xref: /openbmc/linux/arch/x86/kernel/vm86_32.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  Copyright (C) 1994  Linus Torvalds
3  *
4  *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5  *                stack - Manfred Spraul <manfred@colorfullife.com>
6  *
7  *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8  *                them correctly. Now the emulation will be in a
9  *                consistent state after stackfaults - Kasper Dupont
10  *                <kasperd@daimi.au.dk>
11  *
12  *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13  *                <kasperd@daimi.au.dk>
14  *
15  *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16  *                caused by Kasper Dupont's changes - Stas Sergeev
17  *
18  *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19  *                Kasper Dupont <kasperd@daimi.au.dk>
20  *
21  *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22  *                Kasper Dupont <kasperd@daimi.au.dk>
23  *
24  *   9 apr 2002 - Changed stack access macros to jump to a label
25  *                instead of returning to userspace. This simplifies
26  *                do_int, and is needed by handle_vm6_fault. Kasper
27  *                Dupont <kasperd@daimi.au.dk>
28  *
29  */
30 
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/signal.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/highmem.h>
41 #include <linux/ptrace.h>
42 #include <linux/audit.h>
43 #include <linux/stddef.h>
44 
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/tlbflush.h>
48 #include <asm/irq.h>
49 #include <asm/syscalls.h>
50 
51 /*
52  * Known problems:
53  *
54  * Interrupt handling is not guaranteed:
55  * - a real x86 will disable all interrupts for one instruction
56  *   after a "mov ss,xx" to make stack handling atomic even without
57  *   the 'lss' instruction. We can't guarantee this in v86 mode,
58  *   as the next instruction might result in a page fault or similar.
59  * - a real x86 will have interrupts disabled for one instruction
60  *   past the 'sti' that enables them. We don't bother with all the
61  *   details yet.
62  *
63  * Let's hope these problems do not actually matter for anything.
64  */
65 
66 
67 #define KVM86	((struct kernel_vm86_struct *)regs)
68 #define VMPI	KVM86->vm86plus
69 
70 
71 /*
72  * 8- and 16-bit register defines..
73  */
74 #define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
75 #define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
76 #define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
77 #define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
78 
79 /*
80  * virtual flags (16 and 32-bit versions)
81  */
82 #define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
83 #define VEFLAGS	(current->thread.v86flags)
84 
85 #define set_flags(X, new, mask) \
86 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
87 
88 #define SAFE_MASK	(0xDD5)
89 #define RETURN_MASK	(0xDFF)
90 
91 /* convert kernel_vm86_regs to vm86_regs */
92 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
93 				  const struct kernel_vm86_regs *regs)
94 {
95 	int ret = 0;
96 
97 	/*
98 	 * kernel_vm86_regs is missing gs, so copy everything up to
99 	 * (but not including) orig_eax, and then rest including orig_eax.
100 	 */
101 	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
102 	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
103 			    sizeof(struct kernel_vm86_regs) -
104 			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
105 
106 	return ret;
107 }
108 
109 /* convert vm86_regs to kernel_vm86_regs */
110 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
111 				    const struct vm86_regs __user *user,
112 				    unsigned extra)
113 {
114 	int ret = 0;
115 
116 	/* copy ax-fs inclusive */
117 	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
118 	/* copy orig_ax-__gsh+extra */
119 	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
120 			      sizeof(struct kernel_vm86_regs) -
121 			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
122 			      extra);
123 	return ret;
124 }
125 
126 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
127 {
128 	struct tss_struct *tss;
129 	struct pt_regs *ret;
130 	unsigned long tmp;
131 
132 	/*
133 	 * This gets called from entry.S with interrupts disabled, but
134 	 * from process context. Enable interrupts here, before trying
135 	 * to access user space.
136 	 */
137 	local_irq_enable();
138 
139 	if (!current->thread.vm86_info) {
140 		printk("no vm86_info: BAD\n");
141 		do_exit(SIGSEGV);
142 	}
143 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
144 	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
145 	tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
146 	if (tmp) {
147 		printk("vm86: could not access userspace vm86_info\n");
148 		do_exit(SIGSEGV);
149 	}
150 
151 	tss = &per_cpu(init_tss, get_cpu());
152 	current->thread.sp0 = current->thread.saved_sp0;
153 	current->thread.sysenter_cs = __KERNEL_CS;
154 	load_sp0(tss, &current->thread);
155 	current->thread.saved_sp0 = 0;
156 	put_cpu();
157 
158 	ret = KVM86->regs32;
159 
160 	ret->fs = current->thread.saved_fs;
161 	set_user_gs(ret, current->thread.saved_gs);
162 
163 	return ret;
164 }
165 
166 static void mark_screen_rdonly(struct mm_struct *mm)
167 {
168 	pgd_t *pgd;
169 	pud_t *pud;
170 	pmd_t *pmd;
171 	pte_t *pte;
172 	spinlock_t *ptl;
173 	int i;
174 
175 	pgd = pgd_offset(mm, 0xA0000);
176 	if (pgd_none_or_clear_bad(pgd))
177 		goto out;
178 	pud = pud_offset(pgd, 0xA0000);
179 	if (pud_none_or_clear_bad(pud))
180 		goto out;
181 	pmd = pmd_offset(pud, 0xA0000);
182 	split_huge_page_pmd(mm, pmd);
183 	if (pmd_none_or_clear_bad(pmd))
184 		goto out;
185 	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
186 	for (i = 0; i < 32; i++) {
187 		if (pte_present(*pte))
188 			set_pte(pte, pte_wrprotect(*pte));
189 		pte++;
190 	}
191 	pte_unmap_unlock(pte, ptl);
192 out:
193 	flush_tlb();
194 }
195 
196 
197 
198 static int do_vm86_irq_handling(int subfunction, int irqnumber);
199 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
200 
201 int sys_vm86old(struct vm86_struct __user *v86, struct pt_regs *regs)
202 {
203 	struct kernel_vm86_struct info; /* declare this _on top_,
204 					 * this avoids wasting of stack space.
205 					 * This remains on the stack until we
206 					 * return to 32 bit user space.
207 					 */
208 	struct task_struct *tsk;
209 	int tmp, ret = -EPERM;
210 
211 	tsk = current;
212 	if (tsk->thread.saved_sp0)
213 		goto out;
214 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
215 				       offsetof(struct kernel_vm86_struct, vm86plus) -
216 				       sizeof(info.regs));
217 	ret = -EFAULT;
218 	if (tmp)
219 		goto out;
220 	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
221 	info.regs32 = regs;
222 	tsk->thread.vm86_info = v86;
223 	do_sys_vm86(&info, tsk);
224 	ret = 0;	/* we never return here */
225 out:
226 	return ret;
227 }
228 
229 
230 int sys_vm86(unsigned long cmd, unsigned long arg, struct pt_regs *regs)
231 {
232 	struct kernel_vm86_struct info; /* declare this _on top_,
233 					 * this avoids wasting of stack space.
234 					 * This remains on the stack until we
235 					 * return to 32 bit user space.
236 					 */
237 	struct task_struct *tsk;
238 	int tmp, ret;
239 	struct vm86plus_struct __user *v86;
240 
241 	tsk = current;
242 	switch (cmd) {
243 	case VM86_REQUEST_IRQ:
244 	case VM86_FREE_IRQ:
245 	case VM86_GET_IRQ_BITS:
246 	case VM86_GET_AND_RESET_IRQ:
247 		ret = do_vm86_irq_handling(cmd, (int)arg);
248 		goto out;
249 	case VM86_PLUS_INSTALL_CHECK:
250 		/*
251 		 * NOTE: on old vm86 stuff this will return the error
252 		 *  from access_ok(), because the subfunction is
253 		 *  interpreted as (invalid) address to vm86_struct.
254 		 *  So the installation check works.
255 		 */
256 		ret = 0;
257 		goto out;
258 	}
259 
260 	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
261 	ret = -EPERM;
262 	if (tsk->thread.saved_sp0)
263 		goto out;
264 	v86 = (struct vm86plus_struct __user *)arg;
265 	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
266 				       offsetof(struct kernel_vm86_struct, regs32) -
267 				       sizeof(info.regs));
268 	ret = -EFAULT;
269 	if (tmp)
270 		goto out;
271 	info.regs32 = regs;
272 	info.vm86plus.is_vm86pus = 1;
273 	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
274 	do_sys_vm86(&info, tsk);
275 	ret = 0;	/* we never return here */
276 out:
277 	return ret;
278 }
279 
280 
281 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
282 {
283 	struct tss_struct *tss;
284 /*
285  * make sure the vm86() system call doesn't try to do anything silly
286  */
287 	info->regs.pt.ds = 0;
288 	info->regs.pt.es = 0;
289 	info->regs.pt.fs = 0;
290 #ifndef CONFIG_X86_32_LAZY_GS
291 	info->regs.pt.gs = 0;
292 #endif
293 
294 /*
295  * The flags register is also special: we cannot trust that the user
296  * has set it up safely, so this makes sure interrupt etc flags are
297  * inherited from protected mode.
298  */
299 	VEFLAGS = info->regs.pt.flags;
300 	info->regs.pt.flags &= SAFE_MASK;
301 	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
302 	info->regs.pt.flags |= X86_VM_MASK;
303 
304 	switch (info->cpu_type) {
305 	case CPU_286:
306 		tsk->thread.v86mask = 0;
307 		break;
308 	case CPU_386:
309 		tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
310 		break;
311 	case CPU_486:
312 		tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
313 		break;
314 	default:
315 		tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
316 		break;
317 	}
318 
319 /*
320  * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
321  */
322 	info->regs32->ax = VM86_SIGNAL;
323 	tsk->thread.saved_sp0 = tsk->thread.sp0;
324 	tsk->thread.saved_fs = info->regs32->fs;
325 	tsk->thread.saved_gs = get_user_gs(info->regs32);
326 
327 	tss = &per_cpu(init_tss, get_cpu());
328 	tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
329 	if (cpu_has_sep)
330 		tsk->thread.sysenter_cs = 0;
331 	load_sp0(tss, &tsk->thread);
332 	put_cpu();
333 
334 	tsk->thread.screen_bitmap = info->screen_bitmap;
335 	if (info->flags & VM86_SCREEN_BITMAP)
336 		mark_screen_rdonly(tsk->mm);
337 
338 	/*call audit_syscall_exit since we do not exit via the normal paths */
339 	if (unlikely(current->audit_context))
340 		audit_syscall_exit(AUDITSC_RESULT(0), 0);
341 
342 	__asm__ __volatile__(
343 		"movl %0,%%esp\n\t"
344 		"movl %1,%%ebp\n\t"
345 #ifdef CONFIG_X86_32_LAZY_GS
346 		"mov  %2, %%gs\n\t"
347 #endif
348 		"jmp resume_userspace"
349 		: /* no outputs */
350 		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
351 	/* we never return here */
352 }
353 
354 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
355 {
356 	struct pt_regs *regs32;
357 
358 	regs32 = save_v86_state(regs16);
359 	regs32->ax = retval;
360 	__asm__ __volatile__("movl %0,%%esp\n\t"
361 		"movl %1,%%ebp\n\t"
362 		"jmp resume_userspace"
363 		: : "r" (regs32), "r" (current_thread_info()));
364 }
365 
366 static inline void set_IF(struct kernel_vm86_regs *regs)
367 {
368 	VEFLAGS |= X86_EFLAGS_VIF;
369 	if (VEFLAGS & X86_EFLAGS_VIP)
370 		return_to_32bit(regs, VM86_STI);
371 }
372 
373 static inline void clear_IF(struct kernel_vm86_regs *regs)
374 {
375 	VEFLAGS &= ~X86_EFLAGS_VIF;
376 }
377 
378 static inline void clear_TF(struct kernel_vm86_regs *regs)
379 {
380 	regs->pt.flags &= ~X86_EFLAGS_TF;
381 }
382 
383 static inline void clear_AC(struct kernel_vm86_regs *regs)
384 {
385 	regs->pt.flags &= ~X86_EFLAGS_AC;
386 }
387 
388 /*
389  * It is correct to call set_IF(regs) from the set_vflags_*
390  * functions. However someone forgot to call clear_IF(regs)
391  * in the opposite case.
392  * After the command sequence CLI PUSHF STI POPF you should
393  * end up with interrupts disabled, but you ended up with
394  * interrupts enabled.
395  *  ( I was testing my own changes, but the only bug I
396  *    could find was in a function I had not changed. )
397  * [KD]
398  */
399 
400 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
401 {
402 	set_flags(VEFLAGS, flags, current->thread.v86mask);
403 	set_flags(regs->pt.flags, flags, SAFE_MASK);
404 	if (flags & X86_EFLAGS_IF)
405 		set_IF(regs);
406 	else
407 		clear_IF(regs);
408 }
409 
410 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
411 {
412 	set_flags(VFLAGS, flags, current->thread.v86mask);
413 	set_flags(regs->pt.flags, flags, SAFE_MASK);
414 	if (flags & X86_EFLAGS_IF)
415 		set_IF(regs);
416 	else
417 		clear_IF(regs);
418 }
419 
420 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
421 {
422 	unsigned long flags = regs->pt.flags & RETURN_MASK;
423 
424 	if (VEFLAGS & X86_EFLAGS_VIF)
425 		flags |= X86_EFLAGS_IF;
426 	flags |= X86_EFLAGS_IOPL;
427 	return flags | (VEFLAGS & current->thread.v86mask);
428 }
429 
430 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
431 {
432 	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
433 		:"=r" (nr)
434 		:"m" (*bitmap), "r" (nr));
435 	return nr;
436 }
437 
438 #define val_byte(val, n) (((__u8 *)&val)[n])
439 
440 #define pushb(base, ptr, val, err_label) \
441 	do { \
442 		__u8 __val = val; \
443 		ptr--; \
444 		if (put_user(__val, base + ptr) < 0) \
445 			goto err_label; \
446 	} while (0)
447 
448 #define pushw(base, ptr, val, err_label) \
449 	do { \
450 		__u16 __val = val; \
451 		ptr--; \
452 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
453 			goto err_label; \
454 		ptr--; \
455 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
456 			goto err_label; \
457 	} while (0)
458 
459 #define pushl(base, ptr, val, err_label) \
460 	do { \
461 		__u32 __val = val; \
462 		ptr--; \
463 		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
464 			goto err_label; \
465 		ptr--; \
466 		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
467 			goto err_label; \
468 		ptr--; \
469 		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
470 			goto err_label; \
471 		ptr--; \
472 		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
473 			goto err_label; \
474 	} while (0)
475 
476 #define popb(base, ptr, err_label) \
477 	({ \
478 		__u8 __res; \
479 		if (get_user(__res, base + ptr) < 0) \
480 			goto err_label; \
481 		ptr++; \
482 		__res; \
483 	})
484 
485 #define popw(base, ptr, err_label) \
486 	({ \
487 		__u16 __res; \
488 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
489 			goto err_label; \
490 		ptr++; \
491 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
492 			goto err_label; \
493 		ptr++; \
494 		__res; \
495 	})
496 
497 #define popl(base, ptr, err_label) \
498 	({ \
499 		__u32 __res; \
500 		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
501 			goto err_label; \
502 		ptr++; \
503 		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
504 			goto err_label; \
505 		ptr++; \
506 		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
507 			goto err_label; \
508 		ptr++; \
509 		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
510 			goto err_label; \
511 		ptr++; \
512 		__res; \
513 	})
514 
515 /* There are so many possible reasons for this function to return
516  * VM86_INTx, so adding another doesn't bother me. We can expect
517  * userspace programs to be able to handle it. (Getting a problem
518  * in userspace is always better than an Oops anyway.) [KD]
519  */
520 static void do_int(struct kernel_vm86_regs *regs, int i,
521     unsigned char __user *ssp, unsigned short sp)
522 {
523 	unsigned long __user *intr_ptr;
524 	unsigned long segoffs;
525 
526 	if (regs->pt.cs == BIOSSEG)
527 		goto cannot_handle;
528 	if (is_revectored(i, &KVM86->int_revectored))
529 		goto cannot_handle;
530 	if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
531 		goto cannot_handle;
532 	intr_ptr = (unsigned long __user *) (i << 2);
533 	if (get_user(segoffs, intr_ptr))
534 		goto cannot_handle;
535 	if ((segoffs >> 16) == BIOSSEG)
536 		goto cannot_handle;
537 	pushw(ssp, sp, get_vflags(regs), cannot_handle);
538 	pushw(ssp, sp, regs->pt.cs, cannot_handle);
539 	pushw(ssp, sp, IP(regs), cannot_handle);
540 	regs->pt.cs = segoffs >> 16;
541 	SP(regs) -= 6;
542 	IP(regs) = segoffs & 0xffff;
543 	clear_TF(regs);
544 	clear_IF(regs);
545 	clear_AC(regs);
546 	return;
547 
548 cannot_handle:
549 	return_to_32bit(regs, VM86_INTx + (i << 8));
550 }
551 
552 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
553 {
554 	if (VMPI.is_vm86pus) {
555 		if ((trapno == 3) || (trapno == 1)) {
556 			KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
557 			/* setting this flag forces the code in entry_32.S to
558 			   call save_v86_state() and change the stack pointer
559 			   to KVM86->regs32 */
560 			set_thread_flag(TIF_IRET);
561 			return 0;
562 		}
563 		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
564 		return 0;
565 	}
566 	if (trapno != 1)
567 		return 1; /* we let this handle by the calling routine */
568 	current->thread.trap_no = trapno;
569 	current->thread.error_code = error_code;
570 	force_sig(SIGTRAP, current);
571 	return 0;
572 }
573 
574 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
575 {
576 	unsigned char opcode;
577 	unsigned char __user *csp;
578 	unsigned char __user *ssp;
579 	unsigned short ip, sp, orig_flags;
580 	int data32, pref_done;
581 
582 #define CHECK_IF_IN_TRAP \
583 	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
584 		newflags |= X86_EFLAGS_TF
585 #define VM86_FAULT_RETURN do { \
586 	if (VMPI.force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
587 		return_to_32bit(regs, VM86_PICRETURN); \
588 	if (orig_flags & X86_EFLAGS_TF) \
589 		handle_vm86_trap(regs, 0, 1); \
590 	return; } while (0)
591 
592 	orig_flags = *(unsigned short *)&regs->pt.flags;
593 
594 	csp = (unsigned char __user *) (regs->pt.cs << 4);
595 	ssp = (unsigned char __user *) (regs->pt.ss << 4);
596 	sp = SP(regs);
597 	ip = IP(regs);
598 
599 	data32 = 0;
600 	pref_done = 0;
601 	do {
602 		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
603 		case 0x66:      /* 32-bit data */     data32 = 1; break;
604 		case 0x67:      /* 32-bit address */  break;
605 		case 0x2e:      /* CS */              break;
606 		case 0x3e:      /* DS */              break;
607 		case 0x26:      /* ES */              break;
608 		case 0x36:      /* SS */              break;
609 		case 0x65:      /* GS */              break;
610 		case 0x64:      /* FS */              break;
611 		case 0xf2:      /* repnz */       break;
612 		case 0xf3:      /* rep */             break;
613 		default: pref_done = 1;
614 		}
615 	} while (!pref_done);
616 
617 	switch (opcode) {
618 
619 	/* pushf */
620 	case 0x9c:
621 		if (data32) {
622 			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
623 			SP(regs) -= 4;
624 		} else {
625 			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
626 			SP(regs) -= 2;
627 		}
628 		IP(regs) = ip;
629 		VM86_FAULT_RETURN;
630 
631 	/* popf */
632 	case 0x9d:
633 		{
634 		unsigned long newflags;
635 		if (data32) {
636 			newflags = popl(ssp, sp, simulate_sigsegv);
637 			SP(regs) += 4;
638 		} else {
639 			newflags = popw(ssp, sp, simulate_sigsegv);
640 			SP(regs) += 2;
641 		}
642 		IP(regs) = ip;
643 		CHECK_IF_IN_TRAP;
644 		if (data32)
645 			set_vflags_long(newflags, regs);
646 		else
647 			set_vflags_short(newflags, regs);
648 
649 		VM86_FAULT_RETURN;
650 		}
651 
652 	/* int xx */
653 	case 0xcd: {
654 		int intno = popb(csp, ip, simulate_sigsegv);
655 		IP(regs) = ip;
656 		if (VMPI.vm86dbg_active) {
657 			if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
658 				return_to_32bit(regs, VM86_INTx + (intno << 8));
659 		}
660 		do_int(regs, intno, ssp, sp);
661 		return;
662 	}
663 
664 	/* iret */
665 	case 0xcf:
666 		{
667 		unsigned long newip;
668 		unsigned long newcs;
669 		unsigned long newflags;
670 		if (data32) {
671 			newip = popl(ssp, sp, simulate_sigsegv);
672 			newcs = popl(ssp, sp, simulate_sigsegv);
673 			newflags = popl(ssp, sp, simulate_sigsegv);
674 			SP(regs) += 12;
675 		} else {
676 			newip = popw(ssp, sp, simulate_sigsegv);
677 			newcs = popw(ssp, sp, simulate_sigsegv);
678 			newflags = popw(ssp, sp, simulate_sigsegv);
679 			SP(regs) += 6;
680 		}
681 		IP(regs) = newip;
682 		regs->pt.cs = newcs;
683 		CHECK_IF_IN_TRAP;
684 		if (data32) {
685 			set_vflags_long(newflags, regs);
686 		} else {
687 			set_vflags_short(newflags, regs);
688 		}
689 		VM86_FAULT_RETURN;
690 		}
691 
692 	/* cli */
693 	case 0xfa:
694 		IP(regs) = ip;
695 		clear_IF(regs);
696 		VM86_FAULT_RETURN;
697 
698 	/* sti */
699 	/*
700 	 * Damn. This is incorrect: the 'sti' instruction should actually
701 	 * enable interrupts after the /next/ instruction. Not good.
702 	 *
703 	 * Probably needs some horsing around with the TF flag. Aiee..
704 	 */
705 	case 0xfb:
706 		IP(regs) = ip;
707 		set_IF(regs);
708 		VM86_FAULT_RETURN;
709 
710 	default:
711 		return_to_32bit(regs, VM86_UNKNOWN);
712 	}
713 
714 	return;
715 
716 simulate_sigsegv:
717 	/* FIXME: After a long discussion with Stas we finally
718 	 *        agreed, that this is wrong. Here we should
719 	 *        really send a SIGSEGV to the user program.
720 	 *        But how do we create the correct context? We
721 	 *        are inside a general protection fault handler
722 	 *        and has just returned from a page fault handler.
723 	 *        The correct context for the signal handler
724 	 *        should be a mixture of the two, but how do we
725 	 *        get the information? [KD]
726 	 */
727 	return_to_32bit(regs, VM86_UNKNOWN);
728 }
729 
730 /* ---------------- vm86 special IRQ passing stuff ----------------- */
731 
732 #define VM86_IRQNAME		"vm86irq"
733 
734 static struct vm86_irqs {
735 	struct task_struct *tsk;
736 	int sig;
737 } vm86_irqs[16];
738 
739 static DEFINE_SPINLOCK(irqbits_lock);
740 static int irqbits;
741 
742 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
743 	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
744 	| (1 << SIGUNUSED))
745 
746 static irqreturn_t irq_handler(int intno, void *dev_id)
747 {
748 	int irq_bit;
749 	unsigned long flags;
750 
751 	spin_lock_irqsave(&irqbits_lock, flags);
752 	irq_bit = 1 << intno;
753 	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
754 		goto out;
755 	irqbits |= irq_bit;
756 	if (vm86_irqs[intno].sig)
757 		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
758 	/*
759 	 * IRQ will be re-enabled when user asks for the irq (whether
760 	 * polling or as a result of the signal)
761 	 */
762 	disable_irq_nosync(intno);
763 	spin_unlock_irqrestore(&irqbits_lock, flags);
764 	return IRQ_HANDLED;
765 
766 out:
767 	spin_unlock_irqrestore(&irqbits_lock, flags);
768 	return IRQ_NONE;
769 }
770 
771 static inline void free_vm86_irq(int irqnumber)
772 {
773 	unsigned long flags;
774 
775 	free_irq(irqnumber, NULL);
776 	vm86_irqs[irqnumber].tsk = NULL;
777 
778 	spin_lock_irqsave(&irqbits_lock, flags);
779 	irqbits &= ~(1 << irqnumber);
780 	spin_unlock_irqrestore(&irqbits_lock, flags);
781 }
782 
783 void release_vm86_irqs(struct task_struct *task)
784 {
785 	int i;
786 	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
787 	    if (vm86_irqs[i].tsk == task)
788 		free_vm86_irq(i);
789 }
790 
791 static inline int get_and_reset_irq(int irqnumber)
792 {
793 	int bit;
794 	unsigned long flags;
795 	int ret = 0;
796 
797 	if (invalid_vm86_irq(irqnumber)) return 0;
798 	if (vm86_irqs[irqnumber].tsk != current) return 0;
799 	spin_lock_irqsave(&irqbits_lock, flags);
800 	bit = irqbits & (1 << irqnumber);
801 	irqbits &= ~bit;
802 	if (bit) {
803 		enable_irq(irqnumber);
804 		ret = 1;
805 	}
806 
807 	spin_unlock_irqrestore(&irqbits_lock, flags);
808 	return ret;
809 }
810 
811 
812 static int do_vm86_irq_handling(int subfunction, int irqnumber)
813 {
814 	int ret;
815 	switch (subfunction) {
816 		case VM86_GET_AND_RESET_IRQ: {
817 			return get_and_reset_irq(irqnumber);
818 		}
819 		case VM86_GET_IRQ_BITS: {
820 			return irqbits;
821 		}
822 		case VM86_REQUEST_IRQ: {
823 			int sig = irqnumber >> 8;
824 			int irq = irqnumber & 255;
825 			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
826 			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
827 			if (invalid_vm86_irq(irq)) return -EPERM;
828 			if (vm86_irqs[irq].tsk) return -EPERM;
829 			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
830 			if (ret) return ret;
831 			vm86_irqs[irq].sig = sig;
832 			vm86_irqs[irq].tsk = current;
833 			return irq;
834 		}
835 		case  VM86_FREE_IRQ: {
836 			if (invalid_vm86_irq(irqnumber)) return -EPERM;
837 			if (!vm86_irqs[irqnumber].tsk) return 0;
838 			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
839 			free_vm86_irq(irqnumber);
840 			return 0;
841 		}
842 	}
843 	return -EINVAL;
844 }
845 
846