xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 66a28915)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17 
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26 
27 /*
28  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
29  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
30  */
31 u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
32 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
33 
34 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
35 {
36 	int feature_bit = 0;
37 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
38 
39 	xstate_bv &= XFEATURE_MASK_EXTEND;
40 	while (xstate_bv) {
41 		if (xstate_bv & 0x1) {
42 		        u32 eax, ebx, ecx, edx, offset;
43 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
44 			offset = compacted ? ret : ebx;
45 			ret = max(ret, offset + eax);
46 		}
47 
48 		xstate_bv >>= 1;
49 		feature_bit++;
50 	}
51 
52 	return ret;
53 }
54 
55 #define F feature_bit
56 
57 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
58 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
59 {
60 	struct kvm_cpuid_entry2 *e;
61 	int i;
62 
63 	for (i = 0; i < nent; i++) {
64 		e = &entries[i];
65 
66 		if (e->function == function && (e->index == index ||
67 		    !(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX)))
68 			return e;
69 	}
70 
71 	return NULL;
72 }
73 
74 static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
75 {
76 	struct kvm_cpuid_entry2 *best;
77 
78 	/*
79 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
80 	 * canonical address checks; exit if it is ever changed.
81 	 */
82 	best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
83 	if (best) {
84 		int vaddr_bits = (best->eax & 0xff00) >> 8;
85 
86 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
87 			return -EINVAL;
88 	}
89 
90 	return 0;
91 }
92 
93 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
94 {
95 	struct kvm_cpuid_entry2 *best;
96 
97 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
98 
99 	/*
100 	 * save the feature bitmap to avoid cpuid lookup for every PV
101 	 * operation
102 	 */
103 	if (best)
104 		vcpu->arch.pv_cpuid.features = best->eax;
105 }
106 
107 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
108 {
109 	struct kvm_cpuid_entry2 *best;
110 
111 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
112 	if (best) {
113 		/* Update OSXSAVE bit */
114 		if (boot_cpu_has(X86_FEATURE_XSAVE))
115 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
116 				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
117 
118 		cpuid_entry_change(best, X86_FEATURE_APIC,
119 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
120 	}
121 
122 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
123 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
124 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
125 				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
126 
127 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
128 	if (best)
129 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
130 
131 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
132 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
133 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
134 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
135 
136 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
137 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
138 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
139 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
140 
141 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
142 		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
143 		if (best)
144 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
145 					   vcpu->arch.ia32_misc_enable_msr &
146 					   MSR_IA32_MISC_ENABLE_MWAIT);
147 	}
148 }
149 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
150 
151 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
152 {
153 	struct kvm_lapic *apic = vcpu->arch.apic;
154 	struct kvm_cpuid_entry2 *best;
155 
156 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
157 	if (best && apic) {
158 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
159 			apic->lapic_timer.timer_mode_mask = 3 << 17;
160 		else
161 			apic->lapic_timer.timer_mode_mask = 1 << 17;
162 
163 		kvm_apic_set_version(vcpu);
164 	}
165 
166 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
167 	if (!best)
168 		vcpu->arch.guest_supported_xcr0 = 0;
169 	else
170 		vcpu->arch.guest_supported_xcr0 =
171 			(best->eax | ((u64)best->edx << 32)) & supported_xcr0;
172 
173 	kvm_update_pv_runtime(vcpu);
174 
175 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
176 	kvm_mmu_reset_context(vcpu);
177 
178 	kvm_pmu_refresh(vcpu);
179 	vcpu->arch.cr4_guest_rsvd_bits =
180 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
181 
182 	vcpu->arch.cr3_lm_rsvd_bits = rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
183 
184 	/* Invoke the vendor callback only after the above state is updated. */
185 	kvm_x86_ops.vcpu_after_set_cpuid(vcpu);
186 }
187 
188 static int is_efer_nx(void)
189 {
190 	return host_efer & EFER_NX;
191 }
192 
193 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
194 {
195 	int i;
196 	struct kvm_cpuid_entry2 *e, *entry;
197 
198 	entry = NULL;
199 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
200 		e = &vcpu->arch.cpuid_entries[i];
201 		if (e->function == 0x80000001) {
202 			entry = e;
203 			break;
204 		}
205 	}
206 	if (entry && cpuid_entry_has(entry, X86_FEATURE_NX) && !is_efer_nx()) {
207 		cpuid_entry_clear(entry, X86_FEATURE_NX);
208 		printk(KERN_INFO "kvm: guest NX capability removed\n");
209 	}
210 }
211 
212 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
213 {
214 	struct kvm_cpuid_entry2 *best;
215 
216 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
217 	if (!best || best->eax < 0x80000008)
218 		goto not_found;
219 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
220 	if (best)
221 		return best->eax & 0xff;
222 not_found:
223 	return 36;
224 }
225 
226 /* when an old userspace process fills a new kernel module */
227 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
228 			     struct kvm_cpuid *cpuid,
229 			     struct kvm_cpuid_entry __user *entries)
230 {
231 	int r, i;
232 	struct kvm_cpuid_entry *e = NULL;
233 	struct kvm_cpuid_entry2 *e2 = NULL;
234 
235 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
236 		return -E2BIG;
237 
238 	if (cpuid->nent) {
239 		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
240 		if (IS_ERR(e))
241 			return PTR_ERR(e);
242 
243 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
244 		if (!e2) {
245 			r = -ENOMEM;
246 			goto out_free_cpuid;
247 		}
248 	}
249 	for (i = 0; i < cpuid->nent; i++) {
250 		e2[i].function = e[i].function;
251 		e2[i].eax = e[i].eax;
252 		e2[i].ebx = e[i].ebx;
253 		e2[i].ecx = e[i].ecx;
254 		e2[i].edx = e[i].edx;
255 		e2[i].index = 0;
256 		e2[i].flags = 0;
257 		e2[i].padding[0] = 0;
258 		e2[i].padding[1] = 0;
259 		e2[i].padding[2] = 0;
260 	}
261 
262 	r = kvm_check_cpuid(e2, cpuid->nent);
263 	if (r) {
264 		kvfree(e2);
265 		goto out_free_cpuid;
266 	}
267 
268 	kvfree(vcpu->arch.cpuid_entries);
269 	vcpu->arch.cpuid_entries = e2;
270 	vcpu->arch.cpuid_nent = cpuid->nent;
271 
272 	cpuid_fix_nx_cap(vcpu);
273 	kvm_update_cpuid_runtime(vcpu);
274 	kvm_vcpu_after_set_cpuid(vcpu);
275 
276 out_free_cpuid:
277 	kvfree(e);
278 
279 	return r;
280 }
281 
282 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
283 			      struct kvm_cpuid2 *cpuid,
284 			      struct kvm_cpuid_entry2 __user *entries)
285 {
286 	struct kvm_cpuid_entry2 *e2 = NULL;
287 	int r;
288 
289 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
290 		return -E2BIG;
291 
292 	if (cpuid->nent) {
293 		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
294 		if (IS_ERR(e2))
295 			return PTR_ERR(e2);
296 	}
297 
298 	r = kvm_check_cpuid(e2, cpuid->nent);
299 	if (r) {
300 		kvfree(e2);
301 		return r;
302 	}
303 
304 	kvfree(vcpu->arch.cpuid_entries);
305 	vcpu->arch.cpuid_entries = e2;
306 	vcpu->arch.cpuid_nent = cpuid->nent;
307 
308 	kvm_update_cpuid_runtime(vcpu);
309 	kvm_vcpu_after_set_cpuid(vcpu);
310 
311 	return 0;
312 }
313 
314 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
315 			      struct kvm_cpuid2 *cpuid,
316 			      struct kvm_cpuid_entry2 __user *entries)
317 {
318 	int r;
319 
320 	r = -E2BIG;
321 	if (cpuid->nent < vcpu->arch.cpuid_nent)
322 		goto out;
323 	r = -EFAULT;
324 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
325 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
326 		goto out;
327 	return 0;
328 
329 out:
330 	cpuid->nent = vcpu->arch.cpuid_nent;
331 	return r;
332 }
333 
334 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
335 {
336 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
337 	struct kvm_cpuid_entry2 entry;
338 
339 	reverse_cpuid_check(leaf);
340 	kvm_cpu_caps[leaf] &= mask;
341 
342 	cpuid_count(cpuid.function, cpuid.index,
343 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
344 
345 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
346 }
347 
348 void kvm_set_cpu_caps(void)
349 {
350 	unsigned int f_nx = is_efer_nx() ? F(NX) : 0;
351 #ifdef CONFIG_X86_64
352 	unsigned int f_gbpages = F(GBPAGES);
353 	unsigned int f_lm = F(LM);
354 #else
355 	unsigned int f_gbpages = 0;
356 	unsigned int f_lm = 0;
357 #endif
358 
359 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) >
360 		     sizeof(boot_cpu_data.x86_capability));
361 
362 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
363 	       sizeof(kvm_cpu_caps));
364 
365 	kvm_cpu_cap_mask(CPUID_1_ECX,
366 		/*
367 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
368 		 * advertised to guests via CPUID!
369 		 */
370 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
371 		0 /* DS-CPL, VMX, SMX, EST */ |
372 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
373 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
374 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
375 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
376 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
377 		F(F16C) | F(RDRAND)
378 	);
379 	/* KVM emulates x2apic in software irrespective of host support. */
380 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
381 
382 	kvm_cpu_cap_mask(CPUID_1_EDX,
383 		F(FPU) | F(VME) | F(DE) | F(PSE) |
384 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
385 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
386 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
387 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
388 		0 /* Reserved, DS, ACPI */ | F(MMX) |
389 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
390 		0 /* HTT, TM, Reserved, PBE */
391 	);
392 
393 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
394 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
395 		F(BMI2) | F(ERMS) | 0 /*INVPCID*/ | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
396 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
397 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
398 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
399 	);
400 
401 	kvm_cpu_cap_mask(CPUID_7_ECX,
402 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
403 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
404 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
405 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/
406 	);
407 	/* Set LA57 based on hardware capability. */
408 	if (cpuid_ecx(7) & F(LA57))
409 		kvm_cpu_cap_set(X86_FEATURE_LA57);
410 
411 	/*
412 	 * PKU not yet implemented for shadow paging and requires OSPKE
413 	 * to be set on the host. Clear it if that is not the case
414 	 */
415 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
416 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
417 
418 	kvm_cpu_cap_mask(CPUID_7_EDX,
419 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
420 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
421 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
422 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
423 	);
424 
425 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
426 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
427 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
428 
429 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
430 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
431 	if (boot_cpu_has(X86_FEATURE_STIBP))
432 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
433 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
434 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
435 
436 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
437 		F(AVX512_BF16)
438 	);
439 
440 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
441 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
442 	);
443 
444 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
445 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
446 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
447 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
448 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
449 		F(TOPOEXT) | F(PERFCTR_CORE)
450 	);
451 
452 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
453 		F(FPU) | F(VME) | F(DE) | F(PSE) |
454 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
455 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
456 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
457 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
458 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
459 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
460 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
461 	);
462 
463 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
464 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
465 
466 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
467 		F(CLZERO) | F(XSAVEERPTR) |
468 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
469 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
470 	);
471 
472 	/*
473 	 * AMD has separate bits for each SPEC_CTRL bit.
474 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
475 	 * record that in cpufeatures so use them.
476 	 */
477 	if (boot_cpu_has(X86_FEATURE_IBPB))
478 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
479 	if (boot_cpu_has(X86_FEATURE_IBRS))
480 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
481 	if (boot_cpu_has(X86_FEATURE_STIBP))
482 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
483 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
484 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
485 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
486 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
487 	/*
488 	 * The preference is to use SPEC CTRL MSR instead of the
489 	 * VIRT_SPEC MSR.
490 	 */
491 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
492 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
493 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
494 
495 	/*
496 	 * Hide all SVM features by default, SVM will set the cap bits for
497 	 * features it emulates and/or exposes for L1.
498 	 */
499 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
500 
501 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
502 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
503 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
504 		F(PMM) | F(PMM_EN)
505 	);
506 }
507 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
508 
509 struct kvm_cpuid_array {
510 	struct kvm_cpuid_entry2 *entries;
511 	int maxnent;
512 	int nent;
513 };
514 
515 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
516 					      u32 function, u32 index)
517 {
518 	struct kvm_cpuid_entry2 *entry;
519 
520 	if (array->nent >= array->maxnent)
521 		return NULL;
522 
523 	entry = &array->entries[array->nent++];
524 
525 	entry->function = function;
526 	entry->index = index;
527 	entry->flags = 0;
528 
529 	cpuid_count(entry->function, entry->index,
530 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
531 
532 	switch (function) {
533 	case 4:
534 	case 7:
535 	case 0xb:
536 	case 0xd:
537 	case 0xf:
538 	case 0x10:
539 	case 0x12:
540 	case 0x14:
541 	case 0x17:
542 	case 0x18:
543 	case 0x1f:
544 	case 0x8000001d:
545 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
546 		break;
547 	}
548 
549 	return entry;
550 }
551 
552 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
553 {
554 	struct kvm_cpuid_entry2 *entry;
555 
556 	if (array->nent >= array->maxnent)
557 		return -E2BIG;
558 
559 	entry = &array->entries[array->nent];
560 	entry->function = func;
561 	entry->index = 0;
562 	entry->flags = 0;
563 
564 	switch (func) {
565 	case 0:
566 		entry->eax = 7;
567 		++array->nent;
568 		break;
569 	case 1:
570 		entry->ecx = F(MOVBE);
571 		++array->nent;
572 		break;
573 	case 7:
574 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
575 		entry->eax = 0;
576 		entry->ecx = F(RDPID);
577 		++array->nent;
578 	default:
579 		break;
580 	}
581 
582 	return 0;
583 }
584 
585 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
586 {
587 	struct kvm_cpuid_entry2 *entry;
588 	int r, i, max_idx;
589 
590 	/* all calls to cpuid_count() should be made on the same cpu */
591 	get_cpu();
592 
593 	r = -E2BIG;
594 
595 	entry = do_host_cpuid(array, function, 0);
596 	if (!entry)
597 		goto out;
598 
599 	switch (function) {
600 	case 0:
601 		/* Limited to the highest leaf implemented in KVM. */
602 		entry->eax = min(entry->eax, 0x1fU);
603 		break;
604 	case 1:
605 		cpuid_entry_override(entry, CPUID_1_EDX);
606 		cpuid_entry_override(entry, CPUID_1_ECX);
607 		break;
608 	case 2:
609 		/*
610 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
611 		 * CPUID(function=2, index=0) may return different results each
612 		 * time, with the least-significant byte in EAX enumerating the
613 		 * number of times software should do CPUID(2, 0).
614 		 *
615 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
616 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
617 		 * return 01H. Software should ignore this value and not
618 		 * interpret it as an informational descriptor", while AMD's
619 		 * APM states that CPUID(2) is reserved.
620 		 *
621 		 * WARN if a frankenstein CPU that supports virtualization and
622 		 * a stateful CPUID.0x2 is encountered.
623 		 */
624 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
625 		break;
626 	/* functions 4 and 0x8000001d have additional index. */
627 	case 4:
628 	case 0x8000001d:
629 		/*
630 		 * Read entries until the cache type in the previous entry is
631 		 * zero, i.e. indicates an invalid entry.
632 		 */
633 		for (i = 1; entry->eax & 0x1f; ++i) {
634 			entry = do_host_cpuid(array, function, i);
635 			if (!entry)
636 				goto out;
637 		}
638 		break;
639 	case 6: /* Thermal management */
640 		entry->eax = 0x4; /* allow ARAT */
641 		entry->ebx = 0;
642 		entry->ecx = 0;
643 		entry->edx = 0;
644 		break;
645 	/* function 7 has additional index. */
646 	case 7:
647 		entry->eax = min(entry->eax, 1u);
648 		cpuid_entry_override(entry, CPUID_7_0_EBX);
649 		cpuid_entry_override(entry, CPUID_7_ECX);
650 		cpuid_entry_override(entry, CPUID_7_EDX);
651 
652 		/* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
653 		if (entry->eax == 1) {
654 			entry = do_host_cpuid(array, function, 1);
655 			if (!entry)
656 				goto out;
657 
658 			cpuid_entry_override(entry, CPUID_7_1_EAX);
659 			entry->ebx = 0;
660 			entry->ecx = 0;
661 			entry->edx = 0;
662 		}
663 		break;
664 	case 9:
665 		break;
666 	case 0xa: { /* Architectural Performance Monitoring */
667 		struct x86_pmu_capability cap;
668 		union cpuid10_eax eax;
669 		union cpuid10_edx edx;
670 
671 		perf_get_x86_pmu_capability(&cap);
672 
673 		/*
674 		 * Only support guest architectural pmu on a host
675 		 * with architectural pmu.
676 		 */
677 		if (!cap.version)
678 			memset(&cap, 0, sizeof(cap));
679 
680 		eax.split.version_id = min(cap.version, 2);
681 		eax.split.num_counters = cap.num_counters_gp;
682 		eax.split.bit_width = cap.bit_width_gp;
683 		eax.split.mask_length = cap.events_mask_len;
684 
685 		edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
686 		edx.split.bit_width_fixed = cap.bit_width_fixed;
687 		edx.split.anythread_deprecated = 1;
688 		edx.split.reserved1 = 0;
689 		edx.split.reserved2 = 0;
690 
691 		entry->eax = eax.full;
692 		entry->ebx = cap.events_mask;
693 		entry->ecx = 0;
694 		entry->edx = edx.full;
695 		break;
696 	}
697 	/*
698 	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
699 	 * thus they can be handled by common code.
700 	 */
701 	case 0x1f:
702 	case 0xb:
703 		/*
704 		 * Populate entries until the level type (ECX[15:8]) of the
705 		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
706 		 * the starting entry, filled by the primary do_host_cpuid().
707 		 */
708 		for (i = 1; entry->ecx & 0xff00; ++i) {
709 			entry = do_host_cpuid(array, function, i);
710 			if (!entry)
711 				goto out;
712 		}
713 		break;
714 	case 0xd:
715 		entry->eax &= supported_xcr0;
716 		entry->ebx = xstate_required_size(supported_xcr0, false);
717 		entry->ecx = entry->ebx;
718 		entry->edx &= supported_xcr0 >> 32;
719 		if (!supported_xcr0)
720 			break;
721 
722 		entry = do_host_cpuid(array, function, 1);
723 		if (!entry)
724 			goto out;
725 
726 		cpuid_entry_override(entry, CPUID_D_1_EAX);
727 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
728 			entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
729 							  true);
730 		else {
731 			WARN_ON_ONCE(supported_xss != 0);
732 			entry->ebx = 0;
733 		}
734 		entry->ecx &= supported_xss;
735 		entry->edx &= supported_xss >> 32;
736 
737 		for (i = 2; i < 64; ++i) {
738 			bool s_state;
739 			if (supported_xcr0 & BIT_ULL(i))
740 				s_state = false;
741 			else if (supported_xss & BIT_ULL(i))
742 				s_state = true;
743 			else
744 				continue;
745 
746 			entry = do_host_cpuid(array, function, i);
747 			if (!entry)
748 				goto out;
749 
750 			/*
751 			 * The supported check above should have filtered out
752 			 * invalid sub-leafs.  Only valid sub-leafs should
753 			 * reach this point, and they should have a non-zero
754 			 * save state size.  Furthermore, check whether the
755 			 * processor agrees with supported_xcr0/supported_xss
756 			 * on whether this is an XCR0- or IA32_XSS-managed area.
757 			 */
758 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
759 				--array->nent;
760 				continue;
761 			}
762 			entry->edx = 0;
763 		}
764 		break;
765 	/* Intel PT */
766 	case 0x14:
767 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
768 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
769 			break;
770 		}
771 
772 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
773 			if (!do_host_cpuid(array, function, i))
774 				goto out;
775 		}
776 		break;
777 	case KVM_CPUID_SIGNATURE: {
778 		static const char signature[12] = "KVMKVMKVM\0\0";
779 		const u32 *sigptr = (const u32 *)signature;
780 		entry->eax = KVM_CPUID_FEATURES;
781 		entry->ebx = sigptr[0];
782 		entry->ecx = sigptr[1];
783 		entry->edx = sigptr[2];
784 		break;
785 	}
786 	case KVM_CPUID_FEATURES:
787 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
788 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
789 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
790 			     (1 << KVM_FEATURE_ASYNC_PF) |
791 			     (1 << KVM_FEATURE_PV_EOI) |
792 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
793 			     (1 << KVM_FEATURE_PV_UNHALT) |
794 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
795 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
796 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
797 			     (1 << KVM_FEATURE_POLL_CONTROL) |
798 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
799 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
800 
801 		if (sched_info_on())
802 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
803 
804 		entry->ebx = 0;
805 		entry->ecx = 0;
806 		entry->edx = 0;
807 		break;
808 	case 0x80000000:
809 		entry->eax = min(entry->eax, 0x8000001f);
810 		break;
811 	case 0x80000001:
812 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
813 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
814 		break;
815 	case 0x80000006:
816 		/* L2 cache and TLB: pass through host info. */
817 		break;
818 	case 0x80000007: /* Advanced power management */
819 		/* invariant TSC is CPUID.80000007H:EDX[8] */
820 		entry->edx &= (1 << 8);
821 		/* mask against host */
822 		entry->edx &= boot_cpu_data.x86_power;
823 		entry->eax = entry->ebx = entry->ecx = 0;
824 		break;
825 	case 0x80000008: {
826 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
827 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
828 		unsigned phys_as = entry->eax & 0xff;
829 
830 		if (!g_phys_as)
831 			g_phys_as = phys_as;
832 		entry->eax = g_phys_as | (virt_as << 8);
833 		entry->edx = 0;
834 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
835 		break;
836 	}
837 	case 0x8000000A:
838 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
839 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
840 			break;
841 		}
842 		entry->eax = 1; /* SVM revision 1 */
843 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
844 				   ASID emulation to nested SVM */
845 		entry->ecx = 0; /* Reserved */
846 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
847 		break;
848 	case 0x80000019:
849 		entry->ecx = entry->edx = 0;
850 		break;
851 	case 0x8000001a:
852 	case 0x8000001e:
853 		break;
854 	/* Support memory encryption cpuid if host supports it */
855 	case 0x8000001F:
856 		if (!boot_cpu_has(X86_FEATURE_SEV))
857 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
858 		break;
859 	/*Add support for Centaur's CPUID instruction*/
860 	case 0xC0000000:
861 		/*Just support up to 0xC0000004 now*/
862 		entry->eax = min(entry->eax, 0xC0000004);
863 		break;
864 	case 0xC0000001:
865 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
866 		break;
867 	case 3: /* Processor serial number */
868 	case 5: /* MONITOR/MWAIT */
869 	case 0xC0000002:
870 	case 0xC0000003:
871 	case 0xC0000004:
872 	default:
873 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
874 		break;
875 	}
876 
877 	r = 0;
878 
879 out:
880 	put_cpu();
881 
882 	return r;
883 }
884 
885 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
886 			 unsigned int type)
887 {
888 	if (type == KVM_GET_EMULATED_CPUID)
889 		return __do_cpuid_func_emulated(array, func);
890 
891 	return __do_cpuid_func(array, func);
892 }
893 
894 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
895 
896 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
897 			  unsigned int type)
898 {
899 	u32 limit;
900 	int r;
901 
902 	if (func == CENTAUR_CPUID_SIGNATURE &&
903 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
904 		return 0;
905 
906 	r = do_cpuid_func(array, func, type);
907 	if (r)
908 		return r;
909 
910 	limit = array->entries[array->nent - 1].eax;
911 	for (func = func + 1; func <= limit; ++func) {
912 		r = do_cpuid_func(array, func, type);
913 		if (r)
914 			break;
915 	}
916 
917 	return r;
918 }
919 
920 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
921 				 __u32 num_entries, unsigned int ioctl_type)
922 {
923 	int i;
924 	__u32 pad[3];
925 
926 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
927 		return false;
928 
929 	/*
930 	 * We want to make sure that ->padding is being passed clean from
931 	 * userspace in case we want to use it for something in the future.
932 	 *
933 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
934 	 * have to give ourselves satisfied only with the emulated side. /me
935 	 * sheds a tear.
936 	 */
937 	for (i = 0; i < num_entries; i++) {
938 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
939 			return true;
940 
941 		if (pad[0] || pad[1] || pad[2])
942 			return true;
943 	}
944 	return false;
945 }
946 
947 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
948 			    struct kvm_cpuid_entry2 __user *entries,
949 			    unsigned int type)
950 {
951 	static const u32 funcs[] = {
952 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
953 	};
954 
955 	struct kvm_cpuid_array array = {
956 		.nent = 0,
957 	};
958 	int r, i;
959 
960 	if (cpuid->nent < 1)
961 		return -E2BIG;
962 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
963 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
964 
965 	if (sanity_check_entries(entries, cpuid->nent, type))
966 		return -EINVAL;
967 
968 	array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
969 					   cpuid->nent));
970 	if (!array.entries)
971 		return -ENOMEM;
972 
973 	array.maxnent = cpuid->nent;
974 
975 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
976 		r = get_cpuid_func(&array, funcs[i], type);
977 		if (r)
978 			goto out_free;
979 	}
980 	cpuid->nent = array.nent;
981 
982 	if (copy_to_user(entries, array.entries,
983 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
984 		r = -EFAULT;
985 
986 out_free:
987 	vfree(array.entries);
988 	return r;
989 }
990 
991 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
992 					      u32 function, u32 index)
993 {
994 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
995 				 function, index);
996 }
997 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
998 
999 /*
1000  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1001  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1002  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1003  * range.  Centaur/VIA follows Intel semantics.
1004  *
1005  * A leaf is considered out-of-range if its function is higher than the maximum
1006  * supported leaf of its associated class or if its associated class does not
1007  * exist.
1008  *
1009  * There are three primary classes to be considered, with their respective
1010  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1011  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1012  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1013  *
1014  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1015  *  - Hypervisor: 0x40000000 - 0x4fffffff
1016  *  - Extended:   0x80000000 - 0xbfffffff
1017  *  - Centaur:    0xc0000000 - 0xcfffffff
1018  *
1019  * The Hypervisor class is further subdivided into sub-classes that each act as
1020  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
1021  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1022  * CPUID sub-classes are:
1023  *
1024  *  - HyperV:     0x40000000 - 0x400000ff
1025  *  - KVM:        0x40000100 - 0x400001ff
1026  */
1027 static struct kvm_cpuid_entry2 *
1028 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1029 {
1030 	struct kvm_cpuid_entry2 *basic, *class;
1031 	u32 function = *fn_ptr;
1032 
1033 	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1034 	if (!basic)
1035 		return NULL;
1036 
1037 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1038 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1039 		return NULL;
1040 
1041 	if (function >= 0x40000000 && function <= 0x4fffffff)
1042 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1043 	else if (function >= 0xc0000000)
1044 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1045 	else
1046 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1047 
1048 	if (class && function <= class->eax)
1049 		return NULL;
1050 
1051 	/*
1052 	 * Leaf specific adjustments are also applied when redirecting to the
1053 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1054 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1055 	 * needs to be pulled from CPUID.0xb.1.
1056 	 */
1057 	*fn_ptr = basic->eax;
1058 
1059 	/*
1060 	 * The class does not exist or the requested function is out of range;
1061 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1062 	 * the original requested leaf is observed!
1063 	 */
1064 	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1065 }
1066 
1067 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1068 	       u32 *ecx, u32 *edx, bool exact_only)
1069 {
1070 	u32 orig_function = *eax, function = *eax, index = *ecx;
1071 	struct kvm_cpuid_entry2 *entry;
1072 	bool exact, used_max_basic = false;
1073 
1074 	entry = kvm_find_cpuid_entry(vcpu, function, index);
1075 	exact = !!entry;
1076 
1077 	if (!entry && !exact_only) {
1078 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1079 		used_max_basic = !!entry;
1080 	}
1081 
1082 	if (entry) {
1083 		*eax = entry->eax;
1084 		*ebx = entry->ebx;
1085 		*ecx = entry->ecx;
1086 		*edx = entry->edx;
1087 		if (function == 7 && index == 0) {
1088 			u64 data;
1089 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1090 			    (data & TSX_CTRL_CPUID_CLEAR))
1091 				*ebx &= ~(F(RTM) | F(HLE));
1092 		}
1093 	} else {
1094 		*eax = *ebx = *ecx = *edx = 0;
1095 		/*
1096 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1097 		 * and EDX is always the x2APIC ID, even for undefined
1098 		 * subleaves. Index 1 will exist iff the leaf is
1099 		 * implemented, so we pass through CL iff leaf 1
1100 		 * exists. EDX can be copied from any existing index.
1101 		 */
1102 		if (function == 0xb || function == 0x1f) {
1103 			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1104 			if (entry) {
1105 				*ecx = index & 0xff;
1106 				*edx = entry->edx;
1107 			}
1108 		}
1109 	}
1110 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1111 			used_max_basic);
1112 	return exact;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_cpuid);
1115 
1116 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1117 {
1118 	u32 eax, ebx, ecx, edx;
1119 
1120 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1121 		return 1;
1122 
1123 	eax = kvm_rax_read(vcpu);
1124 	ecx = kvm_rcx_read(vcpu);
1125 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1126 	kvm_rax_write(vcpu, eax);
1127 	kvm_rbx_write(vcpu, ebx);
1128 	kvm_rcx_write(vcpu, ecx);
1129 	kvm_rdx_write(vcpu, edx);
1130 	return kvm_skip_emulated_instruction(vcpu);
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1133