xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 2359ccdd)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
20 
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29 
30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31 {
32 	int feature_bit = 0;
33 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34 
35 	xstate_bv &= XFEATURE_MASK_EXTEND;
36 	while (xstate_bv) {
37 		if (xstate_bv & 0x1) {
38 		        u32 eax, ebx, ecx, edx, offset;
39 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40 			offset = compacted ? ret : ebx;
41 			ret = max(ret, offset + eax);
42 		}
43 
44 		xstate_bv >>= 1;
45 		feature_bit++;
46 	}
47 
48 	return ret;
49 }
50 
51 bool kvm_mpx_supported(void)
52 {
53 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54 		 && kvm_x86_ops->mpx_supported());
55 }
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57 
58 u64 kvm_supported_xcr0(void)
59 {
60 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61 
62 	if (!kvm_mpx_supported())
63 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64 
65 	return xcr0;
66 }
67 
68 #define F(x) bit(X86_FEATURE_##x)
69 
70 /* For scattered features from cpufeatures.h; we currently expose none */
71 #define KF(x) bit(KVM_CPUID_BIT_##x)
72 
73 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
74 {
75 	struct kvm_cpuid_entry2 *best;
76 	struct kvm_lapic *apic = vcpu->arch.apic;
77 
78 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
79 	if (!best)
80 		return 0;
81 
82 	/* Update OSXSAVE bit */
83 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
84 		best->ecx &= ~F(OSXSAVE);
85 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
86 			best->ecx |= F(OSXSAVE);
87 	}
88 
89 	best->edx &= ~F(APIC);
90 	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91 		best->edx |= F(APIC);
92 
93 	if (apic) {
94 		if (best->ecx & F(TSC_DEADLINE_TIMER))
95 			apic->lapic_timer.timer_mode_mask = 3 << 17;
96 		else
97 			apic->lapic_timer.timer_mode_mask = 1 << 17;
98 	}
99 
100 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
101 	if (best) {
102 		/* Update OSPKE bit */
103 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104 			best->ecx &= ~F(OSPKE);
105 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106 				best->ecx |= F(OSPKE);
107 		}
108 	}
109 
110 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111 	if (!best) {
112 		vcpu->arch.guest_supported_xcr0 = 0;
113 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114 	} else {
115 		vcpu->arch.guest_supported_xcr0 =
116 			(best->eax | ((u64)best->edx << 32)) &
117 			kvm_supported_xcr0();
118 		vcpu->arch.guest_xstate_size = best->ebx =
119 			xstate_required_size(vcpu->arch.xcr0, false);
120 	}
121 
122 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125 
126 	/*
127 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
128 	 * canonical address checks; exit if it is ever changed.
129 	 */
130 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131 	if (best) {
132 		int vaddr_bits = (best->eax & 0xff00) >> 8;
133 
134 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135 			return -EINVAL;
136 	}
137 
138 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142 
143 	/* Update physical-address width */
144 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
145 	kvm_mmu_reset_context(vcpu);
146 
147 	kvm_pmu_refresh(vcpu);
148 	return 0;
149 }
150 
151 static int is_efer_nx(void)
152 {
153 	unsigned long long efer = 0;
154 
155 	rdmsrl_safe(MSR_EFER, &efer);
156 	return efer & EFER_NX;
157 }
158 
159 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
160 {
161 	int i;
162 	struct kvm_cpuid_entry2 *e, *entry;
163 
164 	entry = NULL;
165 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
166 		e = &vcpu->arch.cpuid_entries[i];
167 		if (e->function == 0x80000001) {
168 			entry = e;
169 			break;
170 		}
171 	}
172 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
173 		entry->edx &= ~F(NX);
174 		printk(KERN_INFO "kvm: guest NX capability removed\n");
175 	}
176 }
177 
178 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
179 {
180 	struct kvm_cpuid_entry2 *best;
181 
182 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
183 	if (!best || best->eax < 0x80000008)
184 		goto not_found;
185 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
186 	if (best)
187 		return best->eax & 0xff;
188 not_found:
189 	return 36;
190 }
191 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
192 
193 /* when an old userspace process fills a new kernel module */
194 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
195 			     struct kvm_cpuid *cpuid,
196 			     struct kvm_cpuid_entry __user *entries)
197 {
198 	int r, i;
199 	struct kvm_cpuid_entry *cpuid_entries = NULL;
200 
201 	r = -E2BIG;
202 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
203 		goto out;
204 	r = -ENOMEM;
205 	if (cpuid->nent) {
206 		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
207 					cpuid->nent);
208 		if (!cpuid_entries)
209 			goto out;
210 		r = -EFAULT;
211 		if (copy_from_user(cpuid_entries, entries,
212 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
213 			goto out;
214 	}
215 	for (i = 0; i < cpuid->nent; i++) {
216 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
217 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
218 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
219 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
220 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
221 		vcpu->arch.cpuid_entries[i].index = 0;
222 		vcpu->arch.cpuid_entries[i].flags = 0;
223 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
224 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
225 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
226 	}
227 	vcpu->arch.cpuid_nent = cpuid->nent;
228 	cpuid_fix_nx_cap(vcpu);
229 	kvm_apic_set_version(vcpu);
230 	kvm_x86_ops->cpuid_update(vcpu);
231 	r = kvm_update_cpuid(vcpu);
232 
233 out:
234 	vfree(cpuid_entries);
235 	return r;
236 }
237 
238 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
239 			      struct kvm_cpuid2 *cpuid,
240 			      struct kvm_cpuid_entry2 __user *entries)
241 {
242 	int r;
243 
244 	r = -E2BIG;
245 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
246 		goto out;
247 	r = -EFAULT;
248 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
249 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
250 		goto out;
251 	vcpu->arch.cpuid_nent = cpuid->nent;
252 	kvm_apic_set_version(vcpu);
253 	kvm_x86_ops->cpuid_update(vcpu);
254 	r = kvm_update_cpuid(vcpu);
255 out:
256 	return r;
257 }
258 
259 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
260 			      struct kvm_cpuid2 *cpuid,
261 			      struct kvm_cpuid_entry2 __user *entries)
262 {
263 	int r;
264 
265 	r = -E2BIG;
266 	if (cpuid->nent < vcpu->arch.cpuid_nent)
267 		goto out;
268 	r = -EFAULT;
269 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
270 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
271 		goto out;
272 	return 0;
273 
274 out:
275 	cpuid->nent = vcpu->arch.cpuid_nent;
276 	return r;
277 }
278 
279 static void cpuid_mask(u32 *word, int wordnum)
280 {
281 	*word &= boot_cpu_data.x86_capability[wordnum];
282 }
283 
284 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
285 			   u32 index)
286 {
287 	entry->function = function;
288 	entry->index = index;
289 	cpuid_count(entry->function, entry->index,
290 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
291 	entry->flags = 0;
292 }
293 
294 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
295 				   u32 func, u32 index, int *nent, int maxnent)
296 {
297 	switch (func) {
298 	case 0:
299 		entry->eax = 7;
300 		++*nent;
301 		break;
302 	case 1:
303 		entry->ecx = F(MOVBE);
304 		++*nent;
305 		break;
306 	case 7:
307 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
308 		if (index == 0)
309 			entry->ecx = F(RDPID);
310 		++*nent;
311 	default:
312 		break;
313 	}
314 
315 	entry->function = func;
316 	entry->index = index;
317 
318 	return 0;
319 }
320 
321 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
322 				 u32 index, int *nent, int maxnent)
323 {
324 	int r;
325 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
326 #ifdef CONFIG_X86_64
327 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
328 				? F(GBPAGES) : 0;
329 	unsigned f_lm = F(LM);
330 #else
331 	unsigned f_gbpages = 0;
332 	unsigned f_lm = 0;
333 #endif
334 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
335 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
336 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
337 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
338 	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
339 
340 	/* cpuid 1.edx */
341 	const u32 kvm_cpuid_1_edx_x86_features =
342 		F(FPU) | F(VME) | F(DE) | F(PSE) |
343 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
344 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
345 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
346 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
347 		0 /* Reserved, DS, ACPI */ | F(MMX) |
348 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
349 		0 /* HTT, TM, Reserved, PBE */;
350 	/* cpuid 0x80000001.edx */
351 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
352 		F(FPU) | F(VME) | F(DE) | F(PSE) |
353 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
354 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
355 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
356 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
357 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
358 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
359 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
360 	/* cpuid 1.ecx */
361 	const u32 kvm_cpuid_1_ecx_x86_features =
362 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
363 		 * but *not* advertised to guests via CPUID ! */
364 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
365 		0 /* DS-CPL, VMX, SMX, EST */ |
366 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
367 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
368 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
369 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
370 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
371 		F(F16C) | F(RDRAND);
372 	/* cpuid 0x80000001.ecx */
373 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
374 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
375 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
376 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
377 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
378 		F(TOPOEXT) | F(PERFCTR_CORE);
379 
380 	/* cpuid 0x80000008.ebx */
381 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
382 		F(IBPB) | F(IBRS);
383 
384 	/* cpuid 0xC0000001.edx */
385 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
386 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
387 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
388 		F(PMM) | F(PMM_EN);
389 
390 	/* cpuid 7.0.ebx */
391 	const u32 kvm_cpuid_7_0_ebx_x86_features =
392 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
393 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
394 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
395 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
396 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
397 
398 	/* cpuid 0xD.1.eax */
399 	const u32 kvm_cpuid_D_1_eax_x86_features =
400 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
401 
402 	/* cpuid 7.0.ecx*/
403 	const u32 kvm_cpuid_7_0_ecx_x86_features =
404 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
405 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
406 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG);
407 
408 	/* cpuid 7.0.edx*/
409 	const u32 kvm_cpuid_7_0_edx_x86_features =
410 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
411 		F(ARCH_CAPABILITIES);
412 
413 	/* all calls to cpuid_count() should be made on the same cpu */
414 	get_cpu();
415 
416 	r = -E2BIG;
417 
418 	if (*nent >= maxnent)
419 		goto out;
420 
421 	do_cpuid_1_ent(entry, function, index);
422 	++*nent;
423 
424 	switch (function) {
425 	case 0:
426 		entry->eax = min(entry->eax, (u32)0xd);
427 		break;
428 	case 1:
429 		entry->edx &= kvm_cpuid_1_edx_x86_features;
430 		cpuid_mask(&entry->edx, CPUID_1_EDX);
431 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
432 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
433 		/* we support x2apic emulation even if host does not support
434 		 * it since we emulate x2apic in software */
435 		entry->ecx |= F(X2APIC);
436 		break;
437 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
438 	 * may return different values. This forces us to get_cpu() before
439 	 * issuing the first command, and also to emulate this annoying behavior
440 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
441 	case 2: {
442 		int t, times = entry->eax & 0xff;
443 
444 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
445 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
446 		for (t = 1; t < times; ++t) {
447 			if (*nent >= maxnent)
448 				goto out;
449 
450 			do_cpuid_1_ent(&entry[t], function, 0);
451 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
452 			++*nent;
453 		}
454 		break;
455 	}
456 	/* function 4 has additional index. */
457 	case 4: {
458 		int i, cache_type;
459 
460 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
461 		/* read more entries until cache_type is zero */
462 		for (i = 1; ; ++i) {
463 			if (*nent >= maxnent)
464 				goto out;
465 
466 			cache_type = entry[i - 1].eax & 0x1f;
467 			if (!cache_type)
468 				break;
469 			do_cpuid_1_ent(&entry[i], function, i);
470 			entry[i].flags |=
471 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
472 			++*nent;
473 		}
474 		break;
475 	}
476 	case 6: /* Thermal management */
477 		entry->eax = 0x4; /* allow ARAT */
478 		entry->ebx = 0;
479 		entry->ecx = 0;
480 		entry->edx = 0;
481 		break;
482 	case 7: {
483 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
484 		/* Mask ebx against host capability word 9 */
485 		if (index == 0) {
486 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
487 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
488 			// TSC_ADJUST is emulated
489 			entry->ebx |= F(TSC_ADJUST);
490 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
491 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
492 			entry->ecx |= f_umip;
493 			/* PKU is not yet implemented for shadow paging. */
494 			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
495 				entry->ecx &= ~F(PKU);
496 			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
497 			cpuid_mask(&entry->edx, CPUID_7_EDX);
498 		} else {
499 			entry->ebx = 0;
500 			entry->ecx = 0;
501 			entry->edx = 0;
502 		}
503 		entry->eax = 0;
504 		break;
505 	}
506 	case 9:
507 		break;
508 	case 0xa: { /* Architectural Performance Monitoring */
509 		struct x86_pmu_capability cap;
510 		union cpuid10_eax eax;
511 		union cpuid10_edx edx;
512 
513 		perf_get_x86_pmu_capability(&cap);
514 
515 		/*
516 		 * Only support guest architectural pmu on a host
517 		 * with architectural pmu.
518 		 */
519 		if (!cap.version)
520 			memset(&cap, 0, sizeof(cap));
521 
522 		eax.split.version_id = min(cap.version, 2);
523 		eax.split.num_counters = cap.num_counters_gp;
524 		eax.split.bit_width = cap.bit_width_gp;
525 		eax.split.mask_length = cap.events_mask_len;
526 
527 		edx.split.num_counters_fixed = cap.num_counters_fixed;
528 		edx.split.bit_width_fixed = cap.bit_width_fixed;
529 		edx.split.reserved = 0;
530 
531 		entry->eax = eax.full;
532 		entry->ebx = cap.events_mask;
533 		entry->ecx = 0;
534 		entry->edx = edx.full;
535 		break;
536 	}
537 	/* function 0xb has additional index. */
538 	case 0xb: {
539 		int i, level_type;
540 
541 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
542 		/* read more entries until level_type is zero */
543 		for (i = 1; ; ++i) {
544 			if (*nent >= maxnent)
545 				goto out;
546 
547 			level_type = entry[i - 1].ecx & 0xff00;
548 			if (!level_type)
549 				break;
550 			do_cpuid_1_ent(&entry[i], function, i);
551 			entry[i].flags |=
552 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
553 			++*nent;
554 		}
555 		break;
556 	}
557 	case 0xd: {
558 		int idx, i;
559 		u64 supported = kvm_supported_xcr0();
560 
561 		entry->eax &= supported;
562 		entry->ebx = xstate_required_size(supported, false);
563 		entry->ecx = entry->ebx;
564 		entry->edx &= supported >> 32;
565 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
566 		if (!supported)
567 			break;
568 
569 		for (idx = 1, i = 1; idx < 64; ++idx) {
570 			u64 mask = ((u64)1 << idx);
571 			if (*nent >= maxnent)
572 				goto out;
573 
574 			do_cpuid_1_ent(&entry[i], function, idx);
575 			if (idx == 1) {
576 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
577 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
578 				entry[i].ebx = 0;
579 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
580 					entry[i].ebx =
581 						xstate_required_size(supported,
582 								     true);
583 			} else {
584 				if (entry[i].eax == 0 || !(supported & mask))
585 					continue;
586 				if (WARN_ON_ONCE(entry[i].ecx & 1))
587 					continue;
588 			}
589 			entry[i].ecx = 0;
590 			entry[i].edx = 0;
591 			entry[i].flags |=
592 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
593 			++*nent;
594 			++i;
595 		}
596 		break;
597 	}
598 	case KVM_CPUID_SIGNATURE: {
599 		static const char signature[12] = "KVMKVMKVM\0\0";
600 		const u32 *sigptr = (const u32 *)signature;
601 		entry->eax = KVM_CPUID_FEATURES;
602 		entry->ebx = sigptr[0];
603 		entry->ecx = sigptr[1];
604 		entry->edx = sigptr[2];
605 		break;
606 	}
607 	case KVM_CPUID_FEATURES:
608 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
609 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
610 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
611 			     (1 << KVM_FEATURE_ASYNC_PF) |
612 			     (1 << KVM_FEATURE_PV_EOI) |
613 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
614 			     (1 << KVM_FEATURE_PV_UNHALT) |
615 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
616 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT);
617 
618 		if (sched_info_on())
619 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
620 
621 		entry->ebx = 0;
622 		entry->ecx = 0;
623 		entry->edx = 0;
624 		break;
625 	case 0x80000000:
626 		entry->eax = min(entry->eax, 0x8000001f);
627 		break;
628 	case 0x80000001:
629 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
630 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
631 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
632 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
633 		break;
634 	case 0x80000007: /* Advanced power management */
635 		/* invariant TSC is CPUID.80000007H:EDX[8] */
636 		entry->edx &= (1 << 8);
637 		/* mask against host */
638 		entry->edx &= boot_cpu_data.x86_power;
639 		entry->eax = entry->ebx = entry->ecx = 0;
640 		break;
641 	case 0x80000008: {
642 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
643 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
644 		unsigned phys_as = entry->eax & 0xff;
645 
646 		if (!g_phys_as)
647 			g_phys_as = phys_as;
648 		entry->eax = g_phys_as | (virt_as << 8);
649 		entry->edx = 0;
650 		/* IBRS and IBPB aren't necessarily present in hardware cpuid */
651 		if (boot_cpu_has(X86_FEATURE_IBPB))
652 			entry->ebx |= F(IBPB);
653 		if (boot_cpu_has(X86_FEATURE_IBRS))
654 			entry->ebx |= F(IBRS);
655 		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
656 		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
657 		break;
658 	}
659 	case 0x80000019:
660 		entry->ecx = entry->edx = 0;
661 		break;
662 	case 0x8000001a:
663 		break;
664 	case 0x8000001d:
665 		break;
666 	/*Add support for Centaur's CPUID instruction*/
667 	case 0xC0000000:
668 		/*Just support up to 0xC0000004 now*/
669 		entry->eax = min(entry->eax, 0xC0000004);
670 		break;
671 	case 0xC0000001:
672 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
673 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
674 		break;
675 	case 3: /* Processor serial number */
676 	case 5: /* MONITOR/MWAIT */
677 	case 0xC0000002:
678 	case 0xC0000003:
679 	case 0xC0000004:
680 	default:
681 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
682 		break;
683 	}
684 
685 	kvm_x86_ops->set_supported_cpuid(function, entry);
686 
687 	r = 0;
688 
689 out:
690 	put_cpu();
691 
692 	return r;
693 }
694 
695 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
696 			u32 idx, int *nent, int maxnent, unsigned int type)
697 {
698 	if (type == KVM_GET_EMULATED_CPUID)
699 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
700 
701 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
702 }
703 
704 #undef F
705 
706 struct kvm_cpuid_param {
707 	u32 func;
708 	u32 idx;
709 	bool has_leaf_count;
710 	bool (*qualifier)(const struct kvm_cpuid_param *param);
711 };
712 
713 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
714 {
715 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
716 }
717 
718 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
719 				 __u32 num_entries, unsigned int ioctl_type)
720 {
721 	int i;
722 	__u32 pad[3];
723 
724 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
725 		return false;
726 
727 	/*
728 	 * We want to make sure that ->padding is being passed clean from
729 	 * userspace in case we want to use it for something in the future.
730 	 *
731 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
732 	 * have to give ourselves satisfied only with the emulated side. /me
733 	 * sheds a tear.
734 	 */
735 	for (i = 0; i < num_entries; i++) {
736 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
737 			return true;
738 
739 		if (pad[0] || pad[1] || pad[2])
740 			return true;
741 	}
742 	return false;
743 }
744 
745 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
746 			    struct kvm_cpuid_entry2 __user *entries,
747 			    unsigned int type)
748 {
749 	struct kvm_cpuid_entry2 *cpuid_entries;
750 	int limit, nent = 0, r = -E2BIG, i;
751 	u32 func;
752 	static const struct kvm_cpuid_param param[] = {
753 		{ .func = 0, .has_leaf_count = true },
754 		{ .func = 0x80000000, .has_leaf_count = true },
755 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
756 		{ .func = KVM_CPUID_SIGNATURE },
757 		{ .func = KVM_CPUID_FEATURES },
758 	};
759 
760 	if (cpuid->nent < 1)
761 		goto out;
762 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
763 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
764 
765 	if (sanity_check_entries(entries, cpuid->nent, type))
766 		return -EINVAL;
767 
768 	r = -ENOMEM;
769 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
770 	if (!cpuid_entries)
771 		goto out;
772 
773 	r = 0;
774 	for (i = 0; i < ARRAY_SIZE(param); i++) {
775 		const struct kvm_cpuid_param *ent = &param[i];
776 
777 		if (ent->qualifier && !ent->qualifier(ent))
778 			continue;
779 
780 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
781 				&nent, cpuid->nent, type);
782 
783 		if (r)
784 			goto out_free;
785 
786 		if (!ent->has_leaf_count)
787 			continue;
788 
789 		limit = cpuid_entries[nent - 1].eax;
790 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
791 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
792 				     &nent, cpuid->nent, type);
793 
794 		if (r)
795 			goto out_free;
796 	}
797 
798 	r = -EFAULT;
799 	if (copy_to_user(entries, cpuid_entries,
800 			 nent * sizeof(struct kvm_cpuid_entry2)))
801 		goto out_free;
802 	cpuid->nent = nent;
803 	r = 0;
804 
805 out_free:
806 	vfree(cpuid_entries);
807 out:
808 	return r;
809 }
810 
811 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
812 {
813 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
814 	struct kvm_cpuid_entry2 *ej;
815 	int j = i;
816 	int nent = vcpu->arch.cpuid_nent;
817 
818 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
819 	/* when no next entry is found, the current entry[i] is reselected */
820 	do {
821 		j = (j + 1) % nent;
822 		ej = &vcpu->arch.cpuid_entries[j];
823 	} while (ej->function != e->function);
824 
825 	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
826 
827 	return j;
828 }
829 
830 /* find an entry with matching function, matching index (if needed), and that
831  * should be read next (if it's stateful) */
832 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
833 	u32 function, u32 index)
834 {
835 	if (e->function != function)
836 		return 0;
837 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
838 		return 0;
839 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
840 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
841 		return 0;
842 	return 1;
843 }
844 
845 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
846 					      u32 function, u32 index)
847 {
848 	int i;
849 	struct kvm_cpuid_entry2 *best = NULL;
850 
851 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
852 		struct kvm_cpuid_entry2 *e;
853 
854 		e = &vcpu->arch.cpuid_entries[i];
855 		if (is_matching_cpuid_entry(e, function, index)) {
856 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
857 				move_to_next_stateful_cpuid_entry(vcpu, i);
858 			best = e;
859 			break;
860 		}
861 	}
862 	return best;
863 }
864 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
865 
866 /*
867  * If no match is found, check whether we exceed the vCPU's limit
868  * and return the content of the highest valid _standard_ leaf instead.
869  * This is to satisfy the CPUID specification.
870  */
871 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
872                                                   u32 function, u32 index)
873 {
874 	struct kvm_cpuid_entry2 *maxlevel;
875 
876 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
877 	if (!maxlevel || maxlevel->eax >= function)
878 		return NULL;
879 	if (function & 0x80000000) {
880 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
881 		if (!maxlevel)
882 			return NULL;
883 	}
884 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
885 }
886 
887 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
888 	       u32 *ecx, u32 *edx, bool check_limit)
889 {
890 	u32 function = *eax, index = *ecx;
891 	struct kvm_cpuid_entry2 *best;
892 	bool entry_found = true;
893 
894 	best = kvm_find_cpuid_entry(vcpu, function, index);
895 
896 	if (!best) {
897 		entry_found = false;
898 		if (!check_limit)
899 			goto out;
900 
901 		best = check_cpuid_limit(vcpu, function, index);
902 	}
903 
904 out:
905 	if (best) {
906 		*eax = best->eax;
907 		*ebx = best->ebx;
908 		*ecx = best->ecx;
909 		*edx = best->edx;
910 	} else
911 		*eax = *ebx = *ecx = *edx = 0;
912 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
913 	return entry_found;
914 }
915 EXPORT_SYMBOL_GPL(kvm_cpuid);
916 
917 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
918 {
919 	u32 eax, ebx, ecx, edx;
920 
921 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
922 		return 1;
923 
924 	eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
925 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
926 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
927 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
928 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
929 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
930 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
931 	return kvm_skip_emulated_instruction(vcpu);
932 }
933 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
934