 	ecx = kvm_rcx_read(vcpu);
1111 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1112 	kvm_rax_write(vcpu, eax);
1113 	kvm_rbx_write(vcpu, ebx);
1114 	kvm_rcx_write(vcpu, ecx);
1115 	kvm_rdx_write(vcpu, edx);
1116 	return kvm_skip_emulated_instruction(vcpu);
1117 }
1118 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1119