xref: /openbmc/linux/arch/x86/kvm/cpuid.c (revision 110e6f26)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/fpu/internal.h> /* For use_eager_fpu.  Ugh! */
20 #include <asm/user.h>
21 #include <asm/fpu/xstate.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27 
28 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29 {
30 	int feature_bit = 0;
31 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32 
33 	xstate_bv &= XFEATURE_MASK_EXTEND;
34 	while (xstate_bv) {
35 		if (xstate_bv & 0x1) {
36 		        u32 eax, ebx, ecx, edx, offset;
37 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
38 			offset = compacted ? ret : ebx;
39 			ret = max(ret, offset + eax);
40 		}
41 
42 		xstate_bv >>= 1;
43 		feature_bit++;
44 	}
45 
46 	return ret;
47 }
48 
49 bool kvm_mpx_supported(void)
50 {
51 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
52 		 && kvm_x86_ops->mpx_supported());
53 }
54 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55 
56 u64 kvm_supported_xcr0(void)
57 {
58 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59 
60 	if (!kvm_mpx_supported())
61 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62 
63 	return xcr0;
64 }
65 
66 #define F(x) bit(X86_FEATURE_##x)
67 
68 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
69 {
70 	struct kvm_cpuid_entry2 *best;
71 	struct kvm_lapic *apic = vcpu->arch.apic;
72 
73 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
74 	if (!best)
75 		return 0;
76 
77 	/* Update OSXSAVE bit */
78 	if (cpu_has_xsave && best->function == 0x1) {
79 		best->ecx &= ~F(OSXSAVE);
80 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
81 			best->ecx |= F(OSXSAVE);
82 	}
83 
84 	if (apic) {
85 		if (best->ecx & F(TSC_DEADLINE_TIMER))
86 			apic->lapic_timer.timer_mode_mask = 3 << 17;
87 		else
88 			apic->lapic_timer.timer_mode_mask = 1 << 17;
89 	}
90 
91 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
92 	if (best) {
93 		/* Update OSPKE bit */
94 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
95 			best->ecx &= ~F(OSPKE);
96 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
97 				best->ecx |= F(OSPKE);
98 		}
99 	}
100 
101 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
102 	if (!best) {
103 		vcpu->arch.guest_supported_xcr0 = 0;
104 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
105 	} else {
106 		vcpu->arch.guest_supported_xcr0 =
107 			(best->eax | ((u64)best->edx << 32)) &
108 			kvm_supported_xcr0();
109 		vcpu->arch.guest_xstate_size = best->ebx =
110 			xstate_required_size(vcpu->arch.xcr0, false);
111 	}
112 
113 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
114 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
115 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
116 
117 	if (use_eager_fpu())
118 		kvm_x86_ops->fpu_activate(vcpu);
119 
120 	/*
121 	 * The existing code assumes virtual address is 48-bit in the canonical
122 	 * address checks; exit if it is ever changed.
123 	 */
124 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 	if (best && ((best->eax & 0xff00) >> 8) != 48 &&
126 		((best->eax & 0xff00) >> 8) != 0)
127 		return -EINVAL;
128 
129 	/* Update physical-address width */
130 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
131 
132 	kvm_pmu_refresh(vcpu);
133 	return 0;
134 }
135 
136 static int is_efer_nx(void)
137 {
138 	unsigned long long efer = 0;
139 
140 	rdmsrl_safe(MSR_EFER, &efer);
141 	return efer & EFER_NX;
142 }
143 
144 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
145 {
146 	int i;
147 	struct kvm_cpuid_entry2 *e, *entry;
148 
149 	entry = NULL;
150 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
151 		e = &vcpu->arch.cpuid_entries[i];
152 		if (e->function == 0x80000001) {
153 			entry = e;
154 			break;
155 		}
156 	}
157 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
158 		entry->edx &= ~F(NX);
159 		printk(KERN_INFO "kvm: guest NX capability removed\n");
160 	}
161 }
162 
163 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
164 {
165 	struct kvm_cpuid_entry2 *best;
166 
167 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
168 	if (!best || best->eax < 0x80000008)
169 		goto not_found;
170 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
171 	if (best)
172 		return best->eax & 0xff;
173 not_found:
174 	return 36;
175 }
176 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
177 
178 /* when an old userspace process fills a new kernel module */
179 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
180 			     struct kvm_cpuid *cpuid,
181 			     struct kvm_cpuid_entry __user *entries)
182 {
183 	int r, i;
184 	struct kvm_cpuid_entry *cpuid_entries;
185 
186 	r = -E2BIG;
187 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
188 		goto out;
189 	r = -ENOMEM;
190 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
191 	if (!cpuid_entries)
192 		goto out;
193 	r = -EFAULT;
194 	if (copy_from_user(cpuid_entries, entries,
195 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
196 		goto out_free;
197 	for (i = 0; i < cpuid->nent; i++) {
198 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
199 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
200 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
201 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
202 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
203 		vcpu->arch.cpuid_entries[i].index = 0;
204 		vcpu->arch.cpuid_entries[i].flags = 0;
205 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
206 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
207 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
208 	}
209 	vcpu->arch.cpuid_nent = cpuid->nent;
210 	cpuid_fix_nx_cap(vcpu);
211 	kvm_apic_set_version(vcpu);
212 	kvm_x86_ops->cpuid_update(vcpu);
213 	r = kvm_update_cpuid(vcpu);
214 
215 out_free:
216 	vfree(cpuid_entries);
217 out:
218 	return r;
219 }
220 
221 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
222 			      struct kvm_cpuid2 *cpuid,
223 			      struct kvm_cpuid_entry2 __user *entries)
224 {
225 	int r;
226 
227 	r = -E2BIG;
228 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
229 		goto out;
230 	r = -EFAULT;
231 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
232 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
233 		goto out;
234 	vcpu->arch.cpuid_nent = cpuid->nent;
235 	kvm_apic_set_version(vcpu);
236 	kvm_x86_ops->cpuid_update(vcpu);
237 	r = kvm_update_cpuid(vcpu);
238 out:
239 	return r;
240 }
241 
242 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
243 			      struct kvm_cpuid2 *cpuid,
244 			      struct kvm_cpuid_entry2 __user *entries)
245 {
246 	int r;
247 
248 	r = -E2BIG;
249 	if (cpuid->nent < vcpu->arch.cpuid_nent)
250 		goto out;
251 	r = -EFAULT;
252 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
253 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
254 		goto out;
255 	return 0;
256 
257 out:
258 	cpuid->nent = vcpu->arch.cpuid_nent;
259 	return r;
260 }
261 
262 static void cpuid_mask(u32 *word, int wordnum)
263 {
264 	*word &= boot_cpu_data.x86_capability[wordnum];
265 }
266 
267 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
268 			   u32 index)
269 {
270 	entry->function = function;
271 	entry->index = index;
272 	cpuid_count(entry->function, entry->index,
273 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
274 	entry->flags = 0;
275 }
276 
277 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
278 				   u32 func, u32 index, int *nent, int maxnent)
279 {
280 	switch (func) {
281 	case 0:
282 		entry->eax = 1;		/* only one leaf currently */
283 		++*nent;
284 		break;
285 	case 1:
286 		entry->ecx = F(MOVBE);
287 		++*nent;
288 		break;
289 	default:
290 		break;
291 	}
292 
293 	entry->function = func;
294 	entry->index = index;
295 
296 	return 0;
297 }
298 
299 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
300 				 u32 index, int *nent, int maxnent)
301 {
302 	int r;
303 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
304 #ifdef CONFIG_X86_64
305 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
306 				? F(GBPAGES) : 0;
307 	unsigned f_lm = F(LM);
308 #else
309 	unsigned f_gbpages = 0;
310 	unsigned f_lm = 0;
311 #endif
312 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
313 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
314 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
315 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
316 
317 	/* cpuid 1.edx */
318 	const u32 kvm_cpuid_1_edx_x86_features =
319 		F(FPU) | F(VME) | F(DE) | F(PSE) |
320 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
321 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
322 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
323 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
324 		0 /* Reserved, DS, ACPI */ | F(MMX) |
325 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
326 		0 /* HTT, TM, Reserved, PBE */;
327 	/* cpuid 0x80000001.edx */
328 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
329 		F(FPU) | F(VME) | F(DE) | F(PSE) |
330 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
331 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
332 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
333 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
334 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
335 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
336 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
337 	/* cpuid 1.ecx */
338 	const u32 kvm_cpuid_1_ecx_x86_features =
339 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
340 		 * but *not* advertised to guests via CPUID ! */
341 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
342 		0 /* DS-CPL, VMX, SMX, EST */ |
343 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
344 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
345 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
346 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
347 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
348 		F(F16C) | F(RDRAND);
349 	/* cpuid 0x80000001.ecx */
350 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
351 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
352 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
353 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
354 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
355 
356 	/* cpuid 0xC0000001.edx */
357 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
358 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
359 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
360 		F(PMM) | F(PMM_EN);
361 
362 	/* cpuid 7.0.ebx */
363 	const u32 kvm_cpuid_7_0_ebx_x86_features =
364 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
365 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
366 		F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
367 		F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
368 
369 	/* cpuid 0xD.1.eax */
370 	const u32 kvm_cpuid_D_1_eax_x86_features =
371 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
372 
373 	/* cpuid 7.0.ecx*/
374 	const u32 kvm_cpuid_7_0_ecx_x86_features = F(PKU) | 0 /*OSPKE*/;
375 
376 	/* all calls to cpuid_count() should be made on the same cpu */
377 	get_cpu();
378 
379 	r = -E2BIG;
380 
381 	if (*nent >= maxnent)
382 		goto out;
383 
384 	do_cpuid_1_ent(entry, function, index);
385 	++*nent;
386 
387 	switch (function) {
388 	case 0:
389 		entry->eax = min(entry->eax, (u32)0xd);
390 		break;
391 	case 1:
392 		entry->edx &= kvm_cpuid_1_edx_x86_features;
393 		cpuid_mask(&entry->edx, CPUID_1_EDX);
394 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
395 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
396 		/* we support x2apic emulation even if host does not support
397 		 * it since we emulate x2apic in software */
398 		entry->ecx |= F(X2APIC);
399 		break;
400 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
401 	 * may return different values. This forces us to get_cpu() before
402 	 * issuing the first command, and also to emulate this annoying behavior
403 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
404 	case 2: {
405 		int t, times = entry->eax & 0xff;
406 
407 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
408 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
409 		for (t = 1; t < times; ++t) {
410 			if (*nent >= maxnent)
411 				goto out;
412 
413 			do_cpuid_1_ent(&entry[t], function, 0);
414 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
415 			++*nent;
416 		}
417 		break;
418 	}
419 	/* function 4 has additional index. */
420 	case 4: {
421 		int i, cache_type;
422 
423 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
424 		/* read more entries until cache_type is zero */
425 		for (i = 1; ; ++i) {
426 			if (*nent >= maxnent)
427 				goto out;
428 
429 			cache_type = entry[i - 1].eax & 0x1f;
430 			if (!cache_type)
431 				break;
432 			do_cpuid_1_ent(&entry[i], function, i);
433 			entry[i].flags |=
434 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435 			++*nent;
436 		}
437 		break;
438 	}
439 	case 6: /* Thermal management */
440 		entry->eax = 0x4; /* allow ARAT */
441 		entry->ebx = 0;
442 		entry->ecx = 0;
443 		entry->edx = 0;
444 		break;
445 	case 7: {
446 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
447 		/* Mask ebx against host capability word 9 */
448 		if (index == 0) {
449 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
450 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
451 			// TSC_ADJUST is emulated
452 			entry->ebx |= F(TSC_ADJUST);
453 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
454 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
455 			/* PKU is not yet implemented for shadow paging. */
456 			if (!tdp_enabled)
457 				entry->ecx &= ~F(PKU);
458 		} else {
459 			entry->ebx = 0;
460 			entry->ecx = 0;
461 		}
462 		entry->eax = 0;
463 		entry->edx = 0;
464 		break;
465 	}
466 	case 9:
467 		break;
468 	case 0xa: { /* Architectural Performance Monitoring */
469 		struct x86_pmu_capability cap;
470 		union cpuid10_eax eax;
471 		union cpuid10_edx edx;
472 
473 		perf_get_x86_pmu_capability(&cap);
474 
475 		/*
476 		 * Only support guest architectural pmu on a host
477 		 * with architectural pmu.
478 		 */
479 		if (!cap.version)
480 			memset(&cap, 0, sizeof(cap));
481 
482 		eax.split.version_id = min(cap.version, 2);
483 		eax.split.num_counters = cap.num_counters_gp;
484 		eax.split.bit_width = cap.bit_width_gp;
485 		eax.split.mask_length = cap.events_mask_len;
486 
487 		edx.split.num_counters_fixed = cap.num_counters_fixed;
488 		edx.split.bit_width_fixed = cap.bit_width_fixed;
489 		edx.split.reserved = 0;
490 
491 		entry->eax = eax.full;
492 		entry->ebx = cap.events_mask;
493 		entry->ecx = 0;
494 		entry->edx = edx.full;
495 		break;
496 	}
497 	/* function 0xb has additional index. */
498 	case 0xb: {
499 		int i, level_type;
500 
501 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
502 		/* read more entries until level_type is zero */
503 		for (i = 1; ; ++i) {
504 			if (*nent >= maxnent)
505 				goto out;
506 
507 			level_type = entry[i - 1].ecx & 0xff00;
508 			if (!level_type)
509 				break;
510 			do_cpuid_1_ent(&entry[i], function, i);
511 			entry[i].flags |=
512 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
513 			++*nent;
514 		}
515 		break;
516 	}
517 	case 0xd: {
518 		int idx, i;
519 		u64 supported = kvm_supported_xcr0();
520 
521 		entry->eax &= supported;
522 		entry->ebx = xstate_required_size(supported, false);
523 		entry->ecx = entry->ebx;
524 		entry->edx &= supported >> 32;
525 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
526 		if (!supported)
527 			break;
528 
529 		for (idx = 1, i = 1; idx < 64; ++idx) {
530 			u64 mask = ((u64)1 << idx);
531 			if (*nent >= maxnent)
532 				goto out;
533 
534 			do_cpuid_1_ent(&entry[i], function, idx);
535 			if (idx == 1) {
536 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
537 				entry[i].ebx = 0;
538 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
539 					entry[i].ebx =
540 						xstate_required_size(supported,
541 								     true);
542 			} else {
543 				if (entry[i].eax == 0 || !(supported & mask))
544 					continue;
545 				if (WARN_ON_ONCE(entry[i].ecx & 1))
546 					continue;
547 			}
548 			entry[i].ecx = 0;
549 			entry[i].edx = 0;
550 			entry[i].flags |=
551 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
552 			++*nent;
553 			++i;
554 		}
555 		break;
556 	}
557 	case KVM_CPUID_SIGNATURE: {
558 		static const char signature[12] = "KVMKVMKVM\0\0";
559 		const u32 *sigptr = (const u32 *)signature;
560 		entry->eax = KVM_CPUID_FEATURES;
561 		entry->ebx = sigptr[0];
562 		entry->ecx = sigptr[1];
563 		entry->edx = sigptr[2];
564 		break;
565 	}
566 	case KVM_CPUID_FEATURES:
567 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
568 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
569 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
570 			     (1 << KVM_FEATURE_ASYNC_PF) |
571 			     (1 << KVM_FEATURE_PV_EOI) |
572 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
573 			     (1 << KVM_FEATURE_PV_UNHALT);
574 
575 		if (sched_info_on())
576 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
577 
578 		entry->ebx = 0;
579 		entry->ecx = 0;
580 		entry->edx = 0;
581 		break;
582 	case 0x80000000:
583 		entry->eax = min(entry->eax, 0x8000001a);
584 		break;
585 	case 0x80000001:
586 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
587 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
588 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
589 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
590 		break;
591 	case 0x80000007: /* Advanced power management */
592 		/* invariant TSC is CPUID.80000007H:EDX[8] */
593 		entry->edx &= (1 << 8);
594 		/* mask against host */
595 		entry->edx &= boot_cpu_data.x86_power;
596 		entry->eax = entry->ebx = entry->ecx = 0;
597 		break;
598 	case 0x80000008: {
599 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
600 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
601 		unsigned phys_as = entry->eax & 0xff;
602 
603 		if (!g_phys_as)
604 			g_phys_as = phys_as;
605 		entry->eax = g_phys_as | (virt_as << 8);
606 		entry->ebx = entry->edx = 0;
607 		break;
608 	}
609 	case 0x80000019:
610 		entry->ecx = entry->edx = 0;
611 		break;
612 	case 0x8000001a:
613 		break;
614 	case 0x8000001d:
615 		break;
616 	/*Add support for Centaur's CPUID instruction*/
617 	case 0xC0000000:
618 		/*Just support up to 0xC0000004 now*/
619 		entry->eax = min(entry->eax, 0xC0000004);
620 		break;
621 	case 0xC0000001:
622 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
623 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
624 		break;
625 	case 3: /* Processor serial number */
626 	case 5: /* MONITOR/MWAIT */
627 	case 0xC0000002:
628 	case 0xC0000003:
629 	case 0xC0000004:
630 	default:
631 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
632 		break;
633 	}
634 
635 	kvm_x86_ops->set_supported_cpuid(function, entry);
636 
637 	r = 0;
638 
639 out:
640 	put_cpu();
641 
642 	return r;
643 }
644 
645 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
646 			u32 idx, int *nent, int maxnent, unsigned int type)
647 {
648 	if (type == KVM_GET_EMULATED_CPUID)
649 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
650 
651 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
652 }
653 
654 #undef F
655 
656 struct kvm_cpuid_param {
657 	u32 func;
658 	u32 idx;
659 	bool has_leaf_count;
660 	bool (*qualifier)(const struct kvm_cpuid_param *param);
661 };
662 
663 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
664 {
665 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
666 }
667 
668 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
669 				 __u32 num_entries, unsigned int ioctl_type)
670 {
671 	int i;
672 	__u32 pad[3];
673 
674 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
675 		return false;
676 
677 	/*
678 	 * We want to make sure that ->padding is being passed clean from
679 	 * userspace in case we want to use it for something in the future.
680 	 *
681 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
682 	 * have to give ourselves satisfied only with the emulated side. /me
683 	 * sheds a tear.
684 	 */
685 	for (i = 0; i < num_entries; i++) {
686 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
687 			return true;
688 
689 		if (pad[0] || pad[1] || pad[2])
690 			return true;
691 	}
692 	return false;
693 }
694 
695 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
696 			    struct kvm_cpuid_entry2 __user *entries,
697 			    unsigned int type)
698 {
699 	struct kvm_cpuid_entry2 *cpuid_entries;
700 	int limit, nent = 0, r = -E2BIG, i;
701 	u32 func;
702 	static const struct kvm_cpuid_param param[] = {
703 		{ .func = 0, .has_leaf_count = true },
704 		{ .func = 0x80000000, .has_leaf_count = true },
705 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
706 		{ .func = KVM_CPUID_SIGNATURE },
707 		{ .func = KVM_CPUID_FEATURES },
708 	};
709 
710 	if (cpuid->nent < 1)
711 		goto out;
712 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
713 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
714 
715 	if (sanity_check_entries(entries, cpuid->nent, type))
716 		return -EINVAL;
717 
718 	r = -ENOMEM;
719 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
720 	if (!cpuid_entries)
721 		goto out;
722 
723 	r = 0;
724 	for (i = 0; i < ARRAY_SIZE(param); i++) {
725 		const struct kvm_cpuid_param *ent = &param[i];
726 
727 		if (ent->qualifier && !ent->qualifier(ent))
728 			continue;
729 
730 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
731 				&nent, cpuid->nent, type);
732 
733 		if (r)
734 			goto out_free;
735 
736 		if (!ent->has_leaf_count)
737 			continue;
738 
739 		limit = cpuid_entries[nent - 1].eax;
740 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
741 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
742 				     &nent, cpuid->nent, type);
743 
744 		if (r)
745 			goto out_free;
746 	}
747 
748 	r = -EFAULT;
749 	if (copy_to_user(entries, cpuid_entries,
750 			 nent * sizeof(struct kvm_cpuid_entry2)))
751 		goto out_free;
752 	cpuid->nent = nent;
753 	r = 0;
754 
755 out_free:
756 	vfree(cpuid_entries);
757 out:
758 	return r;
759 }
760 
761 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
762 {
763 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
764 	int j, nent = vcpu->arch.cpuid_nent;
765 
766 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
767 	/* when no next entry is found, the current entry[i] is reselected */
768 	for (j = i + 1; ; j = (j + 1) % nent) {
769 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
770 		if (ej->function == e->function) {
771 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
772 			return j;
773 		}
774 	}
775 	return 0; /* silence gcc, even though control never reaches here */
776 }
777 
778 /* find an entry with matching function, matching index (if needed), and that
779  * should be read next (if it's stateful) */
780 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
781 	u32 function, u32 index)
782 {
783 	if (e->function != function)
784 		return 0;
785 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
786 		return 0;
787 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
788 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
789 		return 0;
790 	return 1;
791 }
792 
793 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
794 					      u32 function, u32 index)
795 {
796 	int i;
797 	struct kvm_cpuid_entry2 *best = NULL;
798 
799 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
800 		struct kvm_cpuid_entry2 *e;
801 
802 		e = &vcpu->arch.cpuid_entries[i];
803 		if (is_matching_cpuid_entry(e, function, index)) {
804 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
805 				move_to_next_stateful_cpuid_entry(vcpu, i);
806 			best = e;
807 			break;
808 		}
809 	}
810 	return best;
811 }
812 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
813 
814 /*
815  * If no match is found, check whether we exceed the vCPU's limit
816  * and return the content of the highest valid _standard_ leaf instead.
817  * This is to satisfy the CPUID specification.
818  */
819 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
820                                                   u32 function, u32 index)
821 {
822 	struct kvm_cpuid_entry2 *maxlevel;
823 
824 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
825 	if (!maxlevel || maxlevel->eax >= function)
826 		return NULL;
827 	if (function & 0x80000000) {
828 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
829 		if (!maxlevel)
830 			return NULL;
831 	}
832 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
833 }
834 
835 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
836 {
837 	u32 function = *eax, index = *ecx;
838 	struct kvm_cpuid_entry2 *best;
839 
840 	best = kvm_find_cpuid_entry(vcpu, function, index);
841 
842 	if (!best)
843 		best = check_cpuid_limit(vcpu, function, index);
844 
845 	/*
846 	 * Perfmon not yet supported for L2 guest.
847 	 */
848 	if (is_guest_mode(vcpu) && function == 0xa)
849 		best = NULL;
850 
851 	if (best) {
852 		*eax = best->eax;
853 		*ebx = best->ebx;
854 		*ecx = best->ecx;
855 		*edx = best->edx;
856 	} else
857 		*eax = *ebx = *ecx = *edx = 0;
858 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
859 }
860 EXPORT_SYMBOL_GPL(kvm_cpuid);
861 
862 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
863 {
864 	u32 function, eax, ebx, ecx, edx;
865 
866 	function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
867 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
868 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
869 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
870 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
871 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
872 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
873 	kvm_x86_ops->skip_emulated_instruction(vcpu);
874 }
875 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
876