1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * cpuid support routines 5 * 6 * derived from arch/x86/kvm/x86.c 7 * 8 * Copyright 2011 Red Hat, Inc. and/or its affiliates. 9 * Copyright IBM Corporation, 2008 10 */ 11 12 #include <linux/kvm_host.h> 13 #include <linux/export.h> 14 #include <linux/vmalloc.h> 15 #include <linux/uaccess.h> 16 #include <linux/sched/stat.h> 17 18 #include <asm/processor.h> 19 #include <asm/user.h> 20 #include <asm/fpu/xstate.h> 21 #include <asm/sgx.h> 22 #include <asm/cpuid.h> 23 #include "cpuid.h" 24 #include "lapic.h" 25 #include "mmu.h" 26 #include "trace.h" 27 #include "pmu.h" 28 29 /* 30 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be 31 * aligned to sizeof(unsigned long) because it's not accessed via bitops. 32 */ 33 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly; 34 EXPORT_SYMBOL_GPL(kvm_cpu_caps); 35 36 u32 xstate_required_size(u64 xstate_bv, bool compacted) 37 { 38 int feature_bit = 0; 39 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 40 41 xstate_bv &= XFEATURE_MASK_EXTEND; 42 while (xstate_bv) { 43 if (xstate_bv & 0x1) { 44 u32 eax, ebx, ecx, edx, offset; 45 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); 46 /* ECX[1]: 64B alignment in compacted form */ 47 if (compacted) 48 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret; 49 else 50 offset = ebx; 51 ret = max(ret, offset + eax); 52 } 53 54 xstate_bv >>= 1; 55 feature_bit++; 56 } 57 58 return ret; 59 } 60 61 /* 62 * This one is tied to SSB in the user API, and not 63 * visible in /proc/cpuinfo. 64 */ 65 #define KVM_X86_FEATURE_AMD_PSFD (13*32+28) /* Predictive Store Forwarding Disable */ 66 67 #define F feature_bit 68 69 /* Scattered Flag - For features that are scattered by cpufeatures.h. */ 70 #define SF(name) \ 71 ({ \ 72 BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \ 73 (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0); \ 74 }) 75 76 /* 77 * Magic value used by KVM when querying userspace-provided CPUID entries and 78 * doesn't care about the CPIUD index because the index of the function in 79 * question is not significant. Note, this magic value must have at least one 80 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find() 81 * to avoid false positives when processing guest CPUID input. 82 */ 83 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull 84 85 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find( 86 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index) 87 { 88 struct kvm_cpuid_entry2 *e; 89 int i; 90 91 for (i = 0; i < nent; i++) { 92 e = &entries[i]; 93 94 if (e->function != function) 95 continue; 96 97 /* 98 * If the index isn't significant, use the first entry with a 99 * matching function. It's userspace's responsibilty to not 100 * provide "duplicate" entries in all cases. 101 */ 102 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index) 103 return e; 104 105 106 /* 107 * Similarly, use the first matching entry if KVM is doing a 108 * lookup (as opposed to emulating CPUID) for a function that's 109 * architecturally defined as not having a significant index. 110 */ 111 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) { 112 /* 113 * Direct lookups from KVM should not diverge from what 114 * KVM defines internally (the architectural behavior). 115 */ 116 WARN_ON_ONCE(cpuid_function_is_indexed(function)); 117 return e; 118 } 119 } 120 121 return NULL; 122 } 123 124 static int kvm_check_cpuid(struct kvm_vcpu *vcpu, 125 struct kvm_cpuid_entry2 *entries, 126 int nent) 127 { 128 struct kvm_cpuid_entry2 *best; 129 u64 xfeatures; 130 131 /* 132 * The existing code assumes virtual address is 48-bit or 57-bit in the 133 * canonical address checks; exit if it is ever changed. 134 */ 135 best = cpuid_entry2_find(entries, nent, 0x80000008, 136 KVM_CPUID_INDEX_NOT_SIGNIFICANT); 137 if (best) { 138 int vaddr_bits = (best->eax & 0xff00) >> 8; 139 140 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) 141 return -EINVAL; 142 } 143 144 /* 145 * Exposing dynamic xfeatures to the guest requires additional 146 * enabling in the FPU, e.g. to expand the guest XSAVE state size. 147 */ 148 best = cpuid_entry2_find(entries, nent, 0xd, 0); 149 if (!best) 150 return 0; 151 152 xfeatures = best->eax | ((u64)best->edx << 32); 153 xfeatures &= XFEATURE_MASK_USER_DYNAMIC; 154 if (!xfeatures) 155 return 0; 156 157 return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures); 158 } 159 160 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */ 161 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, 162 int nent) 163 { 164 struct kvm_cpuid_entry2 *orig; 165 int i; 166 167 if (nent != vcpu->arch.cpuid_nent) 168 return -EINVAL; 169 170 for (i = 0; i < nent; i++) { 171 orig = &vcpu->arch.cpuid_entries[i]; 172 if (e2[i].function != orig->function || 173 e2[i].index != orig->index || 174 e2[i].flags != orig->flags || 175 e2[i].eax != orig->eax || e2[i].ebx != orig->ebx || 176 e2[i].ecx != orig->ecx || e2[i].edx != orig->edx) 177 return -EINVAL; 178 } 179 180 return 0; 181 } 182 183 static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu) 184 { 185 u32 function; 186 struct kvm_cpuid_entry2 *entry; 187 188 vcpu->arch.kvm_cpuid_base = 0; 189 190 for_each_possible_hypervisor_cpuid_base(function) { 191 entry = kvm_find_cpuid_entry(vcpu, function); 192 193 if (entry) { 194 u32 signature[3]; 195 196 signature[0] = entry->ebx; 197 signature[1] = entry->ecx; 198 signature[2] = entry->edx; 199 200 BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE)); 201 if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) { 202 vcpu->arch.kvm_cpuid_base = function; 203 break; 204 } 205 } 206 } 207 } 208 209 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu, 210 struct kvm_cpuid_entry2 *entries, int nent) 211 { 212 u32 base = vcpu->arch.kvm_cpuid_base; 213 214 if (!base) 215 return NULL; 216 217 return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES, 218 KVM_CPUID_INDEX_NOT_SIGNIFICANT); 219 } 220 221 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu) 222 { 223 return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries, 224 vcpu->arch.cpuid_nent); 225 } 226 227 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu) 228 { 229 struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu); 230 231 /* 232 * save the feature bitmap to avoid cpuid lookup for every PV 233 * operation 234 */ 235 if (best) 236 vcpu->arch.pv_cpuid.features = best->eax; 237 } 238 239 /* 240 * Calculate guest's supported XCR0 taking into account guest CPUID data and 241 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0). 242 */ 243 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent) 244 { 245 struct kvm_cpuid_entry2 *best; 246 247 best = cpuid_entry2_find(entries, nent, 0xd, 0); 248 if (!best) 249 return 0; 250 251 return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0; 252 } 253 254 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries, 255 int nent) 256 { 257 struct kvm_cpuid_entry2 *best; 258 u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent); 259 260 best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT); 261 if (best) { 262 /* Update OSXSAVE bit */ 263 if (boot_cpu_has(X86_FEATURE_XSAVE)) 264 cpuid_entry_change(best, X86_FEATURE_OSXSAVE, 265 kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)); 266 267 cpuid_entry_change(best, X86_FEATURE_APIC, 268 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE); 269 } 270 271 best = cpuid_entry2_find(entries, nent, 7, 0); 272 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) 273 cpuid_entry_change(best, X86_FEATURE_OSPKE, 274 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)); 275 276 best = cpuid_entry2_find(entries, nent, 0xD, 0); 277 if (best) 278 best->ebx = xstate_required_size(vcpu->arch.xcr0, false); 279 280 best = cpuid_entry2_find(entries, nent, 0xD, 1); 281 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) || 282 cpuid_entry_has(best, X86_FEATURE_XSAVEC))) 283 best->ebx = xstate_required_size(vcpu->arch.xcr0, true); 284 285 best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent); 286 if (kvm_hlt_in_guest(vcpu->kvm) && best && 287 (best->eax & (1 << KVM_FEATURE_PV_UNHALT))) 288 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); 289 290 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) { 291 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT); 292 if (best) 293 cpuid_entry_change(best, X86_FEATURE_MWAIT, 294 vcpu->arch.ia32_misc_enable_msr & 295 MSR_IA32_MISC_ENABLE_MWAIT); 296 } 297 298 /* 299 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate 300 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's 301 * requested XCR0 value. The enclave's XFRM must be a subset of XCRO 302 * at the time of EENTER, thus adjust the allowed XFRM by the guest's 303 * supported XCR0. Similar to XCR0 handling, FP and SSE are forced to 304 * '1' even on CPUs that don't support XSAVE. 305 */ 306 best = cpuid_entry2_find(entries, nent, 0x12, 0x1); 307 if (best) { 308 best->ecx &= guest_supported_xcr0 & 0xffffffff; 309 best->edx &= guest_supported_xcr0 >> 32; 310 best->ecx |= XFEATURE_MASK_FPSSE; 311 } 312 } 313 314 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu) 315 { 316 __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent); 317 } 318 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime); 319 320 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent) 321 { 322 struct kvm_cpuid_entry2 *entry; 323 324 entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE, 325 KVM_CPUID_INDEX_NOT_SIGNIFICANT); 326 return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX; 327 } 328 329 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 330 { 331 struct kvm_lapic *apic = vcpu->arch.apic; 332 struct kvm_cpuid_entry2 *best; 333 334 best = kvm_find_cpuid_entry(vcpu, 1); 335 if (best && apic) { 336 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER)) 337 apic->lapic_timer.timer_mode_mask = 3 << 17; 338 else 339 apic->lapic_timer.timer_mode_mask = 1 << 17; 340 341 kvm_apic_set_version(vcpu); 342 } 343 344 vcpu->arch.guest_supported_xcr0 = 345 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent); 346 347 /* 348 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if 349 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't 350 * supported by the host. 351 */ 352 vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 | 353 XFEATURE_MASK_FPSSE; 354 355 kvm_update_pv_runtime(vcpu); 356 357 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 358 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 359 360 kvm_pmu_refresh(vcpu); 361 vcpu->arch.cr4_guest_rsvd_bits = 362 __cr4_reserved_bits(guest_cpuid_has, vcpu); 363 364 kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries, 365 vcpu->arch.cpuid_nent)); 366 367 /* Invoke the vendor callback only after the above state is updated. */ 368 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu); 369 370 /* 371 * Except for the MMU, which needs to do its thing any vendor specific 372 * adjustments to the reserved GPA bits. 373 */ 374 kvm_mmu_after_set_cpuid(vcpu); 375 } 376 377 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) 378 { 379 struct kvm_cpuid_entry2 *best; 380 381 best = kvm_find_cpuid_entry(vcpu, 0x80000000); 382 if (!best || best->eax < 0x80000008) 383 goto not_found; 384 best = kvm_find_cpuid_entry(vcpu, 0x80000008); 385 if (best) 386 return best->eax & 0xff; 387 not_found: 388 return 36; 389 } 390 391 /* 392 * This "raw" version returns the reserved GPA bits without any adjustments for 393 * encryption technologies that usurp bits. The raw mask should be used if and 394 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs. 395 */ 396 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu) 397 { 398 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63); 399 } 400 401 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, 402 int nent) 403 { 404 int r; 405 406 __kvm_update_cpuid_runtime(vcpu, e2, nent); 407 408 /* 409 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as 410 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't 411 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page 412 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with 413 * the core vCPU model on the fly. It would've been better to forbid any 414 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately 415 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do 416 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check 417 * whether the supplied CPUID data is equal to what's already set. 418 */ 419 if (vcpu->arch.last_vmentry_cpu != -1) { 420 r = kvm_cpuid_check_equal(vcpu, e2, nent); 421 if (r) 422 return r; 423 424 kvfree(e2); 425 return 0; 426 } 427 428 if (kvm_cpuid_has_hyperv(e2, nent)) { 429 r = kvm_hv_vcpu_init(vcpu); 430 if (r) 431 return r; 432 } 433 434 r = kvm_check_cpuid(vcpu, e2, nent); 435 if (r) 436 return r; 437 438 kvfree(vcpu->arch.cpuid_entries); 439 vcpu->arch.cpuid_entries = e2; 440 vcpu->arch.cpuid_nent = nent; 441 442 kvm_update_kvm_cpuid_base(vcpu); 443 kvm_vcpu_after_set_cpuid(vcpu); 444 445 return 0; 446 } 447 448 /* when an old userspace process fills a new kernel module */ 449 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, 450 struct kvm_cpuid *cpuid, 451 struct kvm_cpuid_entry __user *entries) 452 { 453 int r, i; 454 struct kvm_cpuid_entry *e = NULL; 455 struct kvm_cpuid_entry2 *e2 = NULL; 456 457 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 458 return -E2BIG; 459 460 if (cpuid->nent) { 461 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent)); 462 if (IS_ERR(e)) 463 return PTR_ERR(e); 464 465 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT); 466 if (!e2) { 467 r = -ENOMEM; 468 goto out_free_cpuid; 469 } 470 } 471 for (i = 0; i < cpuid->nent; i++) { 472 e2[i].function = e[i].function; 473 e2[i].eax = e[i].eax; 474 e2[i].ebx = e[i].ebx; 475 e2[i].ecx = e[i].ecx; 476 e2[i].edx = e[i].edx; 477 e2[i].index = 0; 478 e2[i].flags = 0; 479 e2[i].padding[0] = 0; 480 e2[i].padding[1] = 0; 481 e2[i].padding[2] = 0; 482 } 483 484 r = kvm_set_cpuid(vcpu, e2, cpuid->nent); 485 if (r) 486 kvfree(e2); 487 488 out_free_cpuid: 489 kvfree(e); 490 491 return r; 492 } 493 494 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, 495 struct kvm_cpuid2 *cpuid, 496 struct kvm_cpuid_entry2 __user *entries) 497 { 498 struct kvm_cpuid_entry2 *e2 = NULL; 499 int r; 500 501 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 502 return -E2BIG; 503 504 if (cpuid->nent) { 505 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent)); 506 if (IS_ERR(e2)) 507 return PTR_ERR(e2); 508 } 509 510 r = kvm_set_cpuid(vcpu, e2, cpuid->nent); 511 if (r) 512 kvfree(e2); 513 514 return r; 515 } 516 517 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, 518 struct kvm_cpuid2 *cpuid, 519 struct kvm_cpuid_entry2 __user *entries) 520 { 521 int r; 522 523 r = -E2BIG; 524 if (cpuid->nent < vcpu->arch.cpuid_nent) 525 goto out; 526 r = -EFAULT; 527 if (copy_to_user(entries, vcpu->arch.cpuid_entries, 528 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) 529 goto out; 530 return 0; 531 532 out: 533 cpuid->nent = vcpu->arch.cpuid_nent; 534 return r; 535 } 536 537 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */ 538 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf) 539 { 540 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); 541 struct kvm_cpuid_entry2 entry; 542 543 reverse_cpuid_check(leaf); 544 545 cpuid_count(cpuid.function, cpuid.index, 546 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx); 547 548 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg); 549 } 550 551 static __always_inline 552 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask) 553 { 554 /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */ 555 BUILD_BUG_ON(leaf < NCAPINTS); 556 557 kvm_cpu_caps[leaf] = mask; 558 559 __kvm_cpu_cap_mask(leaf); 560 } 561 562 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask) 563 { 564 /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */ 565 BUILD_BUG_ON(leaf >= NCAPINTS); 566 567 kvm_cpu_caps[leaf] &= mask; 568 569 __kvm_cpu_cap_mask(leaf); 570 } 571 572 void kvm_set_cpu_caps(void) 573 { 574 #ifdef CONFIG_X86_64 575 unsigned int f_gbpages = F(GBPAGES); 576 unsigned int f_lm = F(LM); 577 unsigned int f_xfd = F(XFD); 578 #else 579 unsigned int f_gbpages = 0; 580 unsigned int f_lm = 0; 581 unsigned int f_xfd = 0; 582 #endif 583 memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps)); 584 585 BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) > 586 sizeof(boot_cpu_data.x86_capability)); 587 588 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability, 589 sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps))); 590 591 kvm_cpu_cap_mask(CPUID_1_ECX, 592 /* 593 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not* 594 * advertised to guests via CPUID! 595 */ 596 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | 597 0 /* DS-CPL, VMX, SMX, EST */ | 598 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | 599 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) | 600 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | 601 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | 602 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | 603 F(F16C) | F(RDRAND) 604 ); 605 /* KVM emulates x2apic in software irrespective of host support. */ 606 kvm_cpu_cap_set(X86_FEATURE_X2APIC); 607 608 kvm_cpu_cap_mask(CPUID_1_EDX, 609 F(FPU) | F(VME) | F(DE) | F(PSE) | 610 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 611 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | 612 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 613 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | 614 0 /* Reserved, DS, ACPI */ | F(MMX) | 615 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | 616 0 /* HTT, TM, Reserved, PBE */ 617 ); 618 619 kvm_cpu_cap_mask(CPUID_7_0_EBX, 620 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | 621 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) | 622 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) | 623 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) | 624 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) | 625 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) | 626 F(AVX512VL)); 627 628 kvm_cpu_cap_mask(CPUID_7_ECX, 629 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) | 630 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) | 631 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) | 632 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ | 633 F(SGX_LC) | F(BUS_LOCK_DETECT) 634 ); 635 /* Set LA57 based on hardware capability. */ 636 if (cpuid_ecx(7) & F(LA57)) 637 kvm_cpu_cap_set(X86_FEATURE_LA57); 638 639 /* 640 * PKU not yet implemented for shadow paging and requires OSPKE 641 * to be set on the host. Clear it if that is not the case 642 */ 643 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) 644 kvm_cpu_cap_clear(X86_FEATURE_PKU); 645 646 kvm_cpu_cap_mask(CPUID_7_EDX, 647 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | 648 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) | 649 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) | 650 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) | 651 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) 652 ); 653 654 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */ 655 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST); 656 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES); 657 658 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS)) 659 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL); 660 if (boot_cpu_has(X86_FEATURE_STIBP)) 661 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP); 662 if (boot_cpu_has(X86_FEATURE_AMD_SSBD)) 663 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD); 664 665 kvm_cpu_cap_mask(CPUID_7_1_EAX, 666 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) | F(AMX_FP16) | 667 F(AVX_IFMA) 668 ); 669 670 kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX, 671 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) 672 ); 673 674 kvm_cpu_cap_mask(CPUID_D_1_EAX, 675 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd 676 ); 677 678 kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX, 679 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA) 680 ); 681 682 kvm_cpu_cap_mask(CPUID_8000_0001_ECX, 683 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | 684 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | 685 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | 686 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) | 687 F(TOPOEXT) | 0 /* PERFCTR_CORE */ 688 ); 689 690 kvm_cpu_cap_mask(CPUID_8000_0001_EDX, 691 F(FPU) | F(VME) | F(DE) | F(PSE) | 692 F(TSC) | F(MSR) | F(PAE) | F(MCE) | 693 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | 694 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 695 F(PAT) | F(PSE36) | 0 /* Reserved */ | 696 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | 697 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) | 698 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW) 699 ); 700 701 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64)) 702 kvm_cpu_cap_set(X86_FEATURE_GBPAGES); 703 704 kvm_cpu_cap_mask(CPUID_8000_0008_EBX, 705 F(CLZERO) | F(XSAVEERPTR) | 706 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | 707 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) | 708 __feature_bit(KVM_X86_FEATURE_AMD_PSFD) 709 ); 710 711 /* 712 * AMD has separate bits for each SPEC_CTRL bit. 713 * arch/x86/kernel/cpu/bugs.c is kind enough to 714 * record that in cpufeatures so use them. 715 */ 716 if (boot_cpu_has(X86_FEATURE_IBPB)) 717 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB); 718 if (boot_cpu_has(X86_FEATURE_IBRS)) 719 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS); 720 if (boot_cpu_has(X86_FEATURE_STIBP)) 721 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP); 722 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD)) 723 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD); 724 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 725 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO); 726 /* 727 * The preference is to use SPEC CTRL MSR instead of the 728 * VIRT_SPEC MSR. 729 */ 730 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && 731 !boot_cpu_has(X86_FEATURE_AMD_SSBD)) 732 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 733 734 /* 735 * Hide all SVM features by default, SVM will set the cap bits for 736 * features it emulates and/or exposes for L1. 737 */ 738 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0); 739 740 kvm_cpu_cap_mask(CPUID_8000_001F_EAX, 741 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) | 742 F(SME_COHERENT)); 743 744 kvm_cpu_cap_mask(CPUID_C000_0001_EDX, 745 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | 746 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | 747 F(PMM) | F(PMM_EN) 748 ); 749 750 /* 751 * Hide RDTSCP and RDPID if either feature is reported as supported but 752 * probing MSR_TSC_AUX failed. This is purely a sanity check and 753 * should never happen, but the guest will likely crash if RDTSCP or 754 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in 755 * the past. For example, the sanity check may fire if this instance of 756 * KVM is running as L1 on top of an older, broken KVM. 757 */ 758 if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) || 759 kvm_cpu_cap_has(X86_FEATURE_RDPID)) && 760 !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) { 761 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 762 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 763 } 764 } 765 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps); 766 767 struct kvm_cpuid_array { 768 struct kvm_cpuid_entry2 *entries; 769 int maxnent; 770 int nent; 771 }; 772 773 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array, 774 u32 function, u32 index) 775 { 776 struct kvm_cpuid_entry2 *entry; 777 778 if (array->nent >= array->maxnent) 779 return NULL; 780 781 entry = &array->entries[array->nent++]; 782 783 memset(entry, 0, sizeof(*entry)); 784 entry->function = function; 785 entry->index = index; 786 switch (function & 0xC0000000) { 787 case 0x40000000: 788 /* Hypervisor leaves are always synthesized by __do_cpuid_func. */ 789 return entry; 790 791 case 0x80000000: 792 /* 793 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which 794 * would result in out-of-bounds calls to do_host_cpuid. 795 */ 796 { 797 static int max_cpuid_80000000; 798 if (!READ_ONCE(max_cpuid_80000000)) 799 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000)); 800 if (function > READ_ONCE(max_cpuid_80000000)) 801 return entry; 802 } 803 break; 804 805 default: 806 break; 807 } 808 809 cpuid_count(entry->function, entry->index, 810 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); 811 812 if (cpuid_function_is_indexed(function)) 813 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 814 815 return entry; 816 } 817 818 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func) 819 { 820 struct kvm_cpuid_entry2 *entry; 821 822 if (array->nent >= array->maxnent) 823 return -E2BIG; 824 825 entry = &array->entries[array->nent]; 826 entry->function = func; 827 entry->index = 0; 828 entry->flags = 0; 829 830 switch (func) { 831 case 0: 832 entry->eax = 7; 833 ++array->nent; 834 break; 835 case 1: 836 entry->ecx = F(MOVBE); 837 ++array->nent; 838 break; 839 case 7: 840 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 841 entry->eax = 0; 842 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) 843 entry->ecx = F(RDPID); 844 ++array->nent; 845 break; 846 default: 847 break; 848 } 849 850 return 0; 851 } 852 853 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function) 854 { 855 struct kvm_cpuid_entry2 *entry; 856 int r, i, max_idx; 857 858 /* all calls to cpuid_count() should be made on the same cpu */ 859 get_cpu(); 860 861 r = -E2BIG; 862 863 entry = do_host_cpuid(array, function, 0); 864 if (!entry) 865 goto out; 866 867 switch (function) { 868 case 0: 869 /* Limited to the highest leaf implemented in KVM. */ 870 entry->eax = min(entry->eax, 0x1fU); 871 break; 872 case 1: 873 cpuid_entry_override(entry, CPUID_1_EDX); 874 cpuid_entry_override(entry, CPUID_1_ECX); 875 break; 876 case 2: 877 /* 878 * On ancient CPUs, function 2 entries are STATEFUL. That is, 879 * CPUID(function=2, index=0) may return different results each 880 * time, with the least-significant byte in EAX enumerating the 881 * number of times software should do CPUID(2, 0). 882 * 883 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less 884 * idiotic. Intel's SDM states that EAX & 0xff "will always 885 * return 01H. Software should ignore this value and not 886 * interpret it as an informational descriptor", while AMD's 887 * APM states that CPUID(2) is reserved. 888 * 889 * WARN if a frankenstein CPU that supports virtualization and 890 * a stateful CPUID.0x2 is encountered. 891 */ 892 WARN_ON_ONCE((entry->eax & 0xff) > 1); 893 break; 894 /* functions 4 and 0x8000001d have additional index. */ 895 case 4: 896 case 0x8000001d: 897 /* 898 * Read entries until the cache type in the previous entry is 899 * zero, i.e. indicates an invalid entry. 900 */ 901 for (i = 1; entry->eax & 0x1f; ++i) { 902 entry = do_host_cpuid(array, function, i); 903 if (!entry) 904 goto out; 905 } 906 break; 907 case 6: /* Thermal management */ 908 entry->eax = 0x4; /* allow ARAT */ 909 entry->ebx = 0; 910 entry->ecx = 0; 911 entry->edx = 0; 912 break; 913 /* function 7 has additional index. */ 914 case 7: 915 entry->eax = min(entry->eax, 1u); 916 cpuid_entry_override(entry, CPUID_7_0_EBX); 917 cpuid_entry_override(entry, CPUID_7_ECX); 918 cpuid_entry_override(entry, CPUID_7_EDX); 919 920 /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */ 921 if (entry->eax == 1) { 922 entry = do_host_cpuid(array, function, 1); 923 if (!entry) 924 goto out; 925 926 cpuid_entry_override(entry, CPUID_7_1_EAX); 927 cpuid_entry_override(entry, CPUID_7_1_EDX); 928 entry->ebx = 0; 929 entry->ecx = 0; 930 } 931 break; 932 case 0xa: { /* Architectural Performance Monitoring */ 933 union cpuid10_eax eax; 934 union cpuid10_edx edx; 935 936 if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) { 937 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 938 break; 939 } 940 941 eax.split.version_id = kvm_pmu_cap.version; 942 eax.split.num_counters = kvm_pmu_cap.num_counters_gp; 943 eax.split.bit_width = kvm_pmu_cap.bit_width_gp; 944 eax.split.mask_length = kvm_pmu_cap.events_mask_len; 945 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed; 946 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed; 947 948 if (kvm_pmu_cap.version) 949 edx.split.anythread_deprecated = 1; 950 edx.split.reserved1 = 0; 951 edx.split.reserved2 = 0; 952 953 entry->eax = eax.full; 954 entry->ebx = kvm_pmu_cap.events_mask; 955 entry->ecx = 0; 956 entry->edx = edx.full; 957 break; 958 } 959 /* 960 * Per Intel's SDM, the 0x1f is a superset of 0xb, 961 * thus they can be handled by common code. 962 */ 963 case 0x1f: 964 case 0xb: 965 /* 966 * Populate entries until the level type (ECX[15:8]) of the 967 * previous entry is zero. Note, CPUID EAX.{0x1f,0xb}.0 is 968 * the starting entry, filled by the primary do_host_cpuid(). 969 */ 970 for (i = 1; entry->ecx & 0xff00; ++i) { 971 entry = do_host_cpuid(array, function, i); 972 if (!entry) 973 goto out; 974 } 975 break; 976 case 0xd: { 977 u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm(); 978 u64 permitted_xss = kvm_caps.supported_xss; 979 980 entry->eax &= permitted_xcr0; 981 entry->ebx = xstate_required_size(permitted_xcr0, false); 982 entry->ecx = entry->ebx; 983 entry->edx &= permitted_xcr0 >> 32; 984 if (!permitted_xcr0) 985 break; 986 987 entry = do_host_cpuid(array, function, 1); 988 if (!entry) 989 goto out; 990 991 cpuid_entry_override(entry, CPUID_D_1_EAX); 992 if (entry->eax & (F(XSAVES)|F(XSAVEC))) 993 entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss, 994 true); 995 else { 996 WARN_ON_ONCE(permitted_xss != 0); 997 entry->ebx = 0; 998 } 999 entry->ecx &= permitted_xss; 1000 entry->edx &= permitted_xss >> 32; 1001 1002 for (i = 2; i < 64; ++i) { 1003 bool s_state; 1004 if (permitted_xcr0 & BIT_ULL(i)) 1005 s_state = false; 1006 else if (permitted_xss & BIT_ULL(i)) 1007 s_state = true; 1008 else 1009 continue; 1010 1011 entry = do_host_cpuid(array, function, i); 1012 if (!entry) 1013 goto out; 1014 1015 /* 1016 * The supported check above should have filtered out 1017 * invalid sub-leafs. Only valid sub-leafs should 1018 * reach this point, and they should have a non-zero 1019 * save state size. Furthermore, check whether the 1020 * processor agrees with permitted_xcr0/permitted_xss 1021 * on whether this is an XCR0- or IA32_XSS-managed area. 1022 */ 1023 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) { 1024 --array->nent; 1025 continue; 1026 } 1027 1028 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 1029 entry->ecx &= ~BIT_ULL(2); 1030 entry->edx = 0; 1031 } 1032 break; 1033 } 1034 case 0x12: 1035 /* Intel SGX */ 1036 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) { 1037 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1038 break; 1039 } 1040 1041 /* 1042 * Index 0: Sub-features, MISCSELECT (a.k.a extended features) 1043 * and max enclave sizes. The SGX sub-features and MISCSELECT 1044 * are restricted by kernel and KVM capabilities (like most 1045 * feature flags), while enclave size is unrestricted. 1046 */ 1047 cpuid_entry_override(entry, CPUID_12_EAX); 1048 entry->ebx &= SGX_MISC_EXINFO; 1049 1050 entry = do_host_cpuid(array, function, 1); 1051 if (!entry) 1052 goto out; 1053 1054 /* 1055 * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la 1056 * feature flags. Advertise all supported flags, including 1057 * privileged attributes that require explicit opt-in from 1058 * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is 1059 * expected to derive it from supported XCR0. 1060 */ 1061 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK; 1062 entry->ebx &= 0; 1063 break; 1064 /* Intel PT */ 1065 case 0x14: 1066 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) { 1067 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1068 break; 1069 } 1070 1071 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { 1072 if (!do_host_cpuid(array, function, i)) 1073 goto out; 1074 } 1075 break; 1076 /* Intel AMX TILE */ 1077 case 0x1d: 1078 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { 1079 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1080 break; 1081 } 1082 1083 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { 1084 if (!do_host_cpuid(array, function, i)) 1085 goto out; 1086 } 1087 break; 1088 case 0x1e: /* TMUL information */ 1089 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { 1090 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1091 break; 1092 } 1093 break; 1094 case KVM_CPUID_SIGNATURE: { 1095 const u32 *sigptr = (const u32 *)KVM_SIGNATURE; 1096 entry->eax = KVM_CPUID_FEATURES; 1097 entry->ebx = sigptr[0]; 1098 entry->ecx = sigptr[1]; 1099 entry->edx = sigptr[2]; 1100 break; 1101 } 1102 case KVM_CPUID_FEATURES: 1103 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | 1104 (1 << KVM_FEATURE_NOP_IO_DELAY) | 1105 (1 << KVM_FEATURE_CLOCKSOURCE2) | 1106 (1 << KVM_FEATURE_ASYNC_PF) | 1107 (1 << KVM_FEATURE_PV_EOI) | 1108 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | 1109 (1 << KVM_FEATURE_PV_UNHALT) | 1110 (1 << KVM_FEATURE_PV_TLB_FLUSH) | 1111 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | 1112 (1 << KVM_FEATURE_PV_SEND_IPI) | 1113 (1 << KVM_FEATURE_POLL_CONTROL) | 1114 (1 << KVM_FEATURE_PV_SCHED_YIELD) | 1115 (1 << KVM_FEATURE_ASYNC_PF_INT); 1116 1117 if (sched_info_on()) 1118 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); 1119 1120 entry->ebx = 0; 1121 entry->ecx = 0; 1122 entry->edx = 0; 1123 break; 1124 case 0x80000000: 1125 entry->eax = min(entry->eax, 0x80000021); 1126 /* 1127 * Serializing LFENCE is reported in a multitude of ways, and 1128 * NullSegClearsBase is not reported in CPUID on Zen2; help 1129 * userspace by providing the CPUID leaf ourselves. 1130 * 1131 * However, only do it if the host has CPUID leaf 0x8000001d. 1132 * QEMU thinks that it can query the host blindly for that 1133 * CPUID leaf if KVM reports that it supports 0x8000001d or 1134 * above. The processor merrily returns values from the 1135 * highest Intel leaf which QEMU tries to use as the guest's 1136 * 0x8000001d. Even worse, this can result in an infinite 1137 * loop if said highest leaf has no subleaves indexed by ECX. 1138 */ 1139 if (entry->eax >= 0x8000001d && 1140 (static_cpu_has(X86_FEATURE_LFENCE_RDTSC) 1141 || !static_cpu_has_bug(X86_BUG_NULL_SEG))) 1142 entry->eax = max(entry->eax, 0x80000021); 1143 break; 1144 case 0x80000001: 1145 entry->ebx &= ~GENMASK(27, 16); 1146 cpuid_entry_override(entry, CPUID_8000_0001_EDX); 1147 cpuid_entry_override(entry, CPUID_8000_0001_ECX); 1148 break; 1149 case 0x80000006: 1150 /* Drop reserved bits, pass host L2 cache and TLB info. */ 1151 entry->edx &= ~GENMASK(17, 16); 1152 break; 1153 case 0x80000007: /* Advanced power management */ 1154 /* invariant TSC is CPUID.80000007H:EDX[8] */ 1155 entry->edx &= (1 << 8); 1156 /* mask against host */ 1157 entry->edx &= boot_cpu_data.x86_power; 1158 entry->eax = entry->ebx = entry->ecx = 0; 1159 break; 1160 case 0x80000008: { 1161 unsigned g_phys_as = (entry->eax >> 16) & 0xff; 1162 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); 1163 unsigned phys_as = entry->eax & 0xff; 1164 1165 /* 1166 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as 1167 * the guest operates in the same PA space as the host, i.e. 1168 * reductions in MAXPHYADDR for memory encryption affect shadow 1169 * paging, too. 1170 * 1171 * If TDP is enabled but an explicit guest MAXPHYADDR is not 1172 * provided, use the raw bare metal MAXPHYADDR as reductions to 1173 * the HPAs do not affect GPAs. 1174 */ 1175 if (!tdp_enabled) 1176 g_phys_as = boot_cpu_data.x86_phys_bits; 1177 else if (!g_phys_as) 1178 g_phys_as = phys_as; 1179 1180 entry->eax = g_phys_as | (virt_as << 8); 1181 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8)); 1182 entry->edx = 0; 1183 cpuid_entry_override(entry, CPUID_8000_0008_EBX); 1184 break; 1185 } 1186 case 0x8000000A: 1187 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) { 1188 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1189 break; 1190 } 1191 entry->eax = 1; /* SVM revision 1 */ 1192 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper 1193 ASID emulation to nested SVM */ 1194 entry->ecx = 0; /* Reserved */ 1195 cpuid_entry_override(entry, CPUID_8000_000A_EDX); 1196 break; 1197 case 0x80000019: 1198 entry->ecx = entry->edx = 0; 1199 break; 1200 case 0x8000001a: 1201 entry->eax &= GENMASK(2, 0); 1202 entry->ebx = entry->ecx = entry->edx = 0; 1203 break; 1204 case 0x8000001e: 1205 break; 1206 case 0x8000001F: 1207 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) { 1208 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1209 } else { 1210 cpuid_entry_override(entry, CPUID_8000_001F_EAX); 1211 /* Clear NumVMPL since KVM does not support VMPL. */ 1212 entry->ebx &= ~GENMASK(31, 12); 1213 /* 1214 * Enumerate '0' for "PA bits reduction", the adjusted 1215 * MAXPHYADDR is enumerated directly (see 0x80000008). 1216 */ 1217 entry->ebx &= ~GENMASK(11, 6); 1218 } 1219 break; 1220 case 0x80000020: 1221 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1222 break; 1223 case 0x80000021: 1224 entry->ebx = entry->ecx = entry->edx = 0; 1225 /* 1226 * Pass down these bits: 1227 * EAX 0 NNDBP, Processor ignores nested data breakpoints 1228 * EAX 2 LAS, LFENCE always serializing 1229 * EAX 6 NSCB, Null selector clear base 1230 * 1231 * Other defined bits are for MSRs that KVM does not expose: 1232 * EAX 3 SPCL, SMM page configuration lock 1233 * EAX 13 PCMSR, Prefetch control MSR 1234 * 1235 * KVM doesn't support SMM_CTL. 1236 * EAX 9 SMM_CTL MSR is not supported 1237 */ 1238 entry->eax &= BIT(0) | BIT(2) | BIT(6); 1239 entry->eax |= BIT(9); 1240 if (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 1241 entry->eax |= BIT(2); 1242 if (!static_cpu_has_bug(X86_BUG_NULL_SEG)) 1243 entry->eax |= BIT(6); 1244 break; 1245 /*Add support for Centaur's CPUID instruction*/ 1246 case 0xC0000000: 1247 /*Just support up to 0xC0000004 now*/ 1248 entry->eax = min(entry->eax, 0xC0000004); 1249 break; 1250 case 0xC0000001: 1251 cpuid_entry_override(entry, CPUID_C000_0001_EDX); 1252 break; 1253 case 3: /* Processor serial number */ 1254 case 5: /* MONITOR/MWAIT */ 1255 case 0xC0000002: 1256 case 0xC0000003: 1257 case 0xC0000004: 1258 default: 1259 entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 1260 break; 1261 } 1262 1263 r = 0; 1264 1265 out: 1266 put_cpu(); 1267 1268 return r; 1269 } 1270 1271 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func, 1272 unsigned int type) 1273 { 1274 if (type == KVM_GET_EMULATED_CPUID) 1275 return __do_cpuid_func_emulated(array, func); 1276 1277 return __do_cpuid_func(array, func); 1278 } 1279 1280 #define CENTAUR_CPUID_SIGNATURE 0xC0000000 1281 1282 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func, 1283 unsigned int type) 1284 { 1285 u32 limit; 1286 int r; 1287 1288 if (func == CENTAUR_CPUID_SIGNATURE && 1289 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR) 1290 return 0; 1291 1292 r = do_cpuid_func(array, func, type); 1293 if (r) 1294 return r; 1295 1296 limit = array->entries[array->nent - 1].eax; 1297 for (func = func + 1; func <= limit; ++func) { 1298 r = do_cpuid_func(array, func, type); 1299 if (r) 1300 break; 1301 } 1302 1303 return r; 1304 } 1305 1306 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, 1307 __u32 num_entries, unsigned int ioctl_type) 1308 { 1309 int i; 1310 __u32 pad[3]; 1311 1312 if (ioctl_type != KVM_GET_EMULATED_CPUID) 1313 return false; 1314 1315 /* 1316 * We want to make sure that ->padding is being passed clean from 1317 * userspace in case we want to use it for something in the future. 1318 * 1319 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we 1320 * have to give ourselves satisfied only with the emulated side. /me 1321 * sheds a tear. 1322 */ 1323 for (i = 0; i < num_entries; i++) { 1324 if (copy_from_user(pad, entries[i].padding, sizeof(pad))) 1325 return true; 1326 1327 if (pad[0] || pad[1] || pad[2]) 1328 return true; 1329 } 1330 return false; 1331 } 1332 1333 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, 1334 struct kvm_cpuid_entry2 __user *entries, 1335 unsigned int type) 1336 { 1337 static const u32 funcs[] = { 1338 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE, 1339 }; 1340 1341 struct kvm_cpuid_array array = { 1342 .nent = 0, 1343 }; 1344 int r, i; 1345 1346 if (cpuid->nent < 1) 1347 return -E2BIG; 1348 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 1349 cpuid->nent = KVM_MAX_CPUID_ENTRIES; 1350 1351 if (sanity_check_entries(entries, cpuid->nent, type)) 1352 return -EINVAL; 1353 1354 array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL); 1355 if (!array.entries) 1356 return -ENOMEM; 1357 1358 array.maxnent = cpuid->nent; 1359 1360 for (i = 0; i < ARRAY_SIZE(funcs); i++) { 1361 r = get_cpuid_func(&array, funcs[i], type); 1362 if (r) 1363 goto out_free; 1364 } 1365 cpuid->nent = array.nent; 1366 1367 if (copy_to_user(entries, array.entries, 1368 array.nent * sizeof(struct kvm_cpuid_entry2))) 1369 r = -EFAULT; 1370 1371 out_free: 1372 kvfree(array.entries); 1373 return r; 1374 } 1375 1376 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu, 1377 u32 function, u32 index) 1378 { 1379 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent, 1380 function, index); 1381 } 1382 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index); 1383 1384 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, 1385 u32 function) 1386 { 1387 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent, 1388 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT); 1389 } 1390 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); 1391 1392 /* 1393 * Intel CPUID semantics treats any query for an out-of-range leaf as if the 1394 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics 1395 * returns all zeroes for any undefined leaf, whether or not the leaf is in 1396 * range. Centaur/VIA follows Intel semantics. 1397 * 1398 * A leaf is considered out-of-range if its function is higher than the maximum 1399 * supported leaf of its associated class or if its associated class does not 1400 * exist. 1401 * 1402 * There are three primary classes to be considered, with their respective 1403 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary 1404 * class exists if a guest CPUID entry for its <base> leaf exists. For a given 1405 * class, CPUID.<base>.EAX contains the max supported leaf for the class. 1406 * 1407 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff 1408 * - Hypervisor: 0x40000000 - 0x4fffffff 1409 * - Extended: 0x80000000 - 0xbfffffff 1410 * - Centaur: 0xc0000000 - 0xcfffffff 1411 * 1412 * The Hypervisor class is further subdivided into sub-classes that each act as 1413 * their own independent class associated with a 0x100 byte range. E.g. if Qemu 1414 * is advertising support for both HyperV and KVM, the resulting Hypervisor 1415 * CPUID sub-classes are: 1416 * 1417 * - HyperV: 0x40000000 - 0x400000ff 1418 * - KVM: 0x40000100 - 0x400001ff 1419 */ 1420 static struct kvm_cpuid_entry2 * 1421 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index) 1422 { 1423 struct kvm_cpuid_entry2 *basic, *class; 1424 u32 function = *fn_ptr; 1425 1426 basic = kvm_find_cpuid_entry(vcpu, 0); 1427 if (!basic) 1428 return NULL; 1429 1430 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) || 1431 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx)) 1432 return NULL; 1433 1434 if (function >= 0x40000000 && function <= 0x4fffffff) 1435 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00); 1436 else if (function >= 0xc0000000) 1437 class = kvm_find_cpuid_entry(vcpu, 0xc0000000); 1438 else 1439 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000); 1440 1441 if (class && function <= class->eax) 1442 return NULL; 1443 1444 /* 1445 * Leaf specific adjustments are also applied when redirecting to the 1446 * max basic entry, e.g. if the max basic leaf is 0xb but there is no 1447 * entry for CPUID.0xb.index (see below), then the output value for EDX 1448 * needs to be pulled from CPUID.0xb.1. 1449 */ 1450 *fn_ptr = basic->eax; 1451 1452 /* 1453 * The class does not exist or the requested function is out of range; 1454 * the effective CPUID entry is the max basic leaf. Note, the index of 1455 * the original requested leaf is observed! 1456 */ 1457 return kvm_find_cpuid_entry_index(vcpu, basic->eax, index); 1458 } 1459 1460 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, 1461 u32 *ecx, u32 *edx, bool exact_only) 1462 { 1463 u32 orig_function = *eax, function = *eax, index = *ecx; 1464 struct kvm_cpuid_entry2 *entry; 1465 bool exact, used_max_basic = false; 1466 1467 entry = kvm_find_cpuid_entry_index(vcpu, function, index); 1468 exact = !!entry; 1469 1470 if (!entry && !exact_only) { 1471 entry = get_out_of_range_cpuid_entry(vcpu, &function, index); 1472 used_max_basic = !!entry; 1473 } 1474 1475 if (entry) { 1476 *eax = entry->eax; 1477 *ebx = entry->ebx; 1478 *ecx = entry->ecx; 1479 *edx = entry->edx; 1480 if (function == 7 && index == 0) { 1481 u64 data; 1482 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) && 1483 (data & TSX_CTRL_CPUID_CLEAR)) 1484 *ebx &= ~(F(RTM) | F(HLE)); 1485 } 1486 } else { 1487 *eax = *ebx = *ecx = *edx = 0; 1488 /* 1489 * When leaf 0BH or 1FH is defined, CL is pass-through 1490 * and EDX is always the x2APIC ID, even for undefined 1491 * subleaves. Index 1 will exist iff the leaf is 1492 * implemented, so we pass through CL iff leaf 1 1493 * exists. EDX can be copied from any existing index. 1494 */ 1495 if (function == 0xb || function == 0x1f) { 1496 entry = kvm_find_cpuid_entry_index(vcpu, function, 1); 1497 if (entry) { 1498 *ecx = index & 0xff; 1499 *edx = entry->edx; 1500 } 1501 } 1502 } 1503 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact, 1504 used_max_basic); 1505 return exact; 1506 } 1507 EXPORT_SYMBOL_GPL(kvm_cpuid); 1508 1509 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) 1510 { 1511 u32 eax, ebx, ecx, edx; 1512 1513 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) 1514 return 1; 1515 1516 eax = kvm_rax_read(vcpu); 1517 ecx = kvm_rcx_read(vcpu); 1518 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false); 1519 kvm_rax_write(vcpu, eax); 1520 kvm_rbx_write(vcpu, ebx); 1521 kvm_rcx_write(vcpu, ecx); 1522 kvm_rdx_write(vcpu, edx); 1523 return kvm_skip_emulated_instruction(vcpu); 1524 } 1525 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); 1526