xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 
26 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
27 {
28 	int feature_bit = 0;
29 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
30 
31 	xstate_bv &= XSTATE_EXTEND_MASK;
32 	while (xstate_bv) {
33 		if (xstate_bv & 0x1) {
34 		        u32 eax, ebx, ecx, edx, offset;
35 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
36 			offset = compacted ? ret : ebx;
37 			ret = max(ret, offset + eax);
38 		}
39 
40 		xstate_bv >>= 1;
41 		feature_bit++;
42 	}
43 
44 	return ret;
45 }
46 
47 u64 kvm_supported_xcr0(void)
48 {
49 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
50 
51 	if (!kvm_x86_ops->mpx_supported())
52 		xcr0 &= ~(XSTATE_BNDREGS | XSTATE_BNDCSR);
53 
54 	return xcr0;
55 }
56 
57 #define F(x) bit(X86_FEATURE_##x)
58 
59 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
60 {
61 	struct kvm_cpuid_entry2 *best;
62 	struct kvm_lapic *apic = vcpu->arch.apic;
63 
64 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
65 	if (!best)
66 		return 0;
67 
68 	/* Update OSXSAVE bit */
69 	if (cpu_has_xsave && best->function == 0x1) {
70 		best->ecx &= ~F(OSXSAVE);
71 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
72 			best->ecx |= F(OSXSAVE);
73 	}
74 
75 	if (apic) {
76 		if (best->ecx & F(TSC_DEADLINE_TIMER))
77 			apic->lapic_timer.timer_mode_mask = 3 << 17;
78 		else
79 			apic->lapic_timer.timer_mode_mask = 1 << 17;
80 	}
81 
82 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
83 	if (!best) {
84 		vcpu->arch.guest_supported_xcr0 = 0;
85 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
86 	} else {
87 		vcpu->arch.guest_supported_xcr0 =
88 			(best->eax | ((u64)best->edx << 32)) &
89 			kvm_supported_xcr0();
90 		vcpu->arch.guest_xstate_size = best->ebx =
91 			xstate_required_size(vcpu->arch.xcr0, false);
92 	}
93 
94 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
95 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
96 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
97 
98 	/*
99 	 * The existing code assumes virtual address is 48-bit in the canonical
100 	 * address checks; exit if it is ever changed.
101 	 */
102 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
103 	if (best && ((best->eax & 0xff00) >> 8) != 48 &&
104 		((best->eax & 0xff00) >> 8) != 0)
105 		return -EINVAL;
106 
107 	/* Update physical-address width */
108 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
109 
110 	kvm_pmu_cpuid_update(vcpu);
111 	return 0;
112 }
113 
114 static int is_efer_nx(void)
115 {
116 	unsigned long long efer = 0;
117 
118 	rdmsrl_safe(MSR_EFER, &efer);
119 	return efer & EFER_NX;
120 }
121 
122 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
123 {
124 	int i;
125 	struct kvm_cpuid_entry2 *e, *entry;
126 
127 	entry = NULL;
128 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
129 		e = &vcpu->arch.cpuid_entries[i];
130 		if (e->function == 0x80000001) {
131 			entry = e;
132 			break;
133 		}
134 	}
135 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
136 		entry->edx &= ~F(NX);
137 		printk(KERN_INFO "kvm: guest NX capability removed\n");
138 	}
139 }
140 
141 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
142 {
143 	struct kvm_cpuid_entry2 *best;
144 
145 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
146 	if (!best || best->eax < 0x80000008)
147 		goto not_found;
148 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
149 	if (best)
150 		return best->eax & 0xff;
151 not_found:
152 	return 36;
153 }
154 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
155 
156 /* when an old userspace process fills a new kernel module */
157 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
158 			     struct kvm_cpuid *cpuid,
159 			     struct kvm_cpuid_entry __user *entries)
160 {
161 	int r, i;
162 	struct kvm_cpuid_entry *cpuid_entries;
163 
164 	r = -E2BIG;
165 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
166 		goto out;
167 	r = -ENOMEM;
168 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
169 	if (!cpuid_entries)
170 		goto out;
171 	r = -EFAULT;
172 	if (copy_from_user(cpuid_entries, entries,
173 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
174 		goto out_free;
175 	for (i = 0; i < cpuid->nent; i++) {
176 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
177 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
178 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
179 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
180 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
181 		vcpu->arch.cpuid_entries[i].index = 0;
182 		vcpu->arch.cpuid_entries[i].flags = 0;
183 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
184 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
185 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
186 	}
187 	vcpu->arch.cpuid_nent = cpuid->nent;
188 	cpuid_fix_nx_cap(vcpu);
189 	kvm_apic_set_version(vcpu);
190 	kvm_x86_ops->cpuid_update(vcpu);
191 	r = kvm_update_cpuid(vcpu);
192 
193 out_free:
194 	vfree(cpuid_entries);
195 out:
196 	return r;
197 }
198 
199 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
200 			      struct kvm_cpuid2 *cpuid,
201 			      struct kvm_cpuid_entry2 __user *entries)
202 {
203 	int r;
204 
205 	r = -E2BIG;
206 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207 		goto out;
208 	r = -EFAULT;
209 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
210 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
211 		goto out;
212 	vcpu->arch.cpuid_nent = cpuid->nent;
213 	kvm_apic_set_version(vcpu);
214 	kvm_x86_ops->cpuid_update(vcpu);
215 	r = kvm_update_cpuid(vcpu);
216 out:
217 	return r;
218 }
219 
220 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
221 			      struct kvm_cpuid2 *cpuid,
222 			      struct kvm_cpuid_entry2 __user *entries)
223 {
224 	int r;
225 
226 	r = -E2BIG;
227 	if (cpuid->nent < vcpu->arch.cpuid_nent)
228 		goto out;
229 	r = -EFAULT;
230 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
231 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
232 		goto out;
233 	return 0;
234 
235 out:
236 	cpuid->nent = vcpu->arch.cpuid_nent;
237 	return r;
238 }
239 
240 static void cpuid_mask(u32 *word, int wordnum)
241 {
242 	*word &= boot_cpu_data.x86_capability[wordnum];
243 }
244 
245 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
246 			   u32 index)
247 {
248 	entry->function = function;
249 	entry->index = index;
250 	cpuid_count(entry->function, entry->index,
251 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
252 	entry->flags = 0;
253 }
254 
255 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
256 				   u32 func, u32 index, int *nent, int maxnent)
257 {
258 	switch (func) {
259 	case 0:
260 		entry->eax = 1;		/* only one leaf currently */
261 		++*nent;
262 		break;
263 	case 1:
264 		entry->ecx = F(MOVBE);
265 		++*nent;
266 		break;
267 	default:
268 		break;
269 	}
270 
271 	entry->function = func;
272 	entry->index = index;
273 
274 	return 0;
275 }
276 
277 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
278 				 u32 index, int *nent, int maxnent)
279 {
280 	int r;
281 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
282 #ifdef CONFIG_X86_64
283 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
284 				? F(GBPAGES) : 0;
285 	unsigned f_lm = F(LM);
286 #else
287 	unsigned f_gbpages = 0;
288 	unsigned f_lm = 0;
289 #endif
290 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
291 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
292 	unsigned f_mpx = kvm_x86_ops->mpx_supported() ? F(MPX) : 0;
293 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
294 
295 	/* cpuid 1.edx */
296 	const u32 kvm_supported_word0_x86_features =
297 		F(FPU) | F(VME) | F(DE) | F(PSE) |
298 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
299 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
300 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
301 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
302 		0 /* Reserved, DS, ACPI */ | F(MMX) |
303 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
304 		0 /* HTT, TM, Reserved, PBE */;
305 	/* cpuid 0x80000001.edx */
306 	const u32 kvm_supported_word1_x86_features =
307 		F(FPU) | F(VME) | F(DE) | F(PSE) |
308 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
309 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
310 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
311 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
312 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
313 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
314 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
315 	/* cpuid 1.ecx */
316 	const u32 kvm_supported_word4_x86_features =
317 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
318 		 * but *not* advertised to guests via CPUID ! */
319 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
320 		0 /* DS-CPL, VMX, SMX, EST */ |
321 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
322 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
323 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
324 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
325 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
326 		F(F16C) | F(RDRAND);
327 	/* cpuid 0x80000001.ecx */
328 	const u32 kvm_supported_word6_x86_features =
329 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
330 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
331 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
332 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
333 
334 	/* cpuid 0xC0000001.edx */
335 	const u32 kvm_supported_word5_x86_features =
336 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
337 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
338 		F(PMM) | F(PMM_EN);
339 
340 	/* cpuid 7.0.ebx */
341 	const u32 kvm_supported_word9_x86_features =
342 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
343 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
344 		F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
345 		F(AVX512CD);
346 
347 	/* cpuid 0xD.1.eax */
348 	const u32 kvm_supported_word10_x86_features =
349 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
350 
351 	/* all calls to cpuid_count() should be made on the same cpu */
352 	get_cpu();
353 
354 	r = -E2BIG;
355 
356 	if (*nent >= maxnent)
357 		goto out;
358 
359 	do_cpuid_1_ent(entry, function, index);
360 	++*nent;
361 
362 	switch (function) {
363 	case 0:
364 		entry->eax = min(entry->eax, (u32)0xd);
365 		break;
366 	case 1:
367 		entry->edx &= kvm_supported_word0_x86_features;
368 		cpuid_mask(&entry->edx, 0);
369 		entry->ecx &= kvm_supported_word4_x86_features;
370 		cpuid_mask(&entry->ecx, 4);
371 		/* we support x2apic emulation even if host does not support
372 		 * it since we emulate x2apic in software */
373 		entry->ecx |= F(X2APIC);
374 		break;
375 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
376 	 * may return different values. This forces us to get_cpu() before
377 	 * issuing the first command, and also to emulate this annoying behavior
378 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
379 	case 2: {
380 		int t, times = entry->eax & 0xff;
381 
382 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
383 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
384 		for (t = 1; t < times; ++t) {
385 			if (*nent >= maxnent)
386 				goto out;
387 
388 			do_cpuid_1_ent(&entry[t], function, 0);
389 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
390 			++*nent;
391 		}
392 		break;
393 	}
394 	/* function 4 has additional index. */
395 	case 4: {
396 		int i, cache_type;
397 
398 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
399 		/* read more entries until cache_type is zero */
400 		for (i = 1; ; ++i) {
401 			if (*nent >= maxnent)
402 				goto out;
403 
404 			cache_type = entry[i - 1].eax & 0x1f;
405 			if (!cache_type)
406 				break;
407 			do_cpuid_1_ent(&entry[i], function, i);
408 			entry[i].flags |=
409 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
410 			++*nent;
411 		}
412 		break;
413 	}
414 	case 7: {
415 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
416 		/* Mask ebx against host capability word 9 */
417 		if (index == 0) {
418 			entry->ebx &= kvm_supported_word9_x86_features;
419 			cpuid_mask(&entry->ebx, 9);
420 			// TSC_ADJUST is emulated
421 			entry->ebx |= F(TSC_ADJUST);
422 		} else
423 			entry->ebx = 0;
424 		entry->eax = 0;
425 		entry->ecx = 0;
426 		entry->edx = 0;
427 		break;
428 	}
429 	case 9:
430 		break;
431 	case 0xa: { /* Architectural Performance Monitoring */
432 		struct x86_pmu_capability cap;
433 		union cpuid10_eax eax;
434 		union cpuid10_edx edx;
435 
436 		perf_get_x86_pmu_capability(&cap);
437 
438 		/*
439 		 * Only support guest architectural pmu on a host
440 		 * with architectural pmu.
441 		 */
442 		if (!cap.version)
443 			memset(&cap, 0, sizeof(cap));
444 
445 		eax.split.version_id = min(cap.version, 2);
446 		eax.split.num_counters = cap.num_counters_gp;
447 		eax.split.bit_width = cap.bit_width_gp;
448 		eax.split.mask_length = cap.events_mask_len;
449 
450 		edx.split.num_counters_fixed = cap.num_counters_fixed;
451 		edx.split.bit_width_fixed = cap.bit_width_fixed;
452 		edx.split.reserved = 0;
453 
454 		entry->eax = eax.full;
455 		entry->ebx = cap.events_mask;
456 		entry->ecx = 0;
457 		entry->edx = edx.full;
458 		break;
459 	}
460 	/* function 0xb has additional index. */
461 	case 0xb: {
462 		int i, level_type;
463 
464 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
465 		/* read more entries until level_type is zero */
466 		for (i = 1; ; ++i) {
467 			if (*nent >= maxnent)
468 				goto out;
469 
470 			level_type = entry[i - 1].ecx & 0xff00;
471 			if (!level_type)
472 				break;
473 			do_cpuid_1_ent(&entry[i], function, i);
474 			entry[i].flags |=
475 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
476 			++*nent;
477 		}
478 		break;
479 	}
480 	case 0xd: {
481 		int idx, i;
482 		u64 supported = kvm_supported_xcr0();
483 
484 		entry->eax &= supported;
485 		entry->ebx = xstate_required_size(supported, false);
486 		entry->ecx = entry->ebx;
487 		entry->edx &= supported >> 32;
488 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
489 		if (!supported)
490 			break;
491 
492 		for (idx = 1, i = 1; idx < 64; ++idx) {
493 			u64 mask = ((u64)1 << idx);
494 			if (*nent >= maxnent)
495 				goto out;
496 
497 			do_cpuid_1_ent(&entry[i], function, idx);
498 			if (idx == 1) {
499 				entry[i].eax &= kvm_supported_word10_x86_features;
500 				entry[i].ebx = 0;
501 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
502 					entry[i].ebx =
503 						xstate_required_size(supported,
504 								     true);
505 			} else {
506 				if (entry[i].eax == 0 || !(supported & mask))
507 					continue;
508 				if (WARN_ON_ONCE(entry[i].ecx & 1))
509 					continue;
510 			}
511 			entry[i].ecx = 0;
512 			entry[i].edx = 0;
513 			entry[i].flags |=
514 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
515 			++*nent;
516 			++i;
517 		}
518 		break;
519 	}
520 	case KVM_CPUID_SIGNATURE: {
521 		static const char signature[12] = "KVMKVMKVM\0\0";
522 		const u32 *sigptr = (const u32 *)signature;
523 		entry->eax = KVM_CPUID_FEATURES;
524 		entry->ebx = sigptr[0];
525 		entry->ecx = sigptr[1];
526 		entry->edx = sigptr[2];
527 		break;
528 	}
529 	case KVM_CPUID_FEATURES:
530 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
531 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
532 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
533 			     (1 << KVM_FEATURE_ASYNC_PF) |
534 			     (1 << KVM_FEATURE_PV_EOI) |
535 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
536 			     (1 << KVM_FEATURE_PV_UNHALT);
537 
538 		if (sched_info_on())
539 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
540 
541 		entry->ebx = 0;
542 		entry->ecx = 0;
543 		entry->edx = 0;
544 		break;
545 	case 0x80000000:
546 		entry->eax = min(entry->eax, 0x8000001a);
547 		break;
548 	case 0x80000001:
549 		entry->edx &= kvm_supported_word1_x86_features;
550 		cpuid_mask(&entry->edx, 1);
551 		entry->ecx &= kvm_supported_word6_x86_features;
552 		cpuid_mask(&entry->ecx, 6);
553 		break;
554 	case 0x80000007: /* Advanced power management */
555 		/* invariant TSC is CPUID.80000007H:EDX[8] */
556 		entry->edx &= (1 << 8);
557 		/* mask against host */
558 		entry->edx &= boot_cpu_data.x86_power;
559 		entry->eax = entry->ebx = entry->ecx = 0;
560 		break;
561 	case 0x80000008: {
562 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
563 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
564 		unsigned phys_as = entry->eax & 0xff;
565 
566 		if (!g_phys_as)
567 			g_phys_as = phys_as;
568 		entry->eax = g_phys_as | (virt_as << 8);
569 		entry->ebx = entry->edx = 0;
570 		break;
571 	}
572 	case 0x80000019:
573 		entry->ecx = entry->edx = 0;
574 		break;
575 	case 0x8000001a:
576 		break;
577 	case 0x8000001d:
578 		break;
579 	/*Add support for Centaur's CPUID instruction*/
580 	case 0xC0000000:
581 		/*Just support up to 0xC0000004 now*/
582 		entry->eax = min(entry->eax, 0xC0000004);
583 		break;
584 	case 0xC0000001:
585 		entry->edx &= kvm_supported_word5_x86_features;
586 		cpuid_mask(&entry->edx, 5);
587 		break;
588 	case 3: /* Processor serial number */
589 	case 5: /* MONITOR/MWAIT */
590 	case 6: /* Thermal management */
591 	case 0xC0000002:
592 	case 0xC0000003:
593 	case 0xC0000004:
594 	default:
595 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
596 		break;
597 	}
598 
599 	kvm_x86_ops->set_supported_cpuid(function, entry);
600 
601 	r = 0;
602 
603 out:
604 	put_cpu();
605 
606 	return r;
607 }
608 
609 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
610 			u32 idx, int *nent, int maxnent, unsigned int type)
611 {
612 	if (type == KVM_GET_EMULATED_CPUID)
613 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
614 
615 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
616 }
617 
618 #undef F
619 
620 struct kvm_cpuid_param {
621 	u32 func;
622 	u32 idx;
623 	bool has_leaf_count;
624 	bool (*qualifier)(const struct kvm_cpuid_param *param);
625 };
626 
627 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
628 {
629 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
630 }
631 
632 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
633 				 __u32 num_entries, unsigned int ioctl_type)
634 {
635 	int i;
636 	__u32 pad[3];
637 
638 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
639 		return false;
640 
641 	/*
642 	 * We want to make sure that ->padding is being passed clean from
643 	 * userspace in case we want to use it for something in the future.
644 	 *
645 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
646 	 * have to give ourselves satisfied only with the emulated side. /me
647 	 * sheds a tear.
648 	 */
649 	for (i = 0; i < num_entries; i++) {
650 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
651 			return true;
652 
653 		if (pad[0] || pad[1] || pad[2])
654 			return true;
655 	}
656 	return false;
657 }
658 
659 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
660 			    struct kvm_cpuid_entry2 __user *entries,
661 			    unsigned int type)
662 {
663 	struct kvm_cpuid_entry2 *cpuid_entries;
664 	int limit, nent = 0, r = -E2BIG, i;
665 	u32 func;
666 	static const struct kvm_cpuid_param param[] = {
667 		{ .func = 0, .has_leaf_count = true },
668 		{ .func = 0x80000000, .has_leaf_count = true },
669 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
670 		{ .func = KVM_CPUID_SIGNATURE },
671 		{ .func = KVM_CPUID_FEATURES },
672 	};
673 
674 	if (cpuid->nent < 1)
675 		goto out;
676 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
677 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
678 
679 	if (sanity_check_entries(entries, cpuid->nent, type))
680 		return -EINVAL;
681 
682 	r = -ENOMEM;
683 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
684 	if (!cpuid_entries)
685 		goto out;
686 
687 	r = 0;
688 	for (i = 0; i < ARRAY_SIZE(param); i++) {
689 		const struct kvm_cpuid_param *ent = &param[i];
690 
691 		if (ent->qualifier && !ent->qualifier(ent))
692 			continue;
693 
694 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
695 				&nent, cpuid->nent, type);
696 
697 		if (r)
698 			goto out_free;
699 
700 		if (!ent->has_leaf_count)
701 			continue;
702 
703 		limit = cpuid_entries[nent - 1].eax;
704 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
705 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
706 				     &nent, cpuid->nent, type);
707 
708 		if (r)
709 			goto out_free;
710 	}
711 
712 	r = -EFAULT;
713 	if (copy_to_user(entries, cpuid_entries,
714 			 nent * sizeof(struct kvm_cpuid_entry2)))
715 		goto out_free;
716 	cpuid->nent = nent;
717 	r = 0;
718 
719 out_free:
720 	vfree(cpuid_entries);
721 out:
722 	return r;
723 }
724 
725 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
726 {
727 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
728 	int j, nent = vcpu->arch.cpuid_nent;
729 
730 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
731 	/* when no next entry is found, the current entry[i] is reselected */
732 	for (j = i + 1; ; j = (j + 1) % nent) {
733 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
734 		if (ej->function == e->function) {
735 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
736 			return j;
737 		}
738 	}
739 	return 0; /* silence gcc, even though control never reaches here */
740 }
741 
742 /* find an entry with matching function, matching index (if needed), and that
743  * should be read next (if it's stateful) */
744 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
745 	u32 function, u32 index)
746 {
747 	if (e->function != function)
748 		return 0;
749 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
750 		return 0;
751 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
752 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
753 		return 0;
754 	return 1;
755 }
756 
757 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
758 					      u32 function, u32 index)
759 {
760 	int i;
761 	struct kvm_cpuid_entry2 *best = NULL;
762 
763 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
764 		struct kvm_cpuid_entry2 *e;
765 
766 		e = &vcpu->arch.cpuid_entries[i];
767 		if (is_matching_cpuid_entry(e, function, index)) {
768 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
769 				move_to_next_stateful_cpuid_entry(vcpu, i);
770 			best = e;
771 			break;
772 		}
773 	}
774 	return best;
775 }
776 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
777 
778 /*
779  * If no match is found, check whether we exceed the vCPU's limit
780  * and return the content of the highest valid _standard_ leaf instead.
781  * This is to satisfy the CPUID specification.
782  */
783 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
784                                                   u32 function, u32 index)
785 {
786 	struct kvm_cpuid_entry2 *maxlevel;
787 
788 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
789 	if (!maxlevel || maxlevel->eax >= function)
790 		return NULL;
791 	if (function & 0x80000000) {
792 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
793 		if (!maxlevel)
794 			return NULL;
795 	}
796 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
797 }
798 
799 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
800 {
801 	u32 function = *eax, index = *ecx;
802 	struct kvm_cpuid_entry2 *best;
803 
804 	best = kvm_find_cpuid_entry(vcpu, function, index);
805 
806 	if (!best)
807 		best = check_cpuid_limit(vcpu, function, index);
808 
809 	/*
810 	 * Perfmon not yet supported for L2 guest.
811 	 */
812 	if (is_guest_mode(vcpu) && function == 0xa)
813 		best = NULL;
814 
815 	if (best) {
816 		*eax = best->eax;
817 		*ebx = best->ebx;
818 		*ecx = best->ecx;
819 		*edx = best->edx;
820 	} else
821 		*eax = *ebx = *ecx = *edx = 0;
822 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
823 }
824 EXPORT_SYMBOL_GPL(kvm_cpuid);
825 
826 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
827 {
828 	u32 function, eax, ebx, ecx, edx;
829 
830 	function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
831 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
832 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
833 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
834 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
835 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
836 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
837 	kvm_x86_ops->skip_emulated_instruction(vcpu);
838 }
839 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
840