xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
20 
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29 
30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31 {
32 	int feature_bit = 0;
33 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34 
35 	xstate_bv &= XFEATURE_MASK_EXTEND;
36 	while (xstate_bv) {
37 		if (xstate_bv & 0x1) {
38 		        u32 eax, ebx, ecx, edx, offset;
39 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40 			offset = compacted ? ret : ebx;
41 			ret = max(ret, offset + eax);
42 		}
43 
44 		xstate_bv >>= 1;
45 		feature_bit++;
46 	}
47 
48 	return ret;
49 }
50 
51 bool kvm_mpx_supported(void)
52 {
53 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54 		 && kvm_x86_ops->mpx_supported());
55 }
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57 
58 u64 kvm_supported_xcr0(void)
59 {
60 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61 
62 	if (!kvm_mpx_supported())
63 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64 
65 	return xcr0;
66 }
67 
68 #define F(x) bit(X86_FEATURE_##x)
69 
70 /* For scattered features from cpufeatures.h; we currently expose none */
71 #define KF(x) bit(KVM_CPUID_BIT_##x)
72 
73 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
74 {
75 	struct kvm_cpuid_entry2 *best;
76 	struct kvm_lapic *apic = vcpu->arch.apic;
77 
78 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
79 	if (!best)
80 		return 0;
81 
82 	/* Update OSXSAVE bit */
83 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
84 		best->ecx &= ~F(OSXSAVE);
85 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
86 			best->ecx |= F(OSXSAVE);
87 	}
88 
89 	best->edx &= ~F(APIC);
90 	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91 		best->edx |= F(APIC);
92 
93 	if (apic) {
94 		if (best->ecx & F(TSC_DEADLINE_TIMER))
95 			apic->lapic_timer.timer_mode_mask = 3 << 17;
96 		else
97 			apic->lapic_timer.timer_mode_mask = 1 << 17;
98 	}
99 
100 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
101 	if (best) {
102 		/* Update OSPKE bit */
103 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104 			best->ecx &= ~F(OSPKE);
105 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106 				best->ecx |= F(OSPKE);
107 		}
108 	}
109 
110 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111 	if (!best) {
112 		vcpu->arch.guest_supported_xcr0 = 0;
113 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114 	} else {
115 		vcpu->arch.guest_supported_xcr0 =
116 			(best->eax | ((u64)best->edx << 32)) &
117 			kvm_supported_xcr0();
118 		vcpu->arch.guest_xstate_size = best->ebx =
119 			xstate_required_size(vcpu->arch.xcr0, false);
120 	}
121 
122 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125 
126 	/*
127 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
128 	 * canonical address checks; exit if it is ever changed.
129 	 */
130 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131 	if (best) {
132 		int vaddr_bits = (best->eax & 0xff00) >> 8;
133 
134 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135 			return -EINVAL;
136 	}
137 
138 	/* Update physical-address width */
139 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
140 	kvm_mmu_reset_context(vcpu);
141 
142 	kvm_pmu_refresh(vcpu);
143 	return 0;
144 }
145 
146 static int is_efer_nx(void)
147 {
148 	unsigned long long efer = 0;
149 
150 	rdmsrl_safe(MSR_EFER, &efer);
151 	return efer & EFER_NX;
152 }
153 
154 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
155 {
156 	int i;
157 	struct kvm_cpuid_entry2 *e, *entry;
158 
159 	entry = NULL;
160 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
161 		e = &vcpu->arch.cpuid_entries[i];
162 		if (e->function == 0x80000001) {
163 			entry = e;
164 			break;
165 		}
166 	}
167 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
168 		entry->edx &= ~F(NX);
169 		printk(KERN_INFO "kvm: guest NX capability removed\n");
170 	}
171 }
172 
173 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
174 {
175 	struct kvm_cpuid_entry2 *best;
176 
177 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
178 	if (!best || best->eax < 0x80000008)
179 		goto not_found;
180 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
181 	if (best)
182 		return best->eax & 0xff;
183 not_found:
184 	return 36;
185 }
186 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
187 
188 /* when an old userspace process fills a new kernel module */
189 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
190 			     struct kvm_cpuid *cpuid,
191 			     struct kvm_cpuid_entry __user *entries)
192 {
193 	int r, i;
194 	struct kvm_cpuid_entry *cpuid_entries = NULL;
195 
196 	r = -E2BIG;
197 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
198 		goto out;
199 	r = -ENOMEM;
200 	if (cpuid->nent) {
201 		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
202 					cpuid->nent);
203 		if (!cpuid_entries)
204 			goto out;
205 		r = -EFAULT;
206 		if (copy_from_user(cpuid_entries, entries,
207 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
208 			goto out;
209 	}
210 	for (i = 0; i < cpuid->nent; i++) {
211 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
212 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
213 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
214 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
215 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
216 		vcpu->arch.cpuid_entries[i].index = 0;
217 		vcpu->arch.cpuid_entries[i].flags = 0;
218 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
219 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
220 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
221 	}
222 	vcpu->arch.cpuid_nent = cpuid->nent;
223 	cpuid_fix_nx_cap(vcpu);
224 	kvm_apic_set_version(vcpu);
225 	kvm_x86_ops->cpuid_update(vcpu);
226 	r = kvm_update_cpuid(vcpu);
227 
228 out:
229 	vfree(cpuid_entries);
230 	return r;
231 }
232 
233 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
234 			      struct kvm_cpuid2 *cpuid,
235 			      struct kvm_cpuid_entry2 __user *entries)
236 {
237 	int r;
238 
239 	r = -E2BIG;
240 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
241 		goto out;
242 	r = -EFAULT;
243 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
244 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
245 		goto out;
246 	vcpu->arch.cpuid_nent = cpuid->nent;
247 	kvm_apic_set_version(vcpu);
248 	kvm_x86_ops->cpuid_update(vcpu);
249 	r = kvm_update_cpuid(vcpu);
250 out:
251 	return r;
252 }
253 
254 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
255 			      struct kvm_cpuid2 *cpuid,
256 			      struct kvm_cpuid_entry2 __user *entries)
257 {
258 	int r;
259 
260 	r = -E2BIG;
261 	if (cpuid->nent < vcpu->arch.cpuid_nent)
262 		goto out;
263 	r = -EFAULT;
264 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
265 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
266 		goto out;
267 	return 0;
268 
269 out:
270 	cpuid->nent = vcpu->arch.cpuid_nent;
271 	return r;
272 }
273 
274 static void cpuid_mask(u32 *word, int wordnum)
275 {
276 	*word &= boot_cpu_data.x86_capability[wordnum];
277 }
278 
279 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
280 			   u32 index)
281 {
282 	entry->function = function;
283 	entry->index = index;
284 	cpuid_count(entry->function, entry->index,
285 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
286 	entry->flags = 0;
287 }
288 
289 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
290 				   u32 func, u32 index, int *nent, int maxnent)
291 {
292 	switch (func) {
293 	case 0:
294 		entry->eax = 7;
295 		++*nent;
296 		break;
297 	case 1:
298 		entry->ecx = F(MOVBE);
299 		++*nent;
300 		break;
301 	case 7:
302 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
303 		if (index == 0)
304 			entry->ecx = F(RDPID);
305 		++*nent;
306 	default:
307 		break;
308 	}
309 
310 	entry->function = func;
311 	entry->index = index;
312 
313 	return 0;
314 }
315 
316 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
317 				 u32 index, int *nent, int maxnent)
318 {
319 	int r;
320 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
321 #ifdef CONFIG_X86_64
322 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
323 				? F(GBPAGES) : 0;
324 	unsigned f_lm = F(LM);
325 #else
326 	unsigned f_gbpages = 0;
327 	unsigned f_lm = 0;
328 #endif
329 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
330 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
331 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
332 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
333 	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
334 
335 	/* cpuid 1.edx */
336 	const u32 kvm_cpuid_1_edx_x86_features =
337 		F(FPU) | F(VME) | F(DE) | F(PSE) |
338 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
339 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
340 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
341 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
342 		0 /* Reserved, DS, ACPI */ | F(MMX) |
343 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
344 		0 /* HTT, TM, Reserved, PBE */;
345 	/* cpuid 0x80000001.edx */
346 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
347 		F(FPU) | F(VME) | F(DE) | F(PSE) |
348 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
349 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
350 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
351 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
352 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
353 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
354 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
355 	/* cpuid 1.ecx */
356 	const u32 kvm_cpuid_1_ecx_x86_features =
357 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
358 		 * but *not* advertised to guests via CPUID ! */
359 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
360 		0 /* DS-CPL, VMX, SMX, EST */ |
361 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
362 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
363 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
364 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
365 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
366 		F(F16C) | F(RDRAND);
367 	/* cpuid 0x80000001.ecx */
368 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
369 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
370 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
371 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
372 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
373 		F(TOPOEXT);
374 
375 	/* cpuid 0x80000008.ebx */
376 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
377 		F(IBPB) | F(IBRS);
378 
379 	/* cpuid 0xC0000001.edx */
380 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
381 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
382 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
383 		F(PMM) | F(PMM_EN);
384 
385 	/* cpuid 7.0.ebx */
386 	const u32 kvm_cpuid_7_0_ebx_x86_features =
387 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
388 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
389 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
390 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
391 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
392 
393 	/* cpuid 0xD.1.eax */
394 	const u32 kvm_cpuid_D_1_eax_x86_features =
395 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
396 
397 	/* cpuid 7.0.ecx*/
398 	const u32 kvm_cpuid_7_0_ecx_x86_features =
399 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
400 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
401 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG);
402 
403 	/* cpuid 7.0.edx*/
404 	const u32 kvm_cpuid_7_0_edx_x86_features =
405 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
406 		F(ARCH_CAPABILITIES);
407 
408 	/* all calls to cpuid_count() should be made on the same cpu */
409 	get_cpu();
410 
411 	r = -E2BIG;
412 
413 	if (*nent >= maxnent)
414 		goto out;
415 
416 	do_cpuid_1_ent(entry, function, index);
417 	++*nent;
418 
419 	switch (function) {
420 	case 0:
421 		entry->eax = min(entry->eax, (u32)0xd);
422 		break;
423 	case 1:
424 		entry->edx &= kvm_cpuid_1_edx_x86_features;
425 		cpuid_mask(&entry->edx, CPUID_1_EDX);
426 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
427 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
428 		/* we support x2apic emulation even if host does not support
429 		 * it since we emulate x2apic in software */
430 		entry->ecx |= F(X2APIC);
431 		break;
432 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
433 	 * may return different values. This forces us to get_cpu() before
434 	 * issuing the first command, and also to emulate this annoying behavior
435 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
436 	case 2: {
437 		int t, times = entry->eax & 0xff;
438 
439 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
440 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
441 		for (t = 1; t < times; ++t) {
442 			if (*nent >= maxnent)
443 				goto out;
444 
445 			do_cpuid_1_ent(&entry[t], function, 0);
446 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
447 			++*nent;
448 		}
449 		break;
450 	}
451 	/* function 4 has additional index. */
452 	case 4: {
453 		int i, cache_type;
454 
455 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
456 		/* read more entries until cache_type is zero */
457 		for (i = 1; ; ++i) {
458 			if (*nent >= maxnent)
459 				goto out;
460 
461 			cache_type = entry[i - 1].eax & 0x1f;
462 			if (!cache_type)
463 				break;
464 			do_cpuid_1_ent(&entry[i], function, i);
465 			entry[i].flags |=
466 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
467 			++*nent;
468 		}
469 		break;
470 	}
471 	case 6: /* Thermal management */
472 		entry->eax = 0x4; /* allow ARAT */
473 		entry->ebx = 0;
474 		entry->ecx = 0;
475 		entry->edx = 0;
476 		break;
477 	case 7: {
478 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
479 		/* Mask ebx against host capability word 9 */
480 		if (index == 0) {
481 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
482 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
483 			// TSC_ADJUST is emulated
484 			entry->ebx |= F(TSC_ADJUST);
485 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
486 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
487 			entry->ecx |= f_umip;
488 			/* PKU is not yet implemented for shadow paging. */
489 			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
490 				entry->ecx &= ~F(PKU);
491 			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
492 			cpuid_mask(&entry->edx, CPUID_7_EDX);
493 		} else {
494 			entry->ebx = 0;
495 			entry->ecx = 0;
496 			entry->edx = 0;
497 		}
498 		entry->eax = 0;
499 		break;
500 	}
501 	case 9:
502 		break;
503 	case 0xa: { /* Architectural Performance Monitoring */
504 		struct x86_pmu_capability cap;
505 		union cpuid10_eax eax;
506 		union cpuid10_edx edx;
507 
508 		perf_get_x86_pmu_capability(&cap);
509 
510 		/*
511 		 * Only support guest architectural pmu on a host
512 		 * with architectural pmu.
513 		 */
514 		if (!cap.version)
515 			memset(&cap, 0, sizeof(cap));
516 
517 		eax.split.version_id = min(cap.version, 2);
518 		eax.split.num_counters = cap.num_counters_gp;
519 		eax.split.bit_width = cap.bit_width_gp;
520 		eax.split.mask_length = cap.events_mask_len;
521 
522 		edx.split.num_counters_fixed = cap.num_counters_fixed;
523 		edx.split.bit_width_fixed = cap.bit_width_fixed;
524 		edx.split.reserved = 0;
525 
526 		entry->eax = eax.full;
527 		entry->ebx = cap.events_mask;
528 		entry->ecx = 0;
529 		entry->edx = edx.full;
530 		break;
531 	}
532 	/* function 0xb has additional index. */
533 	case 0xb: {
534 		int i, level_type;
535 
536 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
537 		/* read more entries until level_type is zero */
538 		for (i = 1; ; ++i) {
539 			if (*nent >= maxnent)
540 				goto out;
541 
542 			level_type = entry[i - 1].ecx & 0xff00;
543 			if (!level_type)
544 				break;
545 			do_cpuid_1_ent(&entry[i], function, i);
546 			entry[i].flags |=
547 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
548 			++*nent;
549 		}
550 		break;
551 	}
552 	case 0xd: {
553 		int idx, i;
554 		u64 supported = kvm_supported_xcr0();
555 
556 		entry->eax &= supported;
557 		entry->ebx = xstate_required_size(supported, false);
558 		entry->ecx = entry->ebx;
559 		entry->edx &= supported >> 32;
560 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
561 		if (!supported)
562 			break;
563 
564 		for (idx = 1, i = 1; idx < 64; ++idx) {
565 			u64 mask = ((u64)1 << idx);
566 			if (*nent >= maxnent)
567 				goto out;
568 
569 			do_cpuid_1_ent(&entry[i], function, idx);
570 			if (idx == 1) {
571 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
572 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
573 				entry[i].ebx = 0;
574 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
575 					entry[i].ebx =
576 						xstate_required_size(supported,
577 								     true);
578 			} else {
579 				if (entry[i].eax == 0 || !(supported & mask))
580 					continue;
581 				if (WARN_ON_ONCE(entry[i].ecx & 1))
582 					continue;
583 			}
584 			entry[i].ecx = 0;
585 			entry[i].edx = 0;
586 			entry[i].flags |=
587 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
588 			++*nent;
589 			++i;
590 		}
591 		break;
592 	}
593 	case KVM_CPUID_SIGNATURE: {
594 		static const char signature[12] = "KVMKVMKVM\0\0";
595 		const u32 *sigptr = (const u32 *)signature;
596 		entry->eax = KVM_CPUID_FEATURES;
597 		entry->ebx = sigptr[0];
598 		entry->ecx = sigptr[1];
599 		entry->edx = sigptr[2];
600 		break;
601 	}
602 	case KVM_CPUID_FEATURES:
603 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
604 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
605 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
606 			     (1 << KVM_FEATURE_ASYNC_PF) |
607 			     (1 << KVM_FEATURE_PV_EOI) |
608 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
609 			     (1 << KVM_FEATURE_PV_UNHALT) |
610 			     (1 << KVM_FEATURE_PV_TLB_FLUSH);
611 
612 		if (sched_info_on())
613 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
614 
615 		entry->ebx = 0;
616 		entry->ecx = 0;
617 		entry->edx = 0;
618 		break;
619 	case 0x80000000:
620 		entry->eax = min(entry->eax, 0x8000001f);
621 		break;
622 	case 0x80000001:
623 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
624 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
625 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
626 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
627 		break;
628 	case 0x80000007: /* Advanced power management */
629 		/* invariant TSC is CPUID.80000007H:EDX[8] */
630 		entry->edx &= (1 << 8);
631 		/* mask against host */
632 		entry->edx &= boot_cpu_data.x86_power;
633 		entry->eax = entry->ebx = entry->ecx = 0;
634 		break;
635 	case 0x80000008: {
636 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
637 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
638 		unsigned phys_as = entry->eax & 0xff;
639 
640 		if (!g_phys_as)
641 			g_phys_as = phys_as;
642 		entry->eax = g_phys_as | (virt_as << 8);
643 		entry->edx = 0;
644 		/* IBRS and IBPB aren't necessarily present in hardware cpuid */
645 		if (boot_cpu_has(X86_FEATURE_IBPB))
646 			entry->ebx |= F(IBPB);
647 		if (boot_cpu_has(X86_FEATURE_IBRS))
648 			entry->ebx |= F(IBRS);
649 		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
650 		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
651 		break;
652 	}
653 	case 0x80000019:
654 		entry->ecx = entry->edx = 0;
655 		break;
656 	case 0x8000001a:
657 		break;
658 	case 0x8000001d:
659 		break;
660 	/*Add support for Centaur's CPUID instruction*/
661 	case 0xC0000000:
662 		/*Just support up to 0xC0000004 now*/
663 		entry->eax = min(entry->eax, 0xC0000004);
664 		break;
665 	case 0xC0000001:
666 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
667 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
668 		break;
669 	case 3: /* Processor serial number */
670 	case 5: /* MONITOR/MWAIT */
671 	case 0xC0000002:
672 	case 0xC0000003:
673 	case 0xC0000004:
674 	default:
675 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
676 		break;
677 	}
678 
679 	kvm_x86_ops->set_supported_cpuid(function, entry);
680 
681 	r = 0;
682 
683 out:
684 	put_cpu();
685 
686 	return r;
687 }
688 
689 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
690 			u32 idx, int *nent, int maxnent, unsigned int type)
691 {
692 	if (type == KVM_GET_EMULATED_CPUID)
693 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
694 
695 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
696 }
697 
698 #undef F
699 
700 struct kvm_cpuid_param {
701 	u32 func;
702 	u32 idx;
703 	bool has_leaf_count;
704 	bool (*qualifier)(const struct kvm_cpuid_param *param);
705 };
706 
707 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
708 {
709 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
710 }
711 
712 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
713 				 __u32 num_entries, unsigned int ioctl_type)
714 {
715 	int i;
716 	__u32 pad[3];
717 
718 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
719 		return false;
720 
721 	/*
722 	 * We want to make sure that ->padding is being passed clean from
723 	 * userspace in case we want to use it for something in the future.
724 	 *
725 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
726 	 * have to give ourselves satisfied only with the emulated side. /me
727 	 * sheds a tear.
728 	 */
729 	for (i = 0; i < num_entries; i++) {
730 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
731 			return true;
732 
733 		if (pad[0] || pad[1] || pad[2])
734 			return true;
735 	}
736 	return false;
737 }
738 
739 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
740 			    struct kvm_cpuid_entry2 __user *entries,
741 			    unsigned int type)
742 {
743 	struct kvm_cpuid_entry2 *cpuid_entries;
744 	int limit, nent = 0, r = -E2BIG, i;
745 	u32 func;
746 	static const struct kvm_cpuid_param param[] = {
747 		{ .func = 0, .has_leaf_count = true },
748 		{ .func = 0x80000000, .has_leaf_count = true },
749 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
750 		{ .func = KVM_CPUID_SIGNATURE },
751 		{ .func = KVM_CPUID_FEATURES },
752 	};
753 
754 	if (cpuid->nent < 1)
755 		goto out;
756 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
757 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
758 
759 	if (sanity_check_entries(entries, cpuid->nent, type))
760 		return -EINVAL;
761 
762 	r = -ENOMEM;
763 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
764 	if (!cpuid_entries)
765 		goto out;
766 
767 	r = 0;
768 	for (i = 0; i < ARRAY_SIZE(param); i++) {
769 		const struct kvm_cpuid_param *ent = &param[i];
770 
771 		if (ent->qualifier && !ent->qualifier(ent))
772 			continue;
773 
774 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
775 				&nent, cpuid->nent, type);
776 
777 		if (r)
778 			goto out_free;
779 
780 		if (!ent->has_leaf_count)
781 			continue;
782 
783 		limit = cpuid_entries[nent - 1].eax;
784 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
785 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
786 				     &nent, cpuid->nent, type);
787 
788 		if (r)
789 			goto out_free;
790 	}
791 
792 	r = -EFAULT;
793 	if (copy_to_user(entries, cpuid_entries,
794 			 nent * sizeof(struct kvm_cpuid_entry2)))
795 		goto out_free;
796 	cpuid->nent = nent;
797 	r = 0;
798 
799 out_free:
800 	vfree(cpuid_entries);
801 out:
802 	return r;
803 }
804 
805 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
806 {
807 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
808 	struct kvm_cpuid_entry2 *ej;
809 	int j = i;
810 	int nent = vcpu->arch.cpuid_nent;
811 
812 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
813 	/* when no next entry is found, the current entry[i] is reselected */
814 	do {
815 		j = (j + 1) % nent;
816 		ej = &vcpu->arch.cpuid_entries[j];
817 	} while (ej->function != e->function);
818 
819 	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
820 
821 	return j;
822 }
823 
824 /* find an entry with matching function, matching index (if needed), and that
825  * should be read next (if it's stateful) */
826 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
827 	u32 function, u32 index)
828 {
829 	if (e->function != function)
830 		return 0;
831 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
832 		return 0;
833 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
834 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
835 		return 0;
836 	return 1;
837 }
838 
839 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
840 					      u32 function, u32 index)
841 {
842 	int i;
843 	struct kvm_cpuid_entry2 *best = NULL;
844 
845 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
846 		struct kvm_cpuid_entry2 *e;
847 
848 		e = &vcpu->arch.cpuid_entries[i];
849 		if (is_matching_cpuid_entry(e, function, index)) {
850 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
851 				move_to_next_stateful_cpuid_entry(vcpu, i);
852 			best = e;
853 			break;
854 		}
855 	}
856 	return best;
857 }
858 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
859 
860 /*
861  * If no match is found, check whether we exceed the vCPU's limit
862  * and return the content of the highest valid _standard_ leaf instead.
863  * This is to satisfy the CPUID specification.
864  */
865 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
866                                                   u32 function, u32 index)
867 {
868 	struct kvm_cpuid_entry2 *maxlevel;
869 
870 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
871 	if (!maxlevel || maxlevel->eax >= function)
872 		return NULL;
873 	if (function & 0x80000000) {
874 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
875 		if (!maxlevel)
876 			return NULL;
877 	}
878 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
879 }
880 
881 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
882 	       u32 *ecx, u32 *edx, bool check_limit)
883 {
884 	u32 function = *eax, index = *ecx;
885 	struct kvm_cpuid_entry2 *best;
886 	bool entry_found = true;
887 
888 	best = kvm_find_cpuid_entry(vcpu, function, index);
889 
890 	if (!best) {
891 		entry_found = false;
892 		if (!check_limit)
893 			goto out;
894 
895 		best = check_cpuid_limit(vcpu, function, index);
896 	}
897 
898 out:
899 	if (best) {
900 		*eax = best->eax;
901 		*ebx = best->ebx;
902 		*ecx = best->ecx;
903 		*edx = best->edx;
904 	} else
905 		*eax = *ebx = *ecx = *edx = 0;
906 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
907 	return entry_found;
908 }
909 EXPORT_SYMBOL_GPL(kvm_cpuid);
910 
911 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
912 {
913 	u32 eax, ebx, ecx, edx;
914 
915 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
916 		return 1;
917 
918 	eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
919 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
920 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
921 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
922 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
923 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
924 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
925 	return kvm_skip_emulated_instruction(vcpu);
926 }
927 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
928