xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 232b0b08)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
20 
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29 
30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31 {
32 	int feature_bit = 0;
33 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34 
35 	xstate_bv &= XFEATURE_MASK_EXTEND;
36 	while (xstate_bv) {
37 		if (xstate_bv & 0x1) {
38 		        u32 eax, ebx, ecx, edx, offset;
39 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40 			offset = compacted ? ret : ebx;
41 			ret = max(ret, offset + eax);
42 		}
43 
44 		xstate_bv >>= 1;
45 		feature_bit++;
46 	}
47 
48 	return ret;
49 }
50 
51 bool kvm_mpx_supported(void)
52 {
53 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54 		 && kvm_x86_ops->mpx_supported());
55 }
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57 
58 u64 kvm_supported_xcr0(void)
59 {
60 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61 
62 	if (!kvm_mpx_supported())
63 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64 
65 	return xcr0;
66 }
67 
68 #define F(x) bit(X86_FEATURE_##x)
69 
70 /* These are scattered features in cpufeatures.h. */
71 #define KVM_CPUID_BIT_AVX512_4VNNIW     2
72 #define KVM_CPUID_BIT_AVX512_4FMAPS     3
73 #define KF(x) bit(KVM_CPUID_BIT_##x)
74 
75 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
76 {
77 	struct kvm_cpuid_entry2 *best;
78 	struct kvm_lapic *apic = vcpu->arch.apic;
79 
80 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
81 	if (!best)
82 		return 0;
83 
84 	/* Update OSXSAVE bit */
85 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
86 		best->ecx &= ~F(OSXSAVE);
87 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
88 			best->ecx |= F(OSXSAVE);
89 	}
90 
91 	best->edx &= ~F(APIC);
92 	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
93 		best->edx |= F(APIC);
94 
95 	if (apic) {
96 		if (best->ecx & F(TSC_DEADLINE_TIMER))
97 			apic->lapic_timer.timer_mode_mask = 3 << 17;
98 		else
99 			apic->lapic_timer.timer_mode_mask = 1 << 17;
100 	}
101 
102 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
103 	if (best) {
104 		/* Update OSPKE bit */
105 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
106 			best->ecx &= ~F(OSPKE);
107 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
108 				best->ecx |= F(OSPKE);
109 		}
110 	}
111 
112 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
113 	if (!best) {
114 		vcpu->arch.guest_supported_xcr0 = 0;
115 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
116 	} else {
117 		vcpu->arch.guest_supported_xcr0 =
118 			(best->eax | ((u64)best->edx << 32)) &
119 			kvm_supported_xcr0();
120 		vcpu->arch.guest_xstate_size = best->ebx =
121 			xstate_required_size(vcpu->arch.xcr0, false);
122 	}
123 
124 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
125 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
126 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
127 
128 	/*
129 	 * The existing code assumes virtual address is 48-bit in the canonical
130 	 * address checks; exit if it is ever changed.
131 	 */
132 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
133 	if (best && ((best->eax & 0xff00) >> 8) != 48 &&
134 		((best->eax & 0xff00) >> 8) != 0)
135 		return -EINVAL;
136 
137 	/* Update physical-address width */
138 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
139 
140 	kvm_pmu_refresh(vcpu);
141 	return 0;
142 }
143 
144 static int is_efer_nx(void)
145 {
146 	unsigned long long efer = 0;
147 
148 	rdmsrl_safe(MSR_EFER, &efer);
149 	return efer & EFER_NX;
150 }
151 
152 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
153 {
154 	int i;
155 	struct kvm_cpuid_entry2 *e, *entry;
156 
157 	entry = NULL;
158 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
159 		e = &vcpu->arch.cpuid_entries[i];
160 		if (e->function == 0x80000001) {
161 			entry = e;
162 			break;
163 		}
164 	}
165 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
166 		entry->edx &= ~F(NX);
167 		printk(KERN_INFO "kvm: guest NX capability removed\n");
168 	}
169 }
170 
171 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
172 {
173 	struct kvm_cpuid_entry2 *best;
174 
175 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
176 	if (!best || best->eax < 0x80000008)
177 		goto not_found;
178 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
179 	if (best)
180 		return best->eax & 0xff;
181 not_found:
182 	return 36;
183 }
184 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
185 
186 /* when an old userspace process fills a new kernel module */
187 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
188 			     struct kvm_cpuid *cpuid,
189 			     struct kvm_cpuid_entry __user *entries)
190 {
191 	int r, i;
192 	struct kvm_cpuid_entry *cpuid_entries = NULL;
193 
194 	r = -E2BIG;
195 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
196 		goto out;
197 	r = -ENOMEM;
198 	if (cpuid->nent) {
199 		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
200 					cpuid->nent);
201 		if (!cpuid_entries)
202 			goto out;
203 		r = -EFAULT;
204 		if (copy_from_user(cpuid_entries, entries,
205 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
206 			goto out;
207 	}
208 	for (i = 0; i < cpuid->nent; i++) {
209 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
210 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
211 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
212 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
213 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
214 		vcpu->arch.cpuid_entries[i].index = 0;
215 		vcpu->arch.cpuid_entries[i].flags = 0;
216 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
217 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
218 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
219 	}
220 	vcpu->arch.cpuid_nent = cpuid->nent;
221 	cpuid_fix_nx_cap(vcpu);
222 	kvm_apic_set_version(vcpu);
223 	kvm_x86_ops->cpuid_update(vcpu);
224 	r = kvm_update_cpuid(vcpu);
225 
226 out:
227 	vfree(cpuid_entries);
228 	return r;
229 }
230 
231 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
232 			      struct kvm_cpuid2 *cpuid,
233 			      struct kvm_cpuid_entry2 __user *entries)
234 {
235 	int r;
236 
237 	r = -E2BIG;
238 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
239 		goto out;
240 	r = -EFAULT;
241 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
242 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
243 		goto out;
244 	vcpu->arch.cpuid_nent = cpuid->nent;
245 	kvm_apic_set_version(vcpu);
246 	kvm_x86_ops->cpuid_update(vcpu);
247 	r = kvm_update_cpuid(vcpu);
248 out:
249 	return r;
250 }
251 
252 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
253 			      struct kvm_cpuid2 *cpuid,
254 			      struct kvm_cpuid_entry2 __user *entries)
255 {
256 	int r;
257 
258 	r = -E2BIG;
259 	if (cpuid->nent < vcpu->arch.cpuid_nent)
260 		goto out;
261 	r = -EFAULT;
262 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
263 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
264 		goto out;
265 	return 0;
266 
267 out:
268 	cpuid->nent = vcpu->arch.cpuid_nent;
269 	return r;
270 }
271 
272 static void cpuid_mask(u32 *word, int wordnum)
273 {
274 	*word &= boot_cpu_data.x86_capability[wordnum];
275 }
276 
277 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
278 			   u32 index)
279 {
280 	entry->function = function;
281 	entry->index = index;
282 	cpuid_count(entry->function, entry->index,
283 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
284 	entry->flags = 0;
285 }
286 
287 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
288 				   u32 func, u32 index, int *nent, int maxnent)
289 {
290 	switch (func) {
291 	case 0:
292 		entry->eax = 1;		/* only one leaf currently */
293 		++*nent;
294 		break;
295 	case 1:
296 		entry->ecx = F(MOVBE);
297 		++*nent;
298 		break;
299 	default:
300 		break;
301 	}
302 
303 	entry->function = func;
304 	entry->index = index;
305 
306 	return 0;
307 }
308 
309 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
310 				 u32 index, int *nent, int maxnent)
311 {
312 	int r;
313 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
314 #ifdef CONFIG_X86_64
315 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
316 				? F(GBPAGES) : 0;
317 	unsigned f_lm = F(LM);
318 #else
319 	unsigned f_gbpages = 0;
320 	unsigned f_lm = 0;
321 #endif
322 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
323 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
324 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
325 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
326 
327 	/* cpuid 1.edx */
328 	const u32 kvm_cpuid_1_edx_x86_features =
329 		F(FPU) | F(VME) | F(DE) | F(PSE) |
330 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
331 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
332 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
333 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
334 		0 /* Reserved, DS, ACPI */ | F(MMX) |
335 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
336 		0 /* HTT, TM, Reserved, PBE */;
337 	/* cpuid 0x80000001.edx */
338 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
339 		F(FPU) | F(VME) | F(DE) | F(PSE) |
340 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
341 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
342 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
343 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
344 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
345 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
346 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
347 	/* cpuid 1.ecx */
348 	const u32 kvm_cpuid_1_ecx_x86_features =
349 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
350 		 * but *not* advertised to guests via CPUID ! */
351 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
352 		0 /* DS-CPL, VMX, SMX, EST */ |
353 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
354 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
355 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
356 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
357 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
358 		F(F16C) | F(RDRAND);
359 	/* cpuid 0x80000001.ecx */
360 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
361 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
362 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
363 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
364 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
365 
366 	/* cpuid 0xC0000001.edx */
367 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
368 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
369 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
370 		F(PMM) | F(PMM_EN);
371 
372 	/* cpuid 7.0.ebx */
373 	const u32 kvm_cpuid_7_0_ebx_x86_features =
374 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
375 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
376 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
377 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
378 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
379 
380 	/* cpuid 0xD.1.eax */
381 	const u32 kvm_cpuid_D_1_eax_x86_features =
382 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
383 
384 	/* cpuid 7.0.ecx*/
385 	const u32 kvm_cpuid_7_0_ecx_x86_features =
386 		F(AVX512VBMI) | F(PKU) | 0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ);
387 
388 	/* cpuid 7.0.edx*/
389 	const u32 kvm_cpuid_7_0_edx_x86_features =
390 		KF(AVX512_4VNNIW) | KF(AVX512_4FMAPS);
391 
392 	/* all calls to cpuid_count() should be made on the same cpu */
393 	get_cpu();
394 
395 	r = -E2BIG;
396 
397 	if (*nent >= maxnent)
398 		goto out;
399 
400 	do_cpuid_1_ent(entry, function, index);
401 	++*nent;
402 
403 	switch (function) {
404 	case 0:
405 		entry->eax = min(entry->eax, (u32)0xd);
406 		break;
407 	case 1:
408 		entry->edx &= kvm_cpuid_1_edx_x86_features;
409 		cpuid_mask(&entry->edx, CPUID_1_EDX);
410 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
411 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
412 		/* we support x2apic emulation even if host does not support
413 		 * it since we emulate x2apic in software */
414 		entry->ecx |= F(X2APIC);
415 		break;
416 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
417 	 * may return different values. This forces us to get_cpu() before
418 	 * issuing the first command, and also to emulate this annoying behavior
419 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
420 	case 2: {
421 		int t, times = entry->eax & 0xff;
422 
423 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
424 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
425 		for (t = 1; t < times; ++t) {
426 			if (*nent >= maxnent)
427 				goto out;
428 
429 			do_cpuid_1_ent(&entry[t], function, 0);
430 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
431 			++*nent;
432 		}
433 		break;
434 	}
435 	/* function 4 has additional index. */
436 	case 4: {
437 		int i, cache_type;
438 
439 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
440 		/* read more entries until cache_type is zero */
441 		for (i = 1; ; ++i) {
442 			if (*nent >= maxnent)
443 				goto out;
444 
445 			cache_type = entry[i - 1].eax & 0x1f;
446 			if (!cache_type)
447 				break;
448 			do_cpuid_1_ent(&entry[i], function, i);
449 			entry[i].flags |=
450 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
451 			++*nent;
452 		}
453 		break;
454 	}
455 	case 6: /* Thermal management */
456 		entry->eax = 0x4; /* allow ARAT */
457 		entry->ebx = 0;
458 		entry->ecx = 0;
459 		entry->edx = 0;
460 		break;
461 	case 7: {
462 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
463 		/* Mask ebx against host capability word 9 */
464 		if (index == 0) {
465 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
466 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
467 			// TSC_ADJUST is emulated
468 			entry->ebx |= F(TSC_ADJUST);
469 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
470 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
471 			/* PKU is not yet implemented for shadow paging. */
472 			if (!tdp_enabled)
473 				entry->ecx &= ~F(PKU);
474 			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
475 			entry->edx &= get_scattered_cpuid_leaf(7, 0, CPUID_EDX);
476 		} else {
477 			entry->ebx = 0;
478 			entry->ecx = 0;
479 			entry->edx = 0;
480 		}
481 		entry->eax = 0;
482 		break;
483 	}
484 	case 9:
485 		break;
486 	case 0xa: { /* Architectural Performance Monitoring */
487 		struct x86_pmu_capability cap;
488 		union cpuid10_eax eax;
489 		union cpuid10_edx edx;
490 
491 		perf_get_x86_pmu_capability(&cap);
492 
493 		/*
494 		 * Only support guest architectural pmu on a host
495 		 * with architectural pmu.
496 		 */
497 		if (!cap.version)
498 			memset(&cap, 0, sizeof(cap));
499 
500 		eax.split.version_id = min(cap.version, 2);
501 		eax.split.num_counters = cap.num_counters_gp;
502 		eax.split.bit_width = cap.bit_width_gp;
503 		eax.split.mask_length = cap.events_mask_len;
504 
505 		edx.split.num_counters_fixed = cap.num_counters_fixed;
506 		edx.split.bit_width_fixed = cap.bit_width_fixed;
507 		edx.split.reserved = 0;
508 
509 		entry->eax = eax.full;
510 		entry->ebx = cap.events_mask;
511 		entry->ecx = 0;
512 		entry->edx = edx.full;
513 		break;
514 	}
515 	/* function 0xb has additional index. */
516 	case 0xb: {
517 		int i, level_type;
518 
519 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
520 		/* read more entries until level_type is zero */
521 		for (i = 1; ; ++i) {
522 			if (*nent >= maxnent)
523 				goto out;
524 
525 			level_type = entry[i - 1].ecx & 0xff00;
526 			if (!level_type)
527 				break;
528 			do_cpuid_1_ent(&entry[i], function, i);
529 			entry[i].flags |=
530 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
531 			++*nent;
532 		}
533 		break;
534 	}
535 	case 0xd: {
536 		int idx, i;
537 		u64 supported = kvm_supported_xcr0();
538 
539 		entry->eax &= supported;
540 		entry->ebx = xstate_required_size(supported, false);
541 		entry->ecx = entry->ebx;
542 		entry->edx &= supported >> 32;
543 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
544 		if (!supported)
545 			break;
546 
547 		for (idx = 1, i = 1; idx < 64; ++idx) {
548 			u64 mask = ((u64)1 << idx);
549 			if (*nent >= maxnent)
550 				goto out;
551 
552 			do_cpuid_1_ent(&entry[i], function, idx);
553 			if (idx == 1) {
554 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
555 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
556 				entry[i].ebx = 0;
557 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
558 					entry[i].ebx =
559 						xstate_required_size(supported,
560 								     true);
561 			} else {
562 				if (entry[i].eax == 0 || !(supported & mask))
563 					continue;
564 				if (WARN_ON_ONCE(entry[i].ecx & 1))
565 					continue;
566 			}
567 			entry[i].ecx = 0;
568 			entry[i].edx = 0;
569 			entry[i].flags |=
570 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
571 			++*nent;
572 			++i;
573 		}
574 		break;
575 	}
576 	case KVM_CPUID_SIGNATURE: {
577 		static const char signature[12] = "KVMKVMKVM\0\0";
578 		const u32 *sigptr = (const u32 *)signature;
579 		entry->eax = KVM_CPUID_FEATURES;
580 		entry->ebx = sigptr[0];
581 		entry->ecx = sigptr[1];
582 		entry->edx = sigptr[2];
583 		break;
584 	}
585 	case KVM_CPUID_FEATURES:
586 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
587 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
588 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
589 			     (1 << KVM_FEATURE_ASYNC_PF) |
590 			     (1 << KVM_FEATURE_PV_EOI) |
591 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
592 			     (1 << KVM_FEATURE_PV_UNHALT);
593 
594 		if (sched_info_on())
595 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
596 
597 		entry->ebx = 0;
598 		entry->ecx = 0;
599 		entry->edx = 0;
600 		break;
601 	case 0x80000000:
602 		entry->eax = min(entry->eax, 0x8000001a);
603 		break;
604 	case 0x80000001:
605 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
606 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
607 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
608 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
609 		break;
610 	case 0x80000007: /* Advanced power management */
611 		/* invariant TSC is CPUID.80000007H:EDX[8] */
612 		entry->edx &= (1 << 8);
613 		/* mask against host */
614 		entry->edx &= boot_cpu_data.x86_power;
615 		entry->eax = entry->ebx = entry->ecx = 0;
616 		break;
617 	case 0x80000008: {
618 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
619 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
620 		unsigned phys_as = entry->eax & 0xff;
621 
622 		if (!g_phys_as)
623 			g_phys_as = phys_as;
624 		entry->eax = g_phys_as | (virt_as << 8);
625 		entry->ebx = entry->edx = 0;
626 		break;
627 	}
628 	case 0x80000019:
629 		entry->ecx = entry->edx = 0;
630 		break;
631 	case 0x8000001a:
632 		break;
633 	case 0x8000001d:
634 		break;
635 	/*Add support for Centaur's CPUID instruction*/
636 	case 0xC0000000:
637 		/*Just support up to 0xC0000004 now*/
638 		entry->eax = min(entry->eax, 0xC0000004);
639 		break;
640 	case 0xC0000001:
641 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
642 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
643 		break;
644 	case 3: /* Processor serial number */
645 	case 5: /* MONITOR/MWAIT */
646 	case 0xC0000002:
647 	case 0xC0000003:
648 	case 0xC0000004:
649 	default:
650 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
651 		break;
652 	}
653 
654 	kvm_x86_ops->set_supported_cpuid(function, entry);
655 
656 	r = 0;
657 
658 out:
659 	put_cpu();
660 
661 	return r;
662 }
663 
664 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
665 			u32 idx, int *nent, int maxnent, unsigned int type)
666 {
667 	if (type == KVM_GET_EMULATED_CPUID)
668 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
669 
670 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
671 }
672 
673 #undef F
674 
675 struct kvm_cpuid_param {
676 	u32 func;
677 	u32 idx;
678 	bool has_leaf_count;
679 	bool (*qualifier)(const struct kvm_cpuid_param *param);
680 };
681 
682 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
683 {
684 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
685 }
686 
687 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
688 				 __u32 num_entries, unsigned int ioctl_type)
689 {
690 	int i;
691 	__u32 pad[3];
692 
693 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
694 		return false;
695 
696 	/*
697 	 * We want to make sure that ->padding is being passed clean from
698 	 * userspace in case we want to use it for something in the future.
699 	 *
700 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
701 	 * have to give ourselves satisfied only with the emulated side. /me
702 	 * sheds a tear.
703 	 */
704 	for (i = 0; i < num_entries; i++) {
705 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
706 			return true;
707 
708 		if (pad[0] || pad[1] || pad[2])
709 			return true;
710 	}
711 	return false;
712 }
713 
714 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
715 			    struct kvm_cpuid_entry2 __user *entries,
716 			    unsigned int type)
717 {
718 	struct kvm_cpuid_entry2 *cpuid_entries;
719 	int limit, nent = 0, r = -E2BIG, i;
720 	u32 func;
721 	static const struct kvm_cpuid_param param[] = {
722 		{ .func = 0, .has_leaf_count = true },
723 		{ .func = 0x80000000, .has_leaf_count = true },
724 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
725 		{ .func = KVM_CPUID_SIGNATURE },
726 		{ .func = KVM_CPUID_FEATURES },
727 	};
728 
729 	if (cpuid->nent < 1)
730 		goto out;
731 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
732 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
733 
734 	if (sanity_check_entries(entries, cpuid->nent, type))
735 		return -EINVAL;
736 
737 	r = -ENOMEM;
738 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
739 	if (!cpuid_entries)
740 		goto out;
741 
742 	r = 0;
743 	for (i = 0; i < ARRAY_SIZE(param); i++) {
744 		const struct kvm_cpuid_param *ent = &param[i];
745 
746 		if (ent->qualifier && !ent->qualifier(ent))
747 			continue;
748 
749 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
750 				&nent, cpuid->nent, type);
751 
752 		if (r)
753 			goto out_free;
754 
755 		if (!ent->has_leaf_count)
756 			continue;
757 
758 		limit = cpuid_entries[nent - 1].eax;
759 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
760 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
761 				     &nent, cpuid->nent, type);
762 
763 		if (r)
764 			goto out_free;
765 	}
766 
767 	r = -EFAULT;
768 	if (copy_to_user(entries, cpuid_entries,
769 			 nent * sizeof(struct kvm_cpuid_entry2)))
770 		goto out_free;
771 	cpuid->nent = nent;
772 	r = 0;
773 
774 out_free:
775 	vfree(cpuid_entries);
776 out:
777 	return r;
778 }
779 
780 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
781 {
782 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
783 	int j, nent = vcpu->arch.cpuid_nent;
784 
785 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
786 	/* when no next entry is found, the current entry[i] is reselected */
787 	for (j = i + 1; ; j = (j + 1) % nent) {
788 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
789 		if (ej->function == e->function) {
790 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
791 			return j;
792 		}
793 	}
794 	return 0; /* silence gcc, even though control never reaches here */
795 }
796 
797 /* find an entry with matching function, matching index (if needed), and that
798  * should be read next (if it's stateful) */
799 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
800 	u32 function, u32 index)
801 {
802 	if (e->function != function)
803 		return 0;
804 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
805 		return 0;
806 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
807 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
808 		return 0;
809 	return 1;
810 }
811 
812 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
813 					      u32 function, u32 index)
814 {
815 	int i;
816 	struct kvm_cpuid_entry2 *best = NULL;
817 
818 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
819 		struct kvm_cpuid_entry2 *e;
820 
821 		e = &vcpu->arch.cpuid_entries[i];
822 		if (is_matching_cpuid_entry(e, function, index)) {
823 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
824 				move_to_next_stateful_cpuid_entry(vcpu, i);
825 			best = e;
826 			break;
827 		}
828 	}
829 	return best;
830 }
831 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
832 
833 /*
834  * If no match is found, check whether we exceed the vCPU's limit
835  * and return the content of the highest valid _standard_ leaf instead.
836  * This is to satisfy the CPUID specification.
837  */
838 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
839                                                   u32 function, u32 index)
840 {
841 	struct kvm_cpuid_entry2 *maxlevel;
842 
843 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
844 	if (!maxlevel || maxlevel->eax >= function)
845 		return NULL;
846 	if (function & 0x80000000) {
847 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
848 		if (!maxlevel)
849 			return NULL;
850 	}
851 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
852 }
853 
854 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
855 {
856 	u32 function = *eax, index = *ecx;
857 	struct kvm_cpuid_entry2 *best;
858 
859 	best = kvm_find_cpuid_entry(vcpu, function, index);
860 
861 	if (!best)
862 		best = check_cpuid_limit(vcpu, function, index);
863 
864 	if (best) {
865 		*eax = best->eax;
866 		*ebx = best->ebx;
867 		*ecx = best->ecx;
868 		*edx = best->edx;
869 	} else
870 		*eax = *ebx = *ecx = *edx = 0;
871 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
872 }
873 EXPORT_SYMBOL_GPL(kvm_cpuid);
874 
875 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
876 {
877 	u32 eax, ebx, ecx, edx;
878 
879 	eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
880 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
881 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
882 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
883 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
884 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
885 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
886 	return kvm_skip_emulated_instruction(vcpu);
887 }
888 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
889